/*
* SN Platform GRU Driver
*
* FAULT HANDLER FOR GRU DETECTED TLB MISSES
*
* This file contains code that handles TLB misses within the GRU.
* These misses are reported either via interrupts or user polling of
* the user CB.
*
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <linux/security.h>
#include <linux/prefetch.h>
#include <asm/pgtable.h>
#include "gru.h"
#include "grutables.h"
#include "grulib.h"
#include "gru_instructions.h"
#include <asm/uv/uv_hub.h>
/* Return codes for vtop functions */
#define VTOP_SUCCESS 0
#define VTOP_INVALID -1
#define VTOP_RETRY -2
/*
* Test if a physical address is a valid GRU GSEG address
*/
static inline int is_gru_paddr(unsigned long paddr)
{
return paddr >= gru_start_paddr && paddr < gru_end_paddr;
}
/*
* Find the vma of a GRU segment. Caller must hold mmap_sem.
*/
struct vm_area_struct *gru_find_vma(unsigned long vaddr)
{
struct vm_area_struct *vma;
vma = find_vma(current->mm, vaddr);
if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
return vma;
return NULL;
}
/*
* Find and lock the gts that contains the specified user vaddr.
*
* Returns:
* - *gts with the mmap_sem locked for read and the GTS locked.
* - NULL if vaddr invalid OR is not a valid GSEG vaddr.
*/
static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
struct gru_thread_state *gts = NULL;
down_read(&mm->mmap_sem);
vma = gru_find_vma(vaddr);
if (vma)
gts = gru_find_thread_state(vma, TSID(vaddr, vma));
if (gts)
mutex_lock(>s->ts_ctxlock);
else
up_read(&mm->mmap_sem);
return gts;
}
static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
struct gru_thread_state *gts = ERR_PTR(-EINVAL);
down_write(&mm->mmap_sem);
vma = gru_find_vma(vaddr);
if (!vma)
goto err;
gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
if (IS_ERR(gts))
goto err;
mutex_lock(>s->ts_ctxlock);
downgrade_write(&mm->mmap_sem);
return gts;
err:
up_write(&mm->mmap_sem);
return gts;
}
/*
* Unlock a GTS that was previously locked with gru_find_lock_gts().
*/
static void gru_unlock_gts(struct gru_thread_state *gts)
{
mutex_unlock(>s->ts_ctxlock);
up_read(¤t->mm->mmap_sem);
}
/*
* Set a CB.istatus to active using a user virtual address. This must be done
* just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
* If the line is evicted, the status may be lost. The in-cache update
* is necessary to prevent the user from seeing a stale cb.istatus that will
* change as soon as the TFH restart is complete. Races may cause an
* occasional failure to clear the cb.istatus, but that is ok.
*/
static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
{
if (cbk) {
cbk->istatus = CBS_ACTIVE;
}
}
/*
* Read & clear a TFM
*
* The GRU has an array of fault maps. A map is private to a cpu
* Only one cpu will be accessing a cpu's fault map.
*
* This function scans the cpu-private fault map & clears all bits that
* are set. The function returns a bitmap that indicates the bits that
* were cleared. Note that sense the maps may be updated asynchronously by
* the GRU, atomic operations must be used to clear bits.
*/
static void get_clear_fault_map(struct gru_state *gru,
struct gru_tlb_fault_map *imap,
struct gru_tlb_fault_map *dmap)
{
unsigned long i, k;
struct gru_tlb_fault_map *tfm;
tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
prefetchw(tfm); /* Helps on hardware, required for emulator */
for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
k = tfm->fault_bits[i];
if (k)
k = xchg(&tfm->fault_bits[i], 0UL);
imap->fault_bits[i] = k;
k = tfm->done_bits[i];
if (k)
k = xchg(&tfm->done_bits[i], 0UL);
dmap->fault_bits[i] = k;
}
/*
* Not functionally required but helps performance. (Required
* on emulator)
*/
gru_flush_cache(tfm);
}
/*
* Atomic (interrupt context) & non-atomic (user context) functions to
* convert a vaddr into a physical address. The size of the page
* is returned in pageshift.
* returns:
* 0 - successful
* < 0 - error code
* 1 - (atomic only) try again in non-atomic context
*/
static int non_atomic_pte_lookup(struct vm_area_struct *vma,
unsigned long vaddr, int write,
unsigned long *paddr, int *pageshift)
{
struct page *page;
#ifdef CONFIG_HUGETLB_PAGE
*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
#else
*pageshift = PAGE_SHIFT;
#endif
if (get_user_pages
(current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0)
return -EFAULT;
*paddr = page_to_phys(page);
put_page(page);
return 0;
}
/*
* atomic_pte_lookup
*
* Convert a user virtual address to a physical address
* Only supports Intel large pages (2MB only) on x86_64.
* ZZZ - hugepage support is incomplete
*
* NOTE: mmap_sem is already held on entry to this function. This
* guarantees existence of the page tables.
*/
static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
int write, unsigned long *paddr, int *pageshift)
{
pgd_t *pgdp;
pmd_t *pmdp;
pud_t *pudp;
pte_t pte;
pgdp = pgd_offset(vma->vm_mm, vaddr);
if (unlikely(pgd_none(*pgdp)))
goto err;
pudp = pud_offset(pgdp, vaddr);
if (unlikely(pud_none(*pudp)))
goto err;
pmdp = pmd_offset(pudp, vaddr);
if (unlikely(pmd_none(*pmdp)))
goto err;
#ifdef CONFIG_X86_64
if (unlikely(pmd_large(*pmdp)))
pte = *(pte_t *) pmdp;
else
#endif
pte = *pte_offset_kernel(pmdp, vaddr);
if (unlikely(!pte_present(pte) ||
(write && (!pte_write(pte) || !pte_dirty(pte)))))
return 1;
*paddr = pte_pfn(pte) << PAGE_SHIFT;
#ifdef CONFIG_HUGETLB_PAGE
*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
#else
*pageshift = PAGE_SHIFT;
#endif
return 0;
err:
return 1;
}
static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
int write, int atomic, unsigned long *gpa, int *pageshift)
{
struct mm_struct *mm = gts->ts_mm;
struct vm_area_struct *vma;
unsigned long paddr;
int ret, ps;
vma = find_vma(mm, vaddr);
if (!vma)
goto inval;
/*
* Atomic lookup is faster & usually works even if called in non-atomic
* context.
*/
rmb(); /* Must/check ms_range_active before loading PTEs */
ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
if (ret) {
if (atomic)
goto upm;
if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
goto inval;
}
if (is_gru_paddr(paddr))
goto inval;
paddr = paddr & ~((1UL << ps) - 1);
*gpa = uv_soc_phys_ram_to_gpa(paddr);
*pageshift = ps;
return VTOP_SUCCESS;
inval:
return VTOP_INVALID;
upm:
return VTOP_RETRY;
}
/*
* Flush a CBE from cache. The CBE is clean in the cache. Dirty the
* CBE cacheline so that the line will be written back to home agent.
* Otherwise the line may be silently dropped. This has no impact
* except on performance.
*/
static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
{
if (unlikely(cbe)) {
cbe->cbrexecstatus = 0; /* make CL dirty */
gru_flush_cache(cbe);
}
}
/*
* Preload the TLB with entries that may be required. Currently, preloading
* is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to
* the end of the bcopy tranfer, whichever is smaller.
*/
static void gru_preload_tlb(struct gru_state *gru,
struct gru_thread_state *gts, int atomic,
unsigned long fault_vaddr, int asid, int write,
unsigned char tlb_preload_count,
struct gru_tlb_fault_handle *tfh,
struct gru_control_block_extended *cbe)
{
unsigned long vaddr = 0, gpa;
int ret, pageshift;
if (cbe->opccpy != OP_BCOPY)
return;
if (fault_vaddr == cbe->cbe_baddr0)
vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
else if (fault_vaddr == cbe->cbe_baddr1)
vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
fault_vaddr &= PAGE_MASK;
vaddr &= PAGE_MASK;
vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
while (vaddr > fault_vaddr) {
ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
GRU_PAGESIZE(pageshift)))
return;
gru_dbg(grudev,
"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
vaddr, asid, write, pageshift, gpa);
vaddr -= PAGE_SIZE;
STAT(tlb_preload_page);
}
}
/*
* Drop a TLB entry into the GRU. The fault is described by info in an TFH.
* Input:
* cb Address of user CBR. Null if not running in user context
* Return:
* 0 = dropin, exception, or switch to UPM successful
* 1 = range invalidate active
* < 0 = error code
*
*/
static int gru_try_dropin(struct gru_state *gru,
struct gru_thread_state *gts,
struct gru_tlb_fault_handle *tfh,
struct gru_instruction_bits *cbk)
{
struct gru_control_block_extended *cbe = NULL;
unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
unsigned long gpa = 0, vaddr = 0;
/*
* NOTE: The GRU contains magic hardware that eliminates races between
* TLB invalidates and TLB dropins. If an invalidate occurs
* in the window between reading the TFH and the subsequent TLB dropin,
* the dropin is ignored. This eliminates the need for additional locks.
*/
/*
* Prefetch the CBE if doing TLB preloading
*/
if (unlikely(tlb_preload_count)) {
cbe = gru_tfh_to_cbe(tfh);
prefetchw(cbe);
}
/*
* Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
* Might be a hardware race OR a stupid user. Ignore FMM because FMM
* is a transient state.
*/
if (tfh->status != TFHSTATUS_EXCEPTION) {
gru_flush_cache(tfh);
sync_core();
if (tfh->status != TFHSTATUS_EXCEPTION)
goto failnoexception;
STAT(tfh_stale_on_fault);
}
if (tfh->state == TFHSTATE_IDLE)
goto failidle;
if (tfh->state == TFHSTATE_MISS_FMM && cbk)
goto failfmm;
write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
vaddr = tfh->missvaddr;
asid = tfh->missasid;
indexway = tfh->indexway;
if (asid == 0)
goto failnoasid;
rmb(); /* TFH must be cache resident before reading ms_range_active */
/*
* TFH is cache resident - at least briefly. Fail the dropin
* if a range invalidate is active.
*/
if (atomic_read(>s->ts_gms->ms_range_active))
goto failactive;
ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
if (ret == VTOP_INVALID)
goto failinval;
if (ret == VTOP_RETRY)
goto failupm;
if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
if (atomic || !gru_update_cch(gts)) {
gts->ts_force_cch_reload = 1;
goto failupm;
}
}
if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
gru_flush_cache_cbe(cbe);
}
gru_cb_set_istatus_active(cbk);
gts->ustats.tlbdropin++;
tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
GRU_PAGESIZE(pageshift));
gru_dbg(grudev,
"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
" rw %d, ps %d, gpa 0x%lx\n",
atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
indexway, write, pageshift, gpa);
STAT(tlb_dropin);
return 0;
failnoasid:
/* No asid (delayed unload). */
STAT(tlb_dropin_fail_no_asid);
gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
if (!cbk)
tfh_user_polling_mode(tfh);
else
gru_flush_cache(tfh);
gru_flush_cache_cbe(cbe);
return -EAGAIN;
failupm:
/* Atomic failure switch CBR to UPM */
tfh_user_polling_mode(tfh);
gru_flush_cache_cbe(cbe);
STAT(tlb_dropin_fail_upm);
gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
return 1;
failfmm:
/* FMM state on UPM call */
gru_flush_cache(tfh);
gru_flush_cache_cbe(cbe);
STAT(tlb_dropin_fail_fmm);
gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
return 0;
failnoexception:
/* TFH status did not show exception pending */
gru_flush_cache(tfh);
gru_flush_cache_cbe(cbe);
if (cbk)
gru_flush_cache(cbk);
STAT(tlb_dropin_fail_no_exception);
gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
tfh, tfh->status, tfh->state);
return 0;
failidle:
/* TFH state was idle - no miss pending */
gru_flush_cache(tfh);
gru_flush_cache_cbe(cbe);
if (cbk)
gru_flush_cache(cbk);
STAT(tlb_dropin_fail_idle);
gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
return 0;
failinval:
/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
tfh_exception(tfh);
gru_flush_cache_cbe(cbe);
STAT(tlb_dropin_fail_invalid);
gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
return -EFAULT;
failactive:
/* Range invalidate active. Switch to UPM iff atomic */
if (!cbk)
tfh_user_polling_mode(tfh);
else
gru_flush_cache(tfh);
gru_flush_cache_cbe(cbe);
STAT(tlb_dropin_fail_range_active);
gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
tfh, vaddr);
return 1;
}
/*
* Process an external interrupt from the GRU. This interrupt is
* caused by a TLB miss.
* Note that this is the interrupt handler that is registered with linux
* interrupt handlers.
*/
static irqreturn_t gru_intr(int chiplet, int blade)
{
struct gru_state *gru;
struct gru_tlb_fault_map imap, dmap;
struct gru_thread_state *gts;
struct gru_tlb_fault_handle *tfh = NULL;
struct completion *cmp;
int cbrnum, ctxnum;
STAT(intr);
gru = &gru_base[blade]->bs_grus[chiplet];
if (!gru) {
dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
raw_smp_processor_id(), chiplet);
return IRQ_NONE;
}
get_clear_fault_map(gru, &imap, &dmap);
gru_dbg(grudev,
"cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
smp_processor_id(), chiplet, gru->gs_gid,
imap.fault_bits[0], imap.fault_bits[1],
dmap.fault_bits[0], dmap.fault_bits[1]);
for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
STAT(intr_cbr);
cmp = gru->gs_blade->bs_async_wq;
if (cmp)
complete(cmp);
gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
}
for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
STAT(intr_tfh);
tfh = get_tfh_by_index(gru, cbrnum);
prefetchw(tfh); /* Helps on hdw, required for emulator */
/*
* When hardware sets a bit in the faultmap, it implicitly
* locks the GRU context so that it cannot be unloaded.
* The gts cannot change until a TFH start/writestart command
* is issued.
*/
ctxnum = tfh->ctxnum;
gts = gru->gs_gts[ctxnum];
/* Spurious interrupts can cause this. Ignore. */
if (!gts) {
STAT(intr_spurious);
continue;
}
/*
* This is running in interrupt context. Trylock the mmap_sem.
* If it fails, retry the fault in user context.
*/
gts->ustats.fmm_tlbmiss++;
if (!gts->ts_force_cch_reload &&
down_read_trylock(>s->ts_mm->mmap_sem)) {
gru_try_dropin(gru, gts, tfh, NULL);
up_read(>s->ts_mm->mmap_sem);
} else {
tfh_user_polling_mode(tfh);
STAT(intr_mm_lock_failed);
}
}
return IRQ_HANDLED;
}
irqreturn_t gru0_intr(int irq, void *dev_id)
{
return gru_intr(0, uv_numa_blade_id());
}
irqreturn_t gru1_intr(int irq, void *dev_id)
{
return gru_intr(1, uv_numa_blade_id());
}
irqreturn_t gru_intr_mblade(int irq, void *dev_id)
{
int blade;
for_each_possible_blade(blade) {
if (uv_blade_nr_possible_cpus(blade))
continue;
gru_intr(0, blade);
gru_intr(1, blade);
}
return IRQ_HANDLED;
}
static int gru_user_dropin(struct gru_thread_state *gts,
struct gru_tlb_fault_handle *tfh,
void *cb)
{
struct gru_mm_struct *gms = gts->ts_gms;
int ret;
gts->ustats.upm_tlbmiss++;
while (1) {
wait_event(gms->ms_wait_queue,
atomic_read(&gms->ms_range_active) == 0);
prefetchw(tfh); /* Helps on hdw, required for emulator */
ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
if (ret <= 0)
return ret;
STAT(call_os_wait_queue);
}
}
/*
* This interface is called as a result of a user detecting a "call OS" bit
* in a user CB. Normally means that a TLB fault has occurred.
* cb - user virtual address of the CB
*/
int gru_handle_user_call_os(unsigned long cb)
{
struct gru_tlb_fault_handle *tfh;
struct gru_thread_state *gts;
void *cbk;
int ucbnum, cbrnum, ret = -EINVAL;
STAT(call_os);
/* sanity check the cb pointer */
ucbnum = get_cb_number((void *)cb);
if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
return -EINVAL;
gts = gru_find_lock_gts(cb);
if (!gts)
return -EINVAL;
gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
goto exit;
gru_check_context_placement(gts);
/*
* CCH may contain stale data if ts_force_cch_reload is set.
*/
if (gts->ts_gru && gts->ts_force_cch_reload) {
gts->ts_force_cch_reload = 0;
gru_update_cch(gts);
}
ret = -EAGAIN;
cbrnum = thread_cbr_number(gts, ucbnum);
if (gts->ts_gru) {
tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
gts->ts_ctxnum, ucbnum);
ret = gru_user_dropin(gts, tfh, cbk);
}
exit:
gru_unlock_gts(gts);
return ret;
}
/*
* Fetch the exception detail information for a CB that terminated with
* an exception.
*/
int gru_get_exception_detail(unsigned long arg)
{
struct control_block_extended_exc_detail excdet;
struct gru_control_block_extended *cbe;
struct gru_thread_state *gts;
int ucbnum, cbrnum, ret;
STAT(user_exception);
if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
return -EFAULT;
gts = gru_find_lock_gts(excdet.cb);
if (!gts)
return -EINVAL;
gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
ucbnum = get_cb_number((void *)excdet.cb);
if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
ret = -EINVAL;
} else if (gts->ts_gru) {
cbrnum = thread_cbr_number(gts, ucbnum);
cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
gru_flush_cache(cbe); /* CBE not coherent */
sync_core(); /* make sure we are have current data */
excdet.opc = cbe->opccpy;
excdet.exopc = cbe->exopccpy;
excdet.ecause = cbe->ecause;
excdet.exceptdet0 = cbe->idef1upd;
excdet.exceptdet1 = cbe->idef3upd;
excdet.cbrstate = cbe->cbrstate;
excdet.cbrexecstatus = cbe->cbrexecstatus;
gru_flush_cache_cbe(cbe);
ret = 0;
} else {
ret = -EAGAIN;
}
gru_unlock_gts(gts);
gru_dbg(grudev,
"cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
"exdet0 0x%lx, exdet1 0x%x\n",
excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
ret = -EFAULT;
return ret;
}
/*
* User request to unload a context. Content is saved for possible reload.
*/
static int gru_unload_all_contexts(void)
{
struct gru_thread_state *gts;
struct gru_state *gru;
int gid, ctxnum;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
foreach_gid(gid) {
gru = GID_TO_GRU(gid);
spin_lock(&gru->gs_lock);
for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
gts = gru->gs_gts[ctxnum];
if (gts && mutex_trylock(>s->ts_ctxlock)) {
spin_unlock(&gru->gs_lock);
gru_unload_context(gts, 1);
mutex_unlock(>s->ts_ctxlock);
spin_lock(&gru->gs_lock);
}
}
spin_unlock(&gru->gs_lock);
}
return 0;
}
int gru_user_unload_context(unsigned long arg)
{
struct gru_thread_state *gts;
struct gru_unload_context_req req;
STAT(user_unload_context);
if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
return -EFAULT;
gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
if (!req.gseg)
return gru_unload_all_contexts();
gts = gru_find_lock_gts(req.gseg);
if (!gts)
return -EINVAL;
if (gts->ts_gru)
gru_unload_context(gts, 1);
gru_unlock_gts(gts);
return 0;
}
/*
* User request to flush a range of virtual addresses from the GRU TLB
* (Mainly for testing).
*/
int gru_user_flush_tlb(unsigned long arg)
{
struct gru_thread_state *gts;
struct gru_flush_tlb_req req;
struct gru_mm_struct *gms;
STAT(user_flush_tlb);
if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
return -EFAULT;
gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
req.vaddr, req.len);
gts = gru_find_lock_gts(req.gseg);
if (!gts)
return -EINVAL;
gms = gts->ts_gms;
gru_unlock_gts(gts);
gru_flush_tlb_range(gms, req.vaddr, req.len);
return 0;
}
/*
* Fetch GSEG statisticss
*/
long gru_get_gseg_statistics(unsigned long arg)
{
struct gru_thread_state *gts;
struct gru_get_gseg_statistics_req req;
if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
return -EFAULT;
/*
* The library creates arrays of contexts for threaded programs.
* If no gts exists in the array, the context has never been used & all
* statistics are implicitly 0.
*/
gts = gru_find_lock_gts(req.gseg);
if (gts) {
memcpy(&req.stats, >s->ustats, sizeof(gts->ustats));
gru_unlock_gts(gts);
} else {
memset(&req.stats, 0, sizeof(gts->ustats));
}
if (copy_to_user((void __user *)arg, &req, sizeof(req)))
return -EFAULT;
return 0;
}
/*
* Register the current task as the user of the GSEG slice.
* Needed for TLB fault interrupt targeting.
*/
int gru_set_context_option(unsigned long arg)
{
struct gru_thread_state *gts;
struct gru_set_context_option_req req;
int ret = 0;
STAT(set_context_option);
if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
return -EFAULT;
gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
gts = gru_find_lock_gts(req.gseg);
if (!gts) {
gts = gru_alloc_locked_gts(req.gseg);
if (IS_ERR(gts))
return PTR_ERR(gts);
}
switch (req.op) {
case sco_blade_chiplet:
/* Select blade/chiplet for GRU context */
if (req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || !gru_base[req.val1] ||
req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB) {
ret = -EINVAL;
} else {
gts->ts_user_blade_id = req.val1;
gts->ts_user_chiplet_id = req.val0;
gru_check_context_placement(gts);
}
break;
case sco_gseg_owner:
/* Register the current task as the GSEG owner */
gts->ts_tgid_owner = current->tgid;
break;
case sco_cch_req_slice:
/* Set the CCH slice option */
gts->ts_cch_req_slice = req.val1 & 3;
break;
default:
ret = -EINVAL;
}
gru_unlock_gts(gts);
return ret;
}