/*
* NAND Flash Controller Device Driver
* Copyright © 2009-2010, Intel Corporation and its suppliers.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>
#include "denali.h"
MODULE_LICENSE("GPL");
/* We define a module parameter that allows the user to override
* the hardware and decide what timing mode should be used.
*/
#define NAND_DEFAULT_TIMINGS -1
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates"
" use default timings");
#define DENALI_NAND_NAME "denali-nand"
/* We define a macro here that combines all interrupts this driver uses into
* a single constant value, for convenience. */
#define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
INTR_STATUS0__ECC_TRANSACTION_DONE | \
INTR_STATUS0__ECC_ERR | \
INTR_STATUS0__PROGRAM_FAIL | \
INTR_STATUS0__LOAD_COMP | \
INTR_STATUS0__PROGRAM_COMP | \
INTR_STATUS0__TIME_OUT | \
INTR_STATUS0__ERASE_FAIL | \
INTR_STATUS0__RST_COMP | \
INTR_STATUS0__ERASE_COMP)
/* indicates whether or not the internal value for the flash bank is
valid or not */
#define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1
/* This macro divides two integers and rounds fractional values up
* to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
/* this macro allows us to convert from an MTD structure to our own
* device context (denali) structure.
*/
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
/* These constants are defined by the driver to enable common driver
configuration options. */
#define SPARE_ACCESS 0x41
#define MAIN_ACCESS 0x42
#define MAIN_SPARE_ACCESS 0x43
#define DENALI_READ 0
#define DENALI_WRITE 0x100
/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE 0
#define ADDR_CYCLE 1
#define STATUS_CYCLE 2
/* this is a helper macro that allows us to
* format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)
/* List of platforms this NAND controller has be integrated into */
static const struct pci_device_id denali_pci_ids[] = {
{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
{ /* end: all zeroes */ }
};
/* these are static lookup tables that give us easy access to
registers in the NAND controller.
*/
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
INTR_STATUS1,
INTR_STATUS2,
INTR_STATUS3};
static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
DEVICE_RESET__BANK1,
DEVICE_RESET__BANK2,
DEVICE_RESET__BANK3};
static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
INTR_STATUS1__TIME_OUT,
INTR_STATUS2__TIME_OUT,
INTR_STATUS3__TIME_OUT};
static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
INTR_STATUS1__RST_COMP,
INTR_STATUS2__RST_COMP,
INTR_STATUS3__RST_COMP};
/* specifies the debug level of the driver */
static int nand_debug_level = 0;
/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali);
#define DEBUG_DENALI 0
/* This is a wrapper for writing to the denali registers.
* this allows us to create debug information so we can
* observe how the driver is programming the device.
* it uses standard linux convention for (val, addr) */
static void denali_write32(uint32_t value, void *addr)
{
iowrite32(value, addr);
#if DEBUG_DENALI
printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
#endif
}
/* Certain operations for the denali NAND controller use an indexed mode to read/write
data. The operation is performed by writing the address value of the command to
the device memory followed by the data. This function abstracts this common
operation.
*/
static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
{
denali_write32(address, denali->flash_mem);
denali_write32(data, denali->flash_mem + 0x10);
}
/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
uint32_t address, uint32_t *pdata)
{
denali_write32(address, denali->flash_mem);
*pdata = ioread32(denali->flash_mem + 0x10);
}
/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
denali->buf.head = denali->buf.tail = 0;
}
static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
denali->buf.buf[denali->buf.tail++] = byte;
}
/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
uint32_t cmd = 0x0;
/* initialize the data buffer to store status */
reset_buf(denali);
/* initiate a device status read */
cmd = MODE_11 | BANK(denali->flash_bank);
index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
/* update buffer with status value */
write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
#if DEBUG_DENALI
printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]);
#endif
}
/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status = 0;
uint32_t irq_mask = reset_complete[denali->flash_bank] |
operation_timeout[denali->flash_bank];
int bank = 0;
clear_interrupts(denali);
bank = device_reset_banks[denali->flash_bank];
denali_write32(bank, denali->flash_reg + DEVICE_RESET);
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status & operation_timeout[denali->flash_bank])
{
printk(KERN_ERR "reset bank failed.\n");
}
}
/* Reset the flash controller */
static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
{
uint32_t i;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
denali_write32(reset_complete[i] | operation_timeout[i],
denali->flash_reg + intr_status_addresses[i]);
for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET);
while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) &
(reset_complete[i] | operation_timeout[i])))
;
if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
operation_timeout[i])
nand_dbg_print(NAND_DBG_WARN,
"NAND Reset operation timed out on bank %d\n", i);
}
for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
denali_write32(reset_complete[i] | operation_timeout[i],
denali->flash_reg + intr_status_addresses[i]);
return PASS;
}
/* this routine calculates the ONFI timing values for a given mode and programs
* the clocking register accordingly. The mode is determined by the get_onfi_nand_para
routine.
*/
static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode)
{
uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
uint16_t TclsRising = 1;
uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
uint16_t dv_window = 0;
uint16_t en_lo, en_hi;
uint16_t acc_clks;
uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
en_lo = CEIL_DIV(Trp[mode], CLK_X);
en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
if ((en_hi * CLK_X) < (Treh[mode] + 2))
en_hi++;
#endif
if ((en_lo + en_hi) * CLK_X < Trc[mode])
en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
if ((en_lo + en_hi) < CLK_MULTI)
en_lo += CLK_MULTI - en_lo - en_hi;
while (dv_window < 8) {
data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
data_invalid =
data_invalid_rhoh <
data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
dv_window = data_invalid - Trea[mode];
if (dv_window < 8)
en_lo++;
}
acc_clks = CEIL_DIV(Trea[mode], CLK_X);
while (((acc_clks * CLK_X) - Trea[mode]) < 3)
acc_clks++;
if ((data_invalid - acc_clks * CLK_X) < 2)
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
__FILE__, __LINE__);
addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
if (!TclsRising)
cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
if (cs_cnt == 0)
cs_cnt = 1;
if (Tcea[mode]) {
while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
cs_cnt++;
}
#if MODE5_WORKAROUND
if (mode == 5)
acc_clks = 5;
#endif
/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
acc_clks = 6;
denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}
/* configures the initial ECC settings for the controller */
static void set_ecc_config(struct denali_nand_info *denali)
{
#if SUPPORT_8BITECC
if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE)
== 1) {
denali->dev_info.wECCBytesPerSector = 4;
denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
denali->dev_info.wNumPageSpareFlag =
denali->dev_info.wPageSpareSize -
denali->dev_info.wPageDataSize /
(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
denali->dev_info.wECCBytesPerSector
- denali->dev_info.wSpareSkipBytes;
} else {
denali->dev_info.wECCBytesPerSector =
(ioread32(denali->flash_reg + ECC_CORRECTION) &
ECC_CORRECTION__VALUE) * 13 / 8;
if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
denali->dev_info.wECCBytesPerSector += 2;
else
denali->dev_info.wECCBytesPerSector += 1;
denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize -
denali->dev_info.wPageDataSize /
(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
denali->dev_info.wECCBytesPerSector
- denali->dev_info.wSpareSkipBytes;
}
}
/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
int i;
uint16_t blks_lun_l, blks_lun_h, n_of_luns;
uint32_t blockperlun, id;
denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);
while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
INTR_STATUS0__RST_COMP) |
(ioread32(denali->flash_reg + INTR_STATUS0) &
INTR_STATUS0__TIME_OUT)))
;
if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) {
denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET);
while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
INTR_STATUS1__RST_COMP) |
(ioread32(denali->flash_reg + INTR_STATUS1) &
INTR_STATUS1__TIME_OUT)))
;
if (ioread32(denali->flash_reg + INTR_STATUS1) &
INTR_STATUS1__RST_COMP) {
denali_write32(DEVICE_RESET__BANK2,
denali->flash_reg + DEVICE_RESET);
while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
INTR_STATUS2__RST_COMP) |
(ioread32(denali->flash_reg + INTR_STATUS2) &
INTR_STATUS2__TIME_OUT)))
;
if (ioread32(denali->flash_reg + INTR_STATUS2) &
INTR_STATUS2__RST_COMP) {
denali_write32(DEVICE_RESET__BANK3,
denali->flash_reg + DEVICE_RESET);
while (!((ioread32(denali->flash_reg + INTR_STATUS3) &
INTR_STATUS3__RST_COMP) |
(ioread32(denali->flash_reg + INTR_STATUS3) &
INTR_STATUS3__TIME_OUT)))
;
} else {
printk(KERN_ERR "Getting a time out for bank 2!\n");
}
} else {
printk(KERN_ERR "Getting a time out for bank 1!\n");
}
}
denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0);
denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1);
denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2);
denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3);
denali->dev_info.wONFIDevFeatures =
ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
denali->dev_info.wONFIOptCommands =
ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
denali->dev_info.wONFITimingMode =
ioread32(denali->flash_reg + ONFI_TIMING_MODE);
denali->dev_info.wONFIPgmCacheTimingMode =
ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);
n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
blockperlun = (blks_lun_h << 16) | blks_lun_l;
denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;
if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
ONFI_TIMING_MODE__VALUE))
return FAIL;
for (i = 5; i > 0; i--) {
if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i))
break;
}
NAND_ONFi_Timing_Mode(denali, i);
index_addr(denali, MODE_11 | 0, 0x90);
index_addr(denali, MODE_11 | 1, 0);
for (i = 0; i < 3; i++)
index_addr_read_data(denali, MODE_11 | 2, &id);
nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);
denali->dev_info.MLCDevice = id & 0x0C;
/* By now, all the ONFI devices we know support the page cache */
/* rw feature. So here we enable the pipeline_rw_ahead feature */
/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
return PASS;
}
static void get_samsung_nand_para(struct denali_nand_info *denali)
{
uint8_t no_of_planes;
uint32_t blk_size;
uint64_t plane_size, capacity;
uint32_t id_bytes[5];
int i;
index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
for (i = 0; i < 5; i++)
index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]);
nand_dbg_print(NAND_DBG_DEBUG,
"ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
id_bytes[0], id_bytes[1], id_bytes[2],
id_bytes[3], id_bytes[4]);
if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
/* Set timing register values according to datasheet */
denali_write32(5, denali->flash_reg + ACC_CLKS);
denali_write32(20, denali->flash_reg + RE_2_WE);
denali_write32(12, denali->flash_reg + WE_2_RE);
denali_write32(14, denali->flash_reg + ADDR_2_DATA);
denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
}
no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4);
capacity = (uint64_t)128 * plane_size * no_of_planes;
do_div(capacity, blk_size);
denali->dev_info.wTotalBlocks = capacity;
}
static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
void __iomem *scratch_reg;
uint32_t tmp;
/* Workaround to fix a controller bug which reports a wrong */
/* spare area size for some kind of Toshiba NAND device */
if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
#if SUPPORT_15BITECC
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
}
/* As Toshiba NAND can not provide it's block number, */
/* so here we need user to provide the correct block */
/* number in a scratch register before the Linux NAND */
/* driver is loaded. If no valid value found in the scratch */
/* register, then we use default block number value */
scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
if (!scratch_reg) {
printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
__FILE__, __LINE__);
denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
} else {
nand_dbg_print(NAND_DBG_WARN,
"Spectra: ioremap reg address: 0x%p\n", scratch_reg);
denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
if (denali->dev_info.wTotalBlocks < 512)
denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
iounmap(scratch_reg);
}
}
static void get_hynix_nand_para(struct denali_nand_info *denali)
{
void __iomem *scratch_reg;
uint32_t main_size, spare_size;
switch (denali->dev_info.wDeviceID) {
case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
denali->dev_info.MLCDevice = 1;
break;
default:
nand_dbg_print(NAND_DBG_WARN,
"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
denali->dev_info.wDeviceID);
}
scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
if (!scratch_reg) {
printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
__FILE__, __LINE__);
denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
} else {
nand_dbg_print(NAND_DBG_WARN,
"Spectra: ioremap reg address: 0x%p\n", scratch_reg);
denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
if (denali->dev_info.wTotalBlocks < 512)
denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
iounmap(scratch_reg);
}
}
/* determines how many NAND chips are connected to the controller. Note for
Intel CE4100 devices we don't support more than one device.
*/
static void find_valid_banks(struct denali_nand_info *denali)
{
uint32_t id[LLD_MAX_FLASH_BANKS];
int i;
denali->total_used_banks = 1;
for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
nand_dbg_print(NAND_DBG_DEBUG,
"Return 1st ID for bank[%d]: %x\n", i, id[i]);
if (i == 0) {
if (!(id[i] & 0x0ff))
break; /* WTF? */
} else {
if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
denali->total_used_banks++;
else
break;
}
}
if (denali->platform == INTEL_CE4100)
{
/* Platform limitations of the CE4100 device limit
* users to a single chip solution for NAND.
* Multichip support is not enabled.
*/
if (denali->total_used_banks != 1)
{
printk(KERN_ERR "Sorry, Intel CE4100 only supports "
"a single NAND device.\n");
BUG();
}
}
nand_dbg_print(NAND_DBG_DEBUG,
"denali->total_used_banks: %d\n", denali->total_used_banks);
}
static void detect_partition_feature(struct denali_nand_info *denali)
{
if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
denali->dev_info.wSpectraStartBlock =
((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
MIN_MAX_BANK_1__MIN_VALUE) *
denali->dev_info.wTotalBlocks)
+
(ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
MIN_BLK_ADDR_1__VALUE);
denali->dev_info.wSpectraEndBlock =
(((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
denali->dev_info.wTotalBlocks)
+
(ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
MAX_BLK_ADDR_1__VALUE);
denali->dev_info.wTotalBlocks *= denali->total_used_banks;
if (denali->dev_info.wSpectraEndBlock >=
denali->dev_info.wTotalBlocks) {
denali->dev_info.wSpectraEndBlock =
denali->dev_info.wTotalBlocks - 1;
}
denali->dev_info.wDataBlockNum =
denali->dev_info.wSpectraEndBlock -
denali->dev_info.wSpectraStartBlock + 1;
} else {
denali->dev_info.wTotalBlocks *= denali->total_used_banks;
denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
denali->dev_info.wSpectraEndBlock =
denali->dev_info.wTotalBlocks - 1;
denali->dev_info.wDataBlockNum =
denali->dev_info.wSpectraEndBlock -
denali->dev_info.wSpectraStartBlock + 1;
}
} else {
denali->dev_info.wTotalBlocks *= denali->total_used_banks;
denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1;
denali->dev_info.wDataBlockNum =
denali->dev_info.wSpectraEndBlock -
denali->dev_info.wSpectraStartBlock + 1;
}
}
static void dump_device_info(struct denali_nand_info *denali)
{
nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n");
nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
denali->dev_info.wDeviceMaker);
nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
denali->dev_info.wDeviceID);
nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
denali->dev_info.wDeviceType);
nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
denali->dev_info.wSpectraStartBlock);
nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
denali->dev_info.wSpectraEndBlock);
nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
denali->dev_info.wTotalBlocks);
nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
denali->dev_info.wPagesPerBlock);
nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
denali->dev_info.wPageSize);
nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
denali->dev_info.wPageDataSize);
nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
denali->dev_info.wPageSpareSize);
nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
denali->dev_info.wNumPageSpareFlag);
nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
denali->dev_info.wECCBytesPerSector);
nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
denali->dev_info.wBlockSize);
nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
denali->dev_info.wBlockDataSize);
nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
denali->dev_info.wDataBlockNum);
nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
denali->dev_info.bPlaneNum);
nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
denali->dev_info.wDeviceMainAreaSize);
nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
denali->dev_info.wDeviceSpareAreaSize);
nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
denali->dev_info.wDevicesConnected);
nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
denali->dev_info.wDeviceWidth);
nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
denali->dev_info.wHWRevision);
nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
denali->dev_info.wHWFeatures);
nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
denali->dev_info.wONFIDevFeatures);
nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
denali->dev_info.wONFIOptCommands);
nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
denali->dev_info.wONFITimingMode);
nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
denali->dev_info.wONFIPgmCacheTimingMode);
nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
denali->dev_info.MLCDevice ? "Yes" : "No");
nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
denali->dev_info.wSpareSkipBytes);
nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
denali->dev_info.nBitsInPageNumber);
nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
denali->dev_info.nBitsInPageDataSize);
nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
denali->dev_info.nBitsInBlockDataSize);
}
static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
{
uint16_t status = PASS;
uint8_t no_of_planes;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID);
denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID);
denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0);
denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1);
denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2);
denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;
if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
if (FAIL == get_onfi_nand_para(denali))
return FAIL;
} else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */
get_samsung_nand_para(denali);
} else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */
get_toshiba_nand_para(denali);
} else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */
get_hynix_nand_para(denali);
} else {
denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
}
nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
ioread32(denali->flash_reg + ACC_CLKS),
ioread32(denali->flash_reg + RE_2_WE),
ioread32(denali->flash_reg + WE_2_RE),
ioread32(denali->flash_reg + ADDR_2_DATA),
ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
ioread32(denali->flash_reg + CS_SETUP_CNT));
denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION);
denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES);
denali->dev_info.wDeviceMainAreaSize =
ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
denali->dev_info.wDeviceSpareAreaSize =
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
denali->dev_info.wPageDataSize =
ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
/* Note: When using the Micon 4K NAND device, the controller will report
* Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
* And if force set it to 218 bytes, the controller can not work
* correctly. So just let it be. But keep in mind that this bug may
* cause
* other problems in future. - Yunpeng 2008-10-10
*/
denali->dev_info.wPageSpareSize =
ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK);
denali->dev_info.wPageSize =
denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
denali->dev_info.wBlockSize =
denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock;
denali->dev_info.wBlockDataSize =
denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;
denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH);
denali->dev_info.wDeviceType =
((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);
denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED);
denali->dev_info.wSpareSkipBytes =
ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
denali->dev_info.wDevicesConnected;
denali->dev_info.nBitsInPageNumber =
ilog2(denali->dev_info.wPagesPerBlock);
denali->dev_info.nBitsInPageDataSize =
ilog2(denali->dev_info.wPageDataSize);
denali->dev_info.nBitsInBlockDataSize =
ilog2(denali->dev_info.wBlockDataSize);
set_ecc_config(denali);
no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) &
NUMBER_OF_PLANES__VALUE;
switch (no_of_planes) {
case 0:
case 1:
case 3:
case 7:
denali->dev_info.bPlaneNum = no_of_planes + 1;
break;
default:
status = FAIL;
break;
}
find_valid_banks(denali);
detect_partition_feature(denali);
dump_device_info(denali);
/* If the user specified to override the default timings
* with a specific ONFI mode, we apply those changes here.
*/
if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
{
NAND_ONFi_Timing_Mode(denali, onfi_timing_mode);
}
return status;
}
static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali,
uint16_t INT_ENABLE)
{
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (INT_ENABLE)
denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
else
denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
}
/* validation function to verify that the controlling software is making
a valid request
*/
static inline bool is_flash_bank_valid(int flash_bank)
{
return (flash_bank >= 0 && flash_bank < 4);
}
static void denali_irq_init(struct denali_nand_info *denali)
{
uint32_t int_mask = 0;
/* Disable global interrupts */
NAND_LLD_Enable_Disable_Interrupts(denali, false);
int_mask = DENALI_IRQ_ALL;
/* Clear all status bits */
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);
denali_irq_enable(denali, int_mask);
}
static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
NAND_LLD_Enable_Disable_Interrupts(denali, false);
free_irq(irqnum, denali);
}
static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask)
{
denali_write32(int_mask, denali->flash_reg + INTR_EN0);
denali_write32(int_mask, denali->flash_reg + INTR_EN1);
denali_write32(int_mask, denali->flash_reg + INTR_EN2);
denali_write32(int_mask, denali->flash_reg + INTR_EN3);
}
/* This function only returns when an interrupt that this driver cares about
* occurs. This is to reduce the overhead of servicing interrupts
*/
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
return (read_interrupt_status(denali) & DENALI_IRQ_ALL);
}
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask)
{
uint32_t intr_status_reg = 0;
intr_status_reg = intr_status_addresses[denali->flash_bank];
denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
}
static void clear_interrupts(struct denali_nand_info *denali)
{
uint32_t status = 0x0;
spin_lock_irq(&denali->irq_lock);
status = read_interrupt_status(denali);
#if DEBUG_DENALI
denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
denali->idx %= 32;
#endif
denali->irq_status = 0x0;
spin_unlock_irq(&denali->irq_lock);
}
static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
uint32_t intr_status_reg = 0;
intr_status_reg = intr_status_addresses[denali->flash_bank];
return ioread32(denali->flash_reg + intr_status_reg);
}
#if DEBUG_DENALI
static void print_irq_log(struct denali_nand_info *denali)
{
int i = 0;
printk("ISR debug log index = %X\n", denali->idx);
for (i = 0; i < 32; i++)
{
printk("%08X: %08X\n", i, denali->irq_debug_array[i]);
}
}
#endif
/* This is the interrupt service routine. It handles all interrupts
* sent to this device. Note that on CE4100, this is a shared
* interrupt.
*/
static irqreturn_t denali_isr(int irq, void *dev_id)
{
struct denali_nand_info *denali = dev_id;
uint32_t irq_status = 0x0;
irqreturn_t result = IRQ_NONE;
spin_lock(&denali->irq_lock);
/* check to see if a valid NAND chip has
* been selected.
*/
if (is_flash_bank_valid(denali->flash_bank))
{
/* check to see if controller generated
* the interrupt, since this is a shared interrupt */
if ((irq_status = denali_irq_detected(denali)) != 0)
{
#if DEBUG_DENALI
denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status;
denali->idx %= 32;
printk("IRQ status = 0x%04x\n", irq_status);
#endif
/* handle interrupt */
/* first acknowledge it */
clear_interrupt(denali, irq_status);
/* store the status in the device context for someone
to read */
denali->irq_status |= irq_status;
/* notify anyone who cares that it happened */
complete(&denali->complete);
/* tell the OS that we've handled this */
result = IRQ_HANDLED;
}
}
spin_unlock(&denali->irq_lock);
return result;
}
#define BANK(x) ((x) << 24)
static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
unsigned long comp_res = 0;
uint32_t intr_status = 0;
bool retry = false;
unsigned long timeout = msecs_to_jiffies(1000);
do
{
#if DEBUG_DENALI
printk("waiting for 0x%x\n", irq_mask);
#endif
comp_res = wait_for_completion_timeout(&denali->complete, timeout);
spin_lock_irq(&denali->irq_lock);
intr_status = denali->irq_status;
#if DEBUG_DENALI
denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status;
denali->idx %= 32;
#endif
if (intr_status & irq_mask)
{
denali->irq_status &= ~irq_mask;
spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
if (retry) printk("status on retry = 0x%x\n", intr_status);
#endif
/* our interrupt was detected */
break;
}
else
{
/* these are not the interrupts you are looking for -
need to wait again */
spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
print_irq_log(denali);
printk("received irq nobody cared: irq_status = 0x%x,"
" irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res);
#endif
retry = true;
}
} while (comp_res != 0);
if (comp_res == 0)
{
/* timeout */
printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
intr_status, irq_mask);
intr_status = 0;
}
return intr_status;
}
/* This helper function setups the registers for ECC and whether or not
the spare area will be transfered. */
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare)
{
int ecc_en_flag = 0, transfer_spare_flag = 0;
/* set ECC, transfer spare bits if needed */
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
/* Enable spare area/ECC per user's request. */
denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
}
/* sends a pipeline command operation to the controller. See the Denali NAND
controller's user guide for more information (section 4.2.3.6).
*/
static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare, int access_type,
int op)
{
int status = PASS;
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
irq_mask = 0;
if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP;
else if (op == DENALI_WRITE) irq_mask = 0;
else BUG();
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4);
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
/* clear interrupts */
clear_interrupts(denali);
addr = BANK(denali->flash_bank) | denali->page;
if (op == DENALI_WRITE && access_type != SPARE_ACCESS)
{
cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
}
else if (op == DENALI_WRITE && access_type == SPARE_ACCESS)
{
/* read spare area */
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
}
else if (op == DENALI_READ)
{
/* setup page read request for access type */
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
/* page 33 of the NAND controller spec indicates we should not
use the pipeline commands in Spare area only mode. So we
don't.
*/
if (access_type == SPARE_ACCESS)
{
cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
}
else
{
index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count);
/* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0)
{
printk(KERN_ERR "cmd, page, addr on timeout "
"(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr);
status = FAIL;
}
else
{
cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
}
}
}
return status;
}
/* helper function that simply writes a buffer to the flash */
static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* verify that the len is a multiple of 4. see comment in
* read_data_from_flash_mem() */
BUG_ON((len % 4) != 0);
/* write the data to the flash memory */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
{
denali_write32(*buf32++, denali->flash_mem + 0x10);
}
return i*4; /* intent is to return the number of bytes read */
}
/* helper function that simply reads a buffer from the flash */
static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* we assume that len will be a multiple of 4, if not
* it would be nice to know about it ASAP rather than
* have random failures...
*
* This assumption is based on the fact that this
* function is designed to be used to read flash pages,
* which are typically multiples of 4...
*/
BUG_ON((len % 4) != 0);
/* transfer the data from the flash */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
{
*buf32++ = ioread32(denali->flash_mem + 0x10);
}
return i*4; /* intent is to return the number of bytes read */
}
/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
INTR_STATUS0__PROGRAM_FAIL;
int status = 0;
denali->page = page;
if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
DENALI_WRITE) == PASS)
{
write_data_to_flash_mem(denali, buf, mtd->oobsize);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize;
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0)
{
printk(KERN_ERR "OOB write failed\n");
status = -EIO;
}
}
else
{
printk(KERN_ERR "unable to send pipeline command\n");
status = -EIO;
}
return status;
}
/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0;
denali->page = page;
#if DEBUG_DENALI
printk("read_oob %d\n", page);
#endif
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_READ) == PASS)
{
read_data_from_flash_mem(denali, buf, mtd->oobsize);
/* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0)
{
printk(KERN_ERR "page on OOB timeout %d\n", denali->page);
}
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
* if you are in MAIN_ACCESS.
*/
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize;
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
}
}
/* this function examines buffers to see if they contain data that
* indicate that the buffer is part of an erased region of flash.
*/
bool is_erased(uint8_t *buf, int len)
{
int i = 0;
for (i = 0; i < len; i++)
{
if (buf[i] != 0xFF)
{
return false;
}
}
return true;
}
#define ECC_SECTOR_SIZE 512
#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint8_t *oobbuf, uint32_t irq_status)
{
bool check_erased_page = false;
if (irq_status & INTR_STATUS0__ECC_ERR)
{
/* read the ECC errors. we'll ignore them for now */
uint32_t err_address = 0, err_correction_info = 0;
uint32_t err_byte = 0, err_sector = 0, err_device = 0;
uint32_t err_correction_value = 0;
do
{
err_address = ioread32(denali->flash_reg +
ECC_ERROR_ADDRESS);
err_sector = ECC_SECTOR(err_address);
err_byte = ECC_BYTE(err_address);
err_correction_info = ioread32(denali->flash_reg +
ERR_CORRECTION_INFO);
err_correction_value =
ECC_CORRECTION_VALUE(err_correction_info);
err_device = ECC_ERR_DEVICE(err_correction_info);
if (ECC_ERROR_CORRECTABLE(err_correction_info))
{
/* offset in our buffer is computed as:
sector number * sector size + offset in
sector
*/
int offset = err_sector * ECC_SECTOR_SIZE +
err_byte;
if (offset < denali->mtd.writesize)
{
/* correct the ECC error */
buf[offset] ^= err_correction_value;
denali->mtd.ecc_stats.corrected++;
}
else
{
/* bummer, couldn't correct the error */
printk(KERN_ERR "ECC offset invalid\n");
denali->mtd.ecc_stats.failed++;
}
}
else
{
/* if the error is not correctable, need to
* look at the page to see if it is an erased page.
* if so, then it's not a real ECC error */
check_erased_page = true;
}
#if DEBUG_DENALI
printk("Detected ECC error in page %d: err_addr = 0x%08x,"
" info to fix is 0x%08x\n", denali->page, err_address,
err_correction_info);
#endif
} while (!ECC_LAST_ERR(err_correction_info));
}
return check_erased_page;
}
/* programs the controller to either enable/disable DMA transfers */
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
{
uint32_t reg_val = 0x0;
if (en) reg_val = DMA_ENABLE__FLAG;
denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
ioread32(denali->flash_reg + DMA_ENABLE);
}
/* setups the HW to perform the data DMA */
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
uint32_t mode = 0x0;
const int page_count = 1;
dma_addr_t addr = denali->buf.dma_buf;
mode = MODE_10 | BANK(denali->flash_bank);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
/* 2. set memory high address bits 23:8 */
index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes*/
index_addr(denali, mode | 0x14000, 0x2400);
}
/* writes a page. user specifies type, and this function handles the
configuration details. */
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
struct pci_dev *pci_dev = denali->dev;
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
INTR_STATUS0__PROGRAM_FAIL;
/* if it is a raw xfer, we want to disable ecc, and send
* the spare area.
* !raw_xfer - enable ecc
* raw_xfer - transfer spare
*/
setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
/* copy buffer into DMA buffer */
memcpy(denali->buf.buf, buf, mtd->writesize);
if (raw_xfer)
{
/* transfer the data to the spare area */
memcpy(denali->buf.buf + mtd->writesize,
chip->oob_poi,
mtd->oobsize);
}
pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
clear_interrupts(denali);
denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_WRITE);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0)
{
printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer);
denali->status =
(irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL :
PASS;
}
denali_enable_dma(denali, false);
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
}
/* NAND core entry points */
/* this is the callback that the NAND core calls to write a page. Since
writing a page with ECC or without is similar, all the work is done
by write_page above. */
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
/* for regular page writes, we let HW handle all the ECC
* data written to the device. */
write_page(mtd, chip, buf, false);
}
/* This is the callback that the NAND core calls to write a page without ECC.
raw access is similiar to ECC page writes, so all the work is done in the
write_page() function above.
*/
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
/* for raw page writes, we want to disable ECC and simply write
whatever data is in the buffer. */
write_page(mtd, chip, buf, true);
}
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return write_oob_data(mtd, chip->oob_poi, page);
}
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int sndcmd)
{
read_oob_data(mtd, chip->oob_poi, page);
return 0; /* notify NAND core to send command to
* NAND device. */
}
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
struct pci_dev *pci_dev = denali->dev;
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
INTR_STATUS0__ECC_ERR;
bool check_erased_page = false;
setup_ecc_for_xfer(denali, true, false);
denali_enable_dma(denali, true);
pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
clear_interrupts(denali);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
memcpy(buf, denali->buf.buf, mtd->writesize);
check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
denali_enable_dma(denali, false);
if (check_erased_page)
{
read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
/* check ECC failures that may have occurred on erased pages */
if (check_erased_page)
{
if (!is_erased(buf, denali->mtd.writesize))
{
denali->mtd.ecc_stats.failed++;
}
if (!is_erased(buf, denali->mtd.oobsize))
{
denali->mtd.ecc_stats.failed++;
}
}
}
return 0;
}
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
struct pci_dev *pci_dev = denali->dev;
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
setup_ecc_for_xfer(denali, false, true);
denali_enable_dma(denali, true);
pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
clear_interrupts(denali);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
denali_enable_dma(denali, false);
memcpy(buf, denali->buf.buf, mtd->writesize);
memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
return 0;
}
static uint8_t denali_read_byte(struct mtd_info *mtd)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint8_t result = 0xff;
if (denali->buf.head < denali->buf.tail)
{
result = denali->buf.buf[denali->buf.head++];
}
#if DEBUG_DENALI
printk("read byte -> 0x%02x\n", result);
#endif
return result;
}
static void denali_select_chip(struct mtd_info *mtd, int chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
#if DEBUG_DENALI
printk("denali select chip %d\n", chip);
#endif
spin_lock_irq(&denali->irq_lock);
denali->flash_bank = chip;
spin_unlock_irq(&denali->irq_lock);
}
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
int status = denali->status;
denali->status = 0;
#if DEBUG_DENALI
printk("waitfunc %d\n", status);
#endif
return status;
}
static void denali_erase(struct mtd_info *mtd, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t cmd = 0x0, irq_status = 0;
#if DEBUG_DENALI
printk("erase page: %d\n", page);
#endif
/* clear interrupts */
clear_interrupts(denali);
/* setup page read request for access type */
cmd = MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, (uint32_t)cmd, 0x1);
/* wait for erase to complete or failure to occur */
irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
INTR_STATUS0__ERASE_FAIL);
denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL :
PASS;
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
#if DEBUG_DENALI
printk("cmdfunc: 0x%x %d %d\n", cmd, col, page);
#endif
switch (cmd)
{
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
read_status(denali);
break;
case NAND_CMD_READID:
reset_buf(denali);
if (denali->flash_bank < denali->total_used_banks)
{
/* write manufacturer information into nand
buffer for NAND subsystem to fetch.
*/
write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
write_byte_to_buf(denali, denali->dev_info.wDeviceID);
write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
}
else
{
int i;
for (i = 0; i < 5; i++)
write_byte_to_buf(denali, 0xff);
}
break;
case NAND_CMD_READ0:
case NAND_CMD_SEQIN:
denali->page = page;
break;
case NAND_CMD_RESET:
reset_bank(denali);
break;
case NAND_CMD_READOOB:
/* TODO: Read OOB data */
break;
default:
printk(KERN_ERR ": unsupported command received 0x%x\n", cmd);
break;
}
}
/* stubs for ECC functions not used by the NAND core */
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc_code)
{
printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
BUG();
return -EIO;
}
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
BUG();
return -EIO;
}
static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
BUG();
}
/* end NAND core entry points */
/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
denali_irq_init(denali);
NAND_Flash_Reset(denali);
denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE);
denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
/* Should set value for these registers when init */
denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
denali_write32(1, denali->flash_reg + ECC_ENABLE);
}
/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */
#define ECC_BYTES_SLC 4 * (2048 / ECC_SECTOR_SIZE)
static struct nand_ecclayout nand_oob_slc = {
.eccbytes = 4,
.eccpos = { 0, 1, 2, 3 }, /* not used */
.oobfree = {{
.offset = ECC_BYTES_SLC,
.length = 64 - ECC_BYTES_SLC
}}
};
#define ECC_BYTES_MLC 14 * (2048 / ECC_SECTOR_SIZE)
static struct nand_ecclayout nand_oob_mlc_14bit = {
.eccbytes = 14,
.eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
.oobfree = {{
.offset = ECC_BYTES_MLC,
.length = 64 - ECC_BYTES_MLC
}}
};
static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 8,
.len = 4,
.veroffs = 12,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 8,
.len = 4,
.veroffs = 12,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/* initalize driver data structures */
void denali_drv_init(struct denali_nand_info *denali)
{
denali->idx = 0;
/* setup interrupt handler */
/* the completion object will be used to notify
* the callee that the interrupt is done */
init_completion(&denali->complete);
/* the spinlock will be used to synchronize the ISR
* with any element that might be access shared
* data (interrupt status) */
spin_lock_init(&denali->irq_lock);
/* indicate that MTD has not selected a valid bank yet */
denali->flash_bank = CHIP_SELECT_INVALID;
/* initialize our irq_status variable to indicate no interrupts */
denali->irq_status = 0;
}
/* driver entry point */
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
int ret = -ENODEV;
resource_size_t csr_base, mem_base;
unsigned long csr_len, mem_len;
struct denali_nand_info *denali;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
denali = kzalloc(sizeof(*denali), GFP_KERNEL);
if (!denali)
return -ENOMEM;
ret = pci_enable_device(dev);
if (ret) {
printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
goto failed_enable;
}
if (id->driver_data == INTEL_CE4100) {
/* Due to a silicon limitation, we can only support
* ONFI timing mode 1 and below.
*/
if (onfi_timing_mode < -1 || onfi_timing_mode > 1)
{
printk("Intel CE4100 only supports ONFI timing mode 1 "
"or below\n");
ret = -EINVAL;
goto failed_enable;
}
denali->platform = INTEL_CE4100;
mem_base = pci_resource_start(dev, 0);
mem_len = pci_resource_len(dev, 1);
csr_base = pci_resource_start(dev, 1);
csr_len = pci_resource_len(dev, 1);
} else {
denali->platform = INTEL_MRST;
csr_base = pci_resource_start(dev, 0);
csr_len = pci_resource_start(dev, 0);
mem_base = pci_resource_start(dev, 1);
mem_len = pci_resource_len(dev, 1);
if (!mem_len) {
mem_base = csr_base + csr_len;
mem_len = csr_len;
nand_dbg_print(NAND_DBG_WARN,
"Spectra: No second BAR for PCI device; assuming %08Lx\n",
(uint64_t)csr_base);
}
}
/* Is 32-bit DMA supported? */
ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
if (ret)
{
printk(KERN_ERR "Spectra: no usable DMA configuration\n");
goto failed_enable;
}
denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev, denali->buf.dma_buf))
{
printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
goto failed_enable;
}
pci_set_master(dev);
denali->dev = dev;
ret = pci_request_regions(dev, DENALI_NAND_NAME);
if (ret) {
printk(KERN_ERR "Spectra: Unable to request memory regions\n");
goto failed_req_csr;
}
denali->flash_reg = ioremap_nocache(csr_base, csr_len);
if (!denali->flash_reg) {
printk(KERN_ERR "Spectra: Unable to remap memory region\n");
ret = -ENOMEM;
goto failed_remap_csr;
}
nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
(uint64_t)csr_base, denali->flash_reg, csr_len);
denali->flash_mem = ioremap_nocache(mem_base, mem_len);
if (!denali->flash_mem) {
printk(KERN_ERR "Spectra: ioremap_nocache failed!");
iounmap(denali->flash_reg);
ret = -ENOMEM;
goto failed_remap_csr;
}
nand_dbg_print(NAND_DBG_WARN,
"Spectra: Remapped flash base address: "
"0x%p, len: %ld\n",
denali->flash_mem, csr_len);
denali_hw_init(denali);
denali_drv_init(denali);
nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
DENALI_NAND_NAME, denali)) {
printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
ret = -ENODEV;
goto failed_request_irq;
}
/* now that our ISR is registered, we can enable interrupts */
NAND_LLD_Enable_Disable_Interrupts(denali, true);
pci_set_drvdata(dev, denali);
NAND_Read_Device_ID(denali);
/* MTD supported page sizes vary by kernel. We validate our
kernel supports the device here.
*/
if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
{
ret = -ENODEV;
printk(KERN_ERR "Spectra: device size not supported by this "
"version of MTD.");
goto failed_nand;
}
nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
ioread32(denali->flash_reg + ACC_CLKS),
ioread32(denali->flash_reg + RE_2_WE),
ioread32(denali->flash_reg + WE_2_RE),
ioread32(denali->flash_reg + ADDR_2_DATA),
ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
ioread32(denali->flash_reg + CS_SETUP_CNT));
denali->mtd.name = "Denali NAND";
denali->mtd.owner = THIS_MODULE;
denali->mtd.priv = &denali->nand;
/* register the driver with the NAND core subsystem */
denali->nand.select_chip = denali_select_chip;
denali->nand.cmdfunc = denali_cmdfunc;
denali->nand.read_byte = denali_read_byte;
denali->nand.waitfunc = denali_waitfunc;
/* scan for NAND devices attached to the controller
* this is the first stage in a two step process to register
* with the nand subsystem */
if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL))
{
ret = -ENXIO;
goto failed_nand;
}
/* second stage of the NAND scan
* this stage requires information regarding ECC and
* bad block management. */
/* Bad block management */
denali->nand.bbt_td = &bbt_main_descr;
denali->nand.bbt_md = &bbt_mirror_descr;
/* skip the scan for now until we have OOB read and write support */
denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
if (denali->dev_info.MLCDevice)
{
denali->nand.ecc.layout = &nand_oob_mlc_14bit;
denali->nand.ecc.bytes = ECC_BYTES_MLC;
}
else /* SLC */
{
denali->nand.ecc.layout = &nand_oob_slc;
denali->nand.ecc.bytes = ECC_BYTES_SLC;
}
/* These functions are required by the NAND core framework, otherwise,
the NAND core will assert. However, we don't need them, so we'll stub
them out. */
denali->nand.ecc.calculate = denali_ecc_calculate;
denali->nand.ecc.correct = denali_ecc_correct;
denali->nand.ecc.hwctl = denali_ecc_hwctl;
/* override the default read operations */
denali->nand.ecc.size = denali->mtd.writesize;
denali->nand.ecc.read_page = denali_read_page;
denali->nand.ecc.read_page_raw = denali_read_page_raw;
denali->nand.ecc.write_page = denali_write_page;
denali->nand.ecc.write_page_raw = denali_write_page_raw;
denali->nand.ecc.read_oob = denali_read_oob;
denali->nand.ecc.write_oob = denali_write_oob;
denali->nand.erase_cmd = denali_erase;
if (nand_scan_tail(&denali->mtd))
{
ret = -ENXIO;
goto failed_nand;
}
ret = add_mtd_device(&denali->mtd);
if (ret) {
printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret);
goto failed_nand;
}
return 0;
failed_nand:
denali_irq_cleanup(dev->irq, denali);
failed_request_irq:
iounmap(denali->flash_reg);
iounmap(denali->flash_mem);
failed_remap_csr:
pci_release_regions(dev);
failed_req_csr:
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL);
failed_enable:
kfree(denali);
return ret;
}
/* driver exit point */
static void denali_pci_remove(struct pci_dev *dev)
{
struct denali_nand_info *denali = pci_get_drvdata(dev);
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
nand_release(&denali->mtd);
del_mtd_device(&denali->mtd);
denali_irq_cleanup(dev->irq, denali);
iounmap(denali->flash_reg);
iounmap(denali->flash_mem);
pci_release_regions(dev);
pci_disable_device(dev);
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL);
pci_set_drvdata(dev, NULL);
kfree(denali);
}
MODULE_DEVICE_TABLE(pci, denali_pci_ids);
static struct pci_driver denali_pci_driver = {
.name = DENALI_NAND_NAME,
.id_table = denali_pci_ids,
.probe = denali_pci_probe,
.remove = denali_pci_remove,
};
static int __devinit denali_init(void)
{
printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__);
return pci_register_driver(&denali_pci_driver);
}
/* Free memory */
static void __devexit denali_exit(void)
{
pci_unregister_driver(&denali_pci_driver);
}
module_init(denali_init);
module_exit(denali_exit);