/*
Broadcom BCM43xx wireless driver
Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
Stefano Brivio <st3@riseup.net>
Michael Buesch <mbuesch@freenet.de>
Danny van Dyk <kugelfang@gentoo.org>
Andreas Jaggi <andreas.jaggi@waterwave.ch>
Some parts of the code in this file are derived from the ipw2200
driver Copyright(c) 2003 - 2004 Intel Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/if_arp.h>
#include <linux/etherdevice.h>
#include <linux/version.h>
#include <linux/firmware.h>
#include <linux/wireless.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/dma-mapping.h>
#include <net/iw_handler.h>
#include "bcm43xx.h"
#include "bcm43xx_main.h"
#include "bcm43xx_debugfs.h"
#include "bcm43xx_radio.h"
#include "bcm43xx_phy.h"
#include "bcm43xx_dma.h"
#include "bcm43xx_pio.h"
#include "bcm43xx_power.h"
#include "bcm43xx_wx.h"
#include "bcm43xx_ethtool.h"
#include "bcm43xx_xmit.h"
#include "bcm43xx_sysfs.h"
MODULE_DESCRIPTION("Broadcom BCM43xx wireless driver");
MODULE_AUTHOR("Martin Langer");
MODULE_AUTHOR("Stefano Brivio");
MODULE_AUTHOR("Michael Buesch");
MODULE_LICENSE("GPL");
#if defined(CONFIG_BCM43XX_DMA) && defined(CONFIG_BCM43XX_PIO)
static int modparam_pio;
module_param_named(pio, modparam_pio, int, 0444);
MODULE_PARM_DESC(pio, "enable(1) / disable(0) PIO mode");
#elif defined(CONFIG_BCM43XX_DMA)
# define modparam_pio 0
#elif defined(CONFIG_BCM43XX_PIO)
# define modparam_pio 1
#endif
static int modparam_bad_frames_preempt;
module_param_named(bad_frames_preempt, modparam_bad_frames_preempt, int, 0444);
MODULE_PARM_DESC(bad_frames_preempt, "enable(1) / disable(0) Bad Frames Preemption");
static int modparam_short_retry = BCM43xx_DEFAULT_SHORT_RETRY_LIMIT;
module_param_named(short_retry, modparam_short_retry, int, 0444);
MODULE_PARM_DESC(short_retry, "Short-Retry-Limit (0 - 15)");
static int modparam_long_retry = BCM43xx_DEFAULT_LONG_RETRY_LIMIT;
module_param_named(long_retry, modparam_long_retry, int, 0444);
MODULE_PARM_DESC(long_retry, "Long-Retry-Limit (0 - 15)");
static int modparam_locale = -1;
module_param_named(locale, modparam_locale, int, 0444);
MODULE_PARM_DESC(country, "Select LocaleCode 0-11 (For travelers)");
static int modparam_noleds;
module_param_named(noleds, modparam_noleds, int, 0444);
MODULE_PARM_DESC(noleds, "Turn off all LED activity");
static char modparam_fwpostfix[64];
module_param_string(fwpostfix, modparam_fwpostfix, 64, 0444);
MODULE_PARM_DESC(fwpostfix, "Postfix for .fw files. Useful for using multiple firmware image versions.");
/* If you want to debug with just a single device, enable this,
* where the string is the pci device ID (as given by the kernel's
* pci_name function) of the device to be used.
*/
//#define DEBUG_SINGLE_DEVICE_ONLY "0001:11:00.0"
/* If you want to enable printing of each MMIO access, enable this. */
//#define DEBUG_ENABLE_MMIO_PRINT
/* If you want to enable printing of MMIO access within
* ucode/pcm upload, initvals write, enable this.
*/
//#define DEBUG_ENABLE_UCODE_MMIO_PRINT
/* If you want to enable printing of PCI Config Space access, enable this */
//#define DEBUG_ENABLE_PCILOG
/* Detailed list maintained at:
* http://openfacts.berlios.de/index-en.phtml?title=Bcm43xxDevices
*/
static struct pci_device_id bcm43xx_pci_tbl[] = {
/* Broadcom 4303 802.11b */
{ PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
/* Broadcom 4307 802.11b */
{ PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
/* Broadcom 4311 802.11(a)/b/g */
{ PCI_VENDOR_ID_BROADCOM, 0x4311, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
/* Broadcom 4312 802.11a/b/g */
{ PCI_VENDOR_ID_BROADCOM, 0x4312, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
/* Broadcom 4318 802.11b/g */
{ PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
/* Broadcom 4319 802.11a/b/g */
{ PCI_VENDOR_ID_BROADCOM, 0x4319, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
/* Broadcom 4306 802.11b/g */
{ PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
/* Broadcom 4306 802.11a */
// { PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
/* Broadcom 4309 802.11a/b/g */
{ PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
/* Broadcom 43XG 802.11b/g */
{ PCI_VENDOR_ID_BROADCOM, 0x4325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ 0 },
};
MODULE_DEVICE_TABLE(pci, bcm43xx_pci_tbl);
static void bcm43xx_ram_write(struct bcm43xx_private *bcm, u16 offset, u32 val)
{
u32 status;
status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
if (!(status & BCM43xx_SBF_XFER_REG_BYTESWAP))
val = swab32(val);
bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_CONTROL, offset);
mmiowb();
bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_DATA, val);
}
static inline
void bcm43xx_shm_control_word(struct bcm43xx_private *bcm,
u16 routing, u16 offset)
{
u32 control;
/* "offset" is the WORD offset. */
control = routing;
control <<= 16;
control |= offset;
bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_CONTROL, control);
}
u32 bcm43xx_shm_read32(struct bcm43xx_private *bcm,
u16 routing, u16 offset)
{
u32 ret;
if (routing == BCM43xx_SHM_SHARED) {
if (offset & 0x0003) {
/* Unaligned access */
bcm43xx_shm_control_word(bcm, routing, offset >> 2);
ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
ret <<= 16;
bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
ret |= bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
return ret;
}
offset >>= 2;
}
bcm43xx_shm_control_word(bcm, routing, offset);
ret = bcm43xx_read32(bcm, BCM43xx_MMIO_SHM_DATA);
return ret;
}
u16 bcm43xx_shm_read16(struct bcm43xx_private *bcm,
u16 routing, u16 offset)
{
u16 ret;
if (routing == BCM43xx_SHM_SHARED) {
if (offset & 0x0003) {
/* Unaligned access */
bcm43xx_shm_control_word(bcm, routing, offset >> 2);
ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
return ret;
}
offset >>= 2;
}
bcm43xx_shm_control_word(bcm, routing, offset);
ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
return ret;
}
void bcm43xx_shm_write32(struct bcm43xx_private *bcm,
u16 routing, u16 offset,
u32 value)
{
if (routing == BCM43xx_SHM_SHARED) {
if (offset & 0x0003) {
/* Unaligned access */
bcm43xx_shm_control_word(bcm, routing, offset >> 2);
mmiowb();
bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
(value >> 16) & 0xffff);
mmiowb();
bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
mmiowb();
bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA,
value & 0xffff);
return;
}
offset >>= 2;
}
bcm43xx_shm_control_word(bcm, routing, offset);
mmiowb();
bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, value);
}
void bcm43xx_shm_write16(struct bcm43xx_private *bcm,
u16 routing, u16 offset,
u16 value)
{
if (routing == BCM43xx_SHM_SHARED) {
if (offset & 0x0003) {
/* Unaligned access */
bcm43xx_shm_control_word(bcm, routing, offset >> 2);
mmiowb();
bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
value);
return;
}
offset >>= 2;
}
bcm43xx_shm_control_word(bcm, routing, offset);
mmiowb();
bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA, value);
}
void bcm43xx_tsf_read(struct bcm43xx_private *bcm, u64 *tsf)
{
/* We need to be careful. As we read the TSF from multiple
* registers, we should take care of register overflows.
* In theory, the whole tsf read process should be atomic.
* We try to be atomic here, by restaring the read process,
* if any of the high registers changed (overflew).
*/
if (bcm->current_core->rev >= 3) {
u32 low, high, high2;
do {
high = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
low = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW);
high2 = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
} while (unlikely(high != high2));
*tsf = high;
*tsf <<= 32;
*tsf |= low;
} else {
u64 tmp;
u16 v0, v1, v2, v3;
u16 test1, test2, test3;
do {
v3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
v2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
v1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
v0 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_0);
test3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
test2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
test1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
} while (v3 != test3 || v2 != test2 || v1 != test1);
*tsf = v3;
*tsf <<= 48;
tmp = v2;
tmp <<= 32;
*tsf |= tmp;
tmp = v1;
tmp <<= 16;
*tsf |= tmp;
*tsf |= v0;
}
}
void bcm43xx_tsf_write(struct bcm43xx_private *bcm, u64 tsf)
{
u32 status;
status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
status |= BCM43xx_SBF_TIME_UPDATE;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
mmiowb();
/* Be careful with the in-progress timer.
* First zero out the low register, so we have a full
* register-overflow duration to complete the operation.
*/
if (bcm->current_core->rev >= 3) {
u32 lo = (tsf & 0x00000000FFFFFFFFULL);
u32 hi = (tsf & 0xFFFFFFFF00000000ULL) >> 32;
bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, 0);
mmiowb();
bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH, hi);
mmiowb();
bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, lo);
} else {
u16 v0 = (tsf & 0x000000000000FFFFULL);
u16 v1 = (tsf & 0x00000000FFFF0000ULL) >> 16;
u16 v2 = (tsf & 0x0000FFFF00000000ULL) >> 32;
u16 v3 = (tsf & 0xFFFF000000000000ULL) >> 48;
bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, 0);
mmiowb();
bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_3, v3);
mmiowb();
bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_2, v2);
mmiowb();
bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_1, v1);
mmiowb();
bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, v0);
}
status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
status &= ~BCM43xx_SBF_TIME_UPDATE;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
}
static
void bcm43xx_macfilter_set(struct bcm43xx_private *bcm,
u16 offset,
const u8 *mac)
{
u16 data;
offset |= 0x0020;
bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_CONTROL, offset);
data = mac[0];
data |= mac[1] << 8;
bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
data = mac[2];
data |= mac[3] << 8;
bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
data = mac[4];
data |= mac[5] << 8;
bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
}
static void bcm43xx_macfilter_clear(struct bcm43xx_private *bcm,
u16 offset)
{
const u8 zero_addr[ETH_ALEN] = { 0 };
bcm43xx_macfilter_set(bcm, offset, zero_addr);
}
static void bcm43xx_write_mac_bssid_templates(struct bcm43xx_private *bcm)
{
const u8 *mac = (const u8 *)(bcm->net_dev->dev_addr);
const u8 *bssid = (const u8 *)(bcm->ieee->bssid);
u8 mac_bssid[ETH_ALEN * 2];
int i;
memcpy(mac_bssid, mac, ETH_ALEN);
memcpy(mac_bssid + ETH_ALEN, bssid, ETH_ALEN);
/* Write our MAC address and BSSID to template ram */
for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
bcm43xx_ram_write(bcm, 0x20 + i, *((u32 *)(mac_bssid + i)));
for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
bcm43xx_ram_write(bcm, 0x78 + i, *((u32 *)(mac_bssid + i)));
for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
bcm43xx_ram_write(bcm, 0x478 + i, *((u32 *)(mac_bssid + i)));
}
//FIXME: Well, we should probably call them from somewhere.
#if 0
static void bcm43xx_set_slot_time(struct bcm43xx_private *bcm, u16 slot_time)
{
/* slot_time is in usec. */
if (bcm43xx_current_phy(bcm)->type != BCM43xx_PHYTYPE_G)
return;
bcm43xx_write16(bcm, 0x684, 510 + slot_time);
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0010, slot_time);
}
static void bcm43xx_short_slot_timing_enable(struct bcm43xx_private *bcm)
{
bcm43xx_set_slot_time(bcm, 9);
}
static void bcm43xx_short_slot_timing_disable(struct bcm43xx_private *bcm)
{
bcm43xx_set_slot_time(bcm, 20);
}
#endif
/* FIXME: To get the MAC-filter working, we need to implement the
* following functions (and rename them :)
*/
#if 0
static void bcm43xx_disassociate(struct bcm43xx_private *bcm)
{
bcm43xx_mac_suspend(bcm);
bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
bcm43xx_ram_write(bcm, 0x0026, 0x0000);
bcm43xx_ram_write(bcm, 0x0028, 0x0000);
bcm43xx_ram_write(bcm, 0x007E, 0x0000);
bcm43xx_ram_write(bcm, 0x0080, 0x0000);
bcm43xx_ram_write(bcm, 0x047E, 0x0000);
bcm43xx_ram_write(bcm, 0x0480, 0x0000);
if (bcm->current_core->rev < 3) {
bcm43xx_write16(bcm, 0x0610, 0x8000);
bcm43xx_write16(bcm, 0x060E, 0x0000);
} else
bcm43xx_write32(bcm, 0x0188, 0x80000000);
bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_G &&
ieee80211_is_ofdm_rate(bcm->softmac->txrates.default_rate))
bcm43xx_short_slot_timing_enable(bcm);
bcm43xx_mac_enable(bcm);
}
static void bcm43xx_associate(struct bcm43xx_private *bcm,
const u8 *mac)
{
memcpy(bcm->ieee->bssid, mac, ETH_ALEN);
bcm43xx_mac_suspend(bcm);
bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_ASSOC, mac);
bcm43xx_write_mac_bssid_templates(bcm);
bcm43xx_mac_enable(bcm);
}
#endif
/* Enable a Generic IRQ. "mask" is the mask of which IRQs to enable.
* Returns the _previously_ enabled IRQ mask.
*/
static inline u32 bcm43xx_interrupt_enable(struct bcm43xx_private *bcm, u32 mask)
{
u32 old_mask;
old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask | mask);
return old_mask;
}
/* Disable a Generic IRQ. "mask" is the mask of which IRQs to disable.
* Returns the _previously_ enabled IRQ mask.
*/
static inline u32 bcm43xx_interrupt_disable(struct bcm43xx_private *bcm, u32 mask)
{
u32 old_mask;
old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask & ~mask);
return old_mask;
}
/* Synchronize IRQ top- and bottom-half.
* IRQs must be masked before calling this.
* This must not be called with the irq_lock held.
*/
static void bcm43xx_synchronize_irq(struct bcm43xx_private *bcm)
{
synchronize_irq(bcm->irq);
tasklet_disable(&bcm->isr_tasklet);
}
/* Make sure we don't receive more data from the device. */
static int bcm43xx_disable_interrupts_sync(struct bcm43xx_private *bcm)
{
unsigned long flags;
spin_lock_irqsave(&bcm->irq_lock, flags);
if (unlikely(bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED)) {
spin_unlock_irqrestore(&bcm->irq_lock, flags);
return -EBUSY;
}
bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK); /* flush */
spin_unlock_irqrestore(&bcm->irq_lock, flags);
bcm43xx_synchronize_irq(bcm);
return 0;
}
static int bcm43xx_read_radioinfo(struct bcm43xx_private *bcm)
{
struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
u32 radio_id;
u16 manufact;
u16 version;
u8 revision;
if (bcm->chip_id == 0x4317) {
if (bcm->chip_rev == 0x00)
radio_id = 0x3205017F;
else if (bcm->chip_rev == 0x01)
radio_id = 0x4205017F;
else
radio_id = 0x5205017F;
} else {
bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
radio_id = bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_HIGH);
radio_id <<= 16;
bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
radio_id |= bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_LOW);
}
manufact = (radio_id & 0x00000FFF);
version = (radio_id & 0x0FFFF000) >> 12;
revision = (radio_id & 0xF0000000) >> 28;
dprintk(KERN_INFO PFX "Detected Radio: ID: %x (Manuf: %x Ver: %x Rev: %x)\n",
radio_id, manufact, version, revision);
switch (phy->type) {
case BCM43xx_PHYTYPE_A:
if ((version != 0x2060) || (revision != 1) || (manufact != 0x17f))
goto err_unsupported_radio;
break;
case BCM43xx_PHYTYPE_B:
if ((version & 0xFFF0) != 0x2050)
goto err_unsupported_radio;
break;
case BCM43xx_PHYTYPE_G:
if (version != 0x2050)
goto err_unsupported_radio;
break;
}
radio->manufact = manufact;
radio->version = version;
radio->revision = revision;
if (phy->type == BCM43xx_PHYTYPE_A)
radio->txpower_desired = bcm->sprom.maxpower_aphy;
else
radio->txpower_desired = bcm->sprom.maxpower_bgphy;
return 0;
err_unsupported_radio:
printk(KERN_ERR PFX "Unsupported Radio connected to the PHY!\n");
return -ENODEV;
}
static const char * bcm43xx_locale_iso(u8 locale)
{
/* ISO 3166-1 country codes.
* Note that there aren't ISO 3166-1 codes for
* all or locales. (Not all locales are countries)
*/
switch (locale) {
case BCM43xx_LOCALE_WORLD:
case BCM43xx_LOCALE_ALL:
return "XX";
case BCM43xx_LOCALE_THAILAND:
return "TH";
case BCM43xx_LOCALE_ISRAEL:
return "IL";
case BCM43xx_LOCALE_JORDAN:
return "JO";
case BCM43xx_LOCALE_CHINA:
return "CN";
case BCM43xx_LOCALE_JAPAN:
case BCM43xx_LOCALE_JAPAN_HIGH:
return "JP";
case BCM43xx_LOCALE_USA_CANADA_ANZ:
case BCM43xx_LOCALE_USA_LOW:
return "US";
case BCM43xx_LOCALE_EUROPE:
return "EU";
case BCM43xx_LOCALE_NONE:
return " ";
}
assert(0);
return " ";
}
static const char * bcm43xx_locale_string(u8 locale)
{
switch (locale) {
case BCM43xx_LOCALE_WORLD:
return "World";
case BCM43xx_LOCALE_THAILAND:
return "Thailand";
case BCM43xx_LOCALE_ISRAEL:
return "Israel";
case BCM43xx_LOCALE_JORDAN:
return "Jordan";
case BCM43xx_LOCALE_CHINA:
return "China";
case BCM43xx_LOCALE_JAPAN:
return "Japan";
case BCM43xx_LOCALE_USA_CANADA_ANZ:
return "USA/Canada/ANZ";
case BCM43xx_LOCALE_EUROPE:
return "Europe";
case BCM43xx_LOCALE_USA_LOW:
return "USAlow";
case BCM43xx_LOCALE_JAPAN_HIGH:
return "JapanHigh";
case BCM43xx_LOCALE_ALL:
return "All";
case BCM43xx_LOCALE_NONE:
return "None";
}
assert(0);
return "";
}
static inline u8 bcm43xx_crc8(u8 crc, u8 data)
{
static const u8 t[] = {
0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
};
return t[crc ^ data];
}
static u8 bcm43xx_sprom_crc(const u16 *sprom)
{
int word;
u8 crc = 0xFF;
for (word = 0; word < BCM43xx_SPROM_SIZE - 1; word++) {
crc = bcm43xx_crc8(crc, sprom[word] & 0x00FF);
crc = bcm43xx_crc8(crc, (sprom[word] & 0xFF00) >> 8);
}
crc = bcm43xx_crc8(crc, sprom[BCM43xx_SPROM_VERSION] & 0x00FF);
crc ^= 0xFF;
return crc;
}
int bcm43xx_sprom_read(struct bcm43xx_private *bcm, u16 *sprom)
{
int i;
u8 crc, expected_crc;
for (i = 0; i < BCM43xx_SPROM_SIZE; i++)
sprom[i] = bcm43xx_read16(bcm, BCM43xx_SPROM_BASE + (i * 2));
/* CRC-8 check. */
crc = bcm43xx_sprom_crc(sprom);
expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
if (crc != expected_crc) {
printk(KERN_WARNING PFX "WARNING: Invalid SPROM checksum "
"(0x%02X, expected: 0x%02X)\n",
crc, expected_crc);
return -EINVAL;
}
return 0;
}
int bcm43xx_sprom_write(struct bcm43xx_private *bcm, const u16 *sprom)
{
int i, err;
u8 crc, expected_crc;
u32 spromctl;
/* CRC-8 validation of the input data. */
crc = bcm43xx_sprom_crc(sprom);
expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
if (crc != expected_crc) {
printk(KERN_ERR PFX "SPROM input data: Invalid CRC\n");
return -EINVAL;
}
printk(KERN_INFO PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_SPROMCTL, &spromctl);
if (err)
goto err_ctlreg;
spromctl |= 0x10; /* SPROM WRITE enable. */
err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
if (err)
goto err_ctlreg;
/* We must burn lots of CPU cycles here, but that does not
* really matter as one does not write the SPROM every other minute...
*/
printk(KERN_INFO PFX "[ 0%%");
mdelay(500);
for (i = 0; i < BCM43xx_SPROM_SIZE; i++) {
if (i == 16)
printk("25%%");
else if (i == 32)
printk("50%%");
else if (i == 48)
printk("75%%");
else if (i % 2)
printk(".");
bcm43xx_write16(bcm, BCM43xx_SPROM_BASE + (i * 2), sprom[i]);
mmiowb();
mdelay(20);
}
spromctl &= ~0x10; /* SPROM WRITE enable. */
err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
if (err)
goto err_ctlreg;
mdelay(500);
printk("100%% ]\n");
printk(KERN_INFO PFX "SPROM written.\n");
bcm43xx_controller_restart(bcm, "SPROM update");
return 0;
err_ctlreg:
printk(KERN_ERR PFX "Could not access SPROM control register.\n");
return -ENODEV;
}
static int bcm43xx_sprom_extract(struct bcm43xx_private *bcm)
{
u16 value;
u16 *sprom;
sprom = kzalloc(BCM43xx_SPROM_SIZE * sizeof(u16),
GFP_KERNEL);
if (!sprom) {
printk(KERN_ERR PFX "sprom_extract OOM\n");
return -ENOMEM;
}
bcm43xx_sprom_read(bcm, sprom);
/* boardflags2 */
value = sprom[BCM43xx_SPROM_BOARDFLAGS2];
bcm->sprom.boardflags2 = value;
/* il0macaddr */
value = sprom[BCM43xx_SPROM_IL0MACADDR + 0];
*(((u16 *)bcm->sprom.il0macaddr) + 0) = cpu_to_be16(value);
value = sprom[BCM43xx_SPROM_IL0MACADDR + 1];
*(((u16 *)bcm->sprom.il0macaddr) + 1) = cpu_to_be16(value);
value = sprom[BCM43xx_SPROM_IL0MACADDR + 2];
*(((u16 *)bcm->sprom.il0macaddr) + 2) = cpu_to_be16(value);
/* et0macaddr */
value = sprom[BCM43xx_SPROM_ET0MACADDR + 0];
*(((u16 *)bcm->sprom.et0macaddr) + 0) = cpu_to_be16(value);
value = sprom[BCM43xx_SPROM_ET0MACADDR + 1];
*(((u16 *)bcm->sprom.et0macaddr) + 1) = cpu_to_be16(value);
value = sprom[BCM43xx_SPROM_ET0MACADDR + 2];
*(((u16 *)bcm->sprom.et0macaddr) + 2) = cpu_to_be16(value);
/* et1macaddr */
value = sprom[BCM43xx_SPROM_ET1MACADDR + 0];
*(((u16 *)bcm->sprom.et1macaddr) + 0) = cpu_to_be16(value);
value = sprom[BCM43xx_SPROM_ET1MACADDR + 1];
*(((u16 *)bcm->sprom.et1macaddr) + 1) = cpu_to_be16(value);
value = sprom[BCM43xx_SPROM_ET1MACADDR + 2];
*(((u16 *)bcm->sprom.et1macaddr) + 2) = cpu_to_be16(value);
/* ethernet phy settings */
value = sprom[BCM43xx_SPROM_ETHPHY];
bcm->sprom.et0phyaddr = (value & 0x001F);
bcm->sprom.et1phyaddr = (value & 0x03E0) >> 5;
/* boardrev, antennas, locale */
value = sprom[BCM43xx_SPROM_BOARDREV];
bcm->sprom.boardrev = (value & 0x00FF);
bcm->sprom.locale = (value & 0x0F00) >> 8;
bcm->sprom.antennas_aphy = (value & 0x3000) >> 12;
bcm->sprom.antennas_bgphy = (value & 0xC000) >> 14;
if (modparam_locale != -1) {
if (modparam_locale >= 0 && modparam_locale <= 11) {
bcm->sprom.locale = modparam_locale;
printk(KERN_WARNING PFX "Operating with modified "
"LocaleCode %u (%s)\n",
bcm->sprom.locale,
bcm43xx_locale_string(bcm->sprom.locale));
} else {
printk(KERN_WARNING PFX "Module parameter \"locale\" "
"invalid value. (0 - 11)\n");
}
}
/* pa0b* */
value = sprom[BCM43xx_SPROM_PA0B0];
bcm->sprom.pa0b0 = value;
value = sprom[BCM43xx_SPROM_PA0B1];
bcm->sprom.pa0b1 = value;
value = sprom[BCM43xx_SPROM_PA0B2];
bcm->sprom.pa0b2 = value;
/* wl0gpio* */
value = sprom[BCM43xx_SPROM_WL0GPIO0];
if (value == 0x0000)
value = 0xFFFF;
bcm->sprom.wl0gpio0 = value & 0x00FF;
bcm->sprom.wl0gpio1 = (value & 0xFF00) >> 8;
value = sprom[BCM43xx_SPROM_WL0GPIO2];
if (value == 0x0000)
value = 0xFFFF;
bcm->sprom.wl0gpio2 = value & 0x00FF;
bcm->sprom.wl0gpio3 = (value & 0xFF00) >> 8;
/* maxpower */
value = sprom[BCM43xx_SPROM_MAXPWR];
bcm->sprom.maxpower_aphy = (value & 0xFF00) >> 8;
bcm->sprom.maxpower_bgphy = value & 0x00FF;
/* pa1b* */
value = sprom[BCM43xx_SPROM_PA1B0];
bcm->sprom.pa1b0 = value;
value = sprom[BCM43xx_SPROM_PA1B1];
bcm->sprom.pa1b1 = value;
value = sprom[BCM43xx_SPROM_PA1B2];
bcm->sprom.pa1b2 = value;
/* idle tssi target */
value = sprom[BCM43xx_SPROM_IDL_TSSI_TGT];
bcm->sprom.idle_tssi_tgt_aphy = value & 0x00FF;
bcm->sprom.idle_tssi_tgt_bgphy = (value & 0xFF00) >> 8;
/* boardflags */
value = sprom[BCM43xx_SPROM_BOARDFLAGS];
if (value == 0xFFFF)
value = 0x0000;
bcm->sprom.boardflags = value;
/* boardflags workarounds */
if (bcm->board_vendor == PCI_VENDOR_ID_DELL &&
bcm->chip_id == 0x4301 &&
bcm->board_revision == 0x74)
bcm->sprom.boardflags |= BCM43xx_BFL_BTCOEXIST;
if (bcm->board_vendor == PCI_VENDOR_ID_APPLE &&
bcm->board_type == 0x4E &&
bcm->board_revision > 0x40)
bcm->sprom.boardflags |= BCM43xx_BFL_PACTRL;
/* antenna gain */
value = sprom[BCM43xx_SPROM_ANTENNA_GAIN];
if (value == 0x0000 || value == 0xFFFF)
value = 0x0202;
/* convert values to Q5.2 */
bcm->sprom.antennagain_aphy = ((value & 0xFF00) >> 8) * 4;
bcm->sprom.antennagain_bgphy = (value & 0x00FF) * 4;
kfree(sprom);
return 0;
}
static int bcm43xx_geo_init(struct bcm43xx_private *bcm)
{
struct ieee80211_geo *geo;
struct ieee80211_channel *chan;
int have_a = 0, have_bg = 0;
int i;
u8 channel;
struct bcm43xx_phyinfo *phy;
const char *iso_country;
u8 max_bg_channel;
geo = kzalloc(sizeof(*geo), GFP_KERNEL);
if (!geo)
return -ENOMEM;
for (i = 0; i < bcm->nr_80211_available; i++) {
phy = &(bcm->core_80211_ext[i].phy);
switch (phy->type) {
case BCM43xx_PHYTYPE_B:
case BCM43xx_PHYTYPE_G:
have_bg = 1;
break;
case BCM43xx_PHYTYPE_A:
have_a = 1;
break;
default:
assert(0);
}
}
iso_country = bcm43xx_locale_iso(bcm->sprom.locale);
/* set the maximum channel based on locale set in sprom or witle locale option */
switch (bcm->sprom.locale) {
case BCM43xx_LOCALE_THAILAND:
case BCM43xx_LOCALE_ISRAEL:
case BCM43xx_LOCALE_JORDAN:
case BCM43xx_LOCALE_USA_CANADA_ANZ:
case BCM43xx_LOCALE_USA_LOW:
max_bg_channel = 11;
break;
case BCM43xx_LOCALE_JAPAN:
case BCM43xx_LOCALE_JAPAN_HIGH:
max_bg_channel = 14;
break;
default:
max_bg_channel = 13;
}
if (have_a) {
for (i = 0, channel = IEEE80211_52GHZ_MIN_CHANNEL;
channel <= IEEE80211_52GHZ_MAX_CHANNEL; channel++) {
chan = &geo->a[i++];
chan->freq = bcm43xx_channel_to_freq_a(channel);
chan->channel = channel;
}
geo->a_channels = i;
}
if (have_bg) {
for (i = 0, channel = IEEE80211_24GHZ_MIN_CHANNEL;
channel <= max_bg_channel; channel++) {
chan = &geo->bg[i++];
chan->freq = bcm43xx_channel_to_freq_bg(channel);
chan->channel = channel;
}
geo->bg_channels = i;
}
memcpy(geo->name, iso_country, 2);
if (0 /*TODO: Outdoor use only */)
geo->name[2] = 'O';
else if (0 /*TODO: Indoor use only */)
geo->name[2] = 'I';
else
geo->name[2] = ' ';
geo->name[3] = '\0';
ieee80211_set_geo(bcm->ieee, geo);
kfree(geo);
return 0;
}
/* DummyTransmission function, as documented on
* http://bcm-specs.sipsolutions.net/DummyTransmission
*/
void bcm43xx_dummy_transmission(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
unsigned int i, max_loop;
u16 value = 0;
u32 buffer[5] = {
0x00000000,
0x0000D400,
0x00000000,
0x00000001,
0x00000000,
};
switch (phy->type) {
case BCM43xx_PHYTYPE_A:
max_loop = 0x1E;
buffer[0] = 0xCC010200;
break;
case BCM43xx_PHYTYPE_B:
case BCM43xx_PHYTYPE_G:
max_loop = 0xFA;
buffer[0] = 0x6E840B00;
break;
default:
assert(0);
return;
}
for (i = 0; i < 5; i++)
bcm43xx_ram_write(bcm, i * 4, buffer[i]);
bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
bcm43xx_write16(bcm, 0x0568, 0x0000);
bcm43xx_write16(bcm, 0x07C0, 0x0000);
bcm43xx_write16(bcm, 0x050C, ((phy->type == BCM43xx_PHYTYPE_A) ? 1 : 0));
bcm43xx_write16(bcm, 0x0508, 0x0000);
bcm43xx_write16(bcm, 0x050A, 0x0000);
bcm43xx_write16(bcm, 0x054C, 0x0000);
bcm43xx_write16(bcm, 0x056A, 0x0014);
bcm43xx_write16(bcm, 0x0568, 0x0826);
bcm43xx_write16(bcm, 0x0500, 0x0000);
bcm43xx_write16(bcm, 0x0502, 0x0030);
if (radio->version == 0x2050 && radio->revision <= 0x5)
bcm43xx_radio_write16(bcm, 0x0051, 0x0017);
for (i = 0x00; i < max_loop; i++) {
value = bcm43xx_read16(bcm, 0x050E);
if (value & 0x0080)
break;
udelay(10);
}
for (i = 0x00; i < 0x0A; i++) {
value = bcm43xx_read16(bcm, 0x050E);
if (value & 0x0400)
break;
udelay(10);
}
for (i = 0x00; i < 0x0A; i++) {
value = bcm43xx_read16(bcm, 0x0690);
if (!(value & 0x0100))
break;
udelay(10);
}
if (radio->version == 0x2050 && radio->revision <= 0x5)
bcm43xx_radio_write16(bcm, 0x0051, 0x0037);
}
static void key_write(struct bcm43xx_private *bcm,
u8 index, u8 algorithm, const u16 *key)
{
unsigned int i, basic_wep = 0;
u32 offset;
u16 value;
/* Write associated key information */
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x100 + (index * 2),
((index << 4) | (algorithm & 0x0F)));
/* The first 4 WEP keys need extra love */
if (((algorithm == BCM43xx_SEC_ALGO_WEP) ||
(algorithm == BCM43xx_SEC_ALGO_WEP104)) && (index < 4))
basic_wep = 1;
/* Write key payload, 8 little endian words */
offset = bcm->security_offset + (index * BCM43xx_SEC_KEYSIZE);
for (i = 0; i < (BCM43xx_SEC_KEYSIZE / sizeof(u16)); i++) {
value = cpu_to_le16(key[i]);
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
offset + (i * 2), value);
if (!basic_wep)
continue;
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
offset + (i * 2) + 4 * BCM43xx_SEC_KEYSIZE,
value);
}
}
static void keymac_write(struct bcm43xx_private *bcm,
u8 index, const u32 *addr)
{
/* for keys 0-3 there is no associated mac address */
if (index < 4)
return;
index -= 4;
if (bcm->current_core->rev >= 5) {
bcm43xx_shm_write32(bcm,
BCM43xx_SHM_HWMAC,
index * 2,
cpu_to_be32(*addr));
bcm43xx_shm_write16(bcm,
BCM43xx_SHM_HWMAC,
(index * 2) + 1,
cpu_to_be16(*((u16 *)(addr + 1))));
} else {
if (index < 8) {
TODO(); /* Put them in the macaddress filter */
} else {
TODO();
/* Put them BCM43xx_SHM_SHARED, stating index 0x0120.
Keep in mind to update the count of keymacs in 0x003E as well! */
}
}
}
static int bcm43xx_key_write(struct bcm43xx_private *bcm,
u8 index, u8 algorithm,
const u8 *_key, int key_len,
const u8 *mac_addr)
{
u8 key[BCM43xx_SEC_KEYSIZE] = { 0 };
if (index >= ARRAY_SIZE(bcm->key))
return -EINVAL;
if (key_len > ARRAY_SIZE(key))
return -EINVAL;
if (algorithm < 1 || algorithm > 5)
return -EINVAL;
memcpy(key, _key, key_len);
key_write(bcm, index, algorithm, (const u16 *)key);
keymac_write(bcm, index, (const u32 *)mac_addr);
bcm->key[index].algorithm = algorithm;
return 0;
}
static void bcm43xx_clear_keys(struct bcm43xx_private *bcm)
{
static const u32 zero_mac[2] = { 0 };
unsigned int i,j, nr_keys = 54;
u16 offset;
if (bcm->current_core->rev < 5)
nr_keys = 16;
assert(nr_keys <= ARRAY_SIZE(bcm->key));
for (i = 0; i < nr_keys; i++) {
bcm->key[i].enabled = 0;
/* returns for i < 4 immediately */
keymac_write(bcm, i, zero_mac);
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
0x100 + (i * 2), 0x0000);
for (j = 0; j < 8; j++) {
offset = bcm->security_offset + (j * 4) + (i * BCM43xx_SEC_KEYSIZE);
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
offset, 0x0000);
}
}
dprintk(KERN_INFO PFX "Keys cleared\n");
}
/* Lowlevel core-switch function. This is only to be used in
* bcm43xx_switch_core() and bcm43xx_probe_cores()
*/
static int _switch_core(struct bcm43xx_private *bcm, int core)
{
int err;
int attempts = 0;
u32 current_core;
assert(core >= 0);
while (1) {
err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
(core * 0x1000) + 0x18000000);
if (unlikely(err))
goto error;
err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
¤t_core);
if (unlikely(err))
goto error;
current_core = (current_core - 0x18000000) / 0x1000;
if (current_core == core)
break;
if (unlikely(attempts++ > BCM43xx_SWITCH_CORE_MAX_RETRIES))
goto error;
udelay(10);
}
return 0;
error:
printk(KERN_ERR PFX "Failed to switch to core %d\n", core);
return -ENODEV;
}
int bcm43xx_switch_core(struct bcm43xx_private *bcm, struct bcm43xx_coreinfo *new_core)
{
int err;
if (unlikely(!new_core))
return 0;
if (!new_core->available)
return -ENODEV;
if (bcm->current_core == new_core)
return 0;
err = _switch_core(bcm, new_core->index);
if (unlikely(err))
goto out;
bcm->current_core = new_core;
out:
return err;
}
static int bcm43xx_core_enabled(struct bcm43xx_private *bcm)
{
u32 value;
value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
value &= BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_RESET
| BCM43xx_SBTMSTATELOW_REJECT;
return (value == BCM43xx_SBTMSTATELOW_CLOCK);
}
/* disable current core */
static int bcm43xx_core_disable(struct bcm43xx_private *bcm, u32 core_flags)
{
u32 sbtmstatelow;
u32 sbtmstatehigh;
int i;
/* fetch sbtmstatelow from core information registers */
sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
/* core is already in reset */
if (sbtmstatelow & BCM43xx_SBTMSTATELOW_RESET)
goto out;
if (sbtmstatelow & BCM43xx_SBTMSTATELOW_CLOCK) {
sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
BCM43xx_SBTMSTATELOW_REJECT;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
for (i = 0; i < 1000; i++) {
sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
if (sbtmstatelow & BCM43xx_SBTMSTATELOW_REJECT) {
i = -1;
break;
}
udelay(10);
}
if (i != -1) {
printk(KERN_ERR PFX "Error: core_disable() REJECT timeout!\n");
return -EBUSY;
}
for (i = 0; i < 1000; i++) {
sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
if (!(sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_BUSY)) {
i = -1;
break;
}
udelay(10);
}
if (i != -1) {
printk(KERN_ERR PFX "Error: core_disable() BUSY timeout!\n");
return -EBUSY;
}
sbtmstatelow = BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
BCM43xx_SBTMSTATELOW_REJECT |
BCM43xx_SBTMSTATELOW_RESET |
BCM43xx_SBTMSTATELOW_CLOCK |
core_flags;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
udelay(10);
}
sbtmstatelow = BCM43xx_SBTMSTATELOW_RESET |
BCM43xx_SBTMSTATELOW_REJECT |
core_flags;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
out:
bcm->current_core->enabled = 0;
return 0;
}
/* enable (reset) current core */
static int bcm43xx_core_enable(struct bcm43xx_private *bcm, u32 core_flags)
{
u32 sbtmstatelow;
u32 sbtmstatehigh;
u32 sbimstate;
int err;
err = bcm43xx_core_disable(bcm, core_flags);
if (err)
goto out;
sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
BCM43xx_SBTMSTATELOW_RESET |
BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
core_flags;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
udelay(1);
sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
if (sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_SERROR) {
sbtmstatehigh = 0x00000000;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATEHIGH, sbtmstatehigh);
}
sbimstate = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMSTATE);
if (sbimstate & (BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT)) {
sbimstate &= ~(BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT);
bcm43xx_write32(bcm, BCM43xx_CIR_SBIMSTATE, sbimstate);
}
sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
core_flags;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
udelay(1);
sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | core_flags;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
udelay(1);
bcm->current_core->enabled = 1;
assert(err == 0);
out:
return err;
}
/* http://bcm-specs.sipsolutions.net/80211CoreReset */
void bcm43xx_wireless_core_reset(struct bcm43xx_private *bcm, int connect_phy)
{
u32 flags = 0x00040000;
if ((bcm43xx_core_enabled(bcm)) &&
!bcm43xx_using_pio(bcm)) {
}
if (bcm43xx_status(bcm) == BCM43xx_STAT_SHUTTINGDOWN) {
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
& ~(BCM43xx_SBF_MAC_ENABLED | 0x00000002));
} else {
if (connect_phy)
flags |= BCM43xx_SBTMSTATELOW_G_MODE_ENABLE;
bcm43xx_phy_connect(bcm, connect_phy);
bcm43xx_core_enable(bcm, flags);
bcm43xx_write16(bcm, 0x03E6, 0x0000);
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
| BCM43xx_SBF_400);
}
}
static void bcm43xx_wireless_core_disable(struct bcm43xx_private *bcm)
{
bcm43xx_radio_turn_off(bcm);
bcm43xx_write16(bcm, 0x03E6, 0x00F4);
bcm43xx_core_disable(bcm, 0);
}
/* Mark the current 80211 core inactive. */
static void bcm43xx_wireless_core_mark_inactive(struct bcm43xx_private *bcm)
{
u32 sbtmstatelow;
bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
bcm43xx_radio_turn_off(bcm);
sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
sbtmstatelow &= 0xDFF5FFFF;
sbtmstatelow |= 0x000A0000;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
udelay(1);
sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
sbtmstatelow &= 0xFFF5FFFF;
sbtmstatelow |= 0x00080000;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
udelay(1);
}
static void handle_irq_transmit_status(struct bcm43xx_private *bcm)
{
u32 v0, v1;
u16 tmp;
struct bcm43xx_xmitstatus stat;
while (1) {
v0 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
if (!v0)
break;
v1 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
stat.cookie = (v0 >> 16) & 0x0000FFFF;
tmp = (u16)((v0 & 0xFFF0) | ((v0 & 0xF) >> 1));
stat.flags = tmp & 0xFF;
stat.cnt1 = (tmp & 0x0F00) >> 8;
stat.cnt2 = (tmp & 0xF000) >> 12;
stat.seq = (u16)(v1 & 0xFFFF);
stat.unknown = (u16)((v1 >> 16) & 0xFF);
bcm43xx_debugfs_log_txstat(bcm, &stat);
if (stat.flags & BCM43xx_TXSTAT_FLAG_AMPDU)
continue;
if (stat.flags & BCM43xx_TXSTAT_FLAG_INTER)
continue;
if (bcm43xx_using_pio(bcm))
bcm43xx_pio_handle_xmitstatus(bcm, &stat);
else
bcm43xx_dma_handle_xmitstatus(bcm, &stat);
}
}
static void drain_txstatus_queue(struct bcm43xx_private *bcm)
{
u32 dummy;
if (bcm->current_core->rev < 5)
return;
/* Read all entries from the microcode TXstatus FIFO
* and throw them away.
*/
while (1) {
dummy = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
if (!dummy)
break;
dummy = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
}
}
static void bcm43xx_generate_noise_sample(struct bcm43xx_private *bcm)
{
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x408, 0x7F7F);
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x40A, 0x7F7F);
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD) | (1 << 4));
assert(bcm->noisecalc.core_at_start == bcm->current_core);
assert(bcm->noisecalc.channel_at_start == bcm43xx_current_radio(bcm)->channel);
}
static void bcm43xx_calculate_link_quality(struct bcm43xx_private *bcm)
{
/* Top half of Link Quality calculation. */
if (bcm->noisecalc.calculation_running)
return;
bcm->noisecalc.core_at_start = bcm->current_core;
bcm->noisecalc.channel_at_start = bcm43xx_current_radio(bcm)->channel;
bcm->noisecalc.calculation_running = 1;
bcm->noisecalc.nr_samples = 0;
bcm43xx_generate_noise_sample(bcm);
}
static void handle_irq_noise(struct bcm43xx_private *bcm)
{
struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
u16 tmp;
u8 noise[4];
u8 i, j;
s32 average;
/* Bottom half of Link Quality calculation. */
assert(bcm->noisecalc.calculation_running);
if (bcm->noisecalc.core_at_start != bcm->current_core ||
bcm->noisecalc.channel_at_start != radio->channel)
goto drop_calculation;
tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x408);
noise[0] = (tmp & 0x00FF);
noise[1] = (tmp & 0xFF00) >> 8;
tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40A);
noise[2] = (tmp & 0x00FF);
noise[3] = (tmp & 0xFF00) >> 8;
if (noise[0] == 0x7F || noise[1] == 0x7F ||
noise[2] == 0x7F || noise[3] == 0x7F)
goto generate_new;
/* Get the noise samples. */
assert(bcm->noisecalc.nr_samples < 8);
i = bcm->noisecalc.nr_samples;
noise[0] = limit_value(noise[0], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
noise[1] = limit_value(noise[1], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
noise[2] = limit_value(noise[2], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
noise[3] = limit_value(noise[3], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
bcm->noisecalc.samples[i][0] = radio->nrssi_lt[noise[0]];
bcm->noisecalc.samples[i][1] = radio->nrssi_lt[noise[1]];
bcm->noisecalc.samples[i][2] = radio->nrssi_lt[noise[2]];
bcm->noisecalc.samples[i][3] = radio->nrssi_lt[noise[3]];
bcm->noisecalc.nr_samples++;
if (bcm->noisecalc.nr_samples == 8) {
/* Calculate the Link Quality by the noise samples. */
average = 0;
for (i = 0; i < 8; i++) {
for (j = 0; j < 4; j++)
average += bcm->noisecalc.samples[i][j];
}
average /= (8 * 4);
average *= 125;
average += 64;
average /= 128;
tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40C);
tmp = (tmp / 128) & 0x1F;
if (tmp >= 8)
average += 2;
else
average -= 25;
if (tmp == 8)
average -= 72;
else
average -= 48;
bcm->stats.noise = average;
drop_calculation:
bcm->noisecalc.calculation_running = 0;
return;
}
generate_new:
bcm43xx_generate_noise_sample(bcm);
}
static void handle_irq_ps(struct bcm43xx_private *bcm)
{
if (bcm->ieee->iw_mode == IW_MODE_MASTER) {
///TODO: PS TBTT
} else {
if (1/*FIXME: the last PSpoll frame was sent successfully */)
bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
}
if (bcm->ieee->iw_mode == IW_MODE_ADHOC)
bcm->reg124_set_0x4 = 1;
//FIXME else set to false?
}
static void handle_irq_reg124(struct bcm43xx_private *bcm)
{
if (!bcm->reg124_set_0x4)
return;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD)
| 0x4);
//FIXME: reset reg124_set_0x4 to false?
}
static void handle_irq_pmq(struct bcm43xx_private *bcm)
{
u32 tmp;
//TODO: AP mode.
while (1) {
tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_PS_STATUS);
if (!(tmp & 0x00000008))
break;
}
/* 16bit write is odd, but correct. */
bcm43xx_write16(bcm, BCM43xx_MMIO_PS_STATUS, 0x0002);
}
static void bcm43xx_generate_beacon_template(struct bcm43xx_private *bcm,
u16 ram_offset, u16 shm_size_offset)
{
u32 value;
u16 size = 0;
/* Timestamp. */
//FIXME: assumption: The chip sets the timestamp
value = 0;
bcm43xx_ram_write(bcm, ram_offset++, value);
bcm43xx_ram_write(bcm, ram_offset++, value);
size += 8;
/* Beacon Interval / Capability Information */
value = 0x0000;//FIXME: Which interval?
value |= (1 << 0) << 16; /* ESS */
value |= (1 << 2) << 16; /* CF Pollable */ //FIXME?
value |= (1 << 3) << 16; /* CF Poll Request */ //FIXME?
if (!bcm->ieee->open_wep)
value |= (1 << 4) << 16; /* Privacy */
bcm43xx_ram_write(bcm, ram_offset++, value);
size += 4;
/* SSID */
//TODO
/* FH Parameter Set */
//TODO
/* DS Parameter Set */
//TODO
/* CF Parameter Set */
//TODO
/* TIM */
//TODO
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, shm_size_offset, size);
}
static void handle_irq_beacon(struct bcm43xx_private *bcm)
{
u32 status;
bcm->irq_savedstate &= ~BCM43xx_IRQ_BEACON;
status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD);
if ((status & 0x1) && (status & 0x2)) {
/* ACK beacon IRQ. */
bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON,
BCM43xx_IRQ_BEACON);
bcm->irq_savedstate |= BCM43xx_IRQ_BEACON;
return;
}
if (!(status & 0x1)) {
bcm43xx_generate_beacon_template(bcm, 0x68, 0x18);
status |= 0x1;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
}
if (!(status & 0x2)) {
bcm43xx_generate_beacon_template(bcm, 0x468, 0x1A);
status |= 0x2;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
}
}
/* Interrupt handler bottom-half */
static void bcm43xx_interrupt_tasklet(struct bcm43xx_private *bcm)
{
u32 reason;
u32 dma_reason[6];
u32 merged_dma_reason = 0;
int i, activity = 0;
unsigned long flags;
#ifdef CONFIG_BCM43XX_DEBUG
u32 _handled = 0x00000000;
# define bcmirq_handled(irq) do { _handled |= (irq); } while (0)
#else
# define bcmirq_handled(irq) do { /* nothing */ } while (0)
#endif /* CONFIG_BCM43XX_DEBUG*/
spin_lock_irqsave(&bcm->irq_lock, flags);
reason = bcm->irq_reason;
for (i = 5; i >= 0; i--) {
dma_reason[i] = bcm->dma_reason[i];
merged_dma_reason |= dma_reason[i];
}
if (unlikely(reason & BCM43xx_IRQ_XMIT_ERROR)) {
/* TX error. We get this when Template Ram is written in wrong endianess
* in dummy_tx(). We also get this if something is wrong with the TX header
* on DMA or PIO queues.
* Maybe we get this in other error conditions, too.
*/
printkl(KERN_ERR PFX "FATAL ERROR: BCM43xx_IRQ_XMIT_ERROR\n");
bcmirq_handled(BCM43xx_IRQ_XMIT_ERROR);
}
if (unlikely(merged_dma_reason & BCM43xx_DMAIRQ_FATALMASK)) {
printkl(KERN_ERR PFX "FATAL ERROR: Fatal DMA error: "
"0x%08X, 0x%08X, 0x%08X, "
"0x%08X, 0x%08X, 0x%08X\n",
dma_reason[0], dma_reason[1],
dma_reason[2], dma_reason[3],
dma_reason[4], dma_reason[5]);
bcm43xx_controller_restart(bcm, "DMA error");
mmiowb();
spin_unlock_irqrestore(&bcm->irq_lock, flags);
return;
}
if (unlikely(merged_dma_reason & BCM43xx_DMAIRQ_NONFATALMASK)) {
printkl(KERN_ERR PFX "DMA error: "
"0x%08X, 0x%08X, 0x%08X, "
"0x%08X, 0x%08X, 0x%08X\n",
dma_reason[0], dma_reason[1],
dma_reason[2], dma_reason[3],
dma_reason[4], dma_reason[5]);
}
if (reason & BCM43xx_IRQ_PS) {
handle_irq_ps(bcm);
bcmirq_handled(BCM43xx_IRQ_PS);
}
if (reason & BCM43xx_IRQ_REG124) {
handle_irq_reg124(bcm);
bcmirq_handled(BCM43xx_IRQ_REG124);
}
if (reason & BCM43xx_IRQ_BEACON) {
if (bcm->ieee->iw_mode == IW_MODE_MASTER)
handle_irq_beacon(bcm);
bcmirq_handled(BCM43xx_IRQ_BEACON);
}
if (reason & BCM43xx_IRQ_PMQ) {
handle_irq_pmq(bcm);
bcmirq_handled(BCM43xx_IRQ_PMQ);
}
if (reason & BCM43xx_IRQ_SCAN) {
/*TODO*/
//bcmirq_handled(BCM43xx_IRQ_SCAN);
}
if (reason & BCM43xx_IRQ_NOISE) {
handle_irq_noise(bcm);
bcmirq_handled(BCM43xx_IRQ_NOISE);
}
/* Check the DMA reason registers for received data. */
if (dma_reason[0] & BCM43xx_DMAIRQ_RX_DONE) {
if (bcm43xx_using_pio(bcm))
bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue0);
else
bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring0);
/* We intentionally don't set "activity" to 1, here. */
}
assert(!(dma_reason[1] & BCM43xx_DMAIRQ_RX_DONE));
assert(!(dma_reason[2] & BCM43xx_DMAIRQ_RX_DONE));
if (dma_reason[3] & BCM43xx_DMAIRQ_RX_DONE) {
if (bcm43xx_using_pio(bcm))
bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue3);
else
bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring3);
activity = 1;
}
assert(!(dma_reason[4] & BCM43xx_DMAIRQ_RX_DONE));
assert(!(dma_reason[5] & BCM43xx_DMAIRQ_RX_DONE));
bcmirq_handled(BCM43xx_IRQ_RX);
if (reason & BCM43xx_IRQ_XMIT_STATUS) {
handle_irq_transmit_status(bcm);
activity = 1;
//TODO: In AP mode, this also causes sending of powersave responses.
bcmirq_handled(BCM43xx_IRQ_XMIT_STATUS);
}
/* IRQ_PIO_WORKAROUND is handled in the top-half. */
bcmirq_handled(BCM43xx_IRQ_PIO_WORKAROUND);
#ifdef CONFIG_BCM43XX_DEBUG
if (unlikely(reason & ~_handled)) {
printkl(KERN_WARNING PFX
"Unhandled IRQ! Reason: 0x%08x, Unhandled: 0x%08x, "
"DMA: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
reason, (reason & ~_handled),
dma_reason[0], dma_reason[1],
dma_reason[2], dma_reason[3]);
}
#endif
#undef bcmirq_handled
if (!modparam_noleds)
bcm43xx_leds_update(bcm, activity);
bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
mmiowb();
spin_unlock_irqrestore(&bcm->irq_lock, flags);
}
static void pio_irq_workaround(struct bcm43xx_private *bcm,
u16 base, int queueidx)
{
u16 rxctl;
rxctl = bcm43xx_read16(bcm, base + BCM43xx_PIO_RXCTL);
if (rxctl & BCM43xx_PIO_RXCTL_DATAAVAILABLE)
bcm->dma_reason[queueidx] |= BCM43xx_DMAIRQ_RX_DONE;
else
bcm->dma_reason[queueidx] &= ~BCM43xx_DMAIRQ_RX_DONE;
}
static void bcm43xx_interrupt_ack(struct bcm43xx_private *bcm, u32 reason)
{
if (bcm43xx_using_pio(bcm) &&
(bcm->current_core->rev < 3) &&
(!(reason & BCM43xx_IRQ_PIO_WORKAROUND))) {
/* Apply a PIO specific workaround to the dma_reasons */
pio_irq_workaround(bcm, BCM43xx_MMIO_PIO1_BASE, 0);
pio_irq_workaround(bcm, BCM43xx_MMIO_PIO2_BASE, 1);
pio_irq_workaround(bcm, BCM43xx_MMIO_PIO3_BASE, 2);
pio_irq_workaround(bcm, BCM43xx_MMIO_PIO4_BASE, 3);
}
bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, reason);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA0_REASON,
bcm->dma_reason[0]);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_REASON,
bcm->dma_reason[1]);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_REASON,
bcm->dma_reason[2]);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_REASON,
bcm->dma_reason[3]);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_REASON,
bcm->dma_reason[4]);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA5_REASON,
bcm->dma_reason[5]);
}
/* Interrupt handler top-half */
static irqreturn_t bcm43xx_interrupt_handler(int irq, void *dev_id)
{
irqreturn_t ret = IRQ_HANDLED;
struct bcm43xx_private *bcm = dev_id;
u32 reason;
if (!bcm)
return IRQ_NONE;
spin_lock(&bcm->irq_lock);
reason = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
if (reason == 0xffffffff) {
/* irq not for us (shared irq) */
ret = IRQ_NONE;
goto out;
}
reason &= bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
if (!reason)
goto out;
assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
assert(bcm->current_core->id == BCM43xx_COREID_80211);
bcm->dma_reason[0] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA0_REASON)
& 0x0001DC00;
bcm->dma_reason[1] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA1_REASON)
& 0x0000DC00;
bcm->dma_reason[2] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA2_REASON)
& 0x0000DC00;
bcm->dma_reason[3] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA3_REASON)
& 0x0001DC00;
bcm->dma_reason[4] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA4_REASON)
& 0x0000DC00;
bcm->dma_reason[5] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA5_REASON)
& 0x0000DC00;
bcm43xx_interrupt_ack(bcm, reason);
/* disable all IRQs. They are enabled again in the bottom half. */
bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
/* save the reason code and call our bottom half. */
bcm->irq_reason = reason;
tasklet_schedule(&bcm->isr_tasklet);
out:
mmiowb();
spin_unlock(&bcm->irq_lock);
return ret;
}
static void bcm43xx_release_firmware(struct bcm43xx_private *bcm, int force)
{
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
if (bcm->firmware_norelease && !force)
return; /* Suspending or controller reset. */
release_firmware(phy->ucode);
phy->ucode = NULL;
release_firmware(phy->pcm);
phy->pcm = NULL;
release_firmware(phy->initvals0);
phy->initvals0 = NULL;
release_firmware(phy->initvals1);
phy->initvals1 = NULL;
}
static int bcm43xx_request_firmware(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
u8 rev = bcm->current_core->rev;
int err = 0;
int nr;
char buf[22 + sizeof(modparam_fwpostfix) - 1] = { 0 };
if (!phy->ucode) {
snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_microcode%d%s.fw",
(rev >= 5 ? 5 : rev),
modparam_fwpostfix);
err = request_firmware(&phy->ucode, buf, &bcm->pci_dev->dev);
if (err) {
printk(KERN_ERR PFX
"Error: Microcode \"%s\" not available or load failed.\n",
buf);
goto error;
}
}
if (!phy->pcm) {
snprintf(buf, ARRAY_SIZE(buf),
"bcm43xx_pcm%d%s.fw",
(rev < 5 ? 4 : 5),
modparam_fwpostfix);
err = request_firmware(&phy->pcm, buf, &bcm->pci_dev->dev);
if (err) {
printk(KERN_ERR PFX
"Error: PCM \"%s\" not available or load failed.\n",
buf);
goto error;
}
}
if (!phy->initvals0) {
if (rev == 2 || rev == 4) {
switch (phy->type) {
case BCM43xx_PHYTYPE_A:
nr = 3;
break;
case BCM43xx_PHYTYPE_B:
case BCM43xx_PHYTYPE_G:
nr = 1;
break;
default:
goto err_noinitval;
}
} else if (rev >= 5) {
switch (phy->type) {
case BCM43xx_PHYTYPE_A:
nr = 7;
break;
case BCM43xx_PHYTYPE_B:
case BCM43xx_PHYTYPE_G:
nr = 5;
break;
default:
goto err_noinitval;
}
} else
goto err_noinitval;
snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
nr, modparam_fwpostfix);
err = request_firmware(&phy->initvals0, buf, &bcm->pci_dev->dev);
if (err) {
printk(KERN_ERR PFX
"Error: InitVals \"%s\" not available or load failed.\n",
buf);
goto error;
}
if (phy->initvals0->size % sizeof(struct bcm43xx_initval)) {
printk(KERN_ERR PFX "InitVals fileformat error.\n");
goto error;
}
}
if (!phy->initvals1) {
if (rev >= 5) {
u32 sbtmstatehigh;
switch (phy->type) {
case BCM43xx_PHYTYPE_A:
sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
if (sbtmstatehigh & 0x00010000)
nr = 9;
else
nr = 10;
break;
case BCM43xx_PHYTYPE_B:
case BCM43xx_PHYTYPE_G:
nr = 6;
break;
default:
goto err_noinitval;
}
snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
nr, modparam_fwpostfix);
err = request_firmware(&phy->initvals1, buf, &bcm->pci_dev->dev);
if (err) {
printk(KERN_ERR PFX
"Error: InitVals \"%s\" not available or load failed.\n",
buf);
goto error;
}
if (phy->initvals1->size % sizeof(struct bcm43xx_initval)) {
printk(KERN_ERR PFX "InitVals fileformat error.\n");
goto error;
}
}
}
out:
return err;
error:
bcm43xx_release_firmware(bcm, 1);
goto out;
err_noinitval:
printk(KERN_ERR PFX "Error: No InitVals available!\n");
err = -ENOENT;
goto error;
}
static void bcm43xx_upload_microcode(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
const u32 *data;
unsigned int i, len;
/* Upload Microcode. */
data = (u32 *)(phy->ucode->data);
len = phy->ucode->size / sizeof(u32);
bcm43xx_shm_control_word(bcm, BCM43xx_SHM_UCODE, 0x0000);
for (i = 0; i < len; i++) {
bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
be32_to_cpu(data[i]));
udelay(10);
}
/* Upload PCM data. */
data = (u32 *)(phy->pcm->data);
len = phy->pcm->size / sizeof(u32);
bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01ea);
bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, 0x00004000);
bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01eb);
for (i = 0; i < len; i++) {
bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
be32_to_cpu(data[i]));
udelay(10);
}
}
static int bcm43xx_write_initvals(struct bcm43xx_private *bcm,
const struct bcm43xx_initval *data,
const unsigned int len)
{
u16 offset, size;
u32 value;
unsigned int i;
for (i = 0; i < len; i++) {
offset = be16_to_cpu(data[i].offset);
size = be16_to_cpu(data[i].size);
value = be32_to_cpu(data[i].value);
if (unlikely(offset >= 0x1000))
goto err_format;
if (size == 2) {
if (unlikely(value & 0xFFFF0000))
goto err_format;
bcm43xx_write16(bcm, offset, (u16)value);
} else if (size == 4) {
bcm43xx_write32(bcm, offset, value);
} else
goto err_format;
}
return 0;
err_format:
printk(KERN_ERR PFX "InitVals (bcm43xx_initvalXX.fw) file-format error. "
"Please fix your bcm43xx firmware files.\n");
return -EPROTO;
}
static int bcm43xx_upload_initvals(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
int err;
err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals0->data,
phy->initvals0->size / sizeof(struct bcm43xx_initval));
if (err)
goto out;
if (phy->initvals1) {
err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals1->data,
phy->initvals1->size / sizeof(struct bcm43xx_initval));
if (err)
goto out;
}
out:
return err;
}
static int bcm43xx_initialize_irq(struct bcm43xx_private *bcm)
{
int err;
bcm->irq = bcm->pci_dev->irq;
err = request_irq(bcm->irq, bcm43xx_interrupt_handler,
IRQF_SHARED, KBUILD_MODNAME, bcm);
if (err)
printk(KERN_ERR PFX "Cannot register IRQ%d\n", bcm->irq);
return err;
}
/* Switch to the core used to write the GPIO register.
* This is either the ChipCommon, or the PCI core.
*/
static int switch_to_gpio_core(struct bcm43xx_private *bcm)
{
int err;
/* Where to find the GPIO register depends on the chipset.
* If it has a ChipCommon, its register at offset 0x6c is the GPIO
* control register. Otherwise the register at offset 0x6c in the
* PCI core is the GPIO control register.
*/
err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
if (err == -ENODEV) {
err = bcm43xx_switch_core(bcm, &bcm->core_pci);
if (unlikely(err == -ENODEV)) {
printk(KERN_ERR PFX "gpio error: "
"Neither ChipCommon nor PCI core available!\n");
}
}
return err;
}
/* Initialize the GPIOs
* http://bcm-specs.sipsolutions.net/GPIO
*/
static int bcm43xx_gpio_init(struct bcm43xx_private *bcm)
{
struct bcm43xx_coreinfo *old_core;
int err;
u32 mask, set;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
& 0xFFFF3FFF);
bcm43xx_leds_switch_all(bcm, 0);
bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x000F);
mask = 0x0000001F;
set = 0x0000000F;
if (bcm->chip_id == 0x4301) {
mask |= 0x0060;
set |= 0x0060;
}
if (0 /* FIXME: conditional unknown */) {
bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
| 0x0100);
mask |= 0x0180;
set |= 0x0180;
}
if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
| 0x0200);
mask |= 0x0200;
set |= 0x0200;
}
if (bcm->current_core->rev >= 2)
mask |= 0x0010; /* FIXME: This is redundant. */
old_core = bcm->current_core;
err = switch_to_gpio_core(bcm);
if (err)
goto out;
bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL,
(bcm43xx_read32(bcm, BCM43xx_GPIO_CONTROL) & mask) | set);
err = bcm43xx_switch_core(bcm, old_core);
out:
return err;
}
/* Turn off all GPIO stuff. Call this on module unload, for example. */
static int bcm43xx_gpio_cleanup(struct bcm43xx_private *bcm)
{
struct bcm43xx_coreinfo *old_core;
int err;
old_core = bcm->current_core;
err = switch_to_gpio_core(bcm);
if (err)
return err;
bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL, 0x00000000);
err = bcm43xx_switch_core(bcm, old_core);
assert(err == 0);
return 0;
}
/* http://bcm-specs.sipsolutions.net/EnableMac */
void bcm43xx_mac_enable(struct bcm43xx_private *bcm)
{
bcm->mac_suspended--;
assert(bcm->mac_suspended >= 0);
if (bcm->mac_suspended == 0) {
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
| BCM43xx_SBF_MAC_ENABLED);
bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, BCM43xx_IRQ_READY);
bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
}
}
/* http://bcm-specs.sipsolutions.net/SuspendMAC */
void bcm43xx_mac_suspend(struct bcm43xx_private *bcm)
{
int i;
u32 tmp;
assert(bcm->mac_suspended >= 0);
if (bcm->mac_suspended == 0) {
bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
& ~BCM43xx_SBF_MAC_ENABLED);
bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
for (i = 10000; i; i--) {
tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
if (tmp & BCM43xx_IRQ_READY)
goto out;
udelay(1);
}
printkl(KERN_ERR PFX "MAC suspend failed\n");
}
out:
bcm->mac_suspended++;
}
void bcm43xx_set_iwmode(struct bcm43xx_private *bcm,
int iw_mode)
{
unsigned long flags;
struct net_device *net_dev = bcm->net_dev;
u32 status;
u16 value;
spin_lock_irqsave(&bcm->ieee->lock, flags);
bcm->ieee->iw_mode = iw_mode;
spin_unlock_irqrestore(&bcm->ieee->lock, flags);
if (iw_mode == IW_MODE_MONITOR)
net_dev->type = ARPHRD_IEEE80211;
else
net_dev->type = ARPHRD_ETHER;
status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
/* Reset status to infrastructured mode */
status &= ~(BCM43xx_SBF_MODE_AP | BCM43xx_SBF_MODE_MONITOR);
status &= ~BCM43xx_SBF_MODE_PROMISC;
status |= BCM43xx_SBF_MODE_NOTADHOC;
/* FIXME: Always enable promisc mode, until we get the MAC filters working correctly. */
status |= BCM43xx_SBF_MODE_PROMISC;
switch (iw_mode) {
case IW_MODE_MONITOR:
status |= BCM43xx_SBF_MODE_MONITOR;
status |= BCM43xx_SBF_MODE_PROMISC;
break;
case IW_MODE_ADHOC:
status &= ~BCM43xx_SBF_MODE_NOTADHOC;
break;
case IW_MODE_MASTER:
status |= BCM43xx_SBF_MODE_AP;
break;
case IW_MODE_SECOND:
case IW_MODE_REPEAT:
TODO(); /* TODO */
break;
case IW_MODE_INFRA:
/* nothing to be done here... */
break;
default:
dprintk(KERN_ERR PFX "Unknown mode in set_iwmode: %d\n", iw_mode);
}
if (net_dev->flags & IFF_PROMISC)
status |= BCM43xx_SBF_MODE_PROMISC;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
value = 0x0002;
if (iw_mode != IW_MODE_ADHOC && iw_mode != IW_MODE_MASTER) {
if (bcm->chip_id == 0x4306 && bcm->chip_rev == 3)
value = 0x0064;
else
value = 0x0032;
}
bcm43xx_write16(bcm, 0x0612, value);
}
/* This is the opposite of bcm43xx_chip_init() */
static void bcm43xx_chip_cleanup(struct bcm43xx_private *bcm)
{
bcm43xx_radio_turn_off(bcm);
if (!modparam_noleds)
bcm43xx_leds_exit(bcm);
bcm43xx_gpio_cleanup(bcm);
bcm43xx_release_firmware(bcm, 0);
}
/* Initialize the chip
* http://bcm-specs.sipsolutions.net/ChipInit
*/
static int bcm43xx_chip_init(struct bcm43xx_private *bcm)
{
struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
int err;
int i, tmp;
u32 value32;
u16 value16;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
BCM43xx_SBF_CORE_READY
| BCM43xx_SBF_400);
err = bcm43xx_request_firmware(bcm);
if (err)
goto out;
bcm43xx_upload_microcode(bcm);
bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0xFFFFFFFF);
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, 0x00020402);
i = 0;
while (1) {
value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
if (value32 == BCM43xx_IRQ_READY)
break;
i++;
if (i >= BCM43xx_IRQWAIT_MAX_RETRIES) {
printk(KERN_ERR PFX "IRQ_READY timeout\n");
err = -ENODEV;
goto err_release_fw;
}
udelay(10);
}
bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
value16 = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODE_REVISION);
dprintk(KERN_INFO PFX "Microcode rev 0x%x, pl 0x%x "
"(20%.2i-%.2i-%.2i %.2i:%.2i:%.2i)\n", value16,
bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODE_PATCHLEVEL),
(bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODE_DATE) >> 12) & 0xf,
(bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODE_DATE) >> 8) & 0xf,
bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODE_DATE) & 0xff,
(bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODE_TIME) >> 11) & 0x1f,
(bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODE_TIME) >> 5) & 0x3f,
bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODE_TIME) & 0x1f);
if ( value16 > 0x128 ) {
printk(KERN_ERR PFX
"Firmware: no support for microcode extracted "
"from version 4.x binary drivers.\n");
err = -EOPNOTSUPP;
goto err_release_fw;
}
err = bcm43xx_gpio_init(bcm);
if (err)
goto err_release_fw;
err = bcm43xx_upload_initvals(bcm);
if (err)
goto err_gpio_cleanup;
bcm43xx_radio_turn_on(bcm);
bcm->radio_hw_enable = bcm43xx_is_hw_radio_enabled(bcm);
dprintk(KERN_INFO PFX "Radio %s by hardware\n",
(bcm->radio_hw_enable == 0) ? "disabled" : "enabled");
bcm43xx_write16(bcm, 0x03E6, 0x0000);
err = bcm43xx_phy_init(bcm);
if (err)
goto err_radio_off;
/* Select initial Interference Mitigation. */
tmp = radio->interfmode;
radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
bcm43xx_radio_set_interference_mitigation(bcm, tmp);
bcm43xx_phy_set_antenna_diversity(bcm);
bcm43xx_radio_set_txantenna(bcm, BCM43xx_RADIO_TXANTENNA_DEFAULT);
if (phy->type == BCM43xx_PHYTYPE_B) {
value16 = bcm43xx_read16(bcm, 0x005E);
value16 |= 0x0004;
bcm43xx_write16(bcm, 0x005E, value16);
}
bcm43xx_write32(bcm, 0x0100, 0x01000000);
if (bcm->current_core->rev < 5)
bcm43xx_write32(bcm, 0x010C, 0x01000000);
value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
value32 &= ~ BCM43xx_SBF_MODE_NOTADHOC;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
value32 |= BCM43xx_SBF_MODE_NOTADHOC;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
value32 |= 0x100000;
bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
if (bcm43xx_using_pio(bcm)) {
bcm43xx_write32(bcm, 0x0210, 0x00000100);
bcm43xx_write32(bcm, 0x0230, 0x00000100);
bcm43xx_write32(bcm, 0x0250, 0x00000100);
bcm43xx_write32(bcm, 0x0270, 0x00000100);
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0034, 0x0000);
}
/* Probe Response Timeout value */
/* FIXME: Default to 0, has to be set by ioctl probably... :-/ */
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0074, 0x0000);
/* Initially set the wireless operation mode. */
bcm43xx_set_iwmode(bcm, bcm->ieee->iw_mode);
if (bcm->current_core->rev < 3) {
bcm43xx_write16(bcm, 0x060E, 0x0000);
bcm43xx_write16(bcm, 0x0610, 0x8000);
bcm43xx_write16(bcm, 0x0604, 0x0000);
bcm43xx_write16(bcm, 0x0606, 0x0200);
} else {
bcm43xx_write32(bcm, 0x0188, 0x80000000);
bcm43xx_write32(bcm, 0x018C, 0x02000000);
}
bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0x00004000);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA0_IRQ_MASK, 0x0001DC00);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_IRQ_MASK, 0x0000DC00);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_IRQ_MASK, 0x0000DC00);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_IRQ_MASK, 0x0001DC00);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_IRQ_MASK, 0x0000DC00);
bcm43xx_write32(bcm, BCM43xx_MMIO_DMA5_IRQ_MASK, 0x0000DC00);
value32 = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
value32 |= 0x00100000;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, value32);
bcm43xx_write16(bcm, BCM43xx_MMIO_POWERUP_DELAY, bcm43xx_pctl_powerup_delay(bcm));
assert(err == 0);
dprintk(KERN_INFO PFX "Chip initialized\n");
out:
return err;
err_radio_off:
bcm43xx_radio_turn_off(bcm);
err_gpio_cleanup:
bcm43xx_gpio_cleanup(bcm);
err_release_fw:
bcm43xx_release_firmware(bcm, 1);
goto out;
}
/* Validate chip access
* http://bcm-specs.sipsolutions.net/ValidateChipAccess */
static int bcm43xx_validate_chip(struct bcm43xx_private *bcm)
{
u32 value;
u32 shm_backup;
shm_backup = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000);
bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0xAA5555AA);
if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0xAA5555AA)
goto error;
bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0x55AAAA55);
if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0x55AAAA55)
goto error;
bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, shm_backup);
value = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
if ((value | 0x80000000) != 0x80000400)
goto error;
value = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
if (value != 0x00000000)
goto error;
return 0;
error:
printk(KERN_ERR PFX "Failed to validate the chipaccess\n");
return -ENODEV;
}
static void bcm43xx_init_struct_phyinfo(struct bcm43xx_phyinfo *phy)
{
/* Initialize a "phyinfo" structure. The structure is already
* zeroed out.
* This is called on insmod time to initialize members.
*/
phy->savedpctlreg = 0xFFFF;
spin_lock_init(&phy->lock);
}
static void bcm43xx_init_struct_radioinfo(struct bcm43xx_radioinfo *radio)
{
/* Initialize a "radioinfo" structure. The structure is already
* zeroed out.
* This is called on insmod time to initialize members.
*/
radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
radio->channel = 0xFF;
radio->initial_channel = 0xFF;
}
static int bcm43xx_probe_cores(struct bcm43xx_private *bcm)
{
int err, i;
int current_core;
u32 core_vendor, core_id, core_rev;
u32 sb_id_hi, chip_id_32 = 0;
u16 pci_device, chip_id_16;
u8 core_count;
memset(&bcm->core_chipcommon, 0, sizeof(struct bcm43xx_coreinfo));
memset(&bcm->core_pci, 0, sizeof(struct bcm43xx_coreinfo));
memset(&bcm->core_80211, 0, sizeof(struct bcm43xx_coreinfo)
* BCM43xx_MAX_80211_CORES);
memset(&bcm->core_80211_ext, 0, sizeof(struct bcm43xx_coreinfo_80211)
* BCM43xx_MAX_80211_CORES);
bcm->nr_80211_available = 0;
bcm->current_core = NULL;
bcm->active_80211_core = NULL;
/* map core 0 */
err = _switch_core(bcm, 0);
if (err)
goto out;
/* fetch sb_id_hi from core information registers */
sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
core_id = (sb_id_hi & 0x8FF0) >> 4;
core_rev = (sb_id_hi & 0x7000) >> 8;
core_rev |= (sb_id_hi & 0xF);
core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
/* if present, chipcommon is always core 0; read the chipid from it */
if (core_id == BCM43xx_COREID_CHIPCOMMON) {
chip_id_32 = bcm43xx_read32(bcm, 0);
chip_id_16 = chip_id_32 & 0xFFFF;
bcm->core_chipcommon.available = 1;
bcm->core_chipcommon.id = core_id;
bcm->core_chipcommon.rev = core_rev;
bcm->core_chipcommon.index = 0;
/* While we are at it, also read the capabilities. */
bcm->chipcommon_capabilities = bcm43xx_read32(bcm, BCM43xx_CHIPCOMMON_CAPABILITIES);
} else {
/* without a chipCommon, use a hard coded table. */
pci_device = bcm->pci_dev->device;
if (pci_device == 0x4301)
chip_id_16 = 0x4301;
else if ((pci_device >= 0x4305) && (pci_device <= 0x4307))
chip_id_16 = 0x4307;
else if ((pci_device >= 0x4402) && (pci_device <= 0x4403))
chip_id_16 = 0x4402;
else if ((pci_device >= 0x4610) && (pci_device <= 0x4615))
chip_id_16 = 0x4610;
else if ((pci_device >= 0x4710) && (pci_device <= 0x4715))
chip_id_16 = 0x4710;
else {
printk(KERN_ERR PFX "Could not determine Chip ID\n");
return -ENODEV;
}
}
/* ChipCommon with Core Rev >=4 encodes number of cores,
* otherwise consult hardcoded table */
if ((core_id == BCM43xx_COREID_CHIPCOMMON) && (core_rev >= 4)) {
core_count = (chip_id_32 & 0x0F000000) >> 24;
} else {
switch (chip_id_16) {
case 0x4610:
case 0x4704:
case 0x4710:
core_count = 9;
break;
case 0x4310:
core_count = 8;
break;
case 0x5365:
core_count = 7;
break;
case 0x4306:
core_count = 6;
break;
case 0x4301:
case 0x4307:
core_count = 5;
break;
case 0x4402:
core_count = 3;
break;
default:
/* SOL if we get here */
assert(0);
core_count = 1;
}
}
bcm->chip_id = chip_id_16;
bcm->chip_rev = (chip_id_32 & 0x000F0000) >> 16;
bcm->chip_package = (chip_id_32 & 0x00F00000) >> 20;
dprintk(KERN_INFO PFX "Chip ID 0x%x, rev 0x%x\n",
bcm->chip_id, bcm->chip_rev);
dprintk(KERN_INFO PFX "Number of cores: %d\n", core_count);
if (bcm->core_chipcommon.available) {
dprintk(KERN_INFO PFX "Core 0: ID 0x%x, rev 0x%x, vendor 0x%x\n",
core_id, core_rev, core_vendor);
current_core = 1;
} else
current_core = 0;
for ( ; current_core < core_count; current_core++) {
struct bcm43xx_coreinfo *core;
struct bcm43xx_coreinfo_80211 *ext_80211;
err = _switch_core(bcm, current_core);
if (err)
goto out;
/* Gather information */
/* fetch sb_id_hi from core information registers */
sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
/* extract core_id, core_rev, core_vendor */
core_id = (sb_id_hi & 0x8FF0) >> 4;
core_rev = ((sb_id_hi & 0xF) | ((sb_id_hi & 0x7000) >> 8));
core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
dprintk(KERN_INFO PFX "Core %d: ID 0x%x, rev 0x%x, vendor 0x%x\n",
current_core, core_id, core_rev, core_vendor);
core = NULL;
switch (core_id) {
case BCM43xx_COREID_PCI:
case BCM43xx_COREID_PCIE:
core = &bcm->core_pci;
if (core->available) {
printk(KERN_WARNING PFX "Multiple PCI cores found.\n");
continue;
}
break;
case BCM43xx_COREID_80211:
for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
core = &(bcm->core_80211[i]);
ext_80211 = &(bcm->core_80211_ext[i]);
if (!core->available)
break;
core = NULL;
}
if (!core) {
printk(KERN_WARNING PFX "More than %d cores of type 802.11 found.\n",
BCM43xx_MAX_80211_CORES);
continue;
}
if (i != 0) {
/* More than one 80211 core is only supported
* by special chips.
* There are chips with two 80211 cores, but with
* dangling pins on the second core. Be careful
* and ignore these cores here.
*/
if (1 /*bcm->pci_dev->device != 0x4324*/ ) {
/* TODO: A PHY */
dprintk(KERN_INFO PFX "Ignoring additional 802.11a core.\n");
continue;
}
}
switch (core_rev) {
case 2:
case 4:
case 5:
case 6:
case 7:
case 9:
case 10:
break;
default:
printk(KERN_WARNING PFX
"Unsupported 80211 core revision %u\n",
core_rev);
}
bcm->nr_80211_available++;
core->priv = ext_80211;
bcm43xx_init_struct_phyinfo(&ext_80211->phy);
bcm43xx_init_struct_radioinfo(&ext_80211->radio);
break;
case BCM43xx_COREID_CHIPCOMMON:
printk(KERN_WARNING PFX "Multiple CHIPCOMMON cores found.\n");
break;
}
if (core) {
core->available = 1;
core->id = core_id;
core->rev = core_rev;
core->index = current_core;
}
}
if (!bcm->core_80211[0].available) {
printk(KERN_ERR PFX "Error: No 80211 core found!\n");
err = -ENODEV;
goto out;
}
err = bcm43xx_switch_core(bcm, &bcm->core_80211[0]);
assert(err == 0);
out:
return err;
}
static void bcm43xx_gen_bssid(struct bcm43xx_private *bcm)
{
const u8 *mac = (const u8*)(bcm->net_dev->dev_addr);
u8 *bssid = bcm->ieee->bssid;
switch (bcm->ieee->iw_mode) {
case IW_MODE_ADHOC:
random_ether_addr(bssid);
break;
case IW_MODE_MASTER:
case IW_MODE_INFRA:
case IW_MODE_REPEAT:
case IW_MODE_SECOND:
case IW_MODE_MONITOR:
memcpy(bssid, mac, ETH_ALEN);
break;
default:
assert(0);
}
}
static void bcm43xx_rate_memory_write(struct bcm43xx_private *bcm,
u16 rate,
int is_ofdm)
{
u16 offset;
if (is_ofdm) {
offset = 0x480;
offset += (bcm43xx_plcp_get_ratecode_ofdm(rate) & 0x000F) * 2;
}
else {
offset = 0x4C0;
offset += (bcm43xx_plcp_get_ratecode_cck(rate) & 0x000F) * 2;
}
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + 0x20,
bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, offset));
}
static void bcm43xx_rate_memory_init(struct bcm43xx_private *bcm)
{
switch (bcm43xx_current_phy(bcm)->type) {
case BCM43xx_PHYTYPE_A:
case BCM43xx_PHYTYPE_G:
bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_6MB, 1);
bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_12MB, 1);
bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_18MB, 1);
bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_24MB, 1);
bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_36MB, 1);
bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_48MB, 1);
bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_54MB, 1);
case BCM43xx_PHYTYPE_B:
bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_1MB, 0);
bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_2MB, 0);
bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_5MB, 0);
bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_11MB, 0);
break;
default:
assert(0);
}
}
static void bcm43xx_wireless_core_cleanup(struct bcm43xx_private *bcm)
{
bcm43xx_chip_cleanup(bcm);
bcm43xx_pio_free(bcm);
bcm43xx_dma_free(bcm);
bcm->current_core->initialized = 0;
}
/* http://bcm-specs.sipsolutions.net/80211Init */
static int bcm43xx_wireless_core_init(struct bcm43xx_private *bcm,
int active_wlcore)
{
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
u32 ucodeflags;
int err;
u32 sbimconfiglow;
u8 limit;
if (bcm->core_pci.rev <= 5 && bcm->core_pci.id != BCM43xx_COREID_PCIE) {
sbimconfiglow = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
if (bcm->bustype == BCM43xx_BUSTYPE_PCI)
sbimconfiglow |= 0x32;
else
sbimconfiglow |= 0x53;
bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, sbimconfiglow);
}
bcm43xx_phy_calibrate(bcm);
err = bcm43xx_chip_init(bcm);
if (err)
goto out;
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0016, bcm->current_core->rev);
ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET);
if (0 /*FIXME: which condition has to be used here? */)
ucodeflags |= 0x00000010;
/* HW decryption needs to be set now */
ucodeflags |= 0x40000000;
if (phy->type == BCM43xx_PHYTYPE_G) {
ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
if (phy->rev == 1)
ucodeflags |= BCM43xx_UCODEFLAG_UNKGPHY;
if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
ucodeflags |= BCM43xx_UCODEFLAG_UNKPACTRL;
} else if (phy->type == BCM43xx_PHYTYPE_B) {
ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
if (phy->rev >= 2 && radio->version == 0x2050)
ucodeflags &= ~BCM43xx_UCODEFLAG_UNKGPHY;
}
if (ucodeflags != bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODEFLAGS_OFFSET)) {
bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODEFLAGS_OFFSET, ucodeflags);
}
/* Short/Long Retry Limit.
* The retry-limit is a 4-bit counter. Enforce this to avoid overflowing
* the chip-internal counter.
*/
limit = limit_value(modparam_short_retry, 0, 0xF);
bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0006, limit);
limit = limit_value(modparam_long_retry, 0, 0xF);
bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0007, limit);
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0044, 3);
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0046, 2);
bcm43xx_rate_memory_init(bcm);
/* Minimum Contention Window */
if (phy->type == BCM43xx_PHYTYPE_B)
bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000001f);
else
bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000000f);
/* Maximum Contention Window */
bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
bcm43xx_gen_bssid(bcm);
bcm43xx_write_mac_bssid_templates(bcm);
if (bcm->current_core->rev >= 5)
bcm43xx_write16(bcm, 0x043C, 0x000C);
if (active_wlcore) {
if (bcm43xx_using_pio(bcm)) {
err = bcm43xx_pio_init(bcm);
} else {
err = bcm43xx_dma_init(bcm);
if (err == -ENOSYS)
err = bcm43xx_pio_init(bcm);
}
if (err)
goto err_chip_cleanup;
}
bcm43xx_write16(bcm, 0x0612, 0x0050);
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0416, 0x0050);
bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0414, 0x01F4);
if (active_wlcore) {
if (radio->initial_channel != 0xFF)
bcm43xx_radio_selectchannel(bcm, radio->initial_channel, 0);
}
/* Don't enable MAC/IRQ here, as it will race with the IRQ handler.
* We enable it later.
*/
bcm->current_core->initialized = 1;
out:
return err;
err_chip_cleanup:
bcm43xx_chip_cleanup(bcm);
goto out;
}
static int bcm43xx_chipset_attach(struct bcm43xx_private *bcm)
{
int err;
u16 pci_status;
err = bcm43xx_pctl_set_crystal(bcm, 1);
if (err)
goto out;
err = bcm43xx_pci_read_config16(bcm, PCI_STATUS, &pci_status);
if (err)
goto out;
err = bcm43xx_pci_write_config16(bcm, PCI_STATUS, pci_status & ~PCI_STATUS_SIG_TARGET_ABORT);
out:
return err;
}
static void bcm43xx_chipset_detach(struct bcm43xx_private *bcm)
{
bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
bcm43xx_pctl_set_crystal(bcm, 0);
}
static void bcm43xx_pcicore_broadcast_value(struct bcm43xx_private *bcm,
u32 address,
u32 data)
{
bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_ADDR, address);
bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_DATA, data);
}
static int bcm43xx_pcicore_commit_settings(struct bcm43xx_private *bcm)
{
int err = 0;
bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
if (bcm->core_chipcommon.available) {
err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
if (err)
goto out;
bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
/* this function is always called when a PCI core is mapped */
err = bcm43xx_switch_core(bcm, &bcm->core_pci);
if (err)
goto out;
} else
bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
out:
return err;
}
static u32 bcm43xx_pcie_reg_read(struct bcm43xx_private *bcm, u32 address)
{
bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_ADDR, address);
return bcm43xx_read32(bcm, BCM43xx_PCIECORE_REG_DATA);
}
static void bcm43xx_pcie_reg_write(struct bcm43xx_private *bcm, u32 address,
u32 data)
{
bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_ADDR, address);
bcm43xx_write32(bcm, BCM43xx_PCIECORE_REG_DATA, data);
}
static void bcm43xx_pcie_mdio_write(struct bcm43xx_private *bcm, u8 dev, u8 reg,
u16 data)
{
int i;
bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_CTL, 0x0082);
bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_DATA, BCM43xx_PCIE_MDIO_ST |
BCM43xx_PCIE_MDIO_WT | (dev << BCM43xx_PCIE_MDIO_DEV) |
(reg << BCM43xx_PCIE_MDIO_REG) | BCM43xx_PCIE_MDIO_TA |
data);
udelay(10);
for (i = 0; i < 10; i++) {
if (bcm43xx_read32(bcm, BCM43xx_PCIECORE_MDIO_CTL) &
BCM43xx_PCIE_MDIO_TC)
break;
msleep(1);
}
bcm43xx_write32(bcm, BCM43xx_PCIECORE_MDIO_CTL, 0);
}
/* Make an I/O Core usable. "core_mask" is the bitmask of the cores to enable.
* To enable core 0, pass a core_mask of 1<<0
*/
static int bcm43xx_setup_backplane_pci_connection(struct bcm43xx_private *bcm,
u32 core_mask)
{
u32 backplane_flag_nr;
u32 value;
struct bcm43xx_coreinfo *old_core;
int err = 0;
value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTPSFLAG);
backplane_flag_nr = value & BCM43xx_BACKPLANE_FLAG_NR_MASK;
old_core = bcm->current_core;
err = bcm43xx_switch_core(bcm, &bcm->core_pci);
if (err)
goto out;
if (bcm->current_core->rev < 6 &&
bcm->current_core->id == BCM43xx_COREID_PCI) {
value = bcm43xx_read32(bcm, BCM43xx_CIR_SBINTVEC);
value |= (1 << backplane_flag_nr);
bcm43xx_write32(bcm, BCM43xx_CIR_SBINTVEC, value);
} else {
err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ICR, &value);
if (err) {
printk(KERN_ERR PFX "Error: ICR setup failure!\n");
goto out_switch_back;
}
value |= core_mask << 8;
err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ICR, value);
if (err) {
printk(KERN_ERR PFX "Error: ICR setup failure!\n");
goto out_switch_back;
}
}
if (bcm->current_core->id == BCM43xx_COREID_PCI) {
value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
value |= BCM43xx_SBTOPCI2_PREFETCH | BCM43xx_SBTOPCI2_BURST;
bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
if (bcm->current_core->rev < 5) {
value = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
value |= (2 << BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_SHIFT)
& BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
value |= (3 << BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_SHIFT)
& BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, value);
err = bcm43xx_pcicore_commit_settings(bcm);
assert(err == 0);
} else if (bcm->current_core->rev >= 11) {
value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
value |= BCM43xx_SBTOPCI2_MEMREAD_MULTI;
bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
}
} else {
if (bcm->current_core->rev == 0 || bcm->current_core->rev == 1) {
value = bcm43xx_pcie_reg_read(bcm, BCM43xx_PCIE_TLP_WORKAROUND);
value |= 0x8;
bcm43xx_pcie_reg_write(bcm, BCM43xx_PCIE_TLP_WORKAROUND,
value);
}
if (bcm->current_core->rev == 0) {
bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
BCM43xx_SERDES_RXTIMER, 0x8128);
bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
BCM43xx_SERDES_CDR, 0x0100);
bcm43xx_pcie_mdio_write(bcm, BCM43xx_MDIO_SERDES_RX,
BCM43xx_SERDES_CDR_BW, 0x1466);
} else if (bcm->current_core->rev == 1) {
value = bcm43xx_pcie_reg_read(bcm, BCM43xx_PCIE_DLLP_LINKCTL);
value |= 0x40;
bcm43xx_pcie_reg_write(bcm, BCM43xx_PCIE_DLLP_LINKCTL,
value);
}
}
out_switch_back:
err = bcm43xx_switch_core(bcm, old_core);
out:
return err;
}
static void bcm43xx_periodic_every120sec(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
if (phy->type != BCM43xx_PHYTYPE_G || phy->rev < 2)
return;
bcm43xx_mac_suspend(bcm);
bcm43xx_phy_lo_g_measure(bcm);
bcm43xx_mac_enable(bcm);
}
static void bcm43xx_periodic_every60sec(struct bcm43xx_private *bcm)
{
bcm43xx_phy_lo_mark_all_unused(bcm);
if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
bcm43xx_mac_suspend(bcm);
bcm43xx_calc_nrssi_slope(bcm);
bcm43xx_mac_enable(bcm);
}
}
static void bcm43xx_periodic_every30sec(struct bcm43xx_private *bcm)
{
/* Update device statistics. */
bcm43xx_calculate_link_quality(bcm);
}
static void bcm43xx_periodic_every15sec(struct bcm43xx_private *bcm)
{
bcm43xx_phy_xmitpower(bcm); //FIXME: unless scanning?
//TODO for APHY (temperature?)
}
static void bcm43xx_periodic_every1sec(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
int radio_hw_enable;
/* check if radio hardware enabled status changed */
radio_hw_enable = bcm43xx_is_hw_radio_enabled(bcm);
if (unlikely(bcm->radio_hw_enable != radio_hw_enable)) {
bcm->radio_hw_enable = radio_hw_enable;
dprintk(KERN_INFO PFX "Radio hardware status changed to %s\n",
(radio_hw_enable == 0) ? "disabled" : "enabled");
bcm43xx_leds_update(bcm, 0);
}
if (phy->type == BCM43xx_PHYTYPE_G) {
//TODO: update_aci_moving_average
if (radio->aci_enable && radio->aci_wlan_automatic) {
bcm43xx_mac_suspend(bcm);
if (!radio->aci_enable && 1 /*TODO: not scanning? */) {
if (0 /*TODO: bunch of conditions*/) {
bcm43xx_radio_set_interference_mitigation(bcm,
BCM43xx_RADIO_INTERFMODE_MANUALWLAN);
}
} else if (1/*TODO*/) {
/*
if ((aci_average > 1000) && !(bcm43xx_radio_aci_scan(bcm))) {
bcm43xx_radio_set_interference_mitigation(bcm,
BCM43xx_RADIO_INTERFMODE_NONE);
}
*/
}
bcm43xx_mac_enable(bcm);
} else if (radio->interfmode == BCM43xx_RADIO_INTERFMODE_NONWLAN &&
phy->rev == 1) {
//TODO: implement rev1 workaround
}
}
}
static void do_periodic_work(struct bcm43xx_private *bcm)
{
if (bcm->periodic_state % 120 == 0)
bcm43xx_periodic_every120sec(bcm);
if (bcm->periodic_state % 60 == 0)
bcm43xx_periodic_every60sec(bcm);
if (bcm->periodic_state % 30 == 0)
bcm43xx_periodic_every30sec(bcm);
if (bcm->periodic_state % 15 == 0)
bcm43xx_periodic_every15sec(bcm);
bcm43xx_periodic_every1sec(bcm);
schedule_delayed_work(&bcm->periodic_work, HZ);
}
static void bcm43xx_periodic_work_handler(struct work_struct *work)
{
struct bcm43xx_private *bcm =
container_of(work, struct bcm43xx_private, periodic_work.work);
struct net_device *net_dev = bcm->net_dev;
unsigned long flags;
u32 savedirqs = 0;
unsigned long orig_trans_start = 0;
mutex_lock(&bcm->mutex);
if (unlikely(bcm->periodic_state % 60 == 0)) {
/* Periodic work will take a long time, so we want it to
* be preemtible.
*/
netif_tx_lock_bh(net_dev);
/* We must fake a started transmission here, as we are going to
* disable TX. If we wouldn't fake a TX, it would be possible to
* trigger the netdev watchdog, if the last real TX is already
* some time on the past (slightly less than 5secs)
*/
orig_trans_start = net_dev->trans_start;
net_dev->trans_start = jiffies;
netif_stop_queue(net_dev);
netif_tx_unlock_bh(net_dev);
spin_lock_irqsave(&bcm->irq_lock, flags);
bcm43xx_mac_suspend(bcm);
if (bcm43xx_using_pio(bcm))
bcm43xx_pio_freeze_txqueues(bcm);
savedirqs = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
spin_unlock_irqrestore(&bcm->irq_lock, flags);
bcm43xx_synchronize_irq(bcm);
} else {
/* Periodic work should take short time, so we want low
* locking overhead.
*/
spin_lock_irqsave(&bcm->irq_lock, flags);
}
do_periodic_work(bcm);
if (unlikely(bcm->periodic_state % 60 == 0)) {
spin_lock_irqsave(&bcm->irq_lock, flags);
tasklet_enable(&bcm->isr_tasklet);
bcm43xx_interrupt_enable(bcm, savedirqs);
if (bcm43xx_using_pio(bcm))
bcm43xx_pio_thaw_txqueues(bcm);
bcm43xx_mac_enable(bcm);
netif_wake_queue(bcm->net_dev);
net_dev->trans_start = orig_trans_start;
}
mmiowb();
bcm->periodic_state++;
spin_unlock_irqrestore(&bcm->irq_lock, flags);
mutex_unlock(&bcm->mutex);
}
void bcm43xx_periodic_tasks_delete(struct bcm43xx_private *bcm)
{
cancel_rearming_delayed_work(&bcm->periodic_work);
}
void bcm43xx_periodic_tasks_setup(struct bcm43xx_private *bcm)
{
struct delayed_work *work = &bcm->periodic_work;
assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
INIT_DELAYED_WORK(work, bcm43xx_periodic_work_handler);
schedule_delayed_work(work, 0);
}
static void bcm43xx_security_init(struct bcm43xx_private *bcm)
{
bcm->security_offset = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
0x0056) * 2;
bcm43xx_clear_keys(bcm);
}
static int bcm43xx_rng_read(struct hwrng *rng, u32 *data)
{
struct bcm43xx_private *bcm = (struct bcm43xx_private *)rng->priv;
unsigned long flags;
spin_lock_irqsave(&(bcm)->irq_lock, flags);
*data = bcm43xx_read16(bcm, BCM43xx_MMIO_RNG);
spin_unlock_irqrestore(&(bcm)->irq_lock, flags);
return (sizeof(u16));
}
static void bcm43xx_rng_exit(struct bcm43xx_private *bcm)
{
hwrng_unregister(&bcm->rng);
}
static int bcm43xx_rng_init(struct bcm43xx_private *bcm)
{
int err;
snprintf(bcm->rng_name, ARRAY_SIZE(bcm->rng_name),
"%s_%s", KBUILD_MODNAME, bcm->net_dev->name);
bcm->rng.name = bcm->rng_name;
bcm->rng.data_read = bcm43xx_rng_read;
bcm->rng.priv = (unsigned long)bcm;
err = hwrng_register(&bcm->rng);
if (err)
printk(KERN_ERR PFX "RNG init failed (%d)\n", err);
return err;
}
static int bcm43xx_shutdown_all_wireless_cores(struct bcm43xx_private *bcm)
{
int ret = 0;
int i, err;
struct bcm43xx_coreinfo *core;
bcm43xx_set_status(bcm, BCM43xx_STAT_SHUTTINGDOWN);
for (i = 0; i < bcm->nr_80211_available; i++) {
core = &(bcm->core_80211[i]);
assert(core->available);
if (!core->initialized)
continue;
err = bcm43xx_switch_core(bcm, core);
if (err) {
dprintk(KERN_ERR PFX "shutdown_all_wireless_cores "
"switch_core failed (%d)\n", err);
ret = err;
continue;
}
bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
bcm43xx_wireless_core_cleanup(bcm);
if (core == bcm->active_80211_core)
bcm->active_80211_core = NULL;
}
free_irq(bcm->irq, bcm);
bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
return ret;
}
/* This is the opposite of bcm43xx_init_board() */
static void bcm43xx_free_board(struct bcm43xx_private *bcm)
{
bcm43xx_rng_exit(bcm);
bcm43xx_sysfs_unregister(bcm);
bcm43xx_periodic_tasks_delete(bcm);
mutex_lock(&(bcm)->mutex);
bcm43xx_shutdown_all_wireless_cores(bcm);
bcm43xx_pctl_set_crystal(bcm, 0);
mutex_unlock(&(bcm)->mutex);
}
static void prepare_phydata_for_init(struct bcm43xx_phyinfo *phy)
{
phy->antenna_diversity = 0xFFFF;
memset(phy->minlowsig, 0xFF, sizeof(phy->minlowsig));
memset(phy->minlowsigpos, 0, sizeof(phy->minlowsigpos));
/* Flags */
phy->calibrated = 0;
phy->is_locked = 0;
if (phy->_lo_pairs) {
memset(phy->_lo_pairs, 0,
sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT);
}
memset(phy->loopback_gain, 0, sizeof(phy->loopback_gain));
}
static void prepare_radiodata_for_init(struct bcm43xx_private *bcm,
struct bcm43xx_radioinfo *radio)
{
int i;
/* Set default attenuation values. */
radio->baseband_atten = bcm43xx_default_baseband_attenuation(bcm);
radio->radio_atten = bcm43xx_default_radio_attenuation(bcm);
radio->txctl1 = bcm43xx_default_txctl1(bcm);
radio->txctl2 = 0xFFFF;
radio->txpwr_offset = 0;
/* NRSSI */
radio->nrssislope = 0;
for (i = 0; i < ARRAY_SIZE(radio->nrssi); i++)
radio->nrssi[i] = -1000;
for (i = 0; i < ARRAY_SIZE(radio->nrssi_lt); i++)
radio->nrssi_lt[i] = i;
radio->lofcal = 0xFFFF;
radio->initval = 0xFFFF;
radio->aci_enable = 0;
radio->aci_wlan_automatic = 0;
radio->aci_hw_rssi = 0;
}
static void prepare_priv_for_init(struct bcm43xx_private *bcm)
{
int i;
struct bcm43xx_coreinfo *core;
struct bcm43xx_coreinfo_80211 *wlext;
assert(!bcm->active_80211_core);
bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING);
/* Flags */
bcm->was_initialized = 0;
bcm->reg124_set_0x4 = 0;
/* Stats */
memset(&bcm->stats, 0, sizeof(bcm->stats));
/* Wireless core data */
for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
core = &(bcm->core_80211[i]);
wlext = core->priv;
if (!core->available)
continue;
assert(wlext == &(bcm->core_80211_ext[i]));
prepare_phydata_for_init(&wlext->phy);
prepare_radiodata_for_init(bcm, &wlext->radio);
}
/* IRQ related flags */
bcm->irq_reason = 0;
memset(bcm->dma_reason, 0, sizeof(bcm->dma_reason));
bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
bcm->mac_suspended = 1;
/* Noise calculation context */
memset(&bcm->noisecalc, 0, sizeof(bcm->noisecalc));
/* Periodic work context */
bcm->periodic_state = 0;
}
static int wireless_core_up(struct bcm43xx_private *bcm,
int active_wlcore)
{
int err;
if (!bcm43xx_core_enabled(bcm))
bcm43xx_wireless_core_reset(bcm, 1);
if (!active_wlcore)
bcm43xx_wireless_core_mark_inactive(bcm);
err = bcm43xx_wireless_core_init(bcm, active_wlcore);
if (err)
goto out;
if (!active_wlcore)
bcm43xx_radio_turn_off(bcm);
out:
return err;
}
/* Select and enable the "to be used" wireless core.
* Locking: bcm->mutex must be aquired before calling this.
* bcm->irq_lock must not be aquired.
*/
int bcm43xx_select_wireless_core(struct bcm43xx_private *bcm,
int phytype)
{
int i, err;
struct bcm43xx_coreinfo *active_core = NULL;
struct bcm43xx_coreinfo_80211 *active_wlext = NULL;
struct bcm43xx_coreinfo *core;
struct bcm43xx_coreinfo_80211 *wlext;
int adjust_active_sbtmstatelow = 0;
might_sleep();
if (phytype < 0) {
/* If no phytype is requested, select the first core. */
assert(bcm->core_80211[0].available);
wlext = bcm->core_80211[0].priv;
phytype = wlext->phy.type;
}
/* Find the requested core. */
for (i = 0; i < bcm->nr_80211_available; i++) {
core = &(bcm->core_80211[i]);
wlext = core->priv;
if (wlext->phy.type == phytype) {
active_core = core;
active_wlext = wlext;
break;
}
}
if (!active_core)
return -ESRCH; /* No such PHYTYPE on this board. */
if (bcm->active_80211_core) {
/* We already selected a wl core in the past.
* So first clean up everything.
*/
dprintk(KERN_INFO PFX "select_wireless_core: cleanup\n");
ieee80211softmac_stop(bcm->net_dev);
bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED);
err = bcm43xx_disable_interrupts_sync(bcm);
assert(!err);
tasklet_enable(&bcm->isr_tasklet);
err = bcm43xx_shutdown_all_wireless_cores(bcm);
if (err)
goto error;
/* Ok, everything down, continue to re-initialize. */
bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING);
}
/* Reset all data structures. */
prepare_priv_for_init(bcm);
err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_FAST);
if (err)
goto error;
/* Mark all unused cores "inactive". */
for (i = 0; i < bcm->nr_80211_available; i++) {
core = &(bcm->core_80211[i]);
wlext = core->priv;
if (core == active_core)
continue;
err = bcm43xx_switch_core(bcm, core);
if (err) {
dprintk(KERN_ERR PFX "Could not switch to inactive "
"802.11 core (%d)\n", err);
goto error;
}
err = wireless_core_up(bcm, 0);
if (err) {
dprintk(KERN_ERR PFX "core_up for inactive 802.11 core "
"failed (%d)\n", err);
goto error;
}
adjust_active_sbtmstatelow = 1;
}
/* Now initialize the active 802.11 core. */
err = bcm43xx_switch_core(bcm, active_core);
if (err) {
dprintk(KERN_ERR PFX "Could not switch to active "
"802.11 core (%d)\n", err);
goto error;
}
if (adjust_active_sbtmstatelow &&
active_wlext->phy.type == BCM43xx_PHYTYPE_G) {
u32 sbtmstatelow;
sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
sbtmstatelow |= BCM43xx_SBTMSTATELOW_G_MODE_ENABLE;
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
}
err = wireless_core_up(bcm, 1);
if (err) {
dprintk(KERN_ERR PFX "core_up for active 802.11 core "
"failed (%d)\n", err);
goto error;
}
err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_DYNAMIC);
if (err)
goto error;
bcm->active_80211_core = active_core;
bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_SELF, (u8 *)(bcm->net_dev->dev_addr));
bcm43xx_security_init(bcm);
drain_txstatus_queue(bcm);
ieee80211softmac_start(bcm->net_dev);
/* Let's go! Be careful after enabling the IRQs.
* Don't switch cores, for example.
*/
bcm43xx_mac_enable(bcm);
bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED);
err = bcm43xx_initialize_irq(bcm);
if (err)
goto error;
bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
dprintk(KERN_INFO PFX "Selected 802.11 core (phytype %d)\n",
active_wlext->phy.type);
return 0;
error:
bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
return err;
}
static int bcm43xx_init_board(struct bcm43xx_private *bcm)
{
int err;
mutex_lock(&(bcm)->mutex);
tasklet_enable(&bcm->isr_tasklet);
err = bcm43xx_pctl_set_crystal(bcm, 1);
if (err)
goto err_tasklet;
err = bcm43xx_pctl_init(bcm);
if (err)
goto err_crystal_off;
err = bcm43xx_select_wireless_core(bcm, -1);
if (err)
goto err_crystal_off;
err = bcm43xx_sysfs_register(bcm);
if (err)
goto err_wlshutdown;
err = bcm43xx_rng_init(bcm);
if (err)
goto err_sysfs_unreg;
bcm43xx_periodic_tasks_setup(bcm);
/*FIXME: This should be handled by softmac instead. */
schedule_delayed_work(&bcm->softmac->associnfo.work, 0);
out:
mutex_unlock(&(bcm)->mutex);
return err;
err_sysfs_unreg:
bcm43xx_sysfs_unregister(bcm);
err_wlshutdown:
bcm43xx_shutdown_all_wireless_cores(bcm);
err_crystal_off:
bcm43xx_pctl_set_crystal(bcm, 0);
err_tasklet:
tasklet_disable(&bcm->isr_tasklet);
goto out;
}
static void bcm43xx_detach_board(struct bcm43xx_private *bcm)
{
struct pci_dev *pci_dev = bcm->pci_dev;
int i;
bcm43xx_chipset_detach(bcm);
/* Do _not_ access the chip, after it is detached. */
pci_iounmap(pci_dev, bcm->mmio_addr);
pci_release_regions(pci_dev);
pci_disable_device(pci_dev);
/* Free allocated structures/fields */
for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
kfree(bcm->core_80211_ext[i].phy._lo_pairs);
if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
}
}
static int bcm43xx_read_phyinfo(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
u16 value;
u8 phy_analog;
u8 phy_type;
u8 phy_rev;
int phy_rev_ok = 1;
void *p;
value = bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_VER);
phy_analog = (value & 0xF000) >> 12;
phy_type = (value & 0x0F00) >> 8;
phy_rev = (value & 0x000F);
dprintk(KERN_INFO PFX "Detected PHY: Analog: %x, Type %x, Revision %x\n",
phy_analog, phy_type, phy_rev);
switch (phy_type) {
case BCM43xx_PHYTYPE_A:
if (phy_rev >= 4)
phy_rev_ok = 0;
/*FIXME: We need to switch the ieee->modulation, etc.. flags,
* if we switch 80211 cores after init is done.
* As we do not implement on the fly switching between
* wireless cores, I will leave this as a future task.
*/
bcm->ieee->modulation = IEEE80211_OFDM_MODULATION;
bcm->ieee->mode = IEEE_A;
bcm->ieee->freq_band = IEEE80211_52GHZ_BAND |
IEEE80211_24GHZ_BAND;
break;
case BCM43xx_PHYTYPE_B:
if (phy_rev != 2 && phy_rev != 4 && phy_rev != 6 && phy_rev != 7)
phy_rev_ok = 0;
bcm->ieee->modulation = IEEE80211_CCK_MODULATION;
bcm->ieee->mode = IEEE_B;
bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
break;
case BCM43xx_PHYTYPE_G:
if (phy_rev > 8)
phy_rev_ok = 0;
bcm->ieee->modulation = IEEE80211_OFDM_MODULATION |
IEEE80211_CCK_MODULATION;
bcm->ieee->mode = IEEE_G;
bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
break;
default:
printk(KERN_ERR PFX "Error: Unknown PHY Type %x\n",
phy_type);
return -ENODEV;
};
bcm->ieee->perfect_rssi = RX_RSSI_MAX;
bcm->ieee->worst_rssi = 0;
if (!phy_rev_ok) {
printk(KERN_WARNING PFX "Invalid PHY Revision %x\n",
phy_rev);
}
phy->analog = phy_analog;
phy->type = phy_type;
phy->rev = phy_rev;
if ((phy_type == BCM43xx_PHYTYPE_B) || (phy_type == BCM43xx_PHYTYPE_G)) {
p = kzalloc(sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT,
GFP_KERNEL);
if (!p)
return -ENOMEM;
phy->_lo_pairs = p;
}
return 0;
}
static int bcm43xx_attach_board(struct bcm43xx_private *bcm)
{
struct pci_dev *pci_dev = bcm->pci_dev;
struct net_device *net_dev = bcm->net_dev;
int err;
int i;
u32 coremask;
err = pci_enable_device(pci_dev);
if (err) {
printk(KERN_ERR PFX "pci_enable_device() failed\n");
goto out;
}
err = pci_request_regions(pci_dev, KBUILD_MODNAME);
if (err) {
printk(KERN_ERR PFX "pci_request_regions() failed\n");
goto err_pci_disable;
}
/* enable PCI bus-mastering */
pci_set_master(pci_dev);
bcm->mmio_addr = pci_iomap(pci_dev, 0, ~0UL);
if (!bcm->mmio_addr) {
printk(KERN_ERR PFX "pci_iomap() failed\n");
err = -EIO;
goto err_pci_release;
}
net_dev->base_addr = (unsigned long)bcm->mmio_addr;
err = bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID,
&bcm->board_vendor);
if (err)
goto err_iounmap;
err = bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_ID,
&bcm->board_type);
if (err)
goto err_iounmap;
bcm->board_revision = bcm->pci_dev->revision;
err = bcm43xx_chipset_attach(bcm);
if (err)
goto err_iounmap;
err = bcm43xx_pctl_init(bcm);
if (err)
goto err_chipset_detach;
err = bcm43xx_probe_cores(bcm);
if (err)
goto err_chipset_detach;
/* Attach all IO cores to the backplane. */
coremask = 0;
for (i = 0; i < bcm->nr_80211_available; i++)
coremask |= (1 << bcm->core_80211[i].index);
//FIXME: Also attach some non80211 cores?
err = bcm43xx_setup_backplane_pci_connection(bcm, coremask);
if (err) {
printk(KERN_ERR PFX "Backplane->PCI connection failed!\n");
goto err_chipset_detach;
}
err = bcm43xx_sprom_extract(bcm);
if (err)
goto err_chipset_detach;
err = bcm43xx_leds_init(bcm);
if (err)
goto err_chipset_detach;
for (i = 0; i < bcm->nr_80211_available; i++) {
err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
assert(err != -ENODEV);
if (err)
goto err_80211_unwind;
/* Enable the selected wireless core.
* Connect PHY only on the first core.
*/
bcm43xx_wireless_core_reset(bcm, (i == 0));
err = bcm43xx_read_phyinfo(bcm);
if (err && (i == 0))
goto err_80211_unwind;
err = bcm43xx_read_radioinfo(bcm);
if (err && (i == 0))
goto err_80211_unwind;
err = bcm43xx_validate_chip(bcm);
if (err && (i == 0))
goto err_80211_unwind;
bcm43xx_radio_turn_off(bcm);
err = bcm43xx_phy_init_tssi2dbm_table(bcm);
if (err)
goto err_80211_unwind;
bcm43xx_wireless_core_disable(bcm);
}
err = bcm43xx_geo_init(bcm);
if (err)
goto err_80211_unwind;
bcm43xx_pctl_set_crystal(bcm, 0);
/* Set the MAC address in the networking subsystem */
if (is_valid_ether_addr(bcm->sprom.et1macaddr))
memcpy(bcm->net_dev->dev_addr, bcm->sprom.et1macaddr, 6);
else
memcpy(bcm->net_dev->dev_addr, bcm->sprom.il0macaddr, 6);
snprintf(bcm->nick, IW_ESSID_MAX_SIZE,
"Broadcom %04X", bcm->chip_id);
assert(err == 0);
out:
return err;
err_80211_unwind:
for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
kfree(bcm->core_80211_ext[i].phy._lo_pairs);
if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
}
err_chipset_detach:
bcm43xx_chipset_detach(bcm);
err_iounmap:
pci_iounmap(pci_dev, bcm->mmio_addr);
err_pci_release:
pci_release_regions(pci_dev);
err_pci_disable:
pci_disable_device(pci_dev);
printk(KERN_ERR PFX "Unable to attach board\n");
goto out;
}
/* Do the Hardware IO operations to send the txb */
static inline int bcm43xx_tx(struct bcm43xx_private *bcm,
struct ieee80211_txb *txb)
{
int err = -ENODEV;
if (bcm43xx_using_pio(bcm))
err = bcm43xx_pio_tx(bcm, txb);
else
err = bcm43xx_dma_tx(bcm, txb);
bcm->net_dev->trans_start = jiffies;
return err;
}
static void bcm43xx_ieee80211_set_chan(struct net_device *net_dev,
u8 channel)
{
struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
struct bcm43xx_radioinfo *radio;
unsigned long flags;
mutex_lock(&bcm->mutex);
spin_lock_irqsave(&bcm->irq_lock, flags);
if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
bcm43xx_mac_suspend(bcm);
bcm43xx_radio_selectchannel(bcm, channel, 0);
bcm43xx_mac_enable(bcm);
} else {
radio = bcm43xx_current_radio(bcm);
radio->initial_channel = channel;
}
spin_unlock_irqrestore(&bcm->irq_lock, flags);
mutex_unlock(&bcm->mutex);
}
/* set_security() callback in struct ieee80211_device */
static void bcm43xx_ieee80211_set_security(struct net_device *net_dev,
struct ieee80211_security *sec)
{
struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
struct ieee80211_security *secinfo = &bcm->ieee->sec;
unsigned long flags;
int keyidx;
dprintk(KERN_INFO PFX "set security called");
mutex_lock(&bcm->mutex);
spin_lock_irqsave(&bcm->irq_lock, flags);
for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
if (sec->flags & (1<<keyidx)) {
secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
memcpy(secinfo->keys[keyidx], sec->keys[keyidx], SCM_KEY_LEN);
}
if (sec->flags & SEC_ACTIVE_KEY) {
secinfo->active_key = sec->active_key;
dprintk(", .active_key = %d", sec->active_key);
}
if (sec->flags & SEC_UNICAST_GROUP) {
secinfo->unicast_uses_group = sec->unicast_uses_group;
dprintk(", .unicast_uses_group = %d", sec->unicast_uses_group);
}
if (sec->flags & SEC_LEVEL) {
secinfo->level = sec->level;
dprintk(", .level = %d", sec->level);
}
if (sec->flags & SEC_ENABLED) {
secinfo->enabled = sec->enabled;
dprintk(", .enabled = %d", sec->enabled);
}
if (sec->flags & SEC_ENCRYPT) {
secinfo->encrypt = sec->encrypt;
dprintk(", .encrypt = %d", sec->encrypt);
}
if (sec->flags & SEC_AUTH_MODE) {
secinfo->auth_mode = sec->auth_mode;
dprintk(", .auth_mode = %d", sec->auth_mode);
}
dprintk("\n");
if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED &&
!bcm->ieee->host_encrypt) {
if (secinfo->enabled) {
/* upload WEP keys to hardware */
char null_address[6] = { 0 };
u8 algorithm = 0;
for (keyidx = 0; keyidx<WEP_KEYS; keyidx++) {
if (!(sec->flags & (1<<keyidx)))
continue;
switch (sec->encode_alg[keyidx]) {
case SEC_ALG_NONE: algorithm = BCM43xx_SEC_ALGO_NONE; break;
case SEC_ALG_WEP:
algorithm = BCM43xx_SEC_ALGO_WEP;
if (secinfo->key_sizes[keyidx] == 13)
algorithm = BCM43xx_SEC_ALGO_WEP104;
break;
case SEC_ALG_TKIP:
FIXME();
algorithm = BCM43xx_SEC_ALGO_TKIP;
break;
case SEC_ALG_CCMP:
FIXME();
algorithm = BCM43xx_SEC_ALGO_AES;
break;
default:
assert(0);
break;
}
bcm43xx_key_write(bcm, keyidx, algorithm, sec->keys[keyidx], secinfo->key_sizes[keyidx], &null_address[0]);
bcm->key[keyidx].enabled = 1;
bcm->key[keyidx].algorithm = algorithm;
}
} else
bcm43xx_clear_keys(bcm);
}
spin_unlock_irqrestore(&bcm->irq_lock, flags);
mutex_unlock(&bcm->mutex);
}
/* hard_start_xmit() callback in struct ieee80211_device */
static int bcm43xx_ieee80211_hard_start_xmit(struct ieee80211_txb *txb,
struct net_device *net_dev,
int pri)
{
struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
int err = -ENODEV;
unsigned long flags;
spin_lock_irqsave(&bcm->irq_lock, flags);
if (likely(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED))
err = bcm43xx_tx(bcm, txb);
spin_unlock_irqrestore(&bcm->irq_lock, flags);
if (unlikely(err))
return NETDEV_TX_BUSY;
return NETDEV_TX_OK;
}
static void bcm43xx_net_tx_timeout(struct net_device *net_dev)
{
struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
unsigned long flags;
spin_lock_irqsave(&bcm->irq_lock, flags);
bcm43xx_controller_restart(bcm, "TX timeout");
spin_unlock_irqrestore(&bcm->irq_lock, flags);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bcm43xx_net_poll_controller(struct net_device *net_dev)
{
struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
unsigned long flags;
local_irq_save(flags);
if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED)
bcm43xx_interrupt_handler(bcm->irq, bcm);
local_irq_restore(flags);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static int bcm43xx_net_open(struct net_device *net_dev)
{
struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
return bcm43xx_init_board(bcm);
}
static int bcm43xx_net_stop(struct net_device *net_dev)
{
struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
int err;
ieee80211softmac_stop(net_dev);
err = bcm43xx_disable_interrupts_sync(bcm);
assert(!err);
bcm43xx_free_board(bcm);
flush_scheduled_work();
return 0;
}
static int bcm43xx_init_private(struct bcm43xx_private *bcm,
struct net_device *net_dev,
struct pci_dev *pci_dev)
{
bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
bcm->ieee = netdev_priv(net_dev);
bcm->softmac = ieee80211_priv(net_dev);
bcm->softmac->set_channel = bcm43xx_ieee80211_set_chan;
bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
bcm->mac_suspended = 1;
bcm->pci_dev = pci_dev;
bcm->net_dev = net_dev;
bcm->bad_frames_preempt = modparam_bad_frames_preempt;
spin_lock_init(&bcm->irq_lock);
spin_lock_init(&bcm->leds_lock);
mutex_init(&bcm->mutex);
tasklet_init(&bcm->isr_tasklet,
(void (*)(unsigned long))bcm43xx_interrupt_tasklet,
(unsigned long)bcm);
tasklet_disable_nosync(&bcm->isr_tasklet);
if (modparam_pio)
bcm->__using_pio = 1;
bcm->rts_threshold = BCM43xx_DEFAULT_RTS_THRESHOLD;
/* default to sw encryption for now */
bcm->ieee->host_build_iv = 0;
bcm->ieee->host_encrypt = 1;
bcm->ieee->host_decrypt = 1;
bcm->ieee->iw_mode = BCM43xx_INITIAL_IWMODE;
bcm->ieee->tx_headroom = sizeof(struct bcm43xx_txhdr);
bcm->ieee->set_security = bcm43xx_ieee80211_set_security;
bcm->ieee->hard_start_xmit = bcm43xx_ieee80211_hard_start_xmit;
return 0;
}
static int __devinit bcm43xx_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *net_dev;
struct bcm43xx_private *bcm;
int err;
#ifdef DEBUG_SINGLE_DEVICE_ONLY
if (strcmp(pci_name(pdev), DEBUG_SINGLE_DEVICE_ONLY))
return -ENODEV;
#endif
net_dev = alloc_ieee80211softmac(sizeof(*bcm));
if (!net_dev) {
printk(KERN_ERR PFX
"could not allocate ieee80211 device %s\n",
pci_name(pdev));
err = -ENOMEM;
goto out;
}
/* initialize the net_device struct */
SET_MODULE_OWNER(net_dev);
SET_NETDEV_DEV(net_dev, &pdev->dev);
net_dev->open = bcm43xx_net_open;
net_dev->stop = bcm43xx_net_stop;
net_dev->tx_timeout = bcm43xx_net_tx_timeout;
#ifdef CONFIG_NET_POLL_CONTROLLER
net_dev->poll_controller = bcm43xx_net_poll_controller;
#endif
net_dev->wireless_handlers = &bcm43xx_wx_handlers_def;
net_dev->irq = pdev->irq;
SET_ETHTOOL_OPS(net_dev, &bcm43xx_ethtool_ops);
/* initialize the bcm43xx_private struct */
bcm = bcm43xx_priv(net_dev);
memset(bcm, 0, sizeof(*bcm));
err = bcm43xx_init_private(bcm, net_dev, pdev);
if (err)
goto err_free_netdev;
pci_set_drvdata(pdev, net_dev);
err = bcm43xx_attach_board(bcm);
if (err)
goto err_free_netdev;
err = register_netdev(net_dev);
if (err) {
printk(KERN_ERR PFX "Cannot register net device, "
"aborting.\n");
err = -ENOMEM;
goto err_detach_board;
}
bcm43xx_debugfs_add_device(bcm);
assert(err == 0);
out:
return err;
err_detach_board:
bcm43xx_detach_board(bcm);
err_free_netdev:
free_ieee80211softmac(net_dev);
goto out;
}
static void __devexit bcm43xx_remove_one(struct pci_dev *pdev)
{
struct net_device *net_dev = pci_get_drvdata(pdev);
struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
bcm43xx_debugfs_remove_device(bcm);
unregister_netdev(net_dev);
bcm43xx_detach_board(bcm);
free_ieee80211softmac(net_dev);
}
/* Hard-reset the chip. Do not call this directly.
* Use bcm43xx_controller_restart()
*/
static void bcm43xx_chip_reset(struct work_struct *work)
{
struct bcm43xx_private *bcm =
container_of(work, struct bcm43xx_private, restart_work);
struct bcm43xx_phyinfo *phy;
int err = -ENODEV;
mutex_lock(&(bcm)->mutex);
if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
bcm43xx_periodic_tasks_delete(bcm);
phy = bcm43xx_current_phy(bcm);
err = bcm43xx_select_wireless_core(bcm, phy->type);
if (!err)
bcm43xx_periodic_tasks_setup(bcm);
}
mutex_unlock(&(bcm)->mutex);
printk(KERN_ERR PFX "Controller restart%s\n",
(err == 0) ? "ed" : " failed");
}
/* Hard-reset the chip.
* This can be called from interrupt or process context.
* bcm->irq_lock must be locked.
*/
void bcm43xx_controller_restart(struct bcm43xx_private *bcm, const char *reason)
{
if (bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED)
return;
printk(KERN_ERR PFX "Controller RESET (%s) ...\n", reason);
INIT_WORK(&bcm->restart_work, bcm43xx_chip_reset);
schedule_work(&bcm->restart_work);
}
#ifdef CONFIG_PM
static int bcm43xx_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *net_dev = pci_get_drvdata(pdev);
struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
int err;
dprintk(KERN_INFO PFX "Suspending...\n");
netif_device_detach(net_dev);
bcm->was_initialized = 0;
if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
bcm->was_initialized = 1;
ieee80211softmac_stop(net_dev);
err = bcm43xx_disable_interrupts_sync(bcm);
if (unlikely(err)) {
dprintk(KERN_ERR PFX "Suspend failed.\n");
return -EAGAIN;
}
bcm->firmware_norelease = 1;
bcm43xx_free_board(bcm);
bcm->firmware_norelease = 0;
}
bcm43xx_chipset_detach(bcm);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
dprintk(KERN_INFO PFX "Device suspended.\n");
return 0;
}
static int bcm43xx_resume(struct pci_dev *pdev)
{
struct net_device *net_dev = pci_get_drvdata(pdev);
struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
int err = 0;
dprintk(KERN_INFO PFX "Resuming...\n");
pci_set_power_state(pdev, 0);
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR PFX "Failure with pci_enable_device!\n");
return err;
}
pci_restore_state(pdev);
bcm43xx_chipset_attach(bcm);
if (bcm->was_initialized)
err = bcm43xx_init_board(bcm);
if (err) {
printk(KERN_ERR PFX "Resume failed!\n");
return err;
}
netif_device_attach(net_dev);
dprintk(KERN_INFO PFX "Device resumed.\n");
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver bcm43xx_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = bcm43xx_pci_tbl,
.probe = bcm43xx_init_one,
.remove = __devexit_p(bcm43xx_remove_one),
#ifdef CONFIG_PM
.suspend = bcm43xx_suspend,
.resume = bcm43xx_resume,
#endif /* CONFIG_PM */
};
static int __init bcm43xx_init(void)
{
printk(KERN_INFO KBUILD_MODNAME " driver\n");
bcm43xx_debugfs_init();
return pci_register_driver(&bcm43xx_pci_driver);
}
static void __exit bcm43xx_exit(void)
{
pci_unregister_driver(&bcm43xx_pci_driver);
bcm43xx_debugfs_exit();
}
module_init(bcm43xx_init)
module_exit(bcm43xx_exit)