/*
* Driver for the Macintosh 68K onboard MACE controller with PSC
* driven DMA. The MACE driver code is derived from mace.c. The
* Mac68k theory of operation is courtesy of the MacBSD wizards.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Copyright (C) 1996 Paul Mackerras.
* Copyright (C) 1998 Alan Cox <alan@redhat.com>
*
* Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/crc32.h>
#include <linux/bitrev.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/macintosh.h>
#include <asm/macints.h>
#include <asm/mac_psc.h>
#include <asm/page.h>
#include "mace.h"
#define N_TX_RING 1
#define N_RX_RING 8
#define N_RX_PAGES ((N_RX_RING * 0x0800 + PAGE_SIZE - 1) / PAGE_SIZE)
#define TX_TIMEOUT HZ
/* Bits in transmit DMA status */
#define TX_DMA_ERR 0x80
/* The MACE is simply wired down on a Mac68K box */
#define MACE_BASE (void *)(0x50F1C000)
#define MACE_PROM (void *)(0x50F08001)
struct mace_data {
volatile struct mace *mace;
volatile unsigned char *tx_ring;
volatile unsigned char *tx_ring_phys;
volatile unsigned char *rx_ring;
volatile unsigned char *rx_ring_phys;
int dma_intr;
struct net_device_stats stats;
int rx_slot, rx_tail;
int tx_slot, tx_sloti, tx_count;
};
struct mace_frame {
u16 len;
u16 status;
u16 rntpc;
u16 rcvcc;
u32 pad1;
u32 pad2;
u8 data[1];
/* And frame continues.. */
};
#define PRIV_BYTES sizeof(struct mace_data)
extern void psc_debug_dump(void);
static int mace_open(struct net_device *dev);
static int mace_close(struct net_device *dev);
static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
static struct net_device_stats *mace_stats(struct net_device *dev);
static void mace_set_multicast(struct net_device *dev);
static int mace_set_address(struct net_device *dev, void *addr);
static irqreturn_t mace_interrupt(int irq, void *dev_id);
static irqreturn_t mace_dma_intr(int irq, void *dev_id);
static void mace_tx_timeout(struct net_device *dev);
/*
* Load a receive DMA channel with a base address and ring length
*/
static void mace_load_rxdma_base(struct net_device *dev, int set)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
mp->rx_tail = 0;
}
/*
* Reset the receive DMA subsystem
*/
static void mace_rxdma_reset(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mace = mp->mace;
u8 maccc = mace->maccc;
mace->maccc = maccc & ~ENRCV;
psc_write_word(PSC_ENETRD_CTL, 0x8800);
mace_load_rxdma_base(dev, 0x00);
psc_write_word(PSC_ENETRD_CTL, 0x0400);
psc_write_word(PSC_ENETRD_CTL, 0x8800);
mace_load_rxdma_base(dev, 0x10);
psc_write_word(PSC_ENETRD_CTL, 0x0400);
mace->maccc = maccc;
mp->rx_slot = 0;
psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
}
/*
* Reset the transmit DMA subsystem
*/
static void mace_txdma_reset(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mace = mp->mace;
u8 maccc;
psc_write_word(PSC_ENETWR_CTL, 0x8800);
maccc = mace->maccc;
mace->maccc = maccc & ~ENXMT;
mp->tx_slot = mp->tx_sloti = 0;
mp->tx_count = N_TX_RING;
psc_write_word(PSC_ENETWR_CTL, 0x0400);
mace->maccc = maccc;
}
/*
* Disable DMA
*/
static void mace_dma_off(struct net_device *dev)
{
psc_write_word(PSC_ENETRD_CTL, 0x8800);
psc_write_word(PSC_ENETRD_CTL, 0x1000);
psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
psc_write_word(PSC_ENETWR_CTL, 0x8800);
psc_write_word(PSC_ENETWR_CTL, 0x1000);
psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
}
/*
* Not really much of a probe. The hardware table tells us if this
* model of Macintrash has a MACE (AV macintoshes)
*/
struct net_device *mace_probe(int unit)
{
int j;
struct mace_data *mp;
unsigned char *addr;
struct net_device *dev;
unsigned char checksum = 0;
static int found = 0;
int err;
if (found || macintosh_config->ether_type != MAC_ETHER_MACE)
return ERR_PTR(-ENODEV);
found = 1; /* prevent 'finding' one on every device probe */
dev = alloc_etherdev(PRIV_BYTES);
if (!dev)
return ERR_PTR(-ENOMEM);
if (unit >= 0)
sprintf(dev->name, "eth%d", unit);
mp = (struct mace_data *) dev->priv;
dev->base_addr = (u32)MACE_BASE;
mp->mace = (volatile struct mace *) MACE_BASE;
dev->irq = IRQ_MAC_MACE;
mp->dma_intr = IRQ_MAC_MACE_DMA;
/*
* The PROM contains 8 bytes which total 0xFF when XOR'd
* together. Due to the usual peculiar apple brain damage
* the bytes are spaced out in a strange boundary and the
* bits are reversed.
*/
addr = (void *)MACE_PROM;
for (j = 0; j < 6; ++j) {
u8 v = bitrev8(addr[j<<4]);
checksum ^= v;
dev->dev_addr[j] = v;
}
for (; j < 8; ++j) {
checksum ^= bitrev8(addr[j<<4]);
}
if (checksum != 0xFF) {
free_netdev(dev);
return ERR_PTR(-ENODEV);
}
memset(&mp->stats, 0, sizeof(mp->stats));
dev->open = mace_open;
dev->stop = mace_close;
dev->hard_start_xmit = mace_xmit_start;
dev->tx_timeout = mace_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->get_stats = mace_stats;
dev->set_multicast_list = mace_set_multicast;
dev->set_mac_address = mace_set_address;
printk(KERN_INFO "%s: 68K MACE, hardware address %.2X", dev->name, dev->dev_addr[0]);
for (j = 1 ; j < 6 ; j++) printk(":%.2X", dev->dev_addr[j]);
printk("\n");
err = register_netdev(dev);
if (!err)
return dev;
free_netdev(dev);
return ERR_PTR(err);
}
/*
* Load the address on a mace controller.
*/
static int mace_set_address(struct net_device *dev, void *addr)
{
unsigned char *p = addr;
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace;
int i;
unsigned long flags;
u8 maccc;
local_irq_save(flags);
maccc = mb->maccc;
/* load up the hardware address */
mb->iac = ADDRCHG | PHYADDR;
while ((mb->iac & ADDRCHG) != 0);
for (i = 0; i < 6; ++i) {
mb->padr = dev->dev_addr[i] = p[i];
}
mb->maccc = maccc;
local_irq_restore(flags);
return 0;
}
/*
* Open the Macintosh MACE. Most of this is playing with the DMA
* engine. The ethernet chip is quite friendly.
*/
static int mace_open(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace;
#if 0
int i;
i = 200;
while (--i) {
mb->biucc = SWRST;
if (mb->biucc & SWRST) {
udelay(10);
continue;
}
break;
}
if (!i) {
printk(KERN_ERR "%s: software reset failed!!\n", dev->name);
return -EAGAIN;
}
#endif
mb->biucc = XMTSP_64;
mb->fifocc = XMTFW_16 | RCVFW_64 | XMTFWU | RCVFWU | XMTBRST | RCVBRST;
mb->xmtfc = AUTO_PAD_XMIT;
mb->plscc = PORTSEL_AUI;
/* mb->utr = RTRD; */
if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
return -EAGAIN;
}
if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
free_irq(dev->irq, dev);
return -EAGAIN;
}
/* Allocate the DMA ring buffers */
mp->rx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, N_RX_PAGES);
mp->tx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, 0);
if (mp->tx_ring==NULL || mp->rx_ring==NULL) {
if (mp->rx_ring) free_pages((u32) mp->rx_ring, N_RX_PAGES);
if (mp->tx_ring) free_pages((u32) mp->tx_ring, 0);
free_irq(dev->irq, dev);
free_irq(mp->dma_intr, dev);
printk(KERN_ERR "%s: unable to allocate DMA buffers\n", dev->name);
return -ENOMEM;
}
mp->rx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->rx_ring);
mp->tx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->tx_ring);
/* We want the Rx buffer to be uncached and the Tx buffer to be writethrough */
kernel_set_cachemode((void *)mp->rx_ring, N_RX_PAGES * PAGE_SIZE, IOMAP_NOCACHE_NONSER);
kernel_set_cachemode((void *)mp->tx_ring, PAGE_SIZE, IOMAP_WRITETHROUGH);
mace_dma_off(dev);
/* Not sure what these do */
psc_write_word(PSC_ENETWR_CTL, 0x9000);
psc_write_word(PSC_ENETRD_CTL, 0x9000);
psc_write_word(PSC_ENETWR_CTL, 0x0400);
psc_write_word(PSC_ENETRD_CTL, 0x0400);
#if 0
/* load up the hardware address */
mb->iac = ADDRCHG | PHYADDR;
while ((mb->iac & ADDRCHG) != 0);
for (i = 0; i < 6; ++i)
mb->padr = dev->dev_addr[i];
/* clear the multicast filter */
mb->iac = ADDRCHG | LOGADDR;
while ((mb->iac & ADDRCHG) != 0);
for (i = 0; i < 8; ++i)
mb->ladrf = 0;
mb->plscc = PORTSEL_GPSI + ENPLSIO;
mb->maccc = ENXMT | ENRCV;
mb->imr = RCVINT;
#endif
mace_rxdma_reset(dev);
mace_txdma_reset(dev);
return 0;
}
/*
* Shut down the mace and its interrupt channel
*/
static int mace_close(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace;
mb->maccc = 0; /* disable rx and tx */
mb->imr = 0xFF; /* disable all irqs */
mace_dma_off(dev); /* disable rx and tx dma */
free_irq(dev->irq, dev);
free_irq(IRQ_MAC_MACE_DMA, dev);
free_pages((u32) mp->rx_ring, N_RX_PAGES);
free_pages((u32) mp->tx_ring, 0);
return 0;
}
/*
* Transmit a frame
*/
static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
/* Stop the queue if the buffer is full */
if (!mp->tx_count) {
netif_stop_queue(dev);
return 1;
}
mp->tx_count--;
mp->stats.tx_packets++;
mp->stats.tx_bytes += skb->len;
/* We need to copy into our xmit buffer to take care of alignment and caching issues */
memcpy((void *) mp->tx_ring, skb->data, skb->len);
/* load the Tx DMA and fire it off */
psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
mp->tx_slot ^= 0x10;
dev_kfree_skb(skb);
return 0;
}
static struct net_device_stats *mace_stats(struct net_device *dev)
{
struct mace_data *p = (struct mace_data *) dev->priv;
return &p->stats;
}
static void mace_set_multicast(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace;
int i, j;
u32 crc;
u8 maccc;
maccc = mb->maccc;
mb->maccc &= ~PROM;
if (dev->flags & IFF_PROMISC) {
mb->maccc |= PROM;
} else {
unsigned char multicast_filter[8];
struct dev_mc_list *dmi = dev->mc_list;
if (dev->flags & IFF_ALLMULTI) {
for (i = 0; i < 8; i++) {
multicast_filter[i] = 0xFF;
}
} else {
for (i = 0; i < 8; i++)
multicast_filter[i] = 0;
for (i = 0; i < dev->mc_count; i++) {
crc = ether_crc_le(6, dmi->dmi_addr);
j = crc >> 26; /* bit number in multicast_filter */
multicast_filter[j >> 3] |= 1 << (j & 7);
dmi = dmi->next;
}
}
mb->iac = ADDRCHG | LOGADDR;
while (mb->iac & ADDRCHG);
for (i = 0; i < 8; ++i) {
mb->ladrf = multicast_filter[i];
}
}
mb->maccc = maccc;
}
/*
* Miscellaneous interrupts are handled here. We may end up
* having to bash the chip on the head for bad errors
*/
static void mace_handle_misc_intrs(struct mace_data *mp, int intr)
{
volatile struct mace *mb = mp->mace;
static int mace_babbles, mace_jabbers;
if (intr & MPCO) {
mp->stats.rx_missed_errors += 256;
}
mp->stats.rx_missed_errors += mb->mpc; /* reading clears it */
if (intr & RNTPCO) {
mp->stats.rx_length_errors += 256;
}
mp->stats.rx_length_errors += mb->rntpc; /* reading clears it */
if (intr & CERR) {
++mp->stats.tx_heartbeat_errors;
}
if (intr & BABBLE) {
if (mace_babbles++ < 4) {
printk(KERN_DEBUG "mace: babbling transmitter\n");
}
}
if (intr & JABBER) {
if (mace_jabbers++ < 4) {
printk(KERN_DEBUG "mace: jabbering transceiver\n");
}
}
}
/*
* A transmit error has occurred. (We kick the transmit side from
* the DMA completion)
*/
static void mace_xmit_error(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace;
u8 xmtfs, xmtrc;
xmtfs = mb->xmtfs;
xmtrc = mb->xmtrc;
if (xmtfs & XMTSV) {
if (xmtfs & UFLO) {
printk("%s: DMA underrun.\n", dev->name);
mp->stats.tx_errors++;
mp->stats.tx_fifo_errors++;
mace_txdma_reset(dev);
}
if (xmtfs & RTRY) {
mp->stats.collisions++;
}
}
}
/*
* A receive interrupt occurred.
*/
static void mace_recv_interrupt(struct net_device *dev)
{
/* struct mace_data *mp = (struct mace_data *) dev->priv; */
// volatile struct mace *mb = mp->mace;
}
/*
* Process the chip interrupt
*/
static irqreturn_t mace_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace;
u8 ir;
ir = mb->ir;
mace_handle_misc_intrs(mp, ir);
if (ir & XMTINT) {
mace_xmit_error(dev);
}
if (ir & RCVINT) {
mace_recv_interrupt(dev);
}
return IRQ_HANDLED;
}
static void mace_tx_timeout(struct net_device *dev)
{
/* struct mace_data *mp = (struct mace_data *) dev->priv; */
// volatile struct mace *mb = mp->mace;
}
/*
* Handle a newly arrived frame
*/
static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
struct sk_buff *skb;
if (mf->status & RS_OFLO) {
printk("%s: fifo overflow.\n", dev->name);
mp->stats.rx_errors++;
mp->stats.rx_fifo_errors++;
}
if (mf->status&(RS_CLSN|RS_FRAMERR|RS_FCSERR))
mp->stats.rx_errors++;
if (mf->status&RS_CLSN) {
mp->stats.collisions++;
}
if (mf->status&RS_FRAMERR) {
mp->stats.rx_frame_errors++;
}
if (mf->status&RS_FCSERR) {
mp->stats.rx_crc_errors++;
}
skb = dev_alloc_skb(mf->len+2);
if (!skb) {
mp->stats.rx_dropped++;
return;
}
skb_reserve(skb,2);
memcpy(skb_put(skb, mf->len), mf->data, mf->len);
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->last_rx = jiffies;
mp->stats.rx_packets++;
mp->stats.rx_bytes += mf->len;
}
/*
* The PSC has passed us a DMA interrupt event.
*/
static irqreturn_t mace_dma_intr(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct mace_data *mp = (struct mace_data *) dev->priv;
int left, head;
u16 status;
u32 baka;
/* Not sure what this does */
while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
if (!(baka & 0x60000000)) return IRQ_NONE;
/*
* Process the read queue
*/
status = psc_read_word(PSC_ENETRD_CTL);
if (status & 0x2000) {
mace_rxdma_reset(dev);
} else if (status & 0x0100) {
psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
head = N_RX_RING - left;
/* Loop through the ring buffer and process new packages */
while (mp->rx_tail < head) {
mace_dma_rx_frame(dev, (struct mace_frame *) (mp->rx_ring + (mp->rx_tail * 0x0800)));
mp->rx_tail++;
}
/* If we're out of buffers in this ring then switch to */
/* the other set, otherwise just reactivate this one. */
if (!left) {
mace_load_rxdma_base(dev, mp->rx_slot);
mp->rx_slot ^= 0x10;
} else {
psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
}
}
/*
* Process the write queue
*/
status = psc_read_word(PSC_ENETWR_CTL);
if (status & 0x2000) {
mace_txdma_reset(dev);
} else if (status & 0x0100) {
psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
mp->tx_sloti ^= 0x10;
mp->tx_count++;
netif_wake_queue(dev);
}
return IRQ_HANDLED;
}
MODULE_LICENSE("GPL");