/*
* ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
*
* Copyright (C) 2003, 2007 IC Plus Corp
*
* Original Author:
*
* Craig Rich
* Sundance Technology, Inc.
* www.sundanceti.com
* craig_rich@sundanceti.com
*
* Current Maintainer:
*
* Sorbica Shieh.
* http://www.icplus.com.tw
* sorbica@icplus.com.tw
*
* Jesse Huang
* http://www.icplus.com.tw
* jesse@icplus.com.tw
*/
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/mutex.h>
#include <asm/div64.h>
#define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
#define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
#define IPG_RESET_MASK \
(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
IPG_AC_AUTO_INIT)
#define ipg_w32(val32,reg) iowrite32((val32), ioaddr + (reg))
#define ipg_w16(val16,reg) iowrite16((val16), ioaddr + (reg))
#define ipg_w8(val8,reg) iowrite8((val8), ioaddr + (reg))
#define ipg_r32(reg) ioread32(ioaddr + (reg))
#define ipg_r16(reg) ioread16(ioaddr + (reg))
#define ipg_r8(reg) ioread8(ioaddr + (reg))
#define JUMBO_FRAME_4k_ONLY
enum {
netdev_io_size = 128
};
#include "ipg.h"
#define DRV_NAME "ipg"
MODULE_AUTHOR("IC Plus Corp. 2003");
MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver "
DrvVer);
MODULE_LICENSE("GPL");
//variable record -- index by leading revision/length
//Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
static unsigned short DefaultPhyParam[] = {
// 11/12/03 IP1000A v1-3 rev=0x40
/*--------------------------------------------------------------------------
(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
--------------------------------------------------------------------------*/
// 12/17/03 IP1000A v1-4 rev=0x40
(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
0x0000,
30, 0x005e, 9, 0x0700,
// 01/09/04 IP1000A v1-5 rev=0x41
(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
0x0000,
30, 0x005e, 9, 0x0700,
0x0000
};
static const char *ipg_brand_name[] = {
"IC PLUS IP1000 1000/100/10 based NIC",
"Sundance Technology ST2021 based NIC",
"Tamarack Microelectronics TC9020/9021 based NIC",
"Tamarack Microelectronics TC9020/9021 based NIC",
"D-Link NIC",
"D-Link NIC IP1000A"
};
static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
{ PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
{ PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
{ PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
{ PCI_VDEVICE(DLINK, 0x9021), 3 },
{ PCI_VDEVICE(DLINK, 0x4000), 4 },
{ PCI_VDEVICE(DLINK, 0x4020), 5 },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
static inline void __iomem *ipg_ioaddr(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
return sp->ioaddr;
}
#ifdef IPG_DEBUG
static void ipg_dump_rfdlist(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
unsigned int i;
u32 offset;
IPG_DEBUG_MSG("_dump_rfdlist\n");
printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty);
printk(KERN_INFO "RFDList start address = %16.16lx\n",
(unsigned long) sp->rxd_map);
printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n",
ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
offset, (unsigned long) sp->rxd[i].next_desc);
offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i,
offset, (unsigned long) sp->rxd[i].rfs);
offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
offset, (unsigned long) sp->rxd[i].frag_info);
}
}
static void ipg_dump_tfdlist(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
unsigned int i;
u32 offset;
IPG_DEBUG_MSG("_dump_tfdlist\n");
printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current);
printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
printk(KERN_INFO "TFDList start address = %16.16lx\n",
(unsigned long) sp->txd_map);
printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n",
ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
offset, (unsigned long) sp->txd[i].next_desc);
offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i,
offset, (unsigned long) sp->txd[i].tfc);
offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
offset, (unsigned long) sp->txd[i].frag_info);
}
}
#endif
static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
{
ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
ndelay(IPG_PC_PHYCTRLWAIT_NS);
}
static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
{
ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
}
static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
{
phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
}
static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
{
ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
}
static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity)
{
u16 bit_data;
ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
return bit_data;
}
/*
* Read a register from the Physical Layer device located
* on the IPG NIC, using the IPG PHYCTRL register.
*/
static int mdio_read(struct net_device * dev, int phy_id, int phy_reg)
{
void __iomem *ioaddr = ipg_ioaddr(dev);
/*
* The GMII mangement frame structure for a read is as follows:
*
* |Preamble|st|op|phyad|regad|ta| data |idle|
* |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
*
* <32 1s> = 32 consecutive logic 1 values
* A = bit of Physical Layer device address (MSB first)
* R = bit of register address (MSB first)
* z = High impedance state
* D = bit of read data (MSB first)
*
* Transmission order is 'Preamble' field first, bits transmitted
* left to right (first to last).
*/
struct {
u32 field;
unsigned int len;
} p[] = {
{ GMII_PREAMBLE, 32 }, /* Preamble */
{ GMII_ST, 2 }, /* ST */
{ GMII_READ, 2 }, /* OP */
{ phy_id, 5 }, /* PHYAD */
{ phy_reg, 5 }, /* REGAD */
{ 0x0000, 2 }, /* TA */
{ 0x0000, 16 }, /* DATA */
{ 0x0000, 1 } /* IDLE */
};
unsigned int i, j;
u8 polarity, data;
polarity = ipg_r8(PHY_CTRL);
polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
for (j = 0; j < 5; j++) {
for (i = 0; i < p[j].len; i++) {
/* For each variable length field, the MSB must be
* transmitted first. Rotate through the field bits,
* starting with the MSB, and move each bit into the
* the 1st (2^1) bit position (this is the bit position
* corresponding to the MgmtData bit of the PhyCtrl
* register for the IPG).
*
* Example: ST = 01;
*
* First write a '0' to bit 1 of the PhyCtrl
* register, then write a '1' to bit 1 of the
* PhyCtrl register.
*
* To do this, right shift the MSB of ST by the value:
* [field length - 1 - #ST bits already written]
* then left shift this result by 1.
*/
data = (p[j].field >> (p[j].len - 1 - i)) << 1;
data &= IPG_PC_MGMTDATA;
data |= polarity | IPG_PC_MGMTDIR;
ipg_drive_phy_ctl_low_high(ioaddr, data);
}
}
send_three_state(ioaddr, polarity);
read_phy_bit(ioaddr, polarity);
/*
* For a read cycle, the bits for the next two fields (TA and
* DATA) are driven by the PHY (the IPG reads these bits).
*/
for (i = 0; i < p[6].len; i++) {
p[6].field |=
(read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
}
send_three_state(ioaddr, polarity);
send_three_state(ioaddr, polarity);
send_three_state(ioaddr, polarity);
send_end(ioaddr, polarity);
/* Return the value of the DATA field. */
return p[6].field;
}
/*
* Write to a register from the Physical Layer device located
* on the IPG NIC, using the IPG PHYCTRL register.
*/
static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
{
void __iomem *ioaddr = ipg_ioaddr(dev);
/*
* The GMII mangement frame structure for a read is as follows:
*
* |Preamble|st|op|phyad|regad|ta| data |idle|
* |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
*
* <32 1s> = 32 consecutive logic 1 values
* A = bit of Physical Layer device address (MSB first)
* R = bit of register address (MSB first)
* z = High impedance state
* D = bit of write data (MSB first)
*
* Transmission order is 'Preamble' field first, bits transmitted
* left to right (first to last).
*/
struct {
u32 field;
unsigned int len;
} p[] = {
{ GMII_PREAMBLE, 32 }, /* Preamble */
{ GMII_ST, 2 }, /* ST */
{ GMII_WRITE, 2 }, /* OP */
{ phy_id, 5 }, /* PHYAD */
{ phy_reg, 5 }, /* REGAD */
{ 0x0002, 2 }, /* TA */
{ val & 0xffff, 16 }, /* DATA */
{ 0x0000, 1 } /* IDLE */
};
unsigned int i, j;
u8 polarity, data;
polarity = ipg_r8(PHY_CTRL);
polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
for (j = 0; j < 7; j++) {
for (i = 0; i < p[j].len; i++) {
/* For each variable length field, the MSB must be
* transmitted first. Rotate through the field bits,
* starting with the MSB, and move each bit into the
* the 1st (2^1) bit position (this is the bit position
* corresponding to the MgmtData bit of the PhyCtrl
* register for the IPG).
*
* Example: ST = 01;
*
* First write a '0' to bit 1 of the PhyCtrl
* register, then write a '1' to bit 1 of the
* PhyCtrl register.
*
* To do this, right shift the MSB of ST by the value:
* [field length - 1 - #ST bits already written]
* then left shift this result by 1.
*/
data = (p[j].field >> (p[j].len - 1 - i)) << 1;
data &= IPG_PC_MGMTDATA;
data |= polarity | IPG_PC_MGMTDIR;
ipg_drive_phy_ctl_low_high(ioaddr, data);
}
}
/* The last cycle is a tri-state, so read from the PHY. */
for (j = 7; j < 8; j++) {
for (i = 0; i < p[j].len; i++) {
ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
p[j].field |= ((ipg_r8(PHY_CTRL) &
IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
}
}
}
/* Set LED_Mode JES20040127EEPROM */
static void ipg_set_led_mode(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
u32 mode;
mode = ipg_r32(ASIC_CTRL);
mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
if ((sp->LED_Mode & 0x03) > 1)
mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
if ((sp->LED_Mode & 0x01) == 1)
mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
if ((sp->LED_Mode & 0x08) == 8)
mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
ipg_w32(mode, ASIC_CTRL);
}
/* Set PHYSet JES20040127EEPROM */
static void ipg_set_phy_set(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
int physet;
physet = ipg_r8(PHY_SET);
physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
physet |= ((sp->LED_Mode & 0x70) >> 4);
ipg_w8(physet, PHY_SET);
}
static int ipg_reset(struct net_device *dev, u32 resetflags)
{
/* Assert functional resets via the IPG AsicCtrl
* register as specified by the 'resetflags' input
* parameter.
*/
void __iomem *ioaddr = ipg_ioaddr(dev); //JES20040127EEPROM:
unsigned int timeout_count = 0;
IPG_DEBUG_MSG("_reset\n");
ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
/* Delay added to account for problem with 10Mbps reset. */
mdelay(IPG_AC_RESETWAIT);
while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
mdelay(IPG_AC_RESETWAIT);
if (++timeout_count > IPG_AC_RESET_TIMEOUT)
return -ETIME;
}
/* Set LED Mode in Asic Control JES20040127EEPROM */
ipg_set_led_mode(dev);
/* Set PHYSet Register Value JES20040127EEPROM */
ipg_set_phy_set(dev);
return 0;
}
/* Find the GMII PHY address. */
static int ipg_find_phyaddr(struct net_device *dev)
{
unsigned int phyaddr, i;
for (i = 0; i < 32; i++) {
u32 status;
/* Search for the correct PHY address among 32 possible. */
phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
GMII_PHY_ID1
*/
status = mdio_read(dev, phyaddr, MII_BMSR);
if ((status != 0xFFFF) && (status != 0))
return phyaddr;
}
return 0x1f;
}
/*
* Configure IPG based on result of IEEE 802.3 PHY
* auto-negotiation.
*/
static int ipg_config_autoneg(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
unsigned int txflowcontrol;
unsigned int rxflowcontrol;
unsigned int fullduplex;
unsigned int gig;
u32 mac_ctrl_val;
u32 asicctrl;
u8 phyctrl;
IPG_DEBUG_MSG("_config_autoneg\n");
asicctrl = ipg_r32(ASIC_CTRL);
phyctrl = ipg_r8(PHY_CTRL);
mac_ctrl_val = ipg_r32(MAC_CTRL);
/* Set flags for use in resolving auto-negotation, assuming
* non-1000Mbps, half duplex, no flow control.
*/
fullduplex = 0;
txflowcontrol = 0;
rxflowcontrol = 0;
gig = 0;
/* To accomodate a problem in 10Mbps operation,
* set a global flag if PHY running in 10Mbps mode.
*/
sp->tenmbpsmode = 0;
printk(KERN_INFO "%s: Link speed = ", dev->name);
/* Determine actual speed of operation. */
switch (phyctrl & IPG_PC_LINK_SPEED) {
case IPG_PC_LINK_SPEED_10MBPS:
printk("10Mbps.\n");
printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
dev->name);
sp->tenmbpsmode = 1;
break;
case IPG_PC_LINK_SPEED_100MBPS:
printk("100Mbps.\n");
break;
case IPG_PC_LINK_SPEED_1000MBPS:
printk("1000Mbps.\n");
gig = 1;
break;
default:
printk("undefined!\n");
return 0;
}
if (phyctrl & IPG_PC_DUPLEX_STATUS) {
fullduplex = 1;
txflowcontrol = 1;
rxflowcontrol = 1;
}
/* Configure full duplex, and flow control. */
if (fullduplex == 1) {
/* Configure IPG for full duplex operation. */
printk(KERN_INFO "%s: setting full duplex, ", dev->name);
mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
if (txflowcontrol == 1) {
printk("TX flow control");
mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
} else {
printk("no TX flow control");
mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
}
if (rxflowcontrol == 1) {
printk(", RX flow control.");
mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
} else {
printk(", no RX flow control.");
mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
}
printk("\n");
} else {
/* Configure IPG for half duplex operation. */
printk(KERN_INFO "%s: setting half duplex, "
"no TX flow control, no RX flow control.\n", dev->name);
mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
~IPG_MC_TX_FLOW_CONTROL_ENABLE &
~IPG_MC_RX_FLOW_CONTROL_ENABLE;
}
ipg_w32(mac_ctrl_val, MAC_CTRL);
return 0;
}
/* Determine and configure multicast operation and set
* receive mode for IPG.
*/
static void ipg_nic_set_multicast_list(struct net_device *dev)
{
void __iomem *ioaddr = ipg_ioaddr(dev);
struct dev_mc_list *mc_list_ptr;
unsigned int hashindex;
u32 hashtable[2];
u8 receivemode;
IPG_DEBUG_MSG("_nic_set_multicast_list\n");
receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
if (dev->flags & IFF_PROMISC) {
/* NIC to be configured in promiscuous mode. */
receivemode = IPG_RM_RECEIVEALLFRAMES;
} else if ((dev->flags & IFF_ALLMULTI) ||
(dev->flags & IFF_MULTICAST &
(dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
/* NIC to be configured to receive all multicast
* frames. */
receivemode |= IPG_RM_RECEIVEMULTICAST;
} else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) {
/* NIC to be configured to receive selected
* multicast addresses. */
receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
}
/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
* The IPG applies a cyclic-redundancy-check (the same CRC
* used to calculate the frame data FCS) to the destination
* address all incoming multicast frames whose destination
* address has the multicast bit set. The least significant
* 6 bits of the CRC result are used as an addressing index
* into the hash table. If the value of the bit addressed by
* this index is a 1, the frame is passed to the host system.
*/
/* Clear hashtable. */
hashtable[0] = 0x00000000;
hashtable[1] = 0x00000000;
/* Cycle through all multicast addresses to filter. */
for (mc_list_ptr = dev->mc_list;
mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
/* Calculate CRC result for each multicast address. */
hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
ETH_ALEN);
/* Use only the least significant 6 bits. */
hashindex = hashindex & 0x3F;
/* Within "hashtable", set bit number "hashindex"
* to a logic 1.
*/
set_bit(hashindex, (void *)hashtable);
}
/* Write the value of the hashtable, to the 4, 16 bit
* HASHTABLE IPG registers.
*/
ipg_w32(hashtable[0], HASHTABLE_0);
ipg_w32(hashtable[1], HASHTABLE_1);
ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
}
static int ipg_io_config(struct net_device *dev)
{
void __iomem *ioaddr = ipg_ioaddr(dev);
u32 origmacctrl;
u32 restoremacctrl;
IPG_DEBUG_MSG("_io_config\n");
origmacctrl = ipg_r32(MAC_CTRL);
restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
/* Based on compilation option, determine if FCS is to be
* stripped on receive frames by IPG.
*/
if (!IPG_STRIP_FCS_ON_RX)
restoremacctrl |= IPG_MC_RCV_FCS;
/* Determine if transmitter and/or receiver are
* enabled so we may restore MACCTRL correctly.
*/
if (origmacctrl & IPG_MC_TX_ENABLED)
restoremacctrl |= IPG_MC_TX_ENABLE;
if (origmacctrl & IPG_MC_RX_ENABLED)
restoremacctrl |= IPG_MC_RX_ENABLE;
/* Transmitter and receiver must be disabled before setting
* IFSSelect.
*/
ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
IPG_MC_RSVD_MASK, MAC_CTRL);
/* Now that transmitter and receiver are disabled, write
* to IFSSelect.
*/
ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
/* Set RECEIVEMODE register. */
ipg_nic_set_multicast_list(dev);
ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);
ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
/* IPG multi-frag frame bug workaround.
* Per silicon revision B3 eratta.
*/
ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
/* IPG TX poll now bug workaround.
* Per silicon revision B3 eratta.
*/
ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
/* IPG RX poll now bug workaround.
* Per silicon revision B3 eratta.
*/
ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
/* Now restore MACCTRL to original setting. */
ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
/* Disable unused RMON statistics. */
ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
/* Disable unused MIB statistics. */
ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
return 0;
}
/*
* Create a receive buffer within system memory and update
* NIC private structure appropriately.
*/
static int ipg_get_rxbuff(struct net_device *dev, int entry)
{
struct ipg_nic_private *sp = netdev_priv(dev);
struct ipg_rx *rxfd = sp->rxd + entry;
struct sk_buff *skb;
u64 rxfragsize;
IPG_DEBUG_MSG("_get_rxbuff\n");
skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
if (!skb) {
sp->RxBuff[entry] = NULL;
return -ENOMEM;
}
/* Adjust the data start location within the buffer to
* align IP address field to a 16 byte boundary.
*/
skb_reserve(skb, NET_IP_ALIGN);
/* Associate the receive buffer with the IPG NIC. */
skb->dev = dev;
/* Save the address of the sk_buff structure. */
sp->RxBuff[entry] = skb;
rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
/* Set the RFD fragment length. */
rxfragsize = IPG_RXFRAG_SIZE;
rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
return 0;
}
static int init_rfdlist(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
unsigned int i;
IPG_DEBUG_MSG("_init_rfdlist\n");
for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
struct ipg_rx *rxfd = sp->rxd + i;
if (sp->RxBuff[i]) {
pci_unmap_single(sp->pdev,
le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
sp->RxBuff[i] = NULL;
}
/* Clear out the RFS field. */
rxfd->rfs = 0x0000000000000000;
if (ipg_get_rxbuff(dev, i) < 0) {
/*
* A receive buffer was not ready, break the
* RFD list here.
*/
IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
/* Just in case we cannot allocate a single RFD.
* Should not occur.
*/
if (i == 0) {
printk(KERN_ERR "%s: No memory available"
" for RFD list.\n", dev->name);
return -ENOMEM;
}
}
rxfd->next_desc = cpu_to_le64(sp->rxd_map +
sizeof(struct ipg_rx)*(i + 1));
}
sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
sp->rx_current = 0;
sp->rx_dirty = 0;
/* Write the location of the RFDList to the IPG. */
ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
ipg_w32(0x00000000, RFD_LIST_PTR_1);
return 0;
}
static void init_tfdlist(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
unsigned int i;
IPG_DEBUG_MSG("_init_tfdlist\n");
for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
struct ipg_tx *txfd = sp->txd + i;
txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
if (sp->TxBuff[i]) {
IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
sp->TxBuff[i] = NULL;
}
txfd->next_desc = cpu_to_le64(sp->txd_map +
sizeof(struct ipg_tx)*(i + 1));
}
sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
sp->tx_current = 0;
sp->tx_dirty = 0;
/* Write the location of the TFDList to the IPG. */
IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
(u32) sp->txd_map);
ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
ipg_w32(0x00000000, TFD_LIST_PTR_1);
sp->ResetCurrentTFD = 1;
}
/*
* Free all transmit buffers which have already been transfered
* via DMA to the IPG.
*/
static void ipg_nic_txfree(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
unsigned int curr;
u64 txd_map;
unsigned int released, pending;
txd_map = (u64)sp->txd_map;
curr = ipg_r32(TFD_LIST_PTR_0) -
do_div(txd_map, sizeof(struct ipg_tx)) - 1;
IPG_DEBUG_MSG("_nic_txfree\n");
pending = sp->tx_current - sp->tx_dirty;
for (released = 0; released < pending; released++) {
unsigned int dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
struct sk_buff *skb = sp->TxBuff[dirty];
struct ipg_tx *txfd = sp->txd + dirty;
IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
/* Look at each TFD's TFC field beginning
* at the last freed TFD up to the current TFD.
* If the TFDDone bit is set, free the associated
* buffer.
*/
if (dirty == curr)
break;
/* Setup TFDDONE for compatible issue. */
txfd->tfc |= cpu_to_le64(IPG_TFC_TFDDONE);
/* Free the transmit buffer. */
if (skb) {
pci_unmap_single(sp->pdev,
le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
skb->len, PCI_DMA_TODEVICE);
IPG_DEV_KFREE_SKB(skb);
sp->TxBuff[dirty] = NULL;
}
}
sp->tx_dirty += released;
if (netif_queue_stopped(dev) &&
(sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
netif_wake_queue(dev);
}
}
static void ipg_tx_timeout(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
IPG_AC_FIFO);
spin_lock_irq(&sp->lock);
/* Re-configure after DMA reset. */
if (ipg_io_config(dev) < 0) {
printk(KERN_INFO "%s: Error during re-configuration.\n",
dev->name);
}
init_tfdlist(dev);
spin_unlock_irq(&sp->lock);
ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
MAC_CTRL);
}
/*
* For TxComplete interrupts, free all transmit
* buffers which have already been transfered via DMA
* to the IPG.
*/
static void ipg_nic_txcleanup(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
unsigned int i;
IPG_DEBUG_MSG("_nic_txcleanup\n");
for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
/* Reading the TXSTATUS register clears the
* TX_COMPLETE interrupt.
*/
u32 txstatusdword = ipg_r32(TX_STATUS);
IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
/* Check for Transmit errors. Error bits only valid if
* TX_COMPLETE bit in the TXSTATUS register is a 1.
*/
if (!(txstatusdword & IPG_TS_TX_COMPLETE))
break;
/* If in 10Mbps mode, indicate transmit is ready. */
if (sp->tenmbpsmode) {
netif_wake_queue(dev);
}
/* Transmit error, increment stat counters. */
if (txstatusdword & IPG_TS_TX_ERROR) {
IPG_DEBUG_MSG("Transmit error.\n");
sp->stats.tx_errors++;
}
/* Late collision, re-enable transmitter. */
if (txstatusdword & IPG_TS_LATE_COLLISION) {
IPG_DEBUG_MSG("Late collision on transmit.\n");
ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
IPG_MC_RSVD_MASK, MAC_CTRL);
}
/* Maximum collisions, re-enable transmitter. */
if (txstatusdword & IPG_TS_TX_MAX_COLL) {
IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
IPG_MC_RSVD_MASK, MAC_CTRL);
}
/* Transmit underrun, reset and re-enable
* transmitter.
*/
if (txstatusdword & IPG_TS_TX_UNDERRUN) {
IPG_DEBUG_MSG("Transmitter underrun.\n");
sp->stats.tx_fifo_errors++;
ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
IPG_AC_NETWORK | IPG_AC_FIFO);
/* Re-configure after DMA reset. */
if (ipg_io_config(dev) < 0) {
printk(KERN_INFO
"%s: Error during re-configuration.\n",
dev->name);
}
init_tfdlist(dev);
ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
IPG_MC_RSVD_MASK, MAC_CTRL);
}
}
ipg_nic_txfree(dev);
}
/* Provides statistical information about the IPG NIC. */
static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
u16 temp1;
u16 temp2;
IPG_DEBUG_MSG("_nic_get_stats\n");
/* Check to see if the NIC has been initialized via nic_open,
* before trying to read statistic registers.
*/
if (!test_bit(__LINK_STATE_START, &dev->state))
return &sp->stats;
sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
sp->stats.rx_errors += temp1;
sp->stats.rx_missed_errors += temp1;
temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
ipg_r32(IPG_LATECOLLISIONS);
temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
sp->stats.collisions += temp1;
sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
/* detailed tx_errors */
sp->stats.tx_carrier_errors += temp2;
/* detailed rx_errors */
sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
ipg_r16(IPG_FRAMETOOLONGERRRORS);
sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
/* Unutilized IPG statistic registers. */
ipg_r32(IPG_MCSTFRAMESRCVDOK);
return &sp->stats;
}
/* Restore used receive buffers. */
static int ipg_nic_rxrestore(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
const unsigned int curr = sp->rx_current;
unsigned int dirty = sp->rx_dirty;
IPG_DEBUG_MSG("_nic_rxrestore\n");
for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
/* rx_copybreak may poke hole here and there. */
if (sp->RxBuff[entry])
continue;
/* Generate a new receive buffer to replace the
* current buffer (which will be released by the
* Linux system).
*/
if (ipg_get_rxbuff(dev, entry) < 0) {
IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
break;
}
/* Reset the RFS field. */
sp->rxd[entry].rfs = 0x0000000000000000;
}
sp->rx_dirty = dirty;
return 0;
}
#ifdef JUMBO_FRAME
/* use jumboindex and jumbosize to control jumbo frame status
initial status is jumboindex=-1 and jumbosize=0
1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
previous receiving and need to continue dumping the current one
*/
enum {
NormalPacket,
ErrorPacket
};
enum {
Frame_NoStart_NoEnd = 0,
Frame_WithStart = 1,
Frame_WithEnd = 10,
Frame_WithStart_WithEnd = 11
};
inline void ipg_nic_rx_free_skb(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
if (sp->RxBuff[entry]) {
struct ipg_rx *rxfd = sp->rxd + entry;
pci_unmap_single(sp->pdev,
le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
sp->RxBuff[entry] = NULL;
}
}
inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
int type = Frame_NoStart_NoEnd;
if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
type += Frame_WithStart;
if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
type += Frame_WithEnd;
return type;
}
inline int ipg_nic_rx_check_error(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
struct ipg_rx *rxfd = sp->rxd + entry;
if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
(IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
(unsigned long) rxfd->rfs);
/* Increment general receive error statistic. */
sp->stats.rx_errors++;
/* Increment detailed receive error statistics. */
if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
sp->stats.rx_fifo_errors++;
}
if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
IPG_DEBUG_MSG("RX runt occured.\n");
sp->stats.rx_length_errors++;
}
/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
* error count handled by a IPG statistic register.
*/
if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
IPG_DEBUG_MSG("RX alignment error occured.\n");
sp->stats.rx_frame_errors++;
}
/* Do nothing for IPG_RFS_RXFCSERROR, error count
* handled by a IPG statistic register.
*/
/* Free the memory associated with the RX
* buffer since it is erroneous and we will
* not pass it to higher layer processes.
*/
if (sp->RxBuff[entry]) {
pci_unmap_single(sp->pdev,
le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
sp->RxBuff[entry] = NULL;
}
return ErrorPacket;
}
return NormalPacket;
}
static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
struct ipg_nic_private *sp,
struct ipg_rx *rxfd, unsigned entry)
{
struct SJumbo *jumbo = &sp->Jumbo;
struct sk_buff *skb;
int framelen;
if (jumbo->FoundStart) {
IPG_DEV_KFREE_SKB(jumbo->skb);
jumbo->FoundStart = 0;
jumbo->CurrentSize = 0;
jumbo->skb = NULL;
}
// 1: found error, 0 no error
if (ipg_nic_rx_check_error(dev) != NormalPacket)
return;
skb = sp->RxBuff[entry];
if (!skb)
return;
// accept this frame and send to upper layer
framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
if (framelen > IPG_RXFRAG_SIZE)
framelen = IPG_RXFRAG_SIZE;
skb_put(skb, framelen);
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_NONE;
netif_rx(skb);
dev->last_rx = jiffies;
sp->RxBuff[entry] = NULL;
}
static void ipg_nic_rx_with_start(struct net_device *dev,
struct ipg_nic_private *sp,
struct ipg_rx *rxfd, unsigned entry)
{
struct SJumbo *jumbo = &sp->Jumbo;
struct pci_dev *pdev = sp->pdev;
struct sk_buff *skb;
// 1: found error, 0 no error
if (ipg_nic_rx_check_error(dev) != NormalPacket)
return;
// accept this frame and send to upper layer
skb = sp->RxBuff[entry];
if (!skb)
return;
if (jumbo->FoundStart)
IPG_DEV_KFREE_SKB(jumbo->skb);
pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
skb_put(skb, IPG_RXFRAG_SIZE);
jumbo->FoundStart = 1;
jumbo->CurrentSize = IPG_RXFRAG_SIZE;
jumbo->skb = skb;
sp->RxBuff[entry] = NULL;
dev->last_rx = jiffies;
}
static void ipg_nic_rx_with_end(struct net_device *dev,
struct ipg_nic_private *sp,
struct ipg_rx *rxfd, unsigned entry)
{
struct SJumbo *jumbo = &sp->Jumbo;
//1: found error, 0 no error
if (ipg_nic_rx_check_error(dev) == NormalPacket) {
struct sk_buff *skb = sp->RxBuff[entry];
if (!skb)
return;
if (jumbo->FoundStart) {
int framelen, endframelen;
framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
endframeLen = framelen - jumbo->CurrentSize;
/*
if (framelen > IPG_RXFRAG_SIZE)
framelen=IPG_RXFRAG_SIZE;
*/
if (framelen > IPG_RXSUPPORT_SIZE)
IPG_DEV_KFREE_SKB(jumbo->skb);
else {
memcpy(skb_put(jumbo->skb, endframeLen),
skb->data, endframeLen);
jumbo->skb->protocol =
eth_type_trans(jumbo->skb, dev);
jumbo->skb->ip_summed = CHECKSUM_NONE;
netif_rx(jumbo->skb);
}
}
dev->last_rx = jiffies;
jumbo->FoundStart = 0;
jumbo->CurrentSize = 0;
jumbo->skb = NULL;
ipg_nic_rx_free_skb(dev);
} else {
IPG_DEV_KFREE_SKB(jumbo->skb);
jumbo->FoundStart = 0;
jumbo->CurrentSize = 0;
jumbo->skb = NULL;
}
}
static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
struct ipg_nic_private *sp,
struct ipg_rx *rxfd, unsigned entry)
{
struct SJumbo *jumbo = &sp->Jumbo;
//1: found error, 0 no error
if (ipg_nic_rx_check_error(dev) == NormalPacket) {
struct sk_buff *skb = sp->RxBuff[entry];
if (skb) {
if (jumbo->FoundStart) {
jumbo->CurrentSize += IPG_RXFRAG_SIZE;
if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) {
memcpy(skb_put(jumbo->skb,
IPG_RXFRAG_SIZE),
skb->data, IPG_RXFRAG_SIZE);
}
}
dev->last_rx = jiffies;
ipg_nic_rx_free_skb(dev);
}
} else {
IPG_DEV_KFREE_SKB(jumbo->skb);
jumbo->FoundStart = 0;
jumbo->CurrentSize = 0;
jumbo->skb = NULL;
}
}
static int ipg_nic_rx(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
unsigned int curr = sp->rx_current;
void __iomem *ioaddr = sp->ioaddr;
unsigned int i;
IPG_DEBUG_MSG("_nic_rx\n");
for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
unsigned int entry = curr % IPG_RFDLIST_LENGTH;
struct ipg_rx *rxfd = sp->rxd + entry;
if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
break;
switch (ipg_nic_rx_check_frame_type(dev)) {
case Frame_WithStart_WithEnd:
ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry);
break;
case Frame_WithStart:
ipg_nic_rx_with_start(dev, tp, rxfd, entry);
break;
case Frame_WithEnd:
ipg_nic_rx_with_end(dev, tp, rxfd, entry);
break;
case Frame_NoStart_NoEnd:
ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry);
break;
}
}
sp->rx_current = curr;
if (i == IPG_MAXRFDPROCESS_COUNT) {
/* There are more RFDs to process, however the
* allocated amount of RFD processing time has
* expired. Assert Interrupt Requested to make
* sure we come back to process the remaining RFDs.
*/
ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
}
ipg_nic_rxrestore(dev);
return 0;
}
#else
static int ipg_nic_rx(struct net_device *dev)
{
/* Transfer received Ethernet frames to higher network layers. */
struct ipg_nic_private *sp = netdev_priv(dev);
unsigned int curr = sp->rx_current;
void __iomem *ioaddr = sp->ioaddr;
struct ipg_rx *rxfd;
unsigned int i;
IPG_DEBUG_MSG("_nic_rx\n");
#define __RFS_MASK \
cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
unsigned int entry = curr % IPG_RFDLIST_LENGTH;
struct sk_buff *skb = sp->RxBuff[entry];
unsigned int framelen;
rxfd = sp->rxd + entry;
if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
break;
/* Get received frame length. */
framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
/* Check for jumbo frame arrival with too small
* RXFRAG_SIZE.
*/
if (framelen > IPG_RXFRAG_SIZE) {
IPG_DEBUG_MSG
("RFS FrameLen > allocated fragment size.\n");
framelen = IPG_RXFRAG_SIZE;
}
if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
(IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
(unsigned long int) rxfd->rfs);
/* Increment general receive error statistic. */
sp->stats.rx_errors++;
/* Increment detailed receive error statistics. */
if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
sp->stats.rx_fifo_errors++;
}
if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
IPG_DEBUG_MSG("RX runt occured.\n");
sp->stats.rx_length_errors++;
}
if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
/* Do nothing, error count handled by a IPG
* statistic register.
*/
if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
IPG_DEBUG_MSG("RX alignment error occured.\n");
sp->stats.rx_frame_errors++;
}
if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
/* Do nothing, error count handled by a IPG
* statistic register.
*/
/* Free the memory associated with the RX
* buffer since it is erroneous and we will
* not pass it to higher layer processes.
*/
if (skb) {
__le64 info = rxfd->frag_info;
pci_unmap_single(sp->pdev,
le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
IPG_DEV_KFREE_SKB(skb);
}
} else {
/* Adjust the new buffer length to accomodate the size
* of the received frame.
*/
skb_put(skb, framelen);
/* Set the buffer's protocol field to Ethernet. */
skb->protocol = eth_type_trans(skb, dev);
/* If the frame contains an IP/TCP/UDP frame,
* determine if upper layer must check IP/TCP/UDP
* checksums.
*
* NOTE: DO NOT RELY ON THE TCP/UDP CHECKSUM
* VERIFICATION FOR SILICON REVISIONS B3
* AND EARLIER!
*
if ((le64_to_cpu(rxfd->rfs &
(IPG_RFS_TCPDETECTED | IPG_RFS_UDPDETECTED |
IPG_RFS_IPDETECTED))) &&
!(le64_to_cpu(rxfd->rfs &
(IPG_RFS_TCPERROR | IPG_RFS_UDPERROR |
IPG_RFS_IPERROR)))) {
* Indicate IP checksums were performed
* by the IPG.
*
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else
*/
{
/* The IPG encountered an error with (or
* there were no) IP/TCP/UDP checksums.
* This may or may not indicate an invalid
* IP/TCP/UDP frame was received. Let the
* upper layer decide.
*/
skb->ip_summed = CHECKSUM_NONE;
}
/* Hand off frame for higher layer processing.
* The function netif_rx() releases the sk_buff
* when processing completes.
*/
netif_rx(skb);
/* Record frame receive time (jiffies = Linux
* kernel current time stamp).
*/
dev->last_rx = jiffies;
}
/* Assure RX buffer is not reused by IPG. */
sp->RxBuff[entry] = NULL;
}
/*
* If there are more RFDs to proces and the allocated amount of RFD
* processing time has expired, assert Interrupt Requested to make
* sure we come back to process the remaining RFDs.
*/
if (i == IPG_MAXRFDPROCESS_COUNT)
ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
#ifdef IPG_DEBUG
/* Check if the RFD list contained no receive frame data. */
if (!i)
sp->EmptyRFDListCount++;
#endif
while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
!((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
(le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
rxfd = sp->rxd + entry;
IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
/* An unexpected event, additional code needed to handle
* properly. So for the time being, just disregard the
* frame.
*/
/* Free the memory associated with the RX
* buffer since it is erroneous and we will
* not pass it to higher layer processes.
*/
if (sp->RxBuff[entry]) {
pci_unmap_single(sp->pdev,
le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
}
/* Assure RX buffer is not reused by IPG. */
sp->RxBuff[entry] = NULL;
}
sp->rx_current = curr;
/* Check to see if there are a minimum number of used
* RFDs before restoring any (should improve performance.)
*/
if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
ipg_nic_rxrestore(dev);
return 0;
}
#endif
static void ipg_reset_after_host_error(struct work_struct *work)
{
struct ipg_nic_private *sp =
container_of(work, struct ipg_nic_private, task.work);
struct net_device *dev = sp->dev;
IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
/*
* Acknowledge HostError interrupt by resetting
* IPG DMA and HOST.
*/
ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
init_rfdlist(dev);
init_tfdlist(dev);
if (ipg_io_config(dev) < 0) {
printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
dev->name);
schedule_delayed_work(&sp->task, HZ);
}
}
static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
{
struct net_device *dev = dev_inst;
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
unsigned int handled = 0;
u16 status;
IPG_DEBUG_MSG("_interrupt_handler\n");
#ifdef JUMBO_FRAME
ipg_nic_rxrestore(dev);
#endif
/* Get interrupt source information, and acknowledge
* some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
* IntRequested, MacControlFrame, LinkEvent) interrupts
* if issued. Also, all IPG interrupts are disabled by
* reading IntStatusAck.
*/
status = ipg_r16(INT_STATUS_ACK);
IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
/* Shared IRQ of remove event. */
if (!(status & IPG_IS_RSVD_MASK))
goto out_enable;
handled = 1;
if (unlikely(!netif_running(dev)))
goto out;
spin_lock(&sp->lock);
/* If RFDListEnd interrupt, restore all used RFDs. */
if (status & IPG_IS_RFD_LIST_END) {
IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
/* The RFD list end indicates an RFD was encountered
* with a 0 NextPtr, or with an RFDDone bit set to 1
* (indicating the RFD is not read for use by the
* IPG.) Try to restore all RFDs.
*/
ipg_nic_rxrestore(dev);
#ifdef IPG_DEBUG
/* Increment the RFDlistendCount counter. */
sp->RFDlistendCount++;
#endif
}
/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
* IntRequested interrupt, process received frames. */
if ((status & IPG_IS_RX_DMA_PRIORITY) ||
(status & IPG_IS_RFD_LIST_END) ||
(status & IPG_IS_RX_DMA_COMPLETE) ||
(status & IPG_IS_INT_REQUESTED)) {
#ifdef IPG_DEBUG
/* Increment the RFD list checked counter if interrupted
* only to check the RFD list. */
if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
(IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
IPG_IS_UPDATE_STATS)))
sp->RFDListCheckedCount++;
#endif
ipg_nic_rx(dev);
}
/* If TxDMAComplete interrupt, free used TFDs. */
if (status & IPG_IS_TX_DMA_COMPLETE)
ipg_nic_txfree(dev);
/* TxComplete interrupts indicate one of numerous actions.
* Determine what action to take based on TXSTATUS register.
*/
if (status & IPG_IS_TX_COMPLETE)
ipg_nic_txcleanup(dev);
/* If UpdateStats interrupt, update Linux Ethernet statistics */
if (status & IPG_IS_UPDATE_STATS)
ipg_nic_get_stats(dev);
/* If HostError interrupt, reset IPG. */
if (status & IPG_IS_HOST_ERROR) {
IPG_DDEBUG_MSG("HostError Interrupt\n");
schedule_delayed_work(&sp->task, 0);
}
/* If LinkEvent interrupt, resolve autonegotiation. */
if (status & IPG_IS_LINK_EVENT) {
if (ipg_config_autoneg(dev) < 0)
printk(KERN_INFO "%s: Auto-negotiation error.\n",
dev->name);
}
/* If MACCtrlFrame interrupt, do nothing. */
if (status & IPG_IS_MAC_CTRL_FRAME)
IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
/* If RxComplete interrupt, do nothing. */
if (status & IPG_IS_RX_COMPLETE)
IPG_DEBUG_MSG("RxComplete interrupt.\n");
/* If RxEarly interrupt, do nothing. */
if (status & IPG_IS_RX_EARLY)
IPG_DEBUG_MSG("RxEarly interrupt.\n");
out_enable:
/* Re-enable IPG interrupts. */
ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
spin_unlock(&sp->lock);
out:
return IRQ_RETVAL(handled);
}
static void ipg_rx_clear(struct ipg_nic_private *sp)
{
unsigned int i;
for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
if (sp->RxBuff[i]) {
struct ipg_rx *rxfd = sp->rxd + i;
IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
sp->RxBuff[i] = NULL;
pci_unmap_single(sp->pdev,
le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
}
}
}
static void ipg_tx_clear(struct ipg_nic_private *sp)
{
unsigned int i;
for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
if (sp->TxBuff[i]) {
struct ipg_tx *txfd = sp->txd + i;
pci_unmap_single(sp->pdev,
le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
sp->TxBuff[i]->len, PCI_DMA_TODEVICE);
IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
sp->TxBuff[i] = NULL;
}
}
}
static int ipg_nic_open(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
struct pci_dev *pdev = sp->pdev;
int rc;
IPG_DEBUG_MSG("_nic_open\n");
sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;
/* Check for interrupt line conflicts, and request interrupt
* line for IPG.
*
* IMPORTANT: Disable IPG interrupts prior to registering
* IRQ.
*/
ipg_w16(0x0000, INT_ENABLE);
/* Register the interrupt line to be used by the IPG within
* the Linux system.
*/
rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
dev->name, dev);
if (rc < 0) {
printk(KERN_INFO "%s: Error when requesting interrupt.\n",
dev->name);
goto out;
}
dev->irq = pdev->irq;
rc = -ENOMEM;
sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
&sp->rxd_map, GFP_KERNEL);
if (!sp->rxd)
goto err_free_irq_0;
sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
&sp->txd_map, GFP_KERNEL);
if (!sp->txd)
goto err_free_rx_1;
rc = init_rfdlist(dev);
if (rc < 0) {
printk(KERN_INFO "%s: Error during configuration.\n",
dev->name);
goto err_free_tx_2;
}
init_tfdlist(dev);
rc = ipg_io_config(dev);
if (rc < 0) {
printk(KERN_INFO "%s: Error during configuration.\n",
dev->name);
goto err_release_tfdlist_3;
}
/* Resolve autonegotiation. */
if (ipg_config_autoneg(dev) < 0)
printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
#ifdef JUMBO_FRAME
/* initialize JUMBO Frame control variable */
sp->Jumbo.FoundStart = 0;
sp->Jumbo.CurrentSize = 0;
sp->Jumbo.skb = 0;
dev->mtu = IPG_TXFRAG_SIZE;
#endif
/* Enable transmit and receive operation of the IPG. */
ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
IPG_MC_RSVD_MASK, MAC_CTRL);
netif_start_queue(dev);
out:
return rc;
err_release_tfdlist_3:
ipg_tx_clear(sp);
ipg_rx_clear(sp);
err_free_tx_2:
dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
err_free_rx_1:
dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
err_free_irq_0:
free_irq(pdev->irq, dev);
goto out;
}
static int ipg_nic_stop(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
struct pci_dev *pdev = sp->pdev;
IPG_DEBUG_MSG("_nic_stop\n");
netif_stop_queue(dev);
IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
IPG_DUMPTFDLIST(dev);
do {
(void) ipg_r16(INT_STATUS_ACK);
ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
synchronize_irq(pdev->irq);
} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
ipg_rx_clear(sp);
ipg_tx_clear(sp);
pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
free_irq(pdev->irq, dev);
return 0;
}
static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
unsigned long flags;
struct ipg_tx *txfd;
IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
/* If in 10Mbps mode, stop the transmit queue so
* no more transmit frames are accepted.
*/
if (sp->tenmbpsmode)
netif_stop_queue(dev);
if (sp->ResetCurrentTFD) {
sp->ResetCurrentTFD = 0;
entry = 0;
}
txfd = sp->txd + entry;
sp->TxBuff[entry] = skb;
/* Clear all TFC fields, except TFDDONE. */
txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
/* Specify the TFC field within the TFD. */
txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
(IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) |
(IPG_TFC_FRAGCOUNT & (1 << 24)));
/* Request TxComplete interrupts at an interval defined
* by the constant IPG_FRAMESBETWEENTXCOMPLETES.
* Request TxComplete interrupt for every frame
* if in 10Mbps mode to accomodate problem with 10Mbps
* processing.
*/
if (sp->tenmbpsmode)
txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
else if (!((sp->tx_current - sp->tx_dirty + 1) >
IPG_FRAMESBETWEENTXDMACOMPLETES)) {
txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
}
/* Based on compilation option, determine if FCS is to be
* appended to transmit frame by IPG.
*/
if (!(IPG_APPEND_FCS_ON_TX))
txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
/* Based on compilation option, determine if IP, TCP and/or
* UDP checksums are to be added to transmit frame by IPG.
*/
if (IPG_ADD_IPCHECKSUM_ON_TX)
txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
if (IPG_ADD_TCPCHECKSUM_ON_TX)
txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
if (IPG_ADD_UDPCHECKSUM_ON_TX)
txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
/* Based on compilation option, determine if VLAN tag info is to be
* inserted into transmit frame by IPG.
*/
if (IPG_INSERT_MANUAL_VLAN_TAG) {
txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
((u64) IPG_MANUAL_VLAN_VID << 32) |
((u64) IPG_MANUAL_VLAN_CFI << 44) |
((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
}
/* The fragment start location within system memory is defined
* by the sk_buff structure's data field. The physical address
* of this location within the system's virtual memory space
* is determined using the IPG_HOST2BUS_MAP function.
*/
txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE));
/* The length of the fragment within system memory is defined by
* the sk_buff structure's len field.
*/
txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
((u64) (skb->len & 0xffff) << 48));
/* Clear the TFDDone bit last to indicate the TFD is ready
* for transfer to the IPG.
*/
txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
spin_lock_irqsave(&sp->lock, flags);
sp->tx_current++;
mmiowb();
ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
netif_wake_queue(dev);
spin_unlock_irqrestore(&sp->lock, flags);
return NETDEV_TX_OK;
}
static void ipg_set_phy_default_param(unsigned char rev,
struct net_device *dev, int phy_address)
{
unsigned short length;
unsigned char revision;
unsigned short *phy_param;
unsigned short address, value;
phy_param = &DefaultPhyParam[0];
length = *phy_param & 0x00FF;
revision = (unsigned char)((*phy_param) >> 8);
phy_param++;
while (length != 0) {
if (rev == revision) {
while (length > 1) {
address = *phy_param;
value = *(phy_param + 1);
phy_param += 2;
mdio_write(dev, phy_address, address, value);
length -= 4;
}
break;
} else {
phy_param += length / 2;
length = *phy_param & 0x00FF;
revision = (unsigned char)((*phy_param) >> 8);
phy_param++;
}
}
}
/* JES20040127EEPROM */
static int read_eeprom(struct net_device *dev, int eep_addr)
{
void __iomem *ioaddr = ipg_ioaddr(dev);
unsigned int i;
int ret = 0;
u16 value;
value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
ipg_w16(value, EEPROM_CTRL);
for (i = 0; i < 1000; i++) {
u16 data;
mdelay(10);
data = ipg_r16(EEPROM_CTRL);
if (!(data & IPG_EC_EEPROM_BUSY)) {
ret = ipg_r16(EEPROM_DATA);
break;
}
}
return ret;
}
static void ipg_init_mii(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
struct mii_if_info *mii_if = &sp->mii_if;
int phyaddr;
mii_if->dev = dev;
mii_if->mdio_read = mdio_read;
mii_if->mdio_write = mdio_write;
mii_if->phy_id_mask = 0x1f;
mii_if->reg_num_mask = 0x1f;
mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
if (phyaddr != 0x1f) {
u16 mii_phyctrl, mii_1000cr;
u8 revisionid = 0;
mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000);
mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
GMII_PHY_1000BASETCONTROL_PreferMaster;
mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
/* Set default phyparam */
pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
ipg_set_phy_default_param(revisionid, dev, phyaddr);
/* Reset PHY */
mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
}
}
static int ipg_hw_init(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = sp->ioaddr;
unsigned int i;
int rc;
/* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */
/* Read LED Mode Configuration from EEPROM */
sp->LED_Mode = read_eeprom(dev, 6);
/* Reset all functions within the IPG. Do not assert
* RST_OUT as not compatible with some PHYs.
*/
rc = ipg_reset(dev, IPG_RESET_MASK);
if (rc < 0)
goto out;
ipg_init_mii(dev);
/* Read MAC Address from EEPROM */
for (i = 0; i < 3; i++)
sp->station_addr[i] = read_eeprom(dev, 16 + i);
for (i = 0; i < 3; i++)
ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
/* Set station address in ethernet_device structure. */
dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff;
dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff;
dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff;
dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
out:
return rc;
}
static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct ipg_nic_private *sp = netdev_priv(dev);
int rc;
mutex_lock(&sp->mii_mutex);
rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
mutex_unlock(&sp->mii_mutex);
return rc;
}
static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
{
/* Function to accomodate changes to Maximum Transfer Unit
* (or MTU) of IPG NIC. Cannot use default function since
* the default will not allow for MTU > 1500 bytes.
*/
IPG_DEBUG_MSG("_nic_change_mtu\n");
/* Check that the new MTU value is between 68 (14 byte header, 46
* byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
* corresponds to the MAXFRAMESIZE register in the IPG.
*/
if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ipg_nic_private *sp = netdev_priv(dev);
int rc;
mutex_lock(&sp->mii_mutex);
rc = mii_ethtool_gset(&sp->mii_if, cmd);
mutex_unlock(&sp->mii_mutex);
return rc;
}
static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ipg_nic_private *sp = netdev_priv(dev);
int rc;
mutex_lock(&sp->mii_mutex);
rc = mii_ethtool_sset(&sp->mii_if, cmd);
mutex_unlock(&sp->mii_mutex);
return rc;
}
static int ipg_nway_reset(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
int rc;
mutex_lock(&sp->mii_mutex);
rc = mii_nway_restart(&sp->mii_if);
mutex_unlock(&sp->mii_mutex);
return rc;
}
static struct ethtool_ops ipg_ethtool_ops = {
.get_settings = ipg_get_settings,
.set_settings = ipg_set_settings,
.nway_reset = ipg_nway_reset,
};
static void ipg_remove(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct ipg_nic_private *sp = netdev_priv(dev);
IPG_DEBUG_MSG("_remove\n");
/* Un-register Ethernet device. */
unregister_netdev(dev);
pci_iounmap(pdev, sp->ioaddr);
pci_release_regions(pdev);
free_netdev(dev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static int __devinit ipg_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
unsigned int i = id->driver_data;
struct ipg_nic_private *sp;
struct net_device *dev;
void __iomem *ioaddr;
int rc;
rc = pci_enable_device(pdev);
if (rc < 0)
goto out;
printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
pci_set_master(pdev);
rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
if (rc < 0) {
rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (rc < 0) {
printk(KERN_ERR "%s: DMA config failed.\n",
pci_name(pdev));
goto err_disable_0;
}
}
/*
* Initialize net device.
*/
dev = alloc_etherdev(sizeof(struct ipg_nic_private));
if (!dev) {
printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
rc = -ENOMEM;
goto err_disable_0;
}
sp = netdev_priv(dev);
spin_lock_init(&sp->lock);
mutex_init(&sp->mii_mutex);
/* Declare IPG NIC functions for Ethernet device methods.
*/
dev->open = &ipg_nic_open;
dev->stop = &ipg_nic_stop;
dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
dev->get_stats = &ipg_nic_get_stats;
dev->set_multicast_list = &ipg_nic_set_multicast_list;
dev->do_ioctl = ipg_ioctl;
dev->tx_timeout = ipg_tx_timeout;
dev->change_mtu = &ipg_nic_change_mtu;
SET_NETDEV_DEV(dev, &pdev->dev);
SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_free_dev_1;
ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
if (!ioaddr) {
printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
rc = -EIO;
goto err_release_regions_2;
}
/* Save the pointer to the PCI device information. */
sp->ioaddr = ioaddr;
sp->pdev = pdev;
sp->dev = dev;
INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
pci_set_drvdata(pdev, dev);
rc = ipg_hw_init(dev);
if (rc < 0)
goto err_unmap_3;
rc = register_netdev(dev);
if (rc < 0)
goto err_unmap_3;
printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
out:
return rc;
err_unmap_3:
pci_iounmap(pdev, ioaddr);
err_release_regions_2:
pci_release_regions(pdev);
err_free_dev_1:
free_netdev(dev);
err_disable_0:
pci_disable_device(pdev);
goto out;
}
static struct pci_driver ipg_pci_driver = {
.name = IPG_DRIVER_NAME,
.id_table = ipg_pci_tbl,
.probe = ipg_probe,
.remove = __devexit_p(ipg_remove),
};
static int __init ipg_init_module(void)
{
return pci_register_driver(&ipg_pci_driver);
}
static void __exit ipg_exit_module(void)
{
pci_unregister_driver(&ipg_pci_driver);
}
module_init(ipg_init_module);
module_exit(ipg_exit_module);