aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/memory/emif.c
blob: 06d31c99e6ac22e166027a5a3666ca810931581b (plain) (tree)
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827



















                                                                       
                     
                          


                           
                           

                             
                      













                                                                                







                                                                               
                                                               
                                                                             
                                                               



                                                          
                                               
                                             
                                                  

                                              


                                                                              
                                                   
                                                      
                                                


                               


                                                          

                              
                      


























































































                                                                            

                              





                                                                      

                              




                                                                  

                              














                                                            









                                                                            
 









                                                             

















                                                                         





































































































































































































































































































                                                                                































































                                                                                












































































































































































                                                                                



































                                                                               

















































































                                                                               























































































































































                                                                                                                 
































































                                                                                                         


























































                                                                               

































































































































































                                                                                




















































































































                                                                               
                                    
 




                                                                                   




                                                                    
                                            
                                                                              


















                                                                             






                                                                           
                                    
                                


                                               











                                                                     

                                                                                





                       








                                                            






                                                                   













































































































































































































































































































                                                                                 








                                                    
                                             
                                                
                                        

                               
                                                              


















                                                               
/*
 * EMIF driver
 *
 * Copyright (C) 2012 Texas Instruments, Inc.
 *
 * Aneesh V <aneesh@ti.com>
 * Santosh Shilimkar <santosh.shilimkar@ti.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/platform_data/emif_plat.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <memory/jedec_ddr.h>
#include "emif.h"
#include "of_memory.h"

/**
 * struct emif_data - Per device static data for driver's use
 * @duplicate:			Whether the DDR devices attached to this EMIF
 *				instance are exactly same as that on EMIF1. In
 *				this case we can save some memory and processing
 * @temperature_level:		Maximum temperature of LPDDR2 devices attached
 *				to this EMIF - read from MR4 register. If there
 *				are two devices attached to this EMIF, this
 *				value is the maximum of the two temperature
 *				levels.
 * @node:			node in the device list
 * @base:			base address of memory-mapped IO registers.
 * @dev:			device pointer.
 * @addressing			table with addressing information from the spec
 * @regs_cache:			An array of 'struct emif_regs' that stores
 *				calculated register values for different
 *				frequencies, to avoid re-calculating them on
 *				each DVFS transition.
 * @curr_regs:			The set of register values used in the last
 *				frequency change (i.e. corresponding to the
 *				frequency in effect at the moment)
 * @plat_data:			Pointer to saved platform data.
 * @debugfs_root:		dentry to the root folder for EMIF in debugfs
 * @np_ddr:			Pointer to ddr device tree node
 */
struct emif_data {
	u8				duplicate;
	u8				temperature_level;
	u8				lpmode;
	struct list_head		node;
	unsigned long			irq_state;
	void __iomem			*base;
	struct device			*dev;
	const struct lpddr2_addressing	*addressing;
	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
	struct emif_regs		*curr_regs;
	struct emif_platform_data	*plat_data;
	struct dentry			*debugfs_root;
	struct device_node		*np_ddr;
};

static struct emif_data *emif1;
static spinlock_t	emif_lock;
static unsigned long	irq_state;
static u32		t_ck; /* DDR clock period in ps */
static LIST_HEAD(device_list);

#ifdef CONFIG_DEBUG_FS
static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
	struct emif_regs *regs)
{
	u32 type = emif->plat_data->device_info->type;
	u32 ip_rev = emif->plat_data->ip_rev;

	seq_printf(s, "EMIF register cache dump for %dMHz\n",
		regs->freq/1000000);

	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);

	if (ip_rev == EMIF_4D) {
		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
			regs->read_idle_ctrl_shdw_normal);
		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
			regs->read_idle_ctrl_shdw_volt_ramp);
	} else if (ip_rev == EMIF_4D5) {
		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
			regs->dll_calib_ctrl_shdw_normal);
		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
			regs->dll_calib_ctrl_shdw_volt_ramp);
	}

	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
			regs->ref_ctrl_shdw_derated);
		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
			regs->sdram_tim1_shdw_derated);
		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
			regs->sdram_tim3_shdw_derated);
	}
}

static int emif_regdump_show(struct seq_file *s, void *unused)
{
	struct emif_data	*emif	= s->private;
	struct emif_regs	**regs_cache;
	int			i;

	if (emif->duplicate)
		regs_cache = emif1->regs_cache;
	else
		regs_cache = emif->regs_cache;

	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
		do_emif_regdump_show(s, emif, regs_cache[i]);
		seq_printf(s, "\n");
	}

	return 0;
}

static int emif_regdump_open(struct inode *inode, struct file *file)
{
	return single_open(file, emif_regdump_show, inode->i_private);
}

static const struct file_operations emif_regdump_fops = {
	.open			= emif_regdump_open,
	.read			= seq_read,
	.release		= single_release,
};

static int emif_mr4_show(struct seq_file *s, void *unused)
{
	struct emif_data *emif = s->private;

	seq_printf(s, "MR4=%d\n", emif->temperature_level);
	return 0;
}

static int emif_mr4_open(struct inode *inode, struct file *file)
{
	return single_open(file, emif_mr4_show, inode->i_private);
}

static const struct file_operations emif_mr4_fops = {
	.open			= emif_mr4_open,
	.read			= seq_read,
	.release		= single_release,
};

static int __init_or_module emif_debugfs_init(struct emif_data *emif)
{
	struct dentry	*dentry;
	int		ret;

	dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
	if (!dentry) {
		ret = -ENOMEM;
		goto err0;
	}
	emif->debugfs_root = dentry;

	dentry = debugfs_create_file("regcache_dump", S_IRUGO,
			emif->debugfs_root, emif, &emif_regdump_fops);
	if (!dentry) {
		ret = -ENOMEM;
		goto err1;
	}

	dentry = debugfs_create_file("mr4", S_IRUGO,
			emif->debugfs_root, emif, &emif_mr4_fops);
	if (!dentry) {
		ret = -ENOMEM;
		goto err1;
	}

	return 0;
err1:
	debugfs_remove_recursive(emif->debugfs_root);
err0:
	return ret;
}

static void __exit emif_debugfs_exit(struct emif_data *emif)
{
	debugfs_remove_recursive(emif->debugfs_root);
	emif->debugfs_root = NULL;
}
#else
static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
{
	return 0;
}

static inline void __exit emif_debugfs_exit(struct emif_data *emif)
{
}
#endif

/*
 * Calculate the period of DDR clock from frequency value
 */
static void set_ddr_clk_period(u32 freq)
{
	/* Divide 10^12 by frequency to get period in ps */
	t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
}

/*
 * Get bus width used by EMIF. Note that this may be different from the
 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 * may be connected to a given CS of EMIF. In this case bus width as far
 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 */
static u32 get_emif_bus_width(struct emif_data *emif)
{
	u32		width;
	void __iomem	*base = emif->base;

	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
			>> NARROW_MODE_SHIFT;
	width = width == 0 ? 32 : 16;

	return width;
}

/*
 * Get the CL from SDRAM_CONFIG register
 */
static u32 get_cl(struct emif_data *emif)
{
	u32		cl;
	void __iomem	*base = emif->base;

	cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;

	return cl;
}

static void set_lpmode(struct emif_data *emif, u8 lpmode)
{
	u32 temp;
	void __iomem *base = emif->base;

	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
	temp &= ~LP_MODE_MASK;
	temp |= (lpmode << LP_MODE_SHIFT);
	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
}

static void do_freq_update(void)
{
	struct emif_data *emif;

	/*
	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
	 *
	 * i728 DESCRIPTION:
	 * The EMIF automatically puts the SDRAM into self-refresh mode
	 * after the EMIF has not performed accesses during
	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
	 * to 0x2. If during a small window the following three events
	 * occur:
	 * - The SR_TIMING counter expires
	 * - And frequency change is requested
	 * - And OCP access is requested
	 * Then it causes instable clock on the DDR interface.
	 *
	 * WORKAROUND
	 * To avoid the occurrence of the three events, the workaround
	 * is to disable the self-refresh when requesting a frequency
	 * change. Before requesting a frequency change the software must
	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
	 * frequency change has been done, the software can reprogram
	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
	 */
	list_for_each_entry(emif, &device_list, node) {
		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
	}

	/*
	 * TODO: Do FREQ_UPDATE here when an API
	 * is available for this as part of the new
	 * clock framework
	 */

	list_for_each_entry(emif, &device_list, node) {
		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
	}
}

/* Find addressing table entry based on the device's type and density */
static const struct lpddr2_addressing *get_addressing_table(
	const struct ddr_device_info *device_info)
{
	u32		index, type, density;

	type = device_info->type;
	density = device_info->density;

	switch (type) {
	case DDR_TYPE_LPDDR2_S4:
		index = density - 1;
		break;
	case DDR_TYPE_LPDDR2_S2:
		switch (density) {
		case DDR_DENSITY_1Gb:
		case DDR_DENSITY_2Gb:
			index = density + 3;
			break;
		default:
			index = density - 1;
		}
		break;
	default:
		return NULL;
	}

	return &lpddr2_jedec_addressing_table[index];
}

/*
 * Find the the right timing table from the array of timing
 * tables of the device using DDR clock frequency
 */
static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
		u32 freq)
{
	u32				i, min, max, freq_nearest;
	const struct lpddr2_timings	*timings = NULL;
	const struct lpddr2_timings	*timings_arr = emif->plat_data->timings;
	struct				device *dev = emif->dev;

	/* Start with a very high frequency - 1GHz */
	freq_nearest = 1000000000;

	/*
	 * Find the timings table such that:
	 *  1. the frequency range covers the required frequency(safe) AND
	 *  2. the max_freq is closest to the required frequency(optimal)
	 */
	for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
		max = timings_arr[i].max_freq;
		min = timings_arr[i].min_freq;
		if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
			freq_nearest = max;
			timings = &timings_arr[i];
		}
	}

	if (!timings)
		dev_err(dev, "%s: couldn't find timings for - %dHz\n",
			__func__, freq);

	dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
		__func__, freq, freq_nearest);

	return timings;
}

static u32 get_sdram_ref_ctrl_shdw(u32 freq,
		const struct lpddr2_addressing *addressing)
{
	u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;

	/* Scale down frequency and t_refi to avoid overflow */
	freq_khz = freq / 1000;
	t_refi = addressing->tREFI_ns / 100;

	/*
	 * refresh rate to be set is 'tREFI(in us) * freq in MHz
	 * division by 10000 to account for change in units
	 */
	val = t_refi * freq_khz / 10000;
	ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;

	return ref_ctrl_shdw;
}

static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
		const struct lpddr2_min_tck *min_tck,
		const struct lpddr2_addressing *addressing)
{
	u32 tim1 = 0, val = 0;

	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
	tim1 |= val << T_WTR_SHIFT;

	if (addressing->num_banks == B8)
		val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
	else
		val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
	tim1 |= (val - 1) << T_RRD_SHIFT;

	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
	tim1 |= val << T_RC_SHIFT;

	val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
	tim1 |= (val - 1) << T_RAS_SHIFT;

	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
	tim1 |= val << T_WR_SHIFT;

	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
	tim1 |= val << T_RCD_SHIFT;

	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
	tim1 |= val << T_RP_SHIFT;

	return tim1;
}

static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
		const struct lpddr2_min_tck *min_tck,
		const struct lpddr2_addressing *addressing)
{
	u32 tim1 = 0, val = 0;

	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
	tim1 = val << T_WTR_SHIFT;

	/*
	 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
	 * to tFAW for de-rating
	 */
	if (addressing->num_banks == B8) {
		val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
	} else {
		val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
		val = max(min_tck->tRRD, val) - 1;
	}
	tim1 |= val << T_RRD_SHIFT;

	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
	tim1 |= (val - 1) << T_RC_SHIFT;

	val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
	val = max(min_tck->tRASmin, val) - 1;
	tim1 |= val << T_RAS_SHIFT;

	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
	tim1 |= val << T_WR_SHIFT;

	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
	tim1 |= (val - 1) << T_RCD_SHIFT;

	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
	tim1 |= (val - 1) << T_RP_SHIFT;

	return tim1;
}

static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
		const struct lpddr2_min_tck *min_tck,
		const struct lpddr2_addressing *addressing,
		u32 type)
{
	u32 tim2 = 0, val = 0;

	val = min_tck->tCKE - 1;
	tim2 |= val << T_CKE_SHIFT;

	val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
	tim2 |= val << T_RTP_SHIFT;

	/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
	val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
	tim2 |= val << T_XSNR_SHIFT;

	/* XSRD same as XSNR for LPDDR2 */
	tim2 |= val << T_XSRD_SHIFT;

	val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
	tim2 |= val << T_XP_SHIFT;

	return tim2;
}

static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
		const struct lpddr2_min_tck *min_tck,
		const struct lpddr2_addressing *addressing,
		u32 type, u32 ip_rev, u32 derated)
{
	u32 tim3 = 0, val = 0, t_dqsck;

	val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
	val = val > 0xF ? 0xF : val;
	tim3 |= val << T_RAS_MAX_SHIFT;

	val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
	tim3 |= val << T_RFC_SHIFT;

	t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
		timings->tDQSCK_max_derated : timings->tDQSCK_max;
	if (ip_rev == EMIF_4D5)
		val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
	else
		val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;

	tim3 |= val << T_TDQSCKMAX_SHIFT;

	val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
	tim3 |= val << ZQ_ZQCS_SHIFT;

	val = DIV_ROUND_UP(timings->tCKESR, t_ck);
	val = max(min_tck->tCKESR, val) - 1;
	tim3 |= val << T_CKESR_SHIFT;

	if (ip_rev == EMIF_4D5) {
		tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;

		val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
		tim3 |= val << T_PDLL_UL_SHIFT;
	}

	return tim3;
}

static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
		bool cs1_used, bool cal_resistors_per_cs)
{
	u32 zq = 0, val = 0;

	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
	zq |= val << ZQ_REFINTERVAL_SHIFT;

	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
	zq |= val << ZQ_ZQCL_MULT_SHIFT;

	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
	zq |= val << ZQ_ZQINIT_MULT_SHIFT;

	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;

	if (cal_resistors_per_cs)
		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
	else
		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;

	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */

	val = cs1_used ? 1 : 0;
	zq |= val << ZQ_CS1EN_SHIFT;

	return zq;
}

static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
		const struct emif_custom_configs *custom_configs, bool cs1_used,
		u32 sdram_io_width, u32 emif_bus_width)
{
	u32 alert = 0, interval, devcnt;

	if (custom_configs && (custom_configs->mask &
				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
		interval = custom_configs->temp_alert_poll_interval_ms;
	else
		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;

	interval *= 1000000;			/* Convert to ns */
	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
	alert |= (interval << TA_REFINTERVAL_SHIFT);

	/*
	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
	 * also to this form and subtract to get TA_DEVCNT, which is
	 * in log2(x) form.
	 */
	emif_bus_width = __fls(emif_bus_width) - 1;
	devcnt = emif_bus_width - sdram_io_width;
	alert |= devcnt << TA_DEVCNT_SHIFT;

	/* DEVWDT is in 'log2(x) - 3' form */
	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;

	alert |= 1 << TA_SFEXITEN_SHIFT;
	alert |= 1 << TA_CS0EN_SHIFT;
	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;

	return alert;
}

static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
{
	u32 idle = 0, val = 0;

	/*
	 * Maximum value in normal conditions and increased frequency
	 * when voltage is ramping
	 */
	if (volt_ramp)
		val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
	else
		val = 0x1FF;

	/*
	 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
	 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
	 */
	idle |= val << DLL_CALIB_INTERVAL_SHIFT;
	idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;

	return idle;
}

static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
{
	u32 calib = 0, val = 0;

	if (volt_ramp == DDR_VOLTAGE_RAMPING)
		val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
	else
		val = 0; /* Disabled when voltage is stable */

	calib |= val << DLL_CALIB_INTERVAL_SHIFT;
	calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;

	return calib;
}

static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
	u32 freq, u8 RL)
{
	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;

	val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
	phy |= val << READ_LATENCY_SHIFT_4D;

	if (freq <= 100000000)
		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
	else if (freq <= 200000000)
		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
	else
		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;

	phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;

	return phy;
}

static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
{
	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;

	/*
	 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
	 * half-delay is not needed else set half-delay
	 */
	if (freq >= 265000000 && freq < 267000000)
		half_delay = 0;
	else
		half_delay = 1;

	phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
	phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
			t_ck) - 1) << READ_LATENCY_SHIFT_4D5);

	return phy;
}

static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
{
	u32 fifo_we_slave_ratio;

	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);

	return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
		fifo_we_slave_ratio << 22;
}

static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
{
	u32 fifo_we_slave_ratio;

	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);

	return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
		fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
}

static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
{
	u32 fifo_we_slave_ratio;

	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);

	return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
		fifo_we_slave_ratio << 13;
}

static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
{
	u32 pwr_mgmt_ctrl	= 0, timeout;
	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;

	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;

	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
		lpmode		= cust_cfgs->lpmode;
		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
	}

	/* Timeout based on DDR frequency */
	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;

	/* The value to be set in register is "log2(timeout) - 3" */
	if (timeout < 16) {
		timeout = 0;
	} else {
		timeout = __fls(timeout) - 3;
		if (timeout & (timeout - 1))
			timeout++;
	}

	switch (lpmode) {
	case EMIF_LP_MODE_CLOCK_STOP:
		pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
					SR_TIM_MASK | PD_TIM_MASK;
		break;
	case EMIF_LP_MODE_SELF_REFRESH:
		/* Workaround for errata i735 */
		if (timeout < 6)
			timeout = 6;

		pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
					CS_TIM_MASK | PD_TIM_MASK;
		break;
	case EMIF_LP_MODE_PWR_DN:
		pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
					CS_TIM_MASK | SR_TIM_MASK;
		break;
	case EMIF_LP_MODE_DISABLE:
	default:
		pwr_mgmt_ctrl = CS_TIM_MASK |
					PD_TIM_MASK | SR_TIM_MASK;
	}

	/* No CS_TIM in EMIF_4D5 */
	if (ip_rev == EMIF_4D5)
		pwr_mgmt_ctrl &= ~CS_TIM_MASK;

	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;

	return pwr_mgmt_ctrl;
}

/*
 * Get the temperature level of the EMIF instance:
 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 * level. If there are two parts attached(one on each CS), then the temperature
 * level for the EMIF instance is the higher of the two temperatures.
 */
static void get_temperature_level(struct emif_data *emif)
{
	u32		temp, temperature_level;
	void __iomem	*base;

	base = emif->base;

	/* Read mode register 4 */
	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
				MR4_SDRAM_REF_RATE_SHIFT;

	if (emif->plat_data->device_info->cs1_used) {
		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
				>> MR4_SDRAM_REF_RATE_SHIFT;
		temperature_level = max(temp, temperature_level);
	}

	/* treat everything less than nominal(3) in MR4 as nominal */
	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
		temperature_level = SDRAM_TEMP_NOMINAL;

	/* if we get reserved value in MR4 persist with the existing value */
	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
		emif->temperature_level = temperature_level;
}

/*
 * Program EMIF shadow registers that are not dependent on temperature
 * or voltage
 */
static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
{
	void __iomem	*base = emif->base;

	writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
	writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);

	/* Settings specific for EMIF4D5 */
	if (emif->plat_data->ip_rev != EMIF_4D5)
		return;
	writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
	writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
	writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
}

/*
 * When voltage ramps dll calibration and forced read idle should
 * happen more often
 */
static void setup_volt_sensitive_regs(struct emif_data *emif,
		struct emif_regs *regs, u32 volt_state)
{
	u32		calib_ctrl;
	void __iomem	*base = emif->base;

	/*
	 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
	 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
	 * is an alias of the respective read_idle_ctrl_shdw_* (members of
	 * a union). So, the below code takes care of both cases
	 */
	if (volt_state == DDR_VOLTAGE_RAMPING)
		calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
	else
		calib_ctrl = regs->dll_calib_ctrl_shdw_normal;

	writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
}

/*
 * setup_temperature_sensitive_regs() - set the timings for temperature
 * sensitive registers. This happens once at initialisation time based
 * on the temperature at boot time and subsequently based on the temperature
 * alert interrupt. Temperature alert can happen when the temperature
 * increases or drops. So this function can have the effect of either
 * derating the timings or going back to nominal values.
 */
static void setup_temperature_sensitive_regs(struct emif_data *emif,
		struct emif_regs *regs)
{
	u32		tim1, tim3, ref_ctrl, type;
	void __iomem	*base = emif->base;
	u32		temperature;

	type = emif->plat_data->device_info->type;

	tim1 = regs->sdram_tim1_shdw;
	tim3 = regs->sdram_tim3_shdw;
	ref_ctrl = regs->ref_ctrl_shdw;

	/* No de-rating for non-lpddr2 devices */
	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
		goto out;

	temperature = emif->temperature_level;
	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
		ref_ctrl = regs->ref_ctrl_shdw_derated;
	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
		tim1 = regs->sdram_tim1_shdw_derated;
		tim3 = regs->sdram_tim3_shdw_derated;
		ref_ctrl = regs->ref_ctrl_shdw_derated;
	}

out:
	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
}

static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
{
	u32		old_temp_level;
	irqreturn_t	ret = IRQ_HANDLED;

	spin_lock_irqsave(&emif_lock, irq_state);
	old_temp_level = emif->temperature_level;
	get_temperature_level(emif);

	if (unlikely(emif->temperature_level == old_temp_level)) {
		goto out;
	} else if (!emif->curr_regs) {
		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
		goto out;
	}

	if (emif->temperature_level < old_temp_level ||
		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
		/*
		 * Temperature coming down - defer handling to thread OR
		 * Temperature far too high - do kernel_power_off() from
		 * thread context
		 */
		ret = IRQ_WAKE_THREAD;
	} else {
		/* Temperature is going up - handle immediately */
		setup_temperature_sensitive_regs(emif, emif->curr_regs);
		do_freq_update();
	}

out:
	spin_unlock_irqrestore(&emif_lock, irq_state);
	return ret;
}

static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
{
	u32			interrupts;
	struct emif_data	*emif = dev_id;
	void __iomem		*base = emif->base;
	struct device		*dev = emif->dev;
	irqreturn_t		ret = IRQ_HANDLED;

	/* Save the status and clear it */
	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);

	/*
	 * Handle temperature alert
	 * Temperature alert should be same for all ports
	 * So, it's enough to process it only for one of the ports
	 */
	if (interrupts & TA_SYS_MASK)
		ret = handle_temp_alert(base, emif);

	if (interrupts & ERR_SYS_MASK)
		dev_err(dev, "Access error from SYS port - %x\n", interrupts);

	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
		/* Save the status and clear it */
		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);

		if (interrupts & ERR_LL_MASK)
			dev_err(dev, "Access error from LL port - %x\n",
				interrupts);
	}

	return ret;
}

static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
{
	struct emif_data	*emif = dev_id;

	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
		kernel_power_off();
		return IRQ_HANDLED;
	}

	spin_lock_irqsave(&emif_lock, irq_state);

	if (emif->curr_regs) {
		setup_temperature_sensitive_regs(emif, emif->curr_regs);
		do_freq_update();
	} else {
		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
	}

	spin_unlock_irqrestore(&emif_lock, irq_state);

	return IRQ_HANDLED;
}

static void clear_all_interrupts(struct emif_data *emif)
{
	void __iomem	*base = emif->base;

	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
			base + EMIF_LL_OCP_INTERRUPT_STATUS);
}

static void disable_and_clear_all_interrupts(struct emif_data *emif)
{
	void __iomem		*base = emif->base;

	/* Disable all interrupts */
	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);

	/* Clear all interrupts */
	clear_all_interrupts(emif);
}

static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
{
	u32		interrupts, type;
	void __iomem	*base = emif->base;

	type = emif->plat_data->device_info->type;

	clear_all_interrupts(emif);

	/* Enable interrupts for SYS interface */
	interrupts = EN_ERR_SYS_MASK;
	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
		interrupts |= EN_TA_SYS_MASK;
	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);

	/* Enable interrupts for LL interface */
	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
		/* TA need not be enabled for LL */
		interrupts = EN_ERR_LL_MASK;
		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
	}

	/* setup IRQ handlers */
	return devm_request_threaded_irq(emif->dev, irq,
				    emif_interrupt_handler,
				    emif_threaded_isr,
				    0, dev_name(emif->dev),
				    emif);

}

static void __init_or_module emif_onetime_settings(struct emif_data *emif)
{
	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
	void __iomem			*base = emif->base;
	const struct lpddr2_addressing	*addressing;
	const struct ddr_device_info	*device_info;

	device_info = emif->plat_data->device_info;
	addressing = get_addressing_table(device_info);

	/*
	 * Init power management settings
	 * We don't know the frequency yet. Use a high frequency
	 * value for a conservative timeout setting
	 */
	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
			emif->plat_data->ip_rev);
	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);

	/* Init ZQ calibration settings */
	zq = get_zq_config_reg(addressing, device_info->cs1_used,
		device_info->cal_resistors_per_cs);
	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);

	/* Check temperature level temperature level*/
	get_temperature_level(emif);
	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");

	/* Init temperature polling */
	temp_alert_cfg = get_temp_alert_config(addressing,
		emif->plat_data->custom_configs, device_info->cs1_used,
		device_info->io_width, get_emif_bus_width(emif));
	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);

	/*
	 * Program external PHY control registers that are not frequency
	 * dependent
	 */
	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
		return;
	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
}

static void get_default_timings(struct emif_data *emif)
{
	struct emif_platform_data *pd = emif->plat_data;

	pd->timings		= lpddr2_jedec_timings;
	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);

	dev_warn(emif->dev, "%s: using default timings\n", __func__);
}

static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
		u32 ip_rev, struct device *dev)
{
	int valid;

	valid = (type == DDR_TYPE_LPDDR2_S4 ||
			type == DDR_TYPE_LPDDR2_S2)
		&& (density >= DDR_DENSITY_64Mb
			&& density <= DDR_DENSITY_8Gb)
		&& (io_width >= DDR_IO_WIDTH_8
			&& io_width <= DDR_IO_WIDTH_32);

	/* Combinations of EMIF and PHY revisions that we support today */
	switch (ip_rev) {
	case EMIF_4D:
		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
		break;
	case EMIF_4D5:
		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
		break;
	default:
		valid = 0;
	}

	if (!valid)
		dev_err(dev, "%s: invalid DDR details\n", __func__);
	return valid;
}

static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
		struct device *dev)
{
	int valid = 1;

	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
		valid = cust_cfgs->lpmode_freq_threshold &&
			cust_cfgs->lpmode_timeout_performance &&
			cust_cfgs->lpmode_timeout_power;

	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;

	if (!valid)
		dev_warn(dev, "%s: invalid custom configs\n", __func__);

	return valid;
}

#if defined(CONFIG_OF)
static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
		struct emif_data *emif)
{
	struct emif_custom_configs	*cust_cfgs = NULL;
	int				len;
	const int			*lpmode, *poll_intvl;

	lpmode = of_get_property(np_emif, "low-power-mode", &len);
	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);

	if (lpmode || poll_intvl)
		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
			GFP_KERNEL);

	if (!cust_cfgs)
		return;

	if (lpmode) {
		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
		cust_cfgs->lpmode = *lpmode;
		of_property_read_u32(np_emif,
				"low-power-mode-timeout-performance",
				&cust_cfgs->lpmode_timeout_performance);
		of_property_read_u32(np_emif,
				"low-power-mode-timeout-power",
				&cust_cfgs->lpmode_timeout_power);
		of_property_read_u32(np_emif,
				"low-power-mode-freq-threshold",
				&cust_cfgs->lpmode_freq_threshold);
	}

	if (poll_intvl) {
		cust_cfgs->mask |=
				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
		cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl;
	}

	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
		devm_kfree(emif->dev, cust_cfgs);
		return;
	}

	emif->plat_data->custom_configs = cust_cfgs;
}

static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
		struct device_node *np_ddr,
		struct ddr_device_info *dev_info)
{
	u32 density = 0, io_width = 0;
	int len;

	if (of_find_property(np_emif, "cs1-used", &len))
		dev_info->cs1_used = true;

	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
		dev_info->cal_resistors_per_cs = true;

	if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
		dev_info->type = DDR_TYPE_LPDDR2_S4;
	else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
		dev_info->type = DDR_TYPE_LPDDR2_S2;

	of_property_read_u32(np_ddr, "density", &density);
	of_property_read_u32(np_ddr, "io-width", &io_width);

	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
	if (density & (density - 1))
		dev_info->density = 0;
	else
		dev_info->density = __fls(density) - 5;

	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
	if (io_width & (io_width - 1))
		dev_info->io_width = 0;
	else
		dev_info->io_width = __fls(io_width) - 1;
}

static struct emif_data * __init_or_module of_get_memory_device_details(
		struct device_node *np_emif, struct device *dev)
{
	struct emif_data		*emif = NULL;
	struct ddr_device_info		*dev_info = NULL;
	struct emif_platform_data	*pd = NULL;
	struct device_node		*np_ddr;
	int				len;

	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
	if (!np_ddr)
		goto error;
	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);

	if (!emif || !pd || !dev_info) {
		dev_err(dev, "%s: Out of memory!!\n",
			__func__);
		goto error;
	}

	emif->plat_data		= pd;
	pd->device_info		= dev_info;
	emif->dev		= dev;
	emif->np_ddr		= np_ddr;
	emif->temperature_level	= SDRAM_TEMP_NOMINAL;

	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
		emif->plat_data->ip_rev = EMIF_4D;
	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
		emif->plat_data->ip_rev = EMIF_4D5;

	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);

	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;

	of_get_ddr_info(np_emif, np_ddr, dev_info);
	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
			emif->dev)) {
		dev_err(dev, "%s: invalid device data!!\n", __func__);
		goto error;
	}
	/*
	 * For EMIF instances other than EMIF1 see if the devices connected
	 * are exactly same as on EMIF1(which is typically the case). If so,
	 * mark it as a duplicate of EMIF1. This will save some memory and
	 * computation.
	 */
	if (emif1 && emif1->np_ddr == np_ddr) {
		emif->duplicate = true;
		goto out;
	} else if (emif1) {
		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
			__func__);
	}

	of_get_custom_configs(np_emif, emif);
	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
					emif->plat_data->device_info->type,
					&emif->plat_data->timings_arr_size);

	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
	goto out;

error:
	return NULL;
out:
	return emif;
}

#else

static struct emif_data * __init_or_module of_get_memory_device_details(
		struct device_node *np_emif, struct device *dev)
{
	return NULL;
}
#endif

static struct emif_data *__init_or_module get_device_details(
		struct platform_device *pdev)
{
	u32				size;
	struct emif_data		*emif = NULL;
	struct ddr_device_info		*dev_info;
	struct emif_custom_configs	*cust_cfgs;
	struct emif_platform_data	*pd;
	struct device			*dev;
	void				*temp;

	pd = pdev->dev.platform_data;
	dev = &pdev->dev;

	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
			pd->device_info->density, pd->device_info->io_width,
			pd->phy_type, pd->ip_rev, dev))) {
		dev_err(dev, "%s: invalid device data\n", __func__);
		goto error;
	}

	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);

	if (!emif || !pd || !dev_info) {
		dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
		goto error;
	}

	memcpy(temp, pd, sizeof(*pd));
	pd = temp;
	memcpy(dev_info, pd->device_info, sizeof(*dev_info));

	pd->device_info		= dev_info;
	emif->plat_data		= pd;
	emif->dev		= dev;
	emif->temperature_level	= SDRAM_TEMP_NOMINAL;

	/*
	 * For EMIF instances other than EMIF1 see if the devices connected
	 * are exactly same as on EMIF1(which is typically the case). If so,
	 * mark it as a duplicate of EMIF1 and skip copying timings data.
	 * This will save some memory and some computation later.
	 */
	emif->duplicate = emif1 && (memcmp(dev_info,
		emif1->plat_data->device_info,
		sizeof(struct ddr_device_info)) == 0);

	if (emif->duplicate) {
		pd->timings = NULL;
		pd->min_tck = NULL;
		goto out;
	} else if (emif1) {
		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
			__func__);
	}

	/*
	 * Copy custom configs - ignore allocation error, if any, as
	 * custom_configs is not very critical
	 */
	cust_cfgs = pd->custom_configs;
	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
		if (temp)
			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
		else
			dev_warn(dev, "%s:%d: allocation error\n", __func__,
				__LINE__);
		pd->custom_configs = temp;
	}

	/*
	 * Copy timings and min-tck values from platform data. If it is not
	 * available or if memory allocation fails, use JEDEC defaults
	 */
	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
	if (pd->timings) {
		temp = devm_kzalloc(dev, size, GFP_KERNEL);
		if (temp) {
			memcpy(temp, pd->timings, sizeof(*pd->timings));
			pd->timings = temp;
		} else {
			dev_warn(dev, "%s:%d: allocation error\n", __func__,
				__LINE__);
			get_default_timings(emif);
		}
	} else {
		get_default_timings(emif);
	}

	if (pd->min_tck) {
		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
		if (temp) {
			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
			pd->min_tck = temp;
		} else {
			dev_warn(dev, "%s:%d: allocation error\n", __func__,
				__LINE__);
			pd->min_tck = &lpddr2_jedec_min_tck;
		}
	} else {
		pd->min_tck = &lpddr2_jedec_min_tck;
	}

out:
	return emif;

error:
	return NULL;
}

static int __init_or_module emif_probe(struct platform_device *pdev)
{
	struct emif_data	*emif;
	struct resource		*res;
	int			irq;

	if (pdev->dev.of_node)
		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
	else
		emif = get_device_details(pdev);

	if (!emif) {
		pr_err("%s: error getting device data\n", __func__);
		goto error;
	}

	list_add(&emif->node, &device_list);
	emif->addressing = get_addressing_table(emif->plat_data->device_info);

	/* Save pointers to each other in emif and device structures */
	emif->dev = &pdev->dev;
	platform_set_drvdata(pdev, emif);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(emif->dev, "%s: error getting memory resource\n",
			__func__);
		goto error;
	}

	emif->base = devm_request_and_ioremap(emif->dev, res);
	if (!emif->base) {
		dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n",
			__func__);
		goto error;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
			__func__, irq);
		goto error;
	}

	emif_onetime_settings(emif);
	emif_debugfs_init(emif);
	disable_and_clear_all_interrupts(emif);
	setup_interrupts(emif, irq);

	/* One-time actions taken on probing the first device */
	if (!emif1) {
		emif1 = emif;
		spin_lock_init(&emif_lock);

		/*
		 * TODO: register notifiers for frequency and voltage
		 * change here once the respective frameworks are
		 * available
		 */
	}

	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
		__func__, emif->base, irq);

	return 0;
error:
	return -ENODEV;
}

static int __exit emif_remove(struct platform_device *pdev)
{
	struct emif_data *emif = platform_get_drvdata(pdev);

	emif_debugfs_exit(emif);

	return 0;
}

static void emif_shutdown(struct platform_device *pdev)
{
	struct emif_data	*emif = platform_get_drvdata(pdev);

	disable_and_clear_all_interrupts(emif);
}

static int get_emif_reg_values(struct emif_data *emif, u32 freq,
		struct emif_regs *regs)
{
	u32				cs1_used, ip_rev, phy_type;
	u32				cl, type;
	const struct lpddr2_timings	*timings;
	const struct lpddr2_min_tck	*min_tck;
	const struct ddr_device_info	*device_info;
	const struct lpddr2_addressing	*addressing;
	struct emif_data		*emif_for_calc;
	struct device			*dev;
	const struct emif_custom_configs *custom_configs;

	dev = emif->dev;
	/*
	 * If the devices on this EMIF instance is duplicate of EMIF1,
	 * use EMIF1 details for the calculation
	 */
	emif_for_calc	= emif->duplicate ? emif1 : emif;
	timings		= get_timings_table(emif_for_calc, freq);
	addressing	= emif_for_calc->addressing;
	if (!timings || !addressing) {
		dev_err(dev, "%s: not enough data available for %dHz",
			__func__, freq);
		return -1;
	}

	device_info	= emif_for_calc->plat_data->device_info;
	type		= device_info->type;
	cs1_used	= device_info->cs1_used;
	ip_rev		= emif_for_calc->plat_data->ip_rev;
	phy_type	= emif_for_calc->plat_data->phy_type;

	min_tck		= emif_for_calc->plat_data->min_tck;
	custom_configs	= emif_for_calc->plat_data->custom_configs;

	set_ddr_clk_period(freq);

	regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
	regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
			addressing);
	regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
			addressing, type);
	regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
		addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);

	cl = get_cl(emif);

	if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
		regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
			timings, freq, cl);
	} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
		regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
		regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
		regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
		regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
	} else {
		return -1;
	}

	/* Only timeout values in pwr_mgmt_ctrl_shdw register */
	regs->pwr_mgmt_ctrl_shdw =
		get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
		(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);

	if (ip_rev & EMIF_4D) {
		regs->read_idle_ctrl_shdw_normal =
			get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);

		regs->read_idle_ctrl_shdw_volt_ramp =
			get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
	} else if (ip_rev & EMIF_4D5) {
		regs->dll_calib_ctrl_shdw_normal =
			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);

		regs->dll_calib_ctrl_shdw_volt_ramp =
			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
	}

	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
		regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
			addressing);

		regs->sdram_tim1_shdw_derated =
			get_sdram_tim_1_shdw_derated(timings, min_tck,
				addressing);

		regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
			min_tck, addressing, type, ip_rev,
			EMIF_DERATED_TIMINGS);
	}

	regs->freq = freq;

	return 0;
}

/*
 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
 * given frequency(freq):
 *
 * As an optimisation, every EMIF instance other than EMIF1 shares the
 * register cache with EMIF1 if the devices connected on this instance
 * are same as that on EMIF1(indicated by the duplicate flag)
 *
 * If we do not have an entry corresponding to the frequency given, we
 * allocate a new entry and calculate the values
 *
 * Upon finding the right reg dump, save it in curr_regs. It can be
 * directly used for thermal de-rating and voltage ramping changes.
 */
static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
{
	int			i;
	struct emif_regs	**regs_cache;
	struct emif_regs	*regs = NULL;
	struct device		*dev;

	dev = emif->dev;
	if (emif->curr_regs && emif->curr_regs->freq == freq) {
		dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
		return emif->curr_regs;
	}

	if (emif->duplicate)
		regs_cache = emif1->regs_cache;
	else
		regs_cache = emif->regs_cache;

	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
		if (regs_cache[i]->freq == freq) {
			regs = regs_cache[i];
			dev_dbg(dev,
				"%s: reg dump found in reg cache for %u Hz\n",
				__func__, freq);
			break;
		}
	}

	/*
	 * If we don't have an entry for this frequency in the cache create one
	 * and calculate the values
	 */
	if (!regs) {
		regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
		if (!regs)
			return NULL;

		if (get_emif_reg_values(emif, freq, regs)) {
			devm_kfree(emif->dev, regs);
			return NULL;
		}

		/*
		 * Now look for an un-used entry in the cache and save the
		 * newly created struct. If there are no free entries
		 * over-write the last entry
		 */
		for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
			;

		if (i >= EMIF_MAX_NUM_FREQUENCIES) {
			dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
				__func__);
			i = EMIF_MAX_NUM_FREQUENCIES - 1;
			devm_kfree(emif->dev, regs_cache[i]);
		}
		regs_cache[i] = regs;
	}

	return regs;
}

static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
{
	dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
		volt_state);

	if (!emif->curr_regs) {
		dev_err(emif->dev,
			"%s: volt-notify before registers are ready: %d\n",
			__func__, volt_state);
		return;
	}

	setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
}

/*
 * TODO: voltage notify handling should be hooked up to
 * regulator framework as soon as the necessary support
 * is available in mainline kernel. This function is un-used
 * right now.
 */
static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
{
	struct emif_data *emif;

	spin_lock_irqsave(&emif_lock, irq_state);

	list_for_each_entry(emif, &device_list, node)
		do_volt_notify_handling(emif, volt_state);
	do_freq_update();

	spin_unlock_irqrestore(&emif_lock, irq_state);
}

static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
{
	struct emif_regs *regs;

	regs = get_regs(emif, new_freq);
	if (!regs)
		return;

	emif->curr_regs = regs;

	/*
	 * Update the shadow registers:
	 * Temperature and voltage-ramp sensitive settings are also configured
	 * in terms of DDR cycles. So, we need to update them too when there
	 * is a freq change
	 */
	dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
		__func__, new_freq);
	setup_registers(emif, regs);
	setup_temperature_sensitive_regs(emif, regs);
	setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);

	/*
	 * Part of workaround for errata i728. See do_freq_update()
	 * for more details
	 */
	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
		set_lpmode(emif, EMIF_LP_MODE_DISABLE);
}

/*
 * TODO: frequency notify handling should be hooked up to
 * clock framework as soon as the necessary support is
 * available in mainline kernel. This function is un-used
 * right now.
 */
static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
{
	struct emif_data *emif;

	/*
	 * NOTE: we are taking the spin-lock here and releases it
	 * only in post-notifier. This doesn't look good and
	 * Sparse complains about it, but this seems to be
	 * un-avoidable. We need to lock a sequence of events
	 * that is split between EMIF and clock framework.
	 *
	 * 1. EMIF driver updates EMIF timings in shadow registers in the
	 *    frequency pre-notify callback from clock framework
	 * 2. clock framework sets up the registers for the new frequency
	 * 3. clock framework initiates a hw-sequence that updates
	 *    the frequency EMIF timings synchronously.
	 *
	 * All these 3 steps should be performed as an atomic operation
	 * vis-a-vis similar sequence in the EMIF interrupt handler
	 * for temperature events. Otherwise, there could be race
	 * conditions that could result in incorrect EMIF timings for
	 * a given frequency
	 */
	spin_lock_irqsave(&emif_lock, irq_state);

	list_for_each_entry(emif, &device_list, node)
		do_freq_pre_notify_handling(emif, new_freq);
}

static void do_freq_post_notify_handling(struct emif_data *emif)
{
	/*
	 * Part of workaround for errata i728. See do_freq_update()
	 * for more details
	 */
	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
		set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
}

/*
 * TODO: frequency notify handling should be hooked up to
 * clock framework as soon as the necessary support is
 * available in mainline kernel. This function is un-used
 * right now.
 */
static void __attribute__((unused)) freq_post_notify_handling(void)
{
	struct emif_data *emif;

	list_for_each_entry(emif, &device_list, node)
		do_freq_post_notify_handling(emif);

	/*
	 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
	 * for more details
	 */
	spin_unlock_irqrestore(&emif_lock, irq_state);
}

#if defined(CONFIG_OF)
static const struct of_device_id emif_of_match[] = {
		{ .compatible = "ti,emif-4d" },
		{ .compatible = "ti,emif-4d5" },
		{},
};
MODULE_DEVICE_TABLE(of, emif_of_match);
#endif

static struct platform_driver emif_driver = {
	.remove		= __exit_p(emif_remove),
	.shutdown	= emif_shutdown,
	.driver = {
		.name = "emif",
		.of_match_table = of_match_ptr(emif_of_match),
	},
};

static int __init_or_module emif_register(void)
{
	return platform_driver_probe(&emif_driver, emif_probe);
}

static void __exit emif_unregister(void)
{
	platform_driver_unregister(&emif_driver);
}

module_init(emif_register);
module_exit(emif_unregister);
MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:emif");
MODULE_AUTHOR("Texas Instruments Inc");