/*
* Elonics E4000 silicon tuner driver
*
* Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "e4000_priv.h"
#include <linux/math64.h>
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
/* write multiple registers */
static int e4000_wr_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
{
int ret;
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg[1] = {
{
.addr = priv->client->addr,
.flags = 0,
.len = 1 + len,
.buf = buf,
}
};
if (1 + len > sizeof(buf)) {
dev_warn(&priv->client->dev,
"%s: i2c wr reg=%04x: len=%d is too big!\n",
KBUILD_MODNAME, reg, len);
return -EINVAL;
}
buf[0] = reg;
memcpy(&buf[1], val, len);
ret = i2c_transfer(priv->client->adapter, msg, 1);
if (ret == 1) {
ret = 0;
} else {
dev_warn(&priv->client->dev,
"%s: i2c wr failed=%d reg=%02x len=%d\n",
KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* read multiple registers */
static int e4000_rd_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
{
int ret;
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg[2] = {
{
.addr = priv->client->addr,
.flags = 0,
.len = 1,
.buf = ®,
}, {
.addr = priv->client->addr,
.flags = I2C_M_RD,
.len = len,
.buf = buf,
}
};
if (len > sizeof(buf)) {
dev_warn(&priv->client->dev,
"%s: i2c rd reg=%04x: len=%d is too big!\n",
KBUILD_MODNAME, reg, len);
return -EINVAL;
}
ret = i2c_transfer(priv->client->adapter, msg, 2);
if (ret == 2) {
memcpy(val, buf, len);
ret = 0;
} else {
dev_warn(&priv->client->dev,
"%s: i2c rd failed=%d reg=%02x len=%d\n",
KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* write single register */
static int e4000_wr_reg(struct e4000_priv *priv, u8 reg, u8 val)
{
return e4000_wr_regs(priv, reg, &val, 1);
}
/* read single register */
static int e4000_rd_reg(struct e4000_priv *priv, u8 reg, u8 *val)
{
return e4000_rd_regs(priv, reg, val, 1);
}
static int e4000_init(struct dvb_frontend *fe)
{
struct e4000_priv *priv = fe->tuner_priv;
int ret;
dev_dbg(&priv->client->dev, "%s:\n", __func__);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
/* dummy I2C to ensure I2C wakes up */
ret = e4000_wr_reg(priv, 0x02, 0x40);
/* reset */
ret = e4000_wr_reg(priv, 0x00, 0x01);
if (ret < 0)
goto err;
/* disable output clock */
ret = e4000_wr_reg(priv, 0x06, 0x00);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x7a, 0x96);
if (ret < 0)
goto err;
/* configure gains */
ret = e4000_wr_regs(priv, 0x7e, "\x01\xfe", 2);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x82, 0x00);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x24, 0x05);
if (ret < 0)
goto err;
ret = e4000_wr_regs(priv, 0x87, "\x20\x01", 2);
if (ret < 0)
goto err;
ret = e4000_wr_regs(priv, 0x9f, "\x7f\x07", 2);
if (ret < 0)
goto err;
/* DC offset control */
ret = e4000_wr_reg(priv, 0x2d, 0x1f);
if (ret < 0)
goto err;
ret = e4000_wr_regs(priv, 0x70, "\x01\x01", 2);
if (ret < 0)
goto err;
/* gain control */
ret = e4000_wr_reg(priv, 0x1a, 0x17);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x1f, 0x1a);
if (ret < 0)
goto err;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int e4000_sleep(struct dvb_frontend *fe)
{
struct e4000_priv *priv = fe->tuner_priv;
int ret;
dev_dbg(&priv->client->dev, "%s:\n", __func__);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
ret = e4000_wr_reg(priv, 0x00, 0x00);
if (ret < 0)
goto err;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int e4000_set_params(struct dvb_frontend *fe)
{
struct e4000_priv *priv = fe->tuner_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret, i, sigma_delta;
unsigned int f_vco;
u8 buf[5], i_data[4], q_data[4];
dev_dbg(&priv->client->dev,
"%s: delivery_system=%d frequency=%d bandwidth_hz=%d\n",
__func__, c->delivery_system, c->frequency,
c->bandwidth_hz);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
/* gain control manual */
ret = e4000_wr_reg(priv, 0x1a, 0x00);
if (ret < 0)
goto err;
/* PLL */
for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) {
if (c->frequency <= e4000_pll_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_pll_lut)) {
ret = -EINVAL;
goto err;
}
/*
* Note: Currently f_vco overflows when c->frequency is 1 073 741 824 Hz
* or more.
*/
f_vco = c->frequency * e4000_pll_lut[i].mul;
sigma_delta = div_u64(0x10000ULL * (f_vco % priv->clock), priv->clock);
buf[0] = f_vco / priv->clock;
buf[1] = (sigma_delta >> 0) & 0xff;
buf[2] = (sigma_delta >> 8) & 0xff;
buf[3] = 0x00;
buf[4] = e4000_pll_lut[i].div;
dev_dbg(&priv->client->dev,
"%s: f_vco=%u pll div=%d sigma_delta=%04x\n",
__func__, f_vco, buf[0], sigma_delta);
ret = e4000_wr_regs(priv, 0x09, buf, 5);
if (ret < 0)
goto err;
/* LNA filter (RF filter) */
for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) {
if (c->frequency <= e400_lna_filter_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e400_lna_filter_lut)) {
ret = -EINVAL;
goto err;
}
ret = e4000_wr_reg(priv, 0x10, e400_lna_filter_lut[i].val);
if (ret < 0)
goto err;
/* IF filters */
for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) {
if (c->bandwidth_hz <= e4000_if_filter_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_if_filter_lut)) {
ret = -EINVAL;
goto err;
}
buf[0] = e4000_if_filter_lut[i].reg11_val;
buf[1] = e4000_if_filter_lut[i].reg12_val;
ret = e4000_wr_regs(priv, 0x11, buf, 2);
if (ret < 0)
goto err;
/* frequency band */
for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) {
if (c->frequency <= e4000_band_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_band_lut)) {
ret = -EINVAL;
goto err;
}
ret = e4000_wr_reg(priv, 0x07, e4000_band_lut[i].reg07_val);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x78, e4000_band_lut[i].reg78_val);
if (ret < 0)
goto err;
/* DC offset */
for (i = 0; i < 4; i++) {
if (i == 0)
ret = e4000_wr_regs(priv, 0x15, "\x00\x7e\x24", 3);
else if (i == 1)
ret = e4000_wr_regs(priv, 0x15, "\x00\x7f", 2);
else if (i == 2)
ret = e4000_wr_regs(priv, 0x15, "\x01", 1);
else
ret = e4000_wr_regs(priv, 0x16, "\x7e", 1);
if (ret < 0)
goto err;
ret = e4000_wr_reg(priv, 0x29, 0x01);
if (ret < 0)
goto err;
ret = e4000_rd_regs(priv, 0x2a, buf, 3);
if (ret < 0)
goto err;
i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f);
q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f);
}
swap(q_data[2], q_data[3]);
swap(i_data[2], i_data[3]);
ret = e4000_wr_regs(priv, 0x50, q_data, 4);
if (ret < 0)
goto err;
ret = e4000_wr_regs(priv, 0x60, i_data, 4);
if (ret < 0)
goto err;
/* gain control auto */
ret = e4000_wr_reg(priv, 0x1a, 0x17);
if (ret < 0)
goto err;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int e4000_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct e4000_priv *priv = fe->tuner_priv;
dev_dbg(&priv->client->dev, "%s:\n", __func__);
*frequency = 0; /* Zero-IF */
return 0;
}
static int e4000_set_lna_gain(struct dvb_frontend *fe)
{
struct e4000_priv *priv = fe->tuner_priv;
int ret;
u8 u8tmp;
dev_dbg(&priv->client->dev, "%s: lna auto=%d->%d val=%d->%d\n",
__func__, priv->lna_gain_auto->cur.val,
priv->lna_gain_auto->val, priv->lna_gain->cur.val,
priv->lna_gain->val);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
if (priv->lna_gain_auto->val && priv->if_gain_auto->cur.val)
u8tmp = 0x17;
else if (priv->lna_gain_auto->val)
u8tmp = 0x19;
else if (priv->if_gain_auto->cur.val)
u8tmp = 0x16;
else
u8tmp = 0x10;
ret = e4000_wr_reg(priv, 0x1a, u8tmp);
if (ret)
goto err;
if (priv->lna_gain_auto->val == false) {
ret = e4000_wr_reg(priv, 0x14, priv->lna_gain->val);
if (ret)
goto err;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int e4000_set_mixer_gain(struct dvb_frontend *fe)
{
struct e4000_priv *priv = fe->tuner_priv;
int ret;
u8 u8tmp;
dev_dbg(&priv->client->dev, "%s: mixer auto=%d->%d val=%d->%d\n",
__func__, priv->mixer_gain_auto->cur.val,
priv->mixer_gain_auto->val, priv->mixer_gain->cur.val,
priv->mixer_gain->val);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
if (priv->mixer_gain_auto->val)
u8tmp = 0x15;
else
u8tmp = 0x14;
ret = e4000_wr_reg(priv, 0x20, u8tmp);
if (ret)
goto err;
if (priv->mixer_gain_auto->val == false) {
ret = e4000_wr_reg(priv, 0x15, priv->mixer_gain->val);
if (ret)
goto err;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int e4000_set_if_gain(struct dvb_frontend *fe)
{
struct e4000_priv *priv = fe->tuner_priv;
int ret;
u8 buf[2];
u8 u8tmp;
dev_dbg(&priv->client->dev, "%s: if auto=%d->%d val=%d->%d\n",
__func__, priv->if_gain_auto->cur.val,
priv->if_gain_auto->val, priv->if_gain->cur.val,
priv->if_gain->val);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
if (priv->if_gain_auto->val && priv->lna_gain_auto->cur.val)
u8tmp = 0x17;
else if (priv->lna_gain_auto->cur.val)
u8tmp = 0x19;
else if (priv->if_gain_auto->val)
u8tmp = 0x16;
else
u8tmp = 0x10;
ret = e4000_wr_reg(priv, 0x1a, u8tmp);
if (ret)
goto err;
if (priv->if_gain_auto->val == false) {
buf[0] = e4000_if_gain_lut[priv->if_gain->val].reg16_val;
buf[1] = e4000_if_gain_lut[priv->if_gain->val].reg17_val;
ret = e4000_wr_regs(priv, 0x16, buf, 2);
if (ret)
goto err;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int e4000_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct e4000_priv *priv =
container_of(ctrl->handler, struct e4000_priv, hdl);
struct dvb_frontend *fe = priv->fe;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret;
dev_dbg(&priv->client->dev,
"%s: id=%d name=%s val=%d min=%d max=%d step=%d\n",
__func__, ctrl->id, ctrl->name, ctrl->val,
ctrl->minimum, ctrl->maximum, ctrl->step);
switch (ctrl->id) {
case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
case V4L2_CID_RF_TUNER_BANDWIDTH:
c->bandwidth_hz = priv->bandwidth->val;
ret = e4000_set_params(priv->fe);
break;
case V4L2_CID_RF_TUNER_LNA_GAIN_AUTO:
case V4L2_CID_RF_TUNER_LNA_GAIN:
ret = e4000_set_lna_gain(priv->fe);
break;
case V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO:
case V4L2_CID_RF_TUNER_MIXER_GAIN:
ret = e4000_set_mixer_gain(priv->fe);
break;
case V4L2_CID_RF_TUNER_IF_GAIN_AUTO:
case V4L2_CID_RF_TUNER_IF_GAIN:
ret = e4000_set_if_gain(priv->fe);
break;
default:
ret = -EINVAL;
}
return ret;
}
static const struct v4l2_ctrl_ops e4000_ctrl_ops = {
.s_ctrl = e4000_s_ctrl,
};
static const struct dvb_tuner_ops e4000_tuner_ops = {
.info = {
.name = "Elonics E4000",
.frequency_min = 174000000,
.frequency_max = 862000000,
},
.init = e4000_init,
.sleep = e4000_sleep,
.set_params = e4000_set_params,
.get_if_frequency = e4000_get_if_frequency,
};
/*
* Use V4L2 subdev to carry V4L2 control handler, even we don't implement
* subdev itself, just to avoid reinventing the wheel.
*/
static int e4000_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct e4000_config *cfg = client->dev.platform_data;
struct dvb_frontend *fe = cfg->fe;
struct e4000_priv *priv;
int ret;
u8 chip_id;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
priv = kzalloc(sizeof(struct e4000_priv), GFP_KERNEL);
if (!priv) {
ret = -ENOMEM;
dev_err(&client->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME);
goto err;
}
priv->clock = cfg->clock;
priv->client = client;
priv->fe = cfg->fe;
/* check if the tuner is there */
ret = e4000_rd_reg(priv, 0x02, &chip_id);
if (ret < 0)
goto err;
dev_dbg(&priv->client->dev,
"%s: chip_id=%02x\n", __func__, chip_id);
if (chip_id != 0x40) {
ret = -ENODEV;
goto err;
}
/* put sleep as chip seems to be in normal mode by default */
ret = e4000_wr_reg(priv, 0x00, 0x00);
if (ret < 0)
goto err;
/* Register controls */
v4l2_ctrl_handler_init(&priv->hdl, 8);
priv->bandwidth_auto = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
priv->bandwidth = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_BANDWIDTH, 4300000, 11000000, 100000, 4300000);
v4l2_ctrl_auto_cluster(2, &priv->bandwidth_auto, 0, false);
priv->lna_gain_auto = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_LNA_GAIN_AUTO, 0, 1, 1, 1);
priv->lna_gain = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_LNA_GAIN, 0, 15, 1, 10);
v4l2_ctrl_auto_cluster(2, &priv->lna_gain_auto, 0, false);
priv->mixer_gain_auto = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO, 0, 1, 1, 1);
priv->mixer_gain = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
v4l2_ctrl_auto_cluster(2, &priv->mixer_gain_auto, 0, false);
priv->if_gain_auto = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_IF_GAIN_AUTO, 0, 1, 1, 1);
priv->if_gain = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_IF_GAIN, 0, 54, 1, 0);
v4l2_ctrl_auto_cluster(2, &priv->if_gain_auto, 0, false);
if (priv->hdl.error) {
ret = priv->hdl.error;
dev_err(&priv->client->dev, "Could not initialize controls\n");
v4l2_ctrl_handler_free(&priv->hdl);
goto err;
}
priv->sd.ctrl_handler = &priv->hdl;
dev_info(&priv->client->dev,
"%s: Elonics E4000 successfully identified\n",
KBUILD_MODNAME);
fe->tuner_priv = priv;
memcpy(&fe->ops.tuner_ops, &e4000_tuner_ops,
sizeof(struct dvb_tuner_ops));
v4l2_set_subdevdata(&priv->sd, client);
i2c_set_clientdata(client, &priv->sd);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
dev_dbg(&client->dev, "%s: failed=%d\n", __func__, ret);
kfree(priv);
return ret;
}
static int e4000_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct e4000_priv *priv = container_of(sd, struct e4000_priv, sd);
struct dvb_frontend *fe = priv->fe;
dev_dbg(&client->dev, "%s:\n", __func__);
v4l2_ctrl_handler_free(&priv->hdl);
memset(&fe->ops.tuner_ops, 0, sizeof(struct dvb_tuner_ops));
fe->tuner_priv = NULL;
kfree(priv);
return 0;
}
static const struct i2c_device_id e4000_id[] = {
{"e4000", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, e4000_id);
static struct i2c_driver e4000_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "e4000",
},
.probe = e4000_probe,
.remove = e4000_remove,
.id_table = e4000_id,
};
module_i2c_driver(e4000_driver);
MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver");
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_LICENSE("GPL");