/*
* Driver for HP iLO/iLO2 management processor.
*
* Copyright (C) 2008 Hewlett-Packard Development Company, L.P.
* David Altobelli <david.altobelli@hp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/file.h>
#include <linux/cdev.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/wait.h>
#include <linux/poll.h>
#include "hpilo.h"
static struct class *ilo_class;
static unsigned int ilo_major;
static char ilo_hwdev[MAX_ILO_DEV];
static inline int get_entry_id(int entry)
{
return (entry & ENTRY_MASK_DESCRIPTOR) >> ENTRY_BITPOS_DESCRIPTOR;
}
static inline int get_entry_len(int entry)
{
return ((entry & ENTRY_MASK_QWORDS) >> ENTRY_BITPOS_QWORDS) << 3;
}
static inline int mk_entry(int id, int len)
{
int qlen = len & 7 ? (len >> 3) + 1 : len >> 3;
return id << ENTRY_BITPOS_DESCRIPTOR | qlen << ENTRY_BITPOS_QWORDS;
}
static inline int desc_mem_sz(int nr_entry)
{
return nr_entry << L2_QENTRY_SZ;
}
/*
* FIFO queues, shared with hardware.
*
* If a queue has empty slots, an entry is added to the queue tail,
* and that entry is marked as occupied.
* Entries can be dequeued from the head of the list, when the device
* has marked the entry as consumed.
*
* Returns true on successful queue/dequeue, false on failure.
*/
static int fifo_enqueue(struct ilo_hwinfo *hw, char *fifobar, int entry)
{
struct fifo *fifo_q = FIFOBARTOHANDLE(fifobar);
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&hw->fifo_lock, flags);
if (!(fifo_q->fifobar[(fifo_q->tail + 1) & fifo_q->imask]
& ENTRY_MASK_O)) {
fifo_q->fifobar[fifo_q->tail & fifo_q->imask] |=
(entry & ENTRY_MASK_NOSTATE) | fifo_q->merge;
fifo_q->tail += 1;
ret = 1;
}
spin_unlock_irqrestore(&hw->fifo_lock, flags);
return ret;
}
static int fifo_dequeue(struct ilo_hwinfo *hw, char *fifobar, int *entry)
{
struct fifo *fifo_q = FIFOBARTOHANDLE(fifobar);
unsigned long flags;
int ret = 0;
u64 c;
spin_lock_irqsave(&hw->fifo_lock, flags);
c = fifo_q->fifobar[fifo_q->head & fifo_q->imask];
if (c & ENTRY_MASK_C) {
if (entry)
*entry = c & ENTRY_MASK_NOSTATE;
fifo_q->fifobar[fifo_q->head & fifo_q->imask] =
(c | ENTRY_MASK) + 1;
fifo_q->head += 1;
ret = 1;
}
spin_unlock_irqrestore(&hw->fifo_lock, flags);
return ret;
}
static int fifo_check_recv(struct ilo_hwinfo *hw, char *fifobar)
{
struct fifo *fifo_q = FIFOBARTOHANDLE(fifobar);
unsigned long flags;
int ret = 0;
u64 c;
spin_lock_irqsave(&hw->fifo_lock, flags);
c = fifo_q->fifobar[fifo_q->head & fifo_q->imask];
if (c & ENTRY_MASK_C)
ret = 1;
spin_unlock_irqrestore(&hw->fifo_lock, flags);
return ret;
}
static int ilo_pkt_enqueue(struct ilo_hwinfo *hw, struct ccb *ccb,
int dir, int id, int len)
{
char *fifobar;
int entry;
if (dir == SENDQ)
fifobar = ccb->ccb_u1.send_fifobar;
else
fifobar = ccb->ccb_u3.recv_fifobar;
entry = mk_entry(id, len);
return fifo_enqueue(hw, fifobar, entry);
}
static int ilo_pkt_dequeue(struct ilo_hwinfo *hw, struct ccb *ccb,
int dir, int *id, int *len, void **pkt)
{
char *fifobar, *desc;
int entry = 0, pkt_id = 0;
int ret;
if (dir == SENDQ) {
fifobar = ccb->ccb_u1.send_fifobar;
desc = ccb->ccb_u2.send_desc;
} else {
fifobar = ccb->ccb_u3.recv_fifobar;
desc = ccb->ccb_u4.recv_desc;
}
ret = fifo_dequeue(hw, fifobar, &entry);
if (ret) {
pkt_id = get_entry_id(entry);
if (id)
*id = pkt_id;
if (len)
*len = get_entry_len(entry);
if (pkt)
*pkt = (void *)(desc + desc_mem_sz(pkt_id));
}
return ret;
}
static int ilo_pkt_recv(struct ilo_hwinfo *hw, struct ccb *ccb)
{
char *fifobar = ccb->ccb_u3.recv_fifobar;
return fifo_check_recv(hw, fifobar);
}
static inline void doorbell_set(struct ccb *ccb)
{
iowrite8(1, ccb->ccb_u5.db_base);
}
static inline void doorbell_clr(struct ccb *ccb)
{
iowrite8(2, ccb->ccb_u5.db_base);
}
static inline int ctrl_set(int l2sz, int idxmask, int desclim)
{
int active = 0, go = 1;
return l2sz << CTRL_BITPOS_L2SZ |
idxmask << CTRL_BITPOS_FIFOINDEXMASK |
desclim << CTRL_BITPOS_DESCLIMIT |
active << CTRL_BITPOS_A |
go << CTRL_BITPOS_G;
}
static void ctrl_setup(struct ccb *ccb, int nr_desc, int l2desc_sz)
{
/* for simplicity, use the same parameters for send and recv ctrls */
ccb->send_ctrl = ctrl_set(l2desc_sz, nr_desc-1, nr_desc-1);
ccb->recv_ctrl = ctrl_set(l2desc_sz, nr_desc-1, nr_desc-1);
}
static inline int fifo_sz(int nr_entry)
{
/* size of a fifo is determined by the number of entries it contains */
return (nr_entry * sizeof(u64)) + FIFOHANDLESIZE;
}
static void fifo_setup(void *base_addr, int nr_entry)
{
struct fifo *fifo_q = base_addr;
int i;
/* set up an empty fifo */
fifo_q->head = 0;
fifo_q->tail = 0;
fifo_q->reset = 0;
fifo_q->nrents = nr_entry;
fifo_q->imask = nr_entry - 1;
fifo_q->merge = ENTRY_MASK_O;
for (i = 0; i < nr_entry; i++)
fifo_q->fifobar[i] = 0;
}
static void ilo_ccb_close(struct pci_dev *pdev, struct ccb_data *data)
{
struct ccb *driver_ccb = &data->driver_ccb;
struct ccb __iomem *device_ccb = data->mapped_ccb;
int retries;
/* complicated dance to tell the hw we are stopping */
doorbell_clr(driver_ccb);
iowrite32(ioread32(&device_ccb->send_ctrl) & ~(1 << CTRL_BITPOS_G),
&device_ccb->send_ctrl);
iowrite32(ioread32(&device_ccb->recv_ctrl) & ~(1 << CTRL_BITPOS_G),
&device_ccb->recv_ctrl);
/* give iLO some time to process stop request */
for (retries = MAX_WAIT; retries > 0; retries--) {
doorbell_set(driver_ccb);
udelay(WAIT_TIME);
if (!(ioread32(&device_ccb->send_ctrl) & (1 << CTRL_BITPOS_A))
&&
!(ioread32(&device_ccb->recv_ctrl) & (1 << CTRL_BITPOS_A)))
break;
}
if (retries == 0)
dev_err(&pdev->dev, "Closing, but controller still active\n");
/* clear the hw ccb */
memset_io(device_ccb, 0, sizeof(struct ccb));
/* free resources used to back send/recv queues */
pci_free_consistent(pdev, data->dma_size, data->dma_va, data->dma_pa);
}
static int ilo_ccb_setup(struct ilo_hwinfo *hw, struct ccb_data *data, int slot)
{
char *dma_va, *dma_pa;
struct ccb *driver_ccb, *ilo_ccb;
driver_ccb = &data->driver_ccb;
ilo_ccb = &data->ilo_ccb;
data->dma_size = 2 * fifo_sz(NR_QENTRY) +
2 * desc_mem_sz(NR_QENTRY) +
ILO_START_ALIGN + ILO_CACHE_SZ;
data->dma_va = pci_alloc_consistent(hw->ilo_dev, data->dma_size,
&data->dma_pa);
if (!data->dma_va)
return -ENOMEM;
dma_va = (char *)data->dma_va;
dma_pa = (char *)data->dma_pa;
memset(dma_va, 0, data->dma_size);
dma_va = (char *)roundup((unsigned long)dma_va, ILO_START_ALIGN);
dma_pa = (char *)roundup((unsigned long)dma_pa, ILO_START_ALIGN);
/*
* Create two ccb's, one with virt addrs, one with phys addrs.
* Copy the phys addr ccb to device shared mem.
*/
ctrl_setup(driver_ccb, NR_QENTRY, L2_QENTRY_SZ);
ctrl_setup(ilo_ccb, NR_QENTRY, L2_QENTRY_SZ);
fifo_setup(dma_va, NR_QENTRY);
driver_ccb->ccb_u1.send_fifobar = dma_va + FIFOHANDLESIZE;
ilo_ccb->ccb_u1.send_fifobar = dma_pa + FIFOHANDLESIZE;
dma_va += fifo_sz(NR_QENTRY);
dma_pa += fifo_sz(NR_QENTRY);
dma_va = (char *)roundup((unsigned long)dma_va, ILO_CACHE_SZ);
dma_pa = (char *)roundup((unsigned long)dma_pa, ILO_CACHE_SZ);
fifo_setup(dma_va, NR_QENTRY);
driver_ccb->ccb_u3.recv_fifobar = dma_va + FIFOHANDLESIZE;
ilo_ccb->ccb_u3.recv_fifobar = dma_pa + FIFOHANDLESIZE;
dma_va += fifo_sz(NR_QENTRY);
dma_pa += fifo_sz(NR_QENTRY);
driver_ccb->ccb_u2.send_desc = dma_va;
ilo_ccb->ccb_u2.send_desc = dma_pa;
dma_pa += desc_mem_sz(NR_QENTRY);
dma_va += desc_mem_sz(NR_QENTRY);
driver_ccb->ccb_u4.recv_desc = dma_va;
ilo_ccb->ccb_u4.recv_desc = dma_pa;
driver_ccb->channel = slot;
ilo_ccb->channel = slot;
driver_ccb->ccb_u5.db_base = hw->db_vaddr + (slot << L2_DB_SIZE);
ilo_ccb->ccb_u5.db_base = NULL; /* hw ccb's doorbell is not used */
return 0;
}
static void ilo_ccb_open(struct ilo_hwinfo *hw, struct ccb_data *data, int slot)
{
int pkt_id, pkt_sz;
struct ccb *driver_ccb = &data->driver_ccb;
/* copy the ccb with physical addrs to device memory */
data->mapped_ccb = (struct ccb __iomem *)
(hw->ram_vaddr + (slot * ILOHW_CCB_SZ));
memcpy_toio(data->mapped_ccb, &data->ilo_ccb, sizeof(struct ccb));
/* put packets on the send and receive queues */
pkt_sz = 0;
for (pkt_id = 0; pkt_id < NR_QENTRY; pkt_id++) {
ilo_pkt_enqueue(hw, driver_ccb, SENDQ, pkt_id, pkt_sz);
doorbell_set(driver_ccb);
}
pkt_sz = desc_mem_sz(1);
for (pkt_id = 0; pkt_id < NR_QENTRY; pkt_id++)
ilo_pkt_enqueue(hw, driver_ccb, RECVQ, pkt_id, pkt_sz);
/* the ccb is ready to use */
doorbell_clr(driver_ccb);
}
static int ilo_ccb_verify(struct ilo_hwinfo *hw, struct ccb_data *data)
{
int pkt_id, i;
struct ccb *driver_ccb = &data->driver_ccb;
/* make sure iLO is really handling requests */
for (i = MAX_WAIT; i > 0; i--) {
if (ilo_pkt_dequeue(hw, driver_ccb, SENDQ, &pkt_id, NULL, NULL))
break;
udelay(WAIT_TIME);
}
if (i == 0) {
dev_err(&hw->ilo_dev->dev, "Open could not dequeue a packet\n");
return -EBUSY;
}
ilo_pkt_enqueue(hw, driver_ccb, SENDQ, pkt_id, 0);
doorbell_set(driver_ccb);
return 0;
}
static inline int is_channel_reset(struct ccb *ccb)
{
/* check for this particular channel needing a reset */
return FIFOBARTOHANDLE(ccb->ccb_u1.send_fifobar)->reset;
}
static inline void set_channel_reset(struct ccb *ccb)
{
/* set a flag indicating this channel needs a reset */
FIFOBARTOHANDLE(ccb->ccb_u1.send_fifobar)->reset = 1;
}
static inline int get_device_outbound(struct ilo_hwinfo *hw)
{
return ioread32(&hw->mmio_vaddr[DB_OUT]);
}
static inline int is_db_reset(int db_out)
{
return db_out & (1 << DB_RESET);
}
static inline int is_device_reset(struct ilo_hwinfo *hw)
{
/* check for global reset condition */
return is_db_reset(get_device_outbound(hw));
}
static inline void clear_pending_db(struct ilo_hwinfo *hw, int clr)
{
iowrite32(clr, &hw->mmio_vaddr[DB_OUT]);
}
static inline void clear_device(struct ilo_hwinfo *hw)
{
/* clear the device (reset bits, pending channel entries) */
clear_pending_db(hw, -1);
}
static inline void ilo_enable_interrupts(struct ilo_hwinfo *hw)
{
iowrite8(ioread8(&hw->mmio_vaddr[DB_IRQ]) | 1, &hw->mmio_vaddr[DB_IRQ]);
}
static inline void ilo_disable_interrupts(struct ilo_hwinfo *hw)
{
iowrite8(ioread8(&hw->mmio_vaddr[DB_IRQ]) & ~1,
&hw->mmio_vaddr[DB_IRQ]);
}
static void ilo_set_reset(struct ilo_hwinfo *hw)
{
int slot;
/*
* Mapped memory is zeroed on ilo reset, so set a per ccb flag
* to indicate that this ccb needs to be closed and reopened.
*/
for (slot = 0; slot < MAX_CCB; slot++) {
if (!hw->ccb_alloc[slot])
continue;
set_channel_reset(&hw->ccb_alloc[slot]->driver_ccb);
}
}
static ssize_t ilo_read(struct file *fp, char __user *buf,
size_t len, loff_t *off)
{
int err, found, cnt, pkt_id, pkt_len;
struct ccb_data *data = fp->private_data;
struct ccb *driver_ccb = &data->driver_ccb;
struct ilo_hwinfo *hw = data->ilo_hw;
void *pkt;
if (is_channel_reset(driver_ccb)) {
/*
* If the device has been reset, applications
* need to close and reopen all ccbs.
*/
return -ENODEV;
}
/*
* This function is to be called when data is expected
* in the channel, and will return an error if no packet is found
* during the loop below. The sleep/retry logic is to allow
* applications to call read() immediately post write(),
* and give iLO some time to process the sent packet.
*/
cnt = 20;
do {
/* look for a received packet */
found = ilo_pkt_dequeue(hw, driver_ccb, RECVQ, &pkt_id,
&pkt_len, &pkt);
if (found)
break;
cnt--;
msleep(100);
} while (!found && cnt);
if (!found)
return -EAGAIN;
/* only copy the length of the received packet */
if (pkt_len < len)
len = pkt_len;
err = copy_to_user(buf, pkt, len);
/* return the received packet to the queue */
ilo_pkt_enqueue(hw, driver_ccb, RECVQ, pkt_id, desc_mem_sz(1));
return err ? -EFAULT : len;
}
static ssize_t ilo_write(struct file *fp, const char __user *buf,
size_t len, loff_t *off)
{
int err, pkt_id, pkt_len;
struct ccb_data *data = fp->private_data;
struct ccb *driver_ccb = &data->driver_ccb;
struct ilo_hwinfo *hw = data->ilo_hw;
void *pkt;
if (is_channel_reset(driver_ccb))
return -ENODEV;
/* get a packet to send the user command */
if (!ilo_pkt_dequeue(hw, driver_ccb, SENDQ, &pkt_id, &pkt_len, &pkt))
return -EBUSY;
/* limit the length to the length of the packet */
if (pkt_len < len)
len = pkt_len;
/* on failure, set the len to 0 to return empty packet to the device */
err = copy_from_user(pkt, buf, len);
if (err)
len = 0;
/* send the packet */
ilo_pkt_enqueue(hw, driver_ccb, SENDQ, pkt_id, len);
doorbell_set(driver_ccb);
return err ? -EFAULT : len;
}
static unsigned int ilo_poll(struct file *fp, poll_table *wait)
{
struct ccb_data *data = fp->private_data;
struct ccb *driver_ccb = &data->driver_ccb;
poll_wait(fp, &data->ccb_waitq, wait);
if (is_channel_reset(driver_ccb))
return POLLERR;
else if (ilo_pkt_recv(data->ilo_hw, driver_ccb))
return POLLIN | POLLRDNORM;
return 0;
}
static int ilo_close(struct inode *ip, struct file *fp)
{
int slot;
struct ccb_data *data;
struct ilo_hwinfo *hw;
unsigned long flags;
slot = iminor(ip) % MAX_CCB;
hw = container_of(ip->i_cdev, struct ilo_hwinfo, cdev);
spin_lock(&hw->open_lock);
if (hw->ccb_alloc[slot]->ccb_cnt == 1) {
data = fp->private_data;
spin_lock_irqsave(&hw->alloc_lock, flags);
hw->ccb_alloc[slot] = NULL;
spin_unlock_irqrestore(&hw->alloc_lock, flags);
ilo_ccb_close(hw->ilo_dev, data);
kfree(data);
} else
hw->ccb_alloc[slot]->ccb_cnt--;
spin_unlock(&hw->open_lock);
return 0;
}
static int ilo_open(struct inode *ip, struct file *fp)
{
int slot, error;
struct ccb_data *data;
struct ilo_hwinfo *hw;
unsigned long flags;
slot = iminor(ip) % MAX_CCB;
hw = container_of(ip->i_cdev, struct ilo_hwinfo, cdev);
/* new ccb allocation */
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
spin_lock(&hw->open_lock);
/* each fd private_data holds sw/hw view of ccb */
if (hw->ccb_alloc[slot] == NULL) {
/* create a channel control block for this minor */
error = ilo_ccb_setup(hw, data, slot);
if (error) {
kfree(data);
goto out;
}
data->ccb_cnt = 1;
data->ccb_excl = fp->f_flags & O_EXCL;
data->ilo_hw = hw;
init_waitqueue_head(&data->ccb_waitq);
/* write the ccb to hw */
spin_lock_irqsave(&hw->alloc_lock, flags);
ilo_ccb_open(hw, data, slot);
hw->ccb_alloc[slot] = data;
spin_unlock_irqrestore(&hw->alloc_lock, flags);
/* make sure the channel is functional */
error = ilo_ccb_verify(hw, data);
if (error) {
spin_lock_irqsave(&hw->alloc_lock, flags);
hw->ccb_alloc[slot] = NULL;
spin_unlock_irqrestore(&hw->alloc_lock, flags);
ilo_ccb_close(hw->ilo_dev, data);
kfree(data);
goto out;
}
} else {
kfree(data);
if (fp->f_flags & O_EXCL || hw->ccb_alloc[slot]->ccb_excl) {
/*
* The channel exists, and either this open
* or a previous open of this channel wants
* exclusive access.
*/
error = -EBUSY;
} else {
hw->ccb_alloc[slot]->ccb_cnt++;
error = 0;
}
}
out:
spin_unlock(&hw->open_lock);
if (!error)
fp->private_data = hw->ccb_alloc[slot];
return error;
}
static const struct file_operations ilo_fops = {
.owner = THIS_MODULE,
.read = ilo_read,
.write = ilo_write,
.poll = ilo_poll,
.open = ilo_open,
.release = ilo_close,
};
static irqreturn_t ilo_isr(int irq, void *data)
{
struct ilo_hwinfo *hw = data;
int pending, i;
spin_lock(&hw->alloc_lock);
/* check for ccbs which have data */
pending = get_device_outbound(hw);
if (!pending) {
spin_unlock(&hw->alloc_lock);
return IRQ_NONE;
}
if (is_db_reset(pending)) {
/* wake up all ccbs if the device was reset */
pending = -1;
ilo_set_reset(hw);
}
for (i = 0; i < MAX_CCB; i++) {
if (!hw->ccb_alloc[i])
continue;
if (pending & (1 << i))
wake_up_interruptible(&hw->ccb_alloc[i]->ccb_waitq);
}
/* clear the device of the channels that have been handled */
clear_pending_db(hw, pending);
spin_unlock(&hw->alloc_lock);
return IRQ_HANDLED;
}
static void ilo_unmap_device(struct pci_dev *pdev, struct ilo_hwinfo *hw)
{
pci_iounmap(pdev, hw->db_vaddr);
pci_iounmap(pdev, hw->ram_vaddr);
pci_iounmap(pdev, hw->mmio_vaddr);
}
static int __devinit ilo_map_device(struct pci_dev *pdev, struct ilo_hwinfo *hw)
{
int error = -ENOMEM;
/* map the memory mapped i/o registers */
hw->mmio_vaddr = pci_iomap(pdev, 1, 0);
if (hw->mmio_vaddr == NULL) {
dev_err(&pdev->dev, "Error mapping mmio\n");
goto out;
}
/* map the adapter shared memory region */
hw->ram_vaddr = pci_iomap(pdev, 2, MAX_CCB * ILOHW_CCB_SZ);
if (hw->ram_vaddr == NULL) {
dev_err(&pdev->dev, "Error mapping shared mem\n");
goto mmio_free;
}
/* map the doorbell aperture */
hw->db_vaddr = pci_iomap(pdev, 3, MAX_CCB * ONE_DB_SIZE);
if (hw->db_vaddr == NULL) {
dev_err(&pdev->dev, "Error mapping doorbell\n");
goto ram_free;
}
return 0;
ram_free:
pci_iounmap(pdev, hw->ram_vaddr);
mmio_free:
pci_iounmap(pdev, hw->mmio_vaddr);
out:
return error;
}
static void ilo_remove(struct pci_dev *pdev)
{
int i, minor;
struct ilo_hwinfo *ilo_hw = pci_get_drvdata(pdev);
clear_device(ilo_hw);
minor = MINOR(ilo_hw->cdev.dev);
for (i = minor; i < minor + MAX_CCB; i++)
device_destroy(ilo_class, MKDEV(ilo_major, i));
cdev_del(&ilo_hw->cdev);
ilo_disable_interrupts(ilo_hw);
free_irq(pdev->irq, ilo_hw);
ilo_unmap_device(pdev, ilo_hw);
pci_release_regions(pdev);
pci_disable_device(pdev);
kfree(ilo_hw);
ilo_hwdev[(minor / MAX_CCB)] = 0;
}
static int __devinit ilo_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int devnum, minor, start, error;
struct ilo_hwinfo *ilo_hw;
/* find a free range for device files */
for (devnum = 0; devnum < MAX_ILO_DEV; devnum++) {
if (ilo_hwdev[devnum] == 0) {
ilo_hwdev[devnum] = 1;
break;
}
}
if (devnum == MAX_ILO_DEV) {
dev_err(&pdev->dev, "Error finding free device\n");
return -ENODEV;
}
/* track global allocations for this device */
error = -ENOMEM;
ilo_hw = kzalloc(sizeof(*ilo_hw), GFP_KERNEL);
if (!ilo_hw)
goto out;
ilo_hw->ilo_dev = pdev;
spin_lock_init(&ilo_hw->alloc_lock);
spin_lock_init(&ilo_hw->fifo_lock);
spin_lock_init(&ilo_hw->open_lock);
error = pci_enable_device(pdev);
if (error)
goto free;
pci_set_master(pdev);
error = pci_request_regions(pdev, ILO_NAME);
if (error)
goto disable;
error = ilo_map_device(pdev, ilo_hw);
if (error)
goto free_regions;
pci_set_drvdata(pdev, ilo_hw);
clear_device(ilo_hw);
error = request_irq(pdev->irq, ilo_isr, IRQF_SHARED, "hpilo", ilo_hw);
if (error)
goto unmap;
ilo_enable_interrupts(ilo_hw);
cdev_init(&ilo_hw->cdev, &ilo_fops);
ilo_hw->cdev.owner = THIS_MODULE;
start = devnum * MAX_CCB;
error = cdev_add(&ilo_hw->cdev, MKDEV(ilo_major, start), MAX_CCB);
if (error) {
dev_err(&pdev->dev, "Could not add cdev\n");
goto remove_isr;
}
for (minor = 0 ; minor < MAX_CCB; minor++) {
struct device *dev;
dev = device_create(ilo_class, &pdev->dev,
MKDEV(ilo_major, minor), NULL,
"hpilo!d%dccb%d", devnum, minor);
if (IS_ERR(dev))
dev_err(&pdev->dev, "Could not create files\n");
}
return 0;
remove_isr:
ilo_disable_interrupts(ilo_hw);
free_irq(pdev->irq, ilo_hw);
unmap:
ilo_unmap_device(pdev, ilo_hw);
free_regions:
pci_release_regions(pdev);
disable:
pci_disable_device(pdev);
free:
kfree(ilo_hw);
out:
ilo_hwdev[devnum] = 0;
return error;
}
static struct pci_device_id ilo_devices[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_COMPAQ, 0xB204) },
{ PCI_DEVICE(PCI_VENDOR_ID_HP, 0x3307) },
{ }
};
MODULE_DEVICE_TABLE(pci, ilo_devices);
static struct pci_driver ilo_driver = {
.name = ILO_NAME,
.id_table = ilo_devices,
.probe = ilo_probe,
.remove = __devexit_p(ilo_remove),
};
static int __init ilo_init(void)
{
int error;
dev_t dev;
ilo_class = class_create(THIS_MODULE, "iLO");
if (IS_ERR(ilo_class)) {
error = PTR_ERR(ilo_class);
goto out;
}
error = alloc_chrdev_region(&dev, 0, MAX_OPEN, ILO_NAME);
if (error)
goto class_destroy;
ilo_major = MAJOR(dev);
error = pci_register_driver(&ilo_driver);
if (error)
goto chr_remove;
return 0;
chr_remove:
unregister_chrdev_region(dev, MAX_OPEN);
class_destroy:
class_destroy(ilo_class);
out:
return error;
}
static void __exit ilo_exit(void)
{
pci_unregister_driver(&ilo_driver);
unregister_chrdev_region(MKDEV(ilo_major, 0), MAX_OPEN);
class_destroy(ilo_class);
}
MODULE_VERSION("1.2");
MODULE_ALIAS(ILO_NAME);
MODULE_DESCRIPTION(ILO_NAME);
MODULE_AUTHOR("David Altobelli <david.altobelli@hp.com>");
MODULE_LICENSE("GPL v2");
module_init(ilo_init);
module_exit(ilo_exit);