/*
* V4L2 SoC Camera driver for OMAP1 Camera Interface
*
* Copyright (C) 2010, Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
*
* Based on V4L2 Driver for i.MXL/i.MXL camera (CSI) host
* Copyright (C) 2008, Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
* Copyright (C) 2009, Darius Augulis <augulis.darius@gmail.com>
*
* Based on PXA SoC camera driver
* Copyright (C) 2006, Sascha Hauer, Pengutronix
* Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
*
* Hardware specific bits initialy based on former work by Matt Callow
* drivers/media/video/omap/omap1510cam.c
* Copyright (C) 2006 Matt Callow
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <media/omap1_camera.h>
#include <media/soc_camera.h>
#include <media/soc_mediabus.h>
#include <media/videobuf-dma-contig.h>
#include <media/videobuf-dma-sg.h>
#include <plat/dma.h>
#define DRIVER_NAME "omap1-camera"
#define DRIVER_VERSION "0.0.2"
/*
* ---------------------------------------------------------------------------
* OMAP1 Camera Interface registers
* ---------------------------------------------------------------------------
*/
#define REG_CTRLCLOCK 0x00
#define REG_IT_STATUS 0x04
#define REG_MODE 0x08
#define REG_STATUS 0x0C
#define REG_CAMDATA 0x10
#define REG_GPIO 0x14
#define REG_PEAK_COUNTER 0x18
/* CTRLCLOCK bit shifts */
#define LCLK_EN BIT(7)
#define DPLL_EN BIT(6)
#define MCLK_EN BIT(5)
#define CAMEXCLK_EN BIT(4)
#define POLCLK BIT(3)
#define FOSCMOD_SHIFT 0
#define FOSCMOD_MASK (0x7 << FOSCMOD_SHIFT)
#define FOSCMOD_12MHz 0x0
#define FOSCMOD_6MHz 0x2
#define FOSCMOD_9_6MHz 0x4
#define FOSCMOD_24MHz 0x5
#define FOSCMOD_8MHz 0x6
/* IT_STATUS bit shifts */
#define DATA_TRANSFER BIT(5)
#define FIFO_FULL BIT(4)
#define H_DOWN BIT(3)
#define H_UP BIT(2)
#define V_DOWN BIT(1)
#define V_UP BIT(0)
/* MODE bit shifts */
#define RAZ_FIFO BIT(18)
#define EN_FIFO_FULL BIT(17)
#define EN_NIRQ BIT(16)
#define THRESHOLD_SHIFT 9
#define THRESHOLD_MASK (0x7f << THRESHOLD_SHIFT)
#define DMA BIT(8)
#define EN_H_DOWN BIT(7)
#define EN_H_UP BIT(6)
#define EN_V_DOWN BIT(5)
#define EN_V_UP BIT(4)
#define ORDERCAMD BIT(3)
#define IRQ_MASK (EN_V_UP | EN_V_DOWN | EN_H_UP | EN_H_DOWN | \
EN_NIRQ | EN_FIFO_FULL)
/* STATUS bit shifts */
#define HSTATUS BIT(1)
#define VSTATUS BIT(0)
/* GPIO bit shifts */
#define CAM_RST BIT(0)
/* end of OMAP1 Camera Interface registers */
#define SOCAM_BUS_FLAGS (V4L2_MBUS_MASTER | \
V4L2_MBUS_HSYNC_ACTIVE_HIGH | V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
V4L2_MBUS_PCLK_SAMPLE_RISING | V4L2_MBUS_PCLK_SAMPLE_FALLING | \
V4L2_MBUS_DATA_ACTIVE_HIGH)
#define FIFO_SIZE ((THRESHOLD_MASK >> THRESHOLD_SHIFT) + 1)
#define FIFO_SHIFT __fls(FIFO_SIZE)
#define DMA_BURST_SHIFT (1 + OMAP_DMA_DATA_BURST_4)
#define DMA_BURST_SIZE (1 << DMA_BURST_SHIFT)
#define DMA_ELEMENT_SHIFT OMAP_DMA_DATA_TYPE_S32
#define DMA_ELEMENT_SIZE (1 << DMA_ELEMENT_SHIFT)
#define DMA_FRAME_SHIFT_CONTIG (FIFO_SHIFT - 1)
#define DMA_FRAME_SHIFT_SG DMA_BURST_SHIFT
#define DMA_FRAME_SHIFT(x) ((x) == OMAP1_CAM_DMA_CONTIG ? \
DMA_FRAME_SHIFT_CONTIG : \
DMA_FRAME_SHIFT_SG)
#define DMA_FRAME_SIZE(x) (1 << DMA_FRAME_SHIFT(x))
#define DMA_SYNC OMAP_DMA_SYNC_FRAME
#define THRESHOLD_LEVEL DMA_FRAME_SIZE
#define MAX_VIDEO_MEM 4 /* arbitrary video memory limit in MB */
/*
* Structures
*/
/* buffer for one video frame */
struct omap1_cam_buf {
struct videobuf_buffer vb;
enum v4l2_mbus_pixelcode code;
int inwork;
struct scatterlist *sgbuf;
int sgcount;
int bytes_left;
enum videobuf_state result;
};
struct omap1_cam_dev {
struct soc_camera_host soc_host;
struct soc_camera_device *icd;
struct clk *clk;
unsigned int irq;
void __iomem *base;
int dma_ch;
struct omap1_cam_platform_data *pdata;
struct resource *res;
unsigned long pflags;
unsigned long camexclk;
struct list_head capture;
/* lock used to protect videobuf */
spinlock_t lock;
/* Pointers to DMA buffers */
struct omap1_cam_buf *active;
struct omap1_cam_buf *ready;
enum omap1_cam_vb_mode vb_mode;
int (*mmap_mapper)(struct videobuf_queue *q,
struct videobuf_buffer *buf,
struct vm_area_struct *vma);
u32 reg_cache[0];
};
static void cam_write(struct omap1_cam_dev *pcdev, u16 reg, u32 val)
{
pcdev->reg_cache[reg / sizeof(u32)] = val;
__raw_writel(val, pcdev->base + reg);
}
static u32 cam_read(struct omap1_cam_dev *pcdev, u16 reg, bool from_cache)
{
return !from_cache ? __raw_readl(pcdev->base + reg) :
pcdev->reg_cache[reg / sizeof(u32)];
}
#define CAM_READ(pcdev, reg) \
cam_read(pcdev, REG_##reg, false)
#define CAM_WRITE(pcdev, reg, val) \
cam_write(pcdev, REG_##reg, val)
#define CAM_READ_CACHE(pcdev, reg) \
cam_read(pcdev, REG_##reg, true)
/*
* Videobuf operations
*/
static int omap1_videobuf_setup(struct videobuf_queue *vq, unsigned int *count,
unsigned int *size)
{
struct soc_camera_device *icd = vq->priv_data;
int bytes_per_line = soc_mbus_bytes_per_line(icd->user_width,
icd->current_fmt->host_fmt);
struct soc_camera_host *ici = to_soc_camera_host(icd->parent);
struct omap1_cam_dev *pcdev = ici->priv;
if (bytes_per_line < 0)
return bytes_per_line;
*size = bytes_per_line * icd->user_height;
if (!*count || *count < OMAP1_CAMERA_MIN_BUF_COUNT(pcdev->vb_mode))
*count = OMAP1_CAMERA_MIN_BUF_COUNT(pcdev->vb_mode);
if (*size * *count > MAX_VIDEO_MEM * 1024 * 1024)
*count = (MAX_VIDEO_MEM * 1024 * 1024) / *size;
dev_dbg(icd->parent,
"%s: count=%d, size=%d\n", __func__, *count, *size);
return 0;
}
static void free_buffer(struct videobuf_queue *vq, struct omap1_cam_buf *buf,
enum omap1_cam_vb_mode vb_mode)
{
struct videobuf_buffer *vb = &buf->vb;
BUG_ON(in_interrupt());
videobuf_waiton(vq, vb, 0, 0);
if (vb_mode == OMAP1_CAM_DMA_CONTIG) {
videobuf_dma_contig_free(vq, vb);
} else {
struct soc_camera_device *icd = vq->priv_data;
struct device *dev = icd->parent;
struct videobuf_dmabuf *dma = videobuf_to_dma(vb);
videobuf_dma_unmap(dev, dma);
videobuf_dma_free(dma);
}
vb->state = VIDEOBUF_NEEDS_INIT;
}
static int omap1_videobuf_prepare(struct videobuf_queue *vq,
struct videobuf_buffer *vb, enum v4l2_field field)
{
struct soc_camera_device *icd = vq->priv_data;
struct omap1_cam_buf *buf = container_of(vb, struct omap1_cam_buf, vb);
int bytes_per_line = soc_mbus_bytes_per_line(icd->user_width,
icd->current_fmt->host_fmt);
struct soc_camera_host *ici = to_soc_camera_host(icd->parent);
struct omap1_cam_dev *pcdev = ici->priv;
int ret;
if (bytes_per_line < 0)
return bytes_per_line;
WARN_ON(!list_empty(&vb->queue));
BUG_ON(NULL == icd->current_fmt);
buf->inwork = 1;
if (buf->code != icd->current_fmt->code || vb->field != field ||
vb->width != icd->user_width ||
vb->height != icd->user_height) {
buf->code = icd->current_fmt->code;
vb->width = icd->user_width;
vb->height = icd->user_height;
vb->field = field;
vb->state = VIDEOBUF_NEEDS_INIT;
}
vb->size = bytes_per_line * vb->height;
if (vb->baddr && vb->bsize < vb->size) {
ret = -EINVAL;
goto out;
}
if (vb->state == VIDEOBUF_NEEDS_INIT) {
ret = videobuf_iolock(vq, vb, NULL);
if (ret)
goto fail;
vb->state = VIDEOBUF_PREPARED;
}
buf->inwork = 0;
return 0;
fail:
free_buffer(vq, buf, pcdev->vb_mode);
out:
buf->inwork = 0;
return ret;
}
static void set_dma_dest_params(int dma_ch, struct omap1_cam_buf *buf,
enum omap1_cam_vb_mode vb_mode)
{
dma_addr_t dma_addr;
unsigned int block_size;
if (vb_mode == OMAP1_CAM_DMA_CONTIG) {
dma_addr = videobuf_to_dma_contig(&buf->vb);
block_size = buf->vb.size;
} else {
if (WARN_ON(!buf->sgbuf)) {
buf->result = VIDEOBUF_ERROR;
return;
}
dma_addr = sg_dma_address(buf->sgbuf);
if (WARN_ON(!dma_addr)) {
buf->sgbuf = NULL;
buf->result = VIDEOBUF_ERROR;
return;
}
block_size = sg_dma_len(buf->sgbuf);
if (WARN_ON(!block_size)) {
buf->sgbuf = NULL;
buf->result = VIDEOBUF_ERROR;
return;
}
if (unlikely(buf->bytes_left < block_size))
block_size = buf->bytes_left;
if (WARN_ON(dma_addr & (DMA_FRAME_SIZE(vb_mode) *
DMA_ELEMENT_SIZE - 1))) {
dma_addr = ALIGN(dma_addr, DMA_FRAME_SIZE(vb_mode) *
DMA_ELEMENT_SIZE);
block_size &= ~(DMA_FRAME_SIZE(vb_mode) *
DMA_ELEMENT_SIZE - 1);
}
buf->bytes_left -= block_size;
buf->sgcount++;
}
omap_set_dma_dest_params(dma_ch,
OMAP_DMA_PORT_EMIFF, OMAP_DMA_AMODE_POST_INC, dma_addr, 0, 0);
omap_set_dma_transfer_params(dma_ch,
OMAP_DMA_DATA_TYPE_S32, DMA_FRAME_SIZE(vb_mode),
block_size >> (DMA_FRAME_SHIFT(vb_mode) + DMA_ELEMENT_SHIFT),
DMA_SYNC, 0, 0);
}
static struct omap1_cam_buf *prepare_next_vb(struct omap1_cam_dev *pcdev)
{
struct omap1_cam_buf *buf;
/*
* If there is already a buffer pointed out by the pcdev->ready,
* (re)use it, otherwise try to fetch and configure a new one.
*/
buf = pcdev->ready;
if (!buf) {
if (list_empty(&pcdev->capture))
return buf;
buf = list_entry(pcdev->capture.next,
struct omap1_cam_buf, vb.queue);
buf->vb.state = VIDEOBUF_ACTIVE;
pcdev->ready = buf;
list_del_init(&buf->vb.queue);
}
if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) {
/*
* In CONTIG mode, we can safely enter next buffer parameters
* into the DMA programming register set after the DMA
* has already been activated on the previous buffer
*/
set_dma_dest_params(pcdev->dma_ch, buf, pcdev->vb_mode);
} else {
/*
* In SG mode, the above is not safe since there are probably
* a bunch of sgbufs from previous sglist still pending.
* Instead, mark the sglist fresh for the upcoming
* try_next_sgbuf().
*/
buf->sgbuf = NULL;
}
return buf;
}
static struct scatterlist *try_next_sgbuf(int dma_ch, struct omap1_cam_buf *buf)
{
struct scatterlist *sgbuf;
if (likely(buf->sgbuf)) {
/* current sglist is active */
if (unlikely(!buf->bytes_left)) {
/* indicate sglist complete */
sgbuf = NULL;
} else {
/* process next sgbuf */
sgbuf = sg_next(buf->sgbuf);
if (WARN_ON(!sgbuf)) {
buf->result = VIDEOBUF_ERROR;
} else if (WARN_ON(!sg_dma_len(sgbuf))) {
sgbuf = NULL;
buf->result = VIDEOBUF_ERROR;
}
}
buf->sgbuf = sgbuf;
} else {
/* sglist is fresh, initialize it before using */
struct videobuf_dmabuf *dma = videobuf_to_dma(&buf->vb);
sgbuf = dma->sglist;
if (!(WARN_ON(!sgbuf))) {
buf->sgbuf = sgbuf;
buf->sgcount = 0;
buf->bytes_left = buf->vb.size;
buf->result = VIDEOBUF_DONE;
}
}
if (sgbuf)
/*
* Put our next sgbuf parameters (address, size)
* into the DMA programming register set.
*/
set_dma_dest_params(dma_ch, buf, OMAP1_CAM_DMA_SG);
return sgbuf;
}
static void start_capture(struct omap1_cam_dev *pcdev)
{
struct omap1_cam_buf *buf = pcdev->active;
u32 ctrlclock = CAM_READ_CACHE(pcdev, CTRLCLOCK);
u32 mode = CAM_READ_CACHE(pcdev, MODE) & ~EN_V_DOWN;
if (WARN_ON(!buf))
return;
/*
* Enable start of frame interrupt, which we will use for activating
* our end of frame watchdog when capture actually starts.
*/
mode |= EN_V_UP;
if (unlikely(ctrlclock & LCLK_EN))
/* stop pixel clock before FIFO reset */
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~LCLK_EN);
/* reset FIFO */
CAM_WRITE(pcdev, MODE, mode | RAZ_FIFO);
omap_start_dma(pcdev->dma_ch);
if (pcdev->vb_mode == OMAP1_CAM_DMA_SG) {
/*
* In SG mode, it's a good moment for fetching next sgbuf
* from the current sglist and, if available, already putting
* its parameters into the DMA programming register set.
*/
try_next_sgbuf(pcdev->dma_ch, buf);
}
/* (re)enable pixel clock */
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock | LCLK_EN);
/* release FIFO reset */
CAM_WRITE(pcdev, MODE, mode);
}
static void suspend_capture(struct omap1_cam_dev *pcdev)
{
u32 ctrlclock = CAM_READ_CACHE(pcdev, CTRLCLOCK);
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~LCLK_EN);
omap_stop_dma(pcdev->dma_ch);
}
static void disable_capture(struct omap1_cam_dev *pcdev)
{
u32 mode = CAM_READ_CACHE(pcdev, MODE);
CAM_WRITE(pcdev, MODE, mode & ~(IRQ_MASK | DMA));
}
static void omap1_videobuf_queue(struct videobuf_queue *vq,
struct videobuf_buffer *vb)
{
struct soc_camera_device *icd = vq->priv_data;
struct soc_camera_host *ici = to_soc_camera_host(icd->parent);
struct omap1_cam_dev *pcdev = ici->priv;
struct omap1_cam_buf *buf;
u32 mode;
list_add_tail(&vb->queue, &pcdev->capture);
vb->state = VIDEOBUF_QUEUED;
if (pcdev->active) {
/*
* Capture in progress, so don't touch pcdev->ready even if
* empty. Since the transfer of the DMA programming register set
* content to the DMA working register set is done automatically
* by the DMA hardware, this can pretty well happen while we
* are keeping the lock here. Leave fetching it from the queue
* to be done when a next DMA interrupt occures instead.
*/
return;
}
WARN_ON(pcdev->ready);
buf = prepare_next_vb(pcdev);
if (WARN_ON(!buf))
return;
pcdev->active = buf;
pcdev->ready = NULL;
dev_dbg(icd->parent,
"%s: capture not active, setup FIFO, start DMA\n", __func__);
mode = CAM_READ_CACHE(pcdev, MODE) & ~THRESHOLD_MASK;
mode |= THRESHOLD_LEVEL(pcdev->vb_mode) << THRESHOLD_SHIFT;
CAM_WRITE(pcdev, MODE, mode | EN_FIFO_FULL | DMA);
if (pcdev->vb_mode == OMAP1_CAM_DMA_SG) {
/*
* In SG mode, the above prepare_next_vb() didn't actually
* put anything into the DMA programming register set,
* so we have to do it now, before activating DMA.
*/
try_next_sgbuf(pcdev->dma_ch, buf);
}
start_capture(pcdev);
}
static void omap1_videobuf_release(struct videobuf_queue *vq,
struct videobuf_buffer *vb)
{
struct omap1_cam_buf *buf =
container_of(vb, struct omap1_cam_buf, vb);
struct soc_camera_device *icd = vq->priv_data;
struct device *dev = icd->parent;
struct soc_camera_host *ici = to_soc_camera_host(dev);
struct omap1_cam_dev *pcdev = ici->priv;
switch (vb->state) {
case VIDEOBUF_DONE:
dev_dbg(dev, "%s (done)\n", __func__);
break;
case VIDEOBUF_ACTIVE:
dev_dbg(dev, "%s (active)\n", __func__);
break;
case VIDEOBUF_QUEUED:
dev_dbg(dev, "%s (queued)\n", __func__);
break;
case VIDEOBUF_PREPARED:
dev_dbg(dev, "%s (prepared)\n", __func__);
break;
default:
dev_dbg(dev, "%s (unknown %d)\n", __func__, vb->state);
break;
}
free_buffer(vq, buf, pcdev->vb_mode);
}
static void videobuf_done(struct omap1_cam_dev *pcdev,
enum videobuf_state result)
{
struct omap1_cam_buf *buf = pcdev->active;
struct videobuf_buffer *vb;
struct device *dev = pcdev->icd->parent;
if (WARN_ON(!buf)) {
suspend_capture(pcdev);
disable_capture(pcdev);
return;
}
if (result == VIDEOBUF_ERROR)
suspend_capture(pcdev);
vb = &buf->vb;
if (waitqueue_active(&vb->done)) {
if (!pcdev->ready && result != VIDEOBUF_ERROR) {
/*
* No next buffer has been entered into the DMA
* programming register set on time (could be done only
* while the previous DMA interurpt was processed, not
* later), so the last DMA block, be it a whole buffer
* if in CONTIG or its last sgbuf if in SG mode, is
* about to be reused by the just autoreinitialized DMA
* engine, and overwritten with next frame data. Best we
* can do is stopping the capture as soon as possible,
* hopefully before the next frame start.
*/
suspend_capture(pcdev);
}
vb->state = result;
do_gettimeofday(&vb->ts);
if (result != VIDEOBUF_ERROR)
vb->field_count++;
wake_up(&vb->done);
/* shift in next buffer */
buf = pcdev->ready;
pcdev->active = buf;
pcdev->ready = NULL;
if (!buf) {
/*
* No next buffer was ready on time (see above), so
* indicate error condition to force capture restart or
* stop, depending on next buffer already queued or not.
*/
result = VIDEOBUF_ERROR;
prepare_next_vb(pcdev);
buf = pcdev->ready;
pcdev->active = buf;
pcdev->ready = NULL;
}
} else if (pcdev->ready) {
/*
* In both CONTIG and SG mode, the DMA engine has possibly
* been already autoreinitialized with the preprogrammed
* pcdev->ready buffer. We can either accept this fact
* and just swap the buffers, or provoke an error condition
* and restart capture. The former seems less intrusive.
*/
dev_dbg(dev, "%s: nobody waiting on videobuf, swap with next\n",
__func__);
pcdev->active = pcdev->ready;
if (pcdev->vb_mode == OMAP1_CAM_DMA_SG) {
/*
* In SG mode, we have to make sure that the buffer we
* are putting back into the pcdev->ready is marked
* fresh.
*/
buf->sgbuf = NULL;
}
pcdev->ready = buf;
buf = pcdev->active;
} else {
/*
* No next buffer has been entered into
* the DMA programming register set on time.
*/
if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) {
/*
* In CONTIG mode, the DMA engine has already been
* reinitialized with the current buffer. Best we can do
* is not touching it.
*/
dev_dbg(dev,
"%s: nobody waiting on videobuf, reuse it\n",
__func__);
} else {
/*
* In SG mode, the DMA engine has just been
* autoreinitialized with the last sgbuf from the
* current list. Restart capture in order to transfer
* next frame start into the first sgbuf, not the last
* one.
*/
if (result != VIDEOBUF_ERROR) {
suspend_capture(pcdev);
result = VIDEOBUF_ERROR;
}
}
}
if (!buf) {
dev_dbg(dev, "%s: no more videobufs, stop capture\n", __func__);
disable_capture(pcdev);
return;
}
if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) {
/*
* In CONTIG mode, the current buffer parameters had already
* been entered into the DMA programming register set while the
* buffer was fetched with prepare_next_vb(), they may have also
* been transferred into the runtime set and already active if
* the DMA still running.
*/
} else {
/* In SG mode, extra steps are required */
if (result == VIDEOBUF_ERROR)
/* make sure we (re)use sglist from start on error */
buf->sgbuf = NULL;
/*
* In any case, enter the next sgbuf parameters into the DMA
* programming register set. They will be used either during
* nearest DMA autoreinitialization or, in case of an error,
* on DMA startup below.
*/
try_next_sgbuf(pcdev->dma_ch, buf);
}
if (result == VIDEOBUF_ERROR) {
dev_dbg(dev, "%s: videobuf error; reset FIFO, restart DMA\n",
__func__);
start_capture(pcdev);
/*
* In SG mode, the above also resulted in the next sgbuf
* parameters being entered into the DMA programming register
* set, making them ready for next DMA autoreinitialization.
*/
}
/*
* Finally, try fetching next buffer.
* In CONTIG mode, it will also enter it into the DMA programming
* register set, making it ready for next DMA autoreinitialization.
*/
prepare_next_vb(pcdev);
}
static void dma_isr(int channel, unsigned short status, void *data)
{
struct omap1_cam_dev *pcdev = data;
struct omap1_cam_buf *buf = pcdev->active;
unsigned long flags;
spin_lock_irqsave(&pcdev->lock, flags);
if (WARN_ON(!buf)) {
suspend_capture(pcdev);
disable_capture(pcdev);
goto out;
}
if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) {
/*
* In CONTIG mode, assume we have just managed to collect the
* whole frame, hopefully before our end of frame watchdog is
* triggered. Then, all we have to do is disabling the watchdog
* for this frame, and calling videobuf_done() with success
* indicated.
*/
CAM_WRITE(pcdev, MODE,
CAM_READ_CACHE(pcdev, MODE) & ~EN_V_DOWN);
videobuf_done(pcdev, VIDEOBUF_DONE);
} else {
/*
* In SG mode, we have to process every sgbuf from the current
* sglist, one after another.
*/
if (buf->sgbuf) {
/*
* Current sglist not completed yet, try fetching next
* sgbuf, hopefully putting it into the DMA programming
* register set, making it ready for next DMA
* autoreinitialization.
*/
try_next_sgbuf(pcdev->dma_ch, buf);
if (buf->sgbuf)
goto out;
/*
* No more sgbufs left in the current sglist. This
* doesn't mean that the whole videobuffer is already
* complete, but only that the last sgbuf from the
* current sglist is about to be filled. It will be
* ready on next DMA interrupt, signalled with the
* buf->sgbuf set back to NULL.
*/
if (buf->result != VIDEOBUF_ERROR) {
/*
* Video frame collected without errors so far,
* we can prepare for collecting a next one
* as soon as DMA gets autoreinitialized
* after the current (last) sgbuf is completed.
*/
buf = prepare_next_vb(pcdev);
if (!buf)
goto out;
try_next_sgbuf(pcdev->dma_ch, buf);
goto out;
}
}
/* end of videobuf */
videobuf_done(pcdev, buf->result);
}
out:
spin_unlock_irqrestore(&pcdev->lock, flags);
}
static irqreturn_t cam_isr(int irq, void *data)
{
struct omap1_cam_dev *pcdev = data;
struct device *dev = pcdev->icd->parent;
struct omap1_cam_buf *buf = pcdev->active;
u32 it_status;
unsigned long flags;
it_status = CAM_READ(pcdev, IT_STATUS);
if (!it_status)
return IRQ_NONE;
spin_lock_irqsave(&pcdev->lock, flags);
if (WARN_ON(!buf)) {
dev_warn(dev, "%s: unhandled camera interrupt, status == %#x\n",
__func__, it_status);
suspend_capture(pcdev);
disable_capture(pcdev);
goto out;
}
if (unlikely(it_status & FIFO_FULL)) {
dev_warn(dev, "%s: FIFO overflow\n", __func__);
} else if (it_status & V_DOWN) {
/* end of video frame watchdog */
if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) {
/*
* In CONTIG mode, the watchdog is disabled with
* successful DMA end of block interrupt, and reenabled
* on next frame start. If we get here, there is nothing
* to check, we must be out of sync.
*/
} else {
if (buf->sgcount == 2) {
/*
* If exactly 2 sgbufs from the next sglist have
* been programmed into the DMA engine (the
* first one already transferred into the DMA
* runtime register set, the second one still
* in the programming set), then we are in sync.
*/
goto out;
}
}
dev_notice(dev, "%s: unexpected end of video frame\n",
__func__);
} else if (it_status & V_UP) {
u32 mode;
if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) {
/*
* In CONTIG mode, we need this interrupt every frame
* in oredr to reenable our end of frame watchdog.
*/
mode = CAM_READ_CACHE(pcdev, MODE);
} else {
/*
* In SG mode, the below enabled end of frame watchdog
* is kept on permanently, so we can turn this one shot
* setup off.
*/
mode = CAM_READ_CACHE(pcdev, MODE) & ~EN_V_UP;
}
if (!(mode & EN_V_DOWN)) {
/* (re)enable end of frame watchdog interrupt */
mode |= EN_V_DOWN;
}
CAM_WRITE(pcdev, MODE, mode);
goto out;
} else {
dev_warn(dev, "%s: unhandled camera interrupt, status == %#x\n",
__func__, it_status);
goto out;
}
videobuf_done(pcdev, VIDEOBUF_ERROR);
out:
spin_unlock_irqrestore(&pcdev->lock, flags);
return IRQ_HANDLED;
}
static struct videobuf_queue_ops omap1_videobuf_ops = {
.buf_setup = omap1_videobuf_setup,
.buf_prepare = omap1_videobuf_prepare,
.buf_queue = omap1_videobuf_queue,
.buf_release = omap1_videobuf_release,
};
/*
* SOC Camera host operations
*/
static void sensor_reset(struct omap1_cam_dev *pcdev, bool reset)
{
/* apply/release camera sensor reset if requested by platform data */
if (pcdev->pflags & OMAP1_CAMERA_RST_HIGH)
CAM_WRITE(pcdev, GPIO, reset);
else if (pcdev->pflags & OMAP1_CAMERA_RST_LOW)
CAM_WRITE(pcdev, GPIO, !reset);
}
/*
* The following two functions absolutely depend on the fact, that
* there can be only one camera on OMAP1 camera sensor interface
*/
static int omap1_cam_add_device(struct soc_camera_device *icd)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->parent);
struct omap1_cam_dev *pcdev = ici->priv;
u32 ctrlclock;
if (pcdev->icd)
return -EBUSY;
clk_enable(pcdev->clk);
/* setup sensor clock */
ctrlclock = CAM_READ(pcdev, CTRLCLOCK);
ctrlclock &= ~(CAMEXCLK_EN | MCLK_EN | DPLL_EN);
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock);
ctrlclock &= ~FOSCMOD_MASK;
switch (pcdev->camexclk) {
case 6000000:
ctrlclock |= CAMEXCLK_EN | FOSCMOD_6MHz;
break;
case 8000000:
ctrlclock |= CAMEXCLK_EN | FOSCMOD_8MHz | DPLL_EN;
break;
case 9600000:
ctrlclock |= CAMEXCLK_EN | FOSCMOD_9_6MHz | DPLL_EN;
break;
case 12000000:
ctrlclock |= CAMEXCLK_EN | FOSCMOD_12MHz;
break;
case 24000000:
ctrlclock |= CAMEXCLK_EN | FOSCMOD_24MHz | DPLL_EN;
default:
break;
}
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~DPLL_EN);
/* enable internal clock */
ctrlclock |= MCLK_EN;
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock);
sensor_reset(pcdev, false);
pcdev->icd = icd;
dev_dbg(icd->parent, "OMAP1 Camera driver attached to camera %d\n",
icd->devnum);
return 0;
}
static void omap1_cam_remove_device(struct soc_camera_device *icd)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->parent);
struct omap1_cam_dev *pcdev = ici->priv;
u32 ctrlclock;
BUG_ON(icd != pcdev->icd);
suspend_capture(pcdev);
disable_capture(pcdev);
sensor_reset(pcdev, true);
/* disable and release system clocks */
ctrlclock = CAM_READ_CACHE(pcdev, CTRLCLOCK);
ctrlclock &= ~(MCLK_EN | DPLL_EN | CAMEXCLK_EN);
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock);
ctrlclock = (ctrlclock & ~FOSCMOD_MASK) | FOSCMOD_12MHz;
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock);
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock | MCLK_EN);
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~MCLK_EN);
clk_disable(pcdev->clk);
pcdev->icd = NULL;
dev_dbg(icd->parent,
"OMAP1 Camera driver detached from camera %d\n", icd->devnum);
}
/* Duplicate standard formats based on host capability of byte swapping */
static const struct soc_mbus_lookup omap1_cam_formats[] = {
{
.code = V4L2_MBUS_FMT_UYVY8_2X8,
.fmt = {
.fourcc = V4L2_PIX_FMT_YUYV,
.name = "YUYV",
.bits_per_sample = 8,
.packing = SOC_MBUS_PACKING_2X8_PADHI,
.order = SOC_MBUS_ORDER_BE,
},
}, {
.code = V4L2_MBUS_FMT_VYUY8_2X8,
.fmt = {
.fourcc = V4L2_PIX_FMT_YVYU,
.name = "YVYU",
.bits_per_sample = 8,
.packing = SOC_MBUS_PACKING_2X8_PADHI,
.order = SOC_MBUS_ORDER_BE,
},
}, {
.code = V4L2_MBUS_FMT_YUYV8_2X8,
.fmt = {
.fourcc = V4L2_PIX_FMT_UYVY,
.name = "UYVY",
.bits_per_sample = 8,
.packing = SOC_MBUS_PACKING_2X8_PADHI,
.order = SOC_MBUS_ORDER_BE,
},
}, {
.code = V4L2_MBUS_FMT_YVYU8_2X8,
.fmt = {
.fourcc = V4L2_PIX_FMT_VYUY,
.name = "VYUY",
.bits_per_sample = 8,
.packing = SOC_MBUS_PACKING_2X8_PADHI,
.order = SOC_MBUS_ORDER_BE,
},
}, {
.code = V4L2_MBUS_FMT_RGB555_2X8_PADHI_BE,
.fmt = {
.fourcc = V4L2_PIX_FMT_RGB555,
.name = "RGB555",
.bits_per_sample = 8,
.packing = SOC_MBUS_PACKING_2X8_PADHI,
.order = SOC_MBUS_ORDER_BE,
},
}, {
.code = V4L2_MBUS_FMT_RGB555_2X8_PADHI_LE,
.fmt = {
.fourcc = V4L2_PIX_FMT_RGB555X,
.name = "RGB555X",
.bits_per_sample = 8,
.packing = SOC_MBUS_PACKING_2X8_PADHI,
.order = SOC_MBUS_ORDER_BE,
},
}, {
.code = V4L2_MBUS_FMT_RGB565_2X8_BE,
.fmt = {
.fourcc = V4L2_PIX_FMT_RGB565,
.name = "RGB565",
.bits_per_sample = 8,
.packing = SOC_MBUS_PACKING_2X8_PADHI,
.order = SOC_MBUS_ORDER_BE,
},
}, {
.code = V4L2_MBUS_FMT_RGB565_2X8_LE,
.fmt = {
.fourcc = V4L2_PIX_FMT_RGB565X,
.name = "RGB565X",
.bits_per_sample = 8,
.packing = SOC_MBUS_PACKING_2X8_PADHI,
.order = SOC_MBUS_ORDER_BE,
},
},
};
static int omap1_cam_get_formats(struct soc_camera_device *icd,
unsigned int idx, struct soc_camera_format_xlate *xlate)
{
struct v4l2_subdev *sd = soc_camera_to_subdev(icd);
struct device *dev = icd->parent;
int formats = 0, ret;
enum v4l2_mbus_pixelcode code;
const struct soc_mbus_pixelfmt *fmt;
ret = v4l2_subdev_call(sd, video, enum_mbus_fmt, idx, &code);
if (ret < 0)
/* No more formats */
return 0;
fmt = soc_mbus_get_fmtdesc(code);
if (!fmt) {
dev_warn(dev, "%s: unsupported format code #%d: %d\n", __func__,
idx, code);
return 0;
}
/* Check support for the requested bits-per-sample */
if (fmt->bits_per_sample != 8)
return 0;
switch (code) {
case V4L2_MBUS_FMT_YUYV8_2X8:
case V4L2_MBUS_FMT_YVYU8_2X8:
case V4L2_MBUS_FMT_UYVY8_2X8:
case V4L2_MBUS_FMT_VYUY8_2X8:
case V4L2_MBUS_FMT_RGB555_2X8_PADHI_BE:
case V4L2_MBUS_FMT_RGB555_2X8_PADHI_LE:
case V4L2_MBUS_FMT_RGB565_2X8_BE:
case V4L2_MBUS_FMT_RGB565_2X8_LE:
formats++;
if (xlate) {
xlate->host_fmt = soc_mbus_find_fmtdesc(code,
omap1_cam_formats,
ARRAY_SIZE(omap1_cam_formats));
xlate->code = code;
xlate++;
dev_dbg(dev,
"%s: providing format %s as byte swapped code #%d\n",
__func__, xlate->host_fmt->name, code);
}
default:
if (xlate)
dev_dbg(dev,
"%s: providing format %s in pass-through mode\n",
__func__, fmt->name);
}
formats++;
if (xlate) {
xlate->host_fmt = fmt;
xlate->code = code;
xlate++;
}
return formats;
}
static bool is_dma_aligned(s32 bytes_per_line, unsigned int height,
enum omap1_cam_vb_mode vb_mode)
{
int size = bytes_per_line * height;
return IS_ALIGNED(bytes_per_line, DMA_ELEMENT_SIZE) &&
IS_ALIGNED(size, DMA_FRAME_SIZE(vb_mode) * DMA_ELEMENT_SIZE);
}
static int dma_align(int *width, int *height,
const struct soc_mbus_pixelfmt *fmt,
enum omap1_cam_vb_mode vb_mode, bool enlarge)
{
s32 bytes_per_line = soc_mbus_bytes_per_line(*width, fmt);
if (bytes_per_line < 0)
return bytes_per_line;
if (!is_dma_aligned(bytes_per_line, *height, vb_mode)) {
unsigned int pxalign = __fls(bytes_per_line / *width);
unsigned int salign = DMA_FRAME_SHIFT(vb_mode) +
DMA_ELEMENT_SHIFT - pxalign;
unsigned int incr = enlarge << salign;
v4l_bound_align_image(width, 1, *width + incr, 0,
height, 1, *height + incr, 0, salign);
return 0;
}
return 1;
}
#define subdev_call_with_sense(pcdev, dev, icd, sd, function, args...) \
({ \
struct soc_camera_sense sense = { \
.master_clock = pcdev->camexclk, \
.pixel_clock_max = 0, \
}; \
int __ret; \
\
if (pcdev->pdata) \
sense.pixel_clock_max = pcdev->pdata->lclk_khz_max * 1000; \
icd->sense = &sense; \
__ret = v4l2_subdev_call(sd, video, function, ##args); \
icd->sense = NULL; \
\
if (sense.flags & SOCAM_SENSE_PCLK_CHANGED) { \
if (sense.pixel_clock > sense.pixel_clock_max) { \
dev_err(dev, \
"%s: pixel clock %lu set by the camera too high!\n", \
__func__, sense.pixel_clock); \
__ret = -EINVAL; \
} \
} \
__ret; \
})
static int set_mbus_format(struct omap1_cam_dev *pcdev, struct device *dev,
struct soc_camera_device *icd, struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *mf,
const struct soc_camera_format_xlate *xlate)
{
s32 bytes_per_line;
int ret = subdev_call_with_sense(pcdev, dev, icd, sd, s_mbus_fmt, mf);
if (ret < 0) {
dev_err(dev, "%s: s_mbus_fmt failed\n", __func__);
return ret;
}
if (mf->code != xlate->code) {
dev_err(dev, "%s: unexpected pixel code change\n", __func__);
return -EINVAL;
}
bytes_per_line = soc_mbus_bytes_per_line(mf->width, xlate->host_fmt);
if (bytes_per_line < 0) {
dev_err(dev, "%s: soc_mbus_bytes_per_line() failed\n",
__func__);
return bytes_per_line;
}
if (!is_dma_aligned(bytes_per_line, mf->height, pcdev->vb_mode)) {
dev_err(dev, "%s: resulting geometry %ux%u not DMA aligned\n",
__func__, mf->width, mf->height);
return -EINVAL;
}
return 0;
}
static int omap1_cam_set_crop(struct soc_camera_device *icd,
struct v4l2_crop *crop)
{
struct v4l2_rect *rect = &crop->c;
const struct soc_camera_format_xlate *xlate = icd->current_fmt;
struct v4l2_subdev *sd = soc_camera_to_subdev(icd);
struct device *dev = icd->parent;
struct soc_camera_host *ici = to_soc_camera_host(dev);
struct omap1_cam_dev *pcdev = ici->priv;
struct v4l2_mbus_framefmt mf;
int ret;
ret = subdev_call_with_sense(pcdev, dev, icd, sd, s_crop, crop);
if (ret < 0) {
dev_warn(dev, "%s: failed to crop to %ux%u@%u:%u\n", __func__,
rect->width, rect->height, rect->left, rect->top);
return ret;
}
ret = v4l2_subdev_call(sd, video, g_mbus_fmt, &mf);
if (ret < 0) {
dev_warn(dev, "%s: failed to fetch current format\n", __func__);
return ret;
}
ret = dma_align(&mf.width, &mf.height, xlate->host_fmt, pcdev->vb_mode,
false);
if (ret < 0) {
dev_err(dev, "%s: failed to align %ux%u %s with DMA\n",
__func__, mf.width, mf.height,
xlate->host_fmt->name);
return ret;
}
if (!ret) {
/* sensor returned geometry not DMA aligned, trying to fix */
ret = set_mbus_format(pcdev, dev, icd, sd, &mf, xlate);
if (ret < 0) {
dev_err(dev, "%s: failed to set format\n", __func__);
return ret;
}
}
icd->user_width = mf.width;
icd->user_height = mf.height;
return 0;
}
static int omap1_cam_set_fmt(struct soc_camera_device *icd,
struct v4l2_format *f)
{
struct v4l2_subdev *sd = soc_camera_to_subdev(icd);
const struct soc_camera_format_xlate *xlate;
struct device *dev = icd->parent;
struct soc_camera_host *ici = to_soc_camera_host(dev);
struct omap1_cam_dev *pcdev = ici->priv;
struct v4l2_pix_format *pix = &f->fmt.pix;
struct v4l2_mbus_framefmt mf;
int ret;
xlate = soc_camera_xlate_by_fourcc(icd, pix->pixelformat);
if (!xlate) {
dev_warn(dev, "%s: format %#x not found\n", __func__,
pix->pixelformat);
return -EINVAL;
}
mf.width = pix->width;
mf.height = pix->height;
mf.field = pix->field;
mf.colorspace = pix->colorspace;
mf.code = xlate->code;
ret = dma_align(&mf.width, &mf.height, xlate->host_fmt, pcdev->vb_mode,
true);
if (ret < 0) {
dev_err(dev, "%s: failed to align %ux%u %s with DMA\n",
__func__, pix->width, pix->height,
xlate->host_fmt->name);
return ret;
}
ret = set_mbus_format(pcdev, dev, icd, sd, &mf, xlate);
if (ret < 0) {
dev_err(dev, "%s: failed to set format\n", __func__);
return ret;
}
pix->width = mf.width;
pix->height = mf.height;
pix->field = mf.field;
pix->colorspace = mf.colorspace;
icd->current_fmt = xlate;
return 0;
}
static int omap1_cam_try_fmt(struct soc_camera_device *icd,
struct v4l2_format *f)
{
struct v4l2_subdev *sd = soc_camera_to_subdev(icd);
const struct soc_camera_format_xlate *xlate;
struct v4l2_pix_format *pix = &f->fmt.pix;
struct v4l2_mbus_framefmt mf;
int ret;
/* TODO: limit to mx1 hardware capabilities */
xlate = soc_camera_xlate_by_fourcc(icd, pix->pixelformat);
if (!xlate) {
dev_warn(icd->parent, "Format %#x not found\n",
pix->pixelformat);
return -EINVAL;
}
mf.width = pix->width;
mf.height = pix->height;
mf.field = pix->field;
mf.colorspace = pix->colorspace;
mf.code = xlate->code;
/* limit to sensor capabilities */
ret = v4l2_subdev_call(sd, video, try_mbus_fmt, &mf);
if (ret < 0)
return ret;
pix->width = mf.width;
pix->height = mf.height;
pix->field = mf.field;
pix->colorspace = mf.colorspace;
return 0;
}
static bool sg_mode;
/*
* Local mmap_mapper wrapper,
* used for detecting videobuf-dma-contig buffer allocation failures
* and switching to videobuf-dma-sg automatically for future attempts.
*/
static int omap1_cam_mmap_mapper(struct videobuf_queue *q,
struct videobuf_buffer *buf,
struct vm_area_struct *vma)
{
struct soc_camera_device *icd = q->priv_data;
struct soc_camera_host *ici = to_soc_camera_host(icd->parent);
struct omap1_cam_dev *pcdev = ici->priv;
int ret;
ret = pcdev->mmap_mapper(q, buf, vma);
if (ret == -ENOMEM)
sg_mode = true;
return ret;
}
static void omap1_cam_init_videobuf(struct videobuf_queue *q,
struct soc_camera_device *icd)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->parent);
struct omap1_cam_dev *pcdev = ici->priv;
if (!sg_mode)
videobuf_queue_dma_contig_init(q, &omap1_videobuf_ops,
icd->parent, &pcdev->lock,
V4L2_BUF_TYPE_VIDEO_CAPTURE, V4L2_FIELD_NONE,
sizeof(struct omap1_cam_buf), icd, &icd->video_lock);
else
videobuf_queue_sg_init(q, &omap1_videobuf_ops,
icd->parent, &pcdev->lock,
V4L2_BUF_TYPE_VIDEO_CAPTURE, V4L2_FIELD_NONE,
sizeof(struct omap1_cam_buf), icd, &icd->video_lock);
/* use videobuf mode (auto)selected with the module parameter */
pcdev->vb_mode = sg_mode ? OMAP1_CAM_DMA_SG : OMAP1_CAM_DMA_CONTIG;
/*
* Ensure we substitute the videobuf-dma-contig version of the
* mmap_mapper() callback with our own wrapper, used for switching
* automatically to videobuf-dma-sg on buffer allocation failure.
*/
if (!sg_mode && q->int_ops->mmap_mapper != omap1_cam_mmap_mapper) {
pcdev->mmap_mapper = q->int_ops->mmap_mapper;
q->int_ops->mmap_mapper = omap1_cam_mmap_mapper;
}
}
static int omap1_cam_reqbufs(struct soc_camera_device *icd,
struct v4l2_requestbuffers *p)
{
int i;
/*
* This is for locking debugging only. I removed spinlocks and now I
* check whether .prepare is ever called on a linked buffer, or whether
* a dma IRQ can occur for an in-work or unlinked buffer. Until now
* it hadn't triggered
*/
for (i = 0; i < p->count; i++) {
struct omap1_cam_buf *buf = container_of(icd->vb_vidq.bufs[i],
struct omap1_cam_buf, vb);
buf->inwork = 0;
INIT_LIST_HEAD(&buf->vb.queue);
}
return 0;
}
static int omap1_cam_querycap(struct soc_camera_host *ici,
struct v4l2_capability *cap)
{
/* cap->name is set by the friendly caller:-> */
strlcpy(cap->card, "OMAP1 Camera", sizeof(cap->card));
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING;
return 0;
}
static int omap1_cam_set_bus_param(struct soc_camera_device *icd,
__u32 pixfmt)
{
struct v4l2_subdev *sd = soc_camera_to_subdev(icd);
struct device *dev = icd->parent;
struct soc_camera_host *ici = to_soc_camera_host(dev);
struct omap1_cam_dev *pcdev = ici->priv;
const struct soc_camera_format_xlate *xlate;
const struct soc_mbus_pixelfmt *fmt;
struct v4l2_mbus_config cfg = {.type = V4L2_MBUS_PARALLEL,};
unsigned long common_flags;
u32 ctrlclock, mode;
int ret;
ret = v4l2_subdev_call(sd, video, g_mbus_config, &cfg);
if (!ret) {
common_flags = soc_mbus_config_compatible(&cfg, SOCAM_BUS_FLAGS);
if (!common_flags) {
dev_warn(dev,
"Flags incompatible: camera 0x%x, host 0x%x\n",
cfg.flags, SOCAM_BUS_FLAGS);
return -EINVAL;
}
} else if (ret != -ENOIOCTLCMD) {
return ret;
} else {
common_flags = SOCAM_BUS_FLAGS;
}
/* Make choices, possibly based on platform configuration */
if ((common_flags & V4L2_MBUS_PCLK_SAMPLE_RISING) &&
(common_flags & V4L2_MBUS_PCLK_SAMPLE_FALLING)) {
if (!pcdev->pdata ||
pcdev->pdata->flags & OMAP1_CAMERA_LCLK_RISING)
common_flags &= ~V4L2_MBUS_PCLK_SAMPLE_FALLING;
else
common_flags &= ~V4L2_MBUS_PCLK_SAMPLE_RISING;
}
cfg.flags = common_flags;
ret = v4l2_subdev_call(sd, video, s_mbus_config, &cfg);
if (ret < 0 && ret != -ENOIOCTLCMD) {
dev_dbg(dev, "camera s_mbus_config(0x%lx) returned %d\n",
common_flags, ret);
return ret;
}
ctrlclock = CAM_READ_CACHE(pcdev, CTRLCLOCK);
if (ctrlclock & LCLK_EN)
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~LCLK_EN);
if (common_flags & V4L2_MBUS_PCLK_SAMPLE_RISING) {
dev_dbg(dev, "CTRLCLOCK_REG |= POLCLK\n");
ctrlclock |= POLCLK;
} else {
dev_dbg(dev, "CTRLCLOCK_REG &= ~POLCLK\n");
ctrlclock &= ~POLCLK;
}
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~LCLK_EN);
if (ctrlclock & LCLK_EN)
CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock);
/* select bus endianess */
xlate = soc_camera_xlate_by_fourcc(icd, pixfmt);
fmt = xlate->host_fmt;
mode = CAM_READ(pcdev, MODE) & ~(RAZ_FIFO | IRQ_MASK | DMA);
if (fmt->order == SOC_MBUS_ORDER_LE) {
dev_dbg(dev, "MODE_REG &= ~ORDERCAMD\n");
CAM_WRITE(pcdev, MODE, mode & ~ORDERCAMD);
} else {
dev_dbg(dev, "MODE_REG |= ORDERCAMD\n");
CAM_WRITE(pcdev, MODE, mode | ORDERCAMD);
}
return 0;
}
static unsigned int omap1_cam_poll(struct file *file, poll_table *pt)
{
struct soc_camera_device *icd = file->private_data;
struct omap1_cam_buf *buf;
buf = list_entry(icd->vb_vidq.stream.next, struct omap1_cam_buf,
vb.stream);
poll_wait(file, &buf->vb.done, pt);
if (buf->vb.state == VIDEOBUF_DONE ||
buf->vb.state == VIDEOBUF_ERROR)
return POLLIN | POLLRDNORM;
return 0;
}
static struct soc_camera_host_ops omap1_host_ops = {
.owner = THIS_MODULE,
.add = omap1_cam_add_device,
.remove = omap1_cam_remove_device,
.get_formats = omap1_cam_get_formats,
.set_crop = omap1_cam_set_crop,
.set_fmt = omap1_cam_set_fmt,
.try_fmt = omap1_cam_try_fmt,
.init_videobuf = omap1_cam_init_videobuf,
.reqbufs = omap1_cam_reqbufs,
.querycap = omap1_cam_querycap,
.set_bus_param = omap1_cam_set_bus_param,
.poll = omap1_cam_poll,
};
static int __init omap1_cam_probe(struct platform_device *pdev)
{
struct omap1_cam_dev *pcdev;
struct resource *res;
struct clk *clk;
void __iomem *base;
unsigned int irq;
int err = 0;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (!res || (int)irq <= 0) {
err = -ENODEV;
goto exit;
}
clk = clk_get(&pdev->dev, "armper_ck");
if (IS_ERR(clk)) {
err = PTR_ERR(clk);
goto exit;
}
pcdev = kzalloc(sizeof(*pcdev) + resource_size(res), GFP_KERNEL);
if (!pcdev) {
dev_err(&pdev->dev, "Could not allocate pcdev\n");
err = -ENOMEM;
goto exit_put_clk;
}
pcdev->res = res;
pcdev->clk = clk;
pcdev->pdata = pdev->dev.platform_data;
if (pcdev->pdata) {
pcdev->pflags = pcdev->pdata->flags;
pcdev->camexclk = pcdev->pdata->camexclk_khz * 1000;
}
switch (pcdev->camexclk) {
case 6000000:
case 8000000:
case 9600000:
case 12000000:
case 24000000:
break;
default:
/* pcdev->camexclk != 0 => pcdev->pdata != NULL */
dev_warn(&pdev->dev,
"Incorrect sensor clock frequency %ld kHz, "
"should be one of 0, 6, 8, 9.6, 12 or 24 MHz, "
"please correct your platform data\n",
pcdev->pdata->camexclk_khz);
pcdev->camexclk = 0;
case 0:
dev_info(&pdev->dev, "Not providing sensor clock\n");
}
INIT_LIST_HEAD(&pcdev->capture);
spin_lock_init(&pcdev->lock);
/*
* Request the region.
*/
if (!request_mem_region(res->start, resource_size(res), DRIVER_NAME)) {
err = -EBUSY;
goto exit_kfree;
}
base = ioremap(res->start, resource_size(res));
if (!base) {
err = -ENOMEM;
goto exit_release;
}
pcdev->irq = irq;
pcdev->base = base;
sensor_reset(pcdev, true);
err = omap_request_dma(OMAP_DMA_CAMERA_IF_RX, DRIVER_NAME,
dma_isr, (void *)pcdev, &pcdev->dma_ch);
if (err < 0) {
dev_err(&pdev->dev, "Can't request DMA for OMAP1 Camera\n");
err = -EBUSY;
goto exit_iounmap;
}
dev_dbg(&pdev->dev, "got DMA channel %d\n", pcdev->dma_ch);
/* preconfigure DMA */
omap_set_dma_src_params(pcdev->dma_ch, OMAP_DMA_PORT_TIPB,
OMAP_DMA_AMODE_CONSTANT, res->start + REG_CAMDATA,
0, 0);
omap_set_dma_dest_burst_mode(pcdev->dma_ch, OMAP_DMA_DATA_BURST_4);
/* setup DMA autoinitialization */
omap_dma_link_lch(pcdev->dma_ch, pcdev->dma_ch);
err = request_irq(pcdev->irq, cam_isr, 0, DRIVER_NAME, pcdev);
if (err) {
dev_err(&pdev->dev, "Camera interrupt register failed\n");
goto exit_free_dma;
}
pcdev->soc_host.drv_name = DRIVER_NAME;
pcdev->soc_host.ops = &omap1_host_ops;
pcdev->soc_host.priv = pcdev;
pcdev->soc_host.v4l2_dev.dev = &pdev->dev;
pcdev->soc_host.nr = pdev->id;
err = soc_camera_host_register(&pcdev->soc_host);
if (err)
goto exit_free_irq;
dev_info(&pdev->dev, "OMAP1 Camera Interface driver loaded\n");
return 0;
exit_free_irq:
free_irq(pcdev->irq, pcdev);
exit_free_dma:
omap_free_dma(pcdev->dma_ch);
exit_iounmap:
iounmap(base);
exit_release:
release_mem_region(res->start, resource_size(res));
exit_kfree:
kfree(pcdev);
exit_put_clk:
clk_put(clk);
exit:
return err;
}
static int __exit omap1_cam_remove(struct platform_device *pdev)
{
struct soc_camera_host *soc_host = to_soc_camera_host(&pdev->dev);
struct omap1_cam_dev *pcdev = container_of(soc_host,
struct omap1_cam_dev, soc_host);
struct resource *res;
free_irq(pcdev->irq, pcdev);
omap_free_dma(pcdev->dma_ch);
soc_camera_host_unregister(soc_host);
iounmap(pcdev->base);
res = pcdev->res;
release_mem_region(res->start, resource_size(res));
clk_put(pcdev->clk);
kfree(pcdev);
dev_info(&pdev->dev, "OMAP1 Camera Interface driver unloaded\n");
return 0;
}
static struct platform_driver omap1_cam_driver = {
.driver = {
.name = DRIVER_NAME,
},
.probe = omap1_cam_probe,
.remove = __exit_p(omap1_cam_remove),
};
static int __init omap1_cam_init(void)
{
return platform_driver_register(&omap1_cam_driver);
}
module_init(omap1_cam_init);
static void __exit omap1_cam_exit(void)
{
platform_driver_unregister(&omap1_cam_driver);
}
module_exit(omap1_cam_exit);
module_param(sg_mode, bool, 0644);
MODULE_PARM_DESC(sg_mode, "videobuf mode, 0: dma-contig (default), 1: dma-sg");
MODULE_DESCRIPTION("OMAP1 Camera Interface driver");
MODULE_AUTHOR("Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRIVER_VERSION);
MODULE_ALIAS("platform:" DRIVER_NAME);