/*
* Copyright (c) 2006 QLogic, Inc. All rights reserved.
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/poll.h>
#include <linux/cdev.h>
#include <linux/swap.h>
#include <linux/vmalloc.h>
#include <asm/pgtable.h>
#include "ipath_kernel.h"
#include "ipath_common.h"
/*
* mmap64 doesn't allow all 64 bits for 32-bit applications
* so only use the low 43 bits.
*/
#define MMAP64_MASK 0x7FFFFFFFFFFUL
static int ipath_open(struct inode *, struct file *);
static int ipath_close(struct inode *, struct file *);
static ssize_t ipath_write(struct file *, const char __user *, size_t,
loff_t *);
static unsigned int ipath_poll(struct file *, struct poll_table_struct *);
static int ipath_mmap(struct file *, struct vm_area_struct *);
static struct file_operations ipath_file_ops = {
.owner = THIS_MODULE,
.write = ipath_write,
.open = ipath_open,
.release = ipath_close,
.poll = ipath_poll,
.mmap = ipath_mmap
};
static int ipath_get_base_info(struct file *fp,
void __user *ubase, size_t ubase_size)
{
struct ipath_portdata *pd = port_fp(fp);
int ret = 0;
struct ipath_base_info *kinfo = NULL;
struct ipath_devdata *dd = pd->port_dd;
unsigned subport_cnt;
int shared, master;
size_t sz;
subport_cnt = pd->port_subport_cnt;
if (!subport_cnt) {
shared = 0;
master = 0;
subport_cnt = 1;
} else {
shared = 1;
master = !subport_fp(fp);
}
sz = sizeof(*kinfo);
/* If port sharing is not requested, allow the old size structure */
if (!shared)
sz -= 3 * sizeof(u64);
if (ubase_size < sz) {
ipath_cdbg(PROC,
"Base size %zu, need %zu (version mismatch?)\n",
ubase_size, sz);
ret = -EINVAL;
goto bail;
}
kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL);
if (kinfo == NULL) {
ret = -ENOMEM;
goto bail;
}
ret = dd->ipath_f_get_base_info(pd, kinfo);
if (ret < 0)
goto bail;
kinfo->spi_rcvhdr_cnt = dd->ipath_rcvhdrcnt;
kinfo->spi_rcvhdrent_size = dd->ipath_rcvhdrentsize;
kinfo->spi_tidegrcnt = dd->ipath_rcvegrcnt;
kinfo->spi_rcv_egrbufsize = dd->ipath_rcvegrbufsize;
/*
* have to mmap whole thing
*/
kinfo->spi_rcv_egrbuftotlen =
pd->port_rcvegrbuf_chunks * pd->port_rcvegrbuf_size;
kinfo->spi_rcv_egrperchunk = pd->port_rcvegrbufs_perchunk;
kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen /
pd->port_rcvegrbuf_chunks;
kinfo->spi_tidcnt = dd->ipath_rcvtidcnt / subport_cnt;
if (master)
kinfo->spi_tidcnt += dd->ipath_rcvtidcnt % subport_cnt;
/*
* for this use, may be ipath_cfgports summed over all chips that
* are are configured and present
*/
kinfo->spi_nports = dd->ipath_cfgports;
/* unit (chip/board) our port is on */
kinfo->spi_unit = dd->ipath_unit;
/* for now, only a single page */
kinfo->spi_tid_maxsize = PAGE_SIZE;
/*
* Doing this per port, and based on the skip value, etc. This has
* to be the actual buffer size, since the protocol code treats it
* as an array.
*
* These have to be set to user addresses in the user code via mmap.
* These values are used on return to user code for the mmap target
* addresses only. For 32 bit, same 44 bit address problem, so use
* the physical address, not virtual. Before 2.6.11, using the
* page_address() macro worked, but in 2.6.11, even that returns the
* full 64 bit address (upper bits all 1's). So far, using the
* physical addresses (or chip offsets, for chip mapping) works, but
* no doubt some future kernel release will change that, and we'll be
* on to yet another method of dealing with this.
*/
kinfo->spi_rcvhdr_base = (u64) pd->port_rcvhdrq_phys;
kinfo->spi_rcvhdr_tailaddr = (u64) pd->port_rcvhdrqtailaddr_phys;
kinfo->spi_rcv_egrbufs = (u64) pd->port_rcvegr_phys;
kinfo->spi_pioavailaddr = (u64) dd->ipath_pioavailregs_phys;
kinfo->spi_status = (u64) kinfo->spi_pioavailaddr +
(void *) dd->ipath_statusp -
(void *) dd->ipath_pioavailregs_dma;
if (!shared) {
kinfo->spi_piocnt = dd->ipath_pbufsport;
kinfo->spi_piobufbase = (u64) pd->port_piobufs;
kinfo->__spi_uregbase = (u64) dd->ipath_uregbase +
dd->ipath_palign * pd->port_port;
} else if (master) {
kinfo->spi_piocnt = (dd->ipath_pbufsport / subport_cnt) +
(dd->ipath_pbufsport % subport_cnt);
/* Master's PIO buffers are after all the slave's */
kinfo->spi_piobufbase = (u64) pd->port_piobufs +
dd->ipath_palign *
(dd->ipath_pbufsport - kinfo->spi_piocnt);
kinfo->__spi_uregbase = (u64) dd->ipath_uregbase +
dd->ipath_palign * pd->port_port;
} else {
unsigned slave = subport_fp(fp) - 1;
kinfo->spi_piocnt = dd->ipath_pbufsport / subport_cnt;
kinfo->spi_piobufbase = (u64) pd->port_piobufs +
dd->ipath_palign * kinfo->spi_piocnt * slave;
kinfo->__spi_uregbase = ((u64) pd->subport_uregbase +
PAGE_SIZE * slave) & MMAP64_MASK;
kinfo->spi_rcvhdr_base = ((u64) pd->subport_rcvhdr_base +
pd->port_rcvhdrq_size * slave) & MMAP64_MASK;
kinfo->spi_rcvhdr_tailaddr =
(u64) pd->port_rcvhdrqtailaddr_phys & MMAP64_MASK;
kinfo->spi_rcv_egrbufs = ((u64) pd->subport_rcvegrbuf +
dd->ipath_rcvegrcnt * dd->ipath_rcvegrbufsize * slave) &
MMAP64_MASK;
}
kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->ipath_piobufbase) /
dd->ipath_palign;
kinfo->spi_pioalign = dd->ipath_palign;
kinfo->spi_qpair = IPATH_KD_QP;
kinfo->spi_piosize = dd->ipath_ibmaxlen;
kinfo->spi_mtu = dd->ipath_ibmaxlen; /* maxlen, not ibmtu */
kinfo->spi_port = pd->port_port;
kinfo->spi_subport = subport_fp(fp);
kinfo->spi_sw_version = IPATH_KERN_SWVERSION;
kinfo->spi_hw_version = dd->ipath_revision;
if (master) {
kinfo->spi_runtime_flags |= IPATH_RUNTIME_MASTER;
kinfo->spi_subport_uregbase =
(u64) pd->subport_uregbase & MMAP64_MASK;
kinfo->spi_subport_rcvegrbuf =
(u64) pd->subport_rcvegrbuf & MMAP64_MASK;
kinfo->spi_subport_rcvhdr_base =
(u64) pd->subport_rcvhdr_base & MMAP64_MASK;
ipath_cdbg(PROC, "port %u flags %x %llx %llx %llx\n",
kinfo->spi_port, kinfo->spi_runtime_flags,
(unsigned long long) kinfo->spi_subport_uregbase,
(unsigned long long) kinfo->spi_subport_rcvegrbuf,
(unsigned long long) kinfo->spi_subport_rcvhdr_base);
}
if (copy_to_user(ubase, kinfo, sizeof(*kinfo)))
ret = -EFAULT;
bail:
kfree(kinfo);
return ret;
}
/**
* ipath_tid_update - update a port TID
* @pd: the port
* @fp: the ipath device file
* @ti: the TID information
*
* The new implementation as of Oct 2004 is that the driver assigns
* the tid and returns it to the caller. To make it easier to
* catch bugs, and to reduce search time, we keep a cursor for
* each port, walking the shadow tid array to find one that's not
* in use.
*
* For now, if we can't allocate the full list, we fail, although
* in the long run, we'll allocate as many as we can, and the
* caller will deal with that by trying the remaining pages later.
* That means that when we fail, we have to mark the tids as not in
* use again, in our shadow copy.
*
* It's up to the caller to free the tids when they are done.
* We'll unlock the pages as they free them.
*
* Also, right now we are locking one page at a time, but since
* the intended use of this routine is for a single group of
* virtually contiguous pages, that should change to improve
* performance.
*/
static int ipath_tid_update(struct ipath_portdata *pd, struct file *fp,
const struct ipath_tid_info *ti)
{
int ret = 0, ntids;
u32 tid, porttid, cnt, i, tidcnt, tidoff;
u16 *tidlist;
struct ipath_devdata *dd = pd->port_dd;
u64 physaddr;
unsigned long vaddr;
u64 __iomem *tidbase;
unsigned long tidmap[8];
struct page **pagep = NULL;
unsigned subport = subport_fp(fp);
if (!dd->ipath_pageshadow) {
ret = -ENOMEM;
goto done;
}
cnt = ti->tidcnt;
if (!cnt) {
ipath_dbg("After copyin, tidcnt 0, tidlist %llx\n",
(unsigned long long) ti->tidlist);
/*
* Should we treat as success? likely a bug
*/
ret = -EFAULT;
goto done;
}
porttid = pd->port_port * dd->ipath_rcvtidcnt;
if (!pd->port_subport_cnt) {
tidcnt = dd->ipath_rcvtidcnt;
tid = pd->port_tidcursor;
tidoff = 0;
} else if (!subport) {
tidcnt = (dd->ipath_rcvtidcnt / pd->port_subport_cnt) +
(dd->ipath_rcvtidcnt % pd->port_subport_cnt);
tidoff = dd->ipath_rcvtidcnt - tidcnt;
porttid += tidoff;
tid = tidcursor_fp(fp);
} else {
tidcnt = dd->ipath_rcvtidcnt / pd->port_subport_cnt;
tidoff = tidcnt * (subport - 1);
porttid += tidoff;
tid = tidcursor_fp(fp);
}
if (cnt > tidcnt) {
/* make sure it all fits in port_tid_pg_list */
dev_info(&dd->pcidev->dev, "Process tried to allocate %u "
"TIDs, only trying max (%u)\n", cnt, tidcnt);
cnt = tidcnt;
}
pagep = &((struct page **) pd->port_tid_pg_list)[tidoff];
tidlist = &((u16 *) &pagep[dd->ipath_rcvtidcnt])[tidoff];
memset(tidmap, 0, sizeof(tidmap));
/* before decrement; chip actual # */
ntids = tidcnt;
tidbase = (u64 __iomem *) (((char __iomem *) dd->ipath_kregbase) +
dd->ipath_rcvtidbase +
porttid * sizeof(*tidbase));
ipath_cdbg(VERBOSE, "Port%u %u tids, cursor %u, tidbase %p\n",
pd->port_port, cnt, tid, tidbase);
/* virtual address of first page in transfer */
vaddr = ti->tidvaddr;
if (!access_ok(VERIFY_WRITE, (void __user *) vaddr,
cnt * PAGE_SIZE)) {
ipath_dbg("Fail vaddr %p, %u pages, !access_ok\n",
(void *)vaddr, cnt);
ret = -EFAULT;
goto done;
}
ret = ipath_get_user_pages(vaddr, cnt, pagep);
if (ret) {
if (ret == -EBUSY) {
ipath_dbg("Failed to lock addr %p, %u pages "
"(already locked)\n",
(void *) vaddr, cnt);
/*
* for now, continue, and see what happens but with
* the new implementation, this should never happen,
* unless perhaps the user has mpin'ed the pages
* themselves (something we need to test)
*/
ret = 0;
} else {
dev_info(&dd->pcidev->dev,
"Failed to lock addr %p, %u pages: "
"errno %d\n", (void *) vaddr, cnt, -ret);
goto done;
}
}
for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) {
for (; ntids--; tid++) {
if (tid == tidcnt)
tid = 0;
if (!dd->ipath_pageshadow[porttid + tid])
break;
}
if (ntids < 0) {
/*
* oops, wrapped all the way through their TIDs,
* and didn't have enough free; see comments at
* start of routine
*/
ipath_dbg("Not enough free TIDs for %u pages "
"(index %d), failing\n", cnt, i);
i--; /* last tidlist[i] not filled in */
ret = -ENOMEM;
break;
}
tidlist[i] = tid + tidoff;
ipath_cdbg(VERBOSE, "Updating idx %u to TID %u, "
"vaddr %lx\n", i, tid + tidoff, vaddr);
/* we "know" system pages and TID pages are same size */
dd->ipath_pageshadow[porttid + tid] = pagep[i];
dd->ipath_physshadow[porttid + tid] = ipath_map_page(
dd->pcidev, pagep[i], 0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
/*
* don't need atomic or it's overhead
*/
__set_bit(tid, tidmap);
physaddr = dd->ipath_physshadow[porttid + tid];
ipath_stats.sps_pagelocks++;
ipath_cdbg(VERBOSE,
"TID %u, vaddr %lx, physaddr %llx pgp %p\n",
tid, vaddr, (unsigned long long) physaddr,
pagep[i]);
dd->ipath_f_put_tid(dd, &tidbase[tid], 1, physaddr);
/*
* don't check this tid in ipath_portshadow, since we
* just filled it in; start with the next one.
*/
tid++;
}
if (ret) {
u32 limit;
cleanup:
/* jump here if copy out of updated info failed... */
ipath_dbg("After failure (ret=%d), undo %d of %d entries\n",
-ret, i, cnt);
/* same code that's in ipath_free_tid() */
limit = sizeof(tidmap) * BITS_PER_BYTE;
if (limit > tidcnt)
/* just in case size changes in future */
limit = tidcnt;
tid = find_first_bit((const unsigned long *)tidmap, limit);
for (; tid < limit; tid++) {
if (!test_bit(tid, tidmap))
continue;
if (dd->ipath_pageshadow[porttid + tid]) {
ipath_cdbg(VERBOSE, "Freeing TID %u\n",
tid);
dd->ipath_f_put_tid(dd, &tidbase[tid], 1,
dd->ipath_tidinvalid);
pci_unmap_page(dd->pcidev,
dd->ipath_physshadow[porttid + tid],
PAGE_SIZE, PCI_DMA_FROMDEVICE);
dd->ipath_pageshadow[porttid + tid] = NULL;
ipath_stats.sps_pageunlocks++;
}
}
ipath_release_user_pages(pagep, cnt);
} else {
/*
* Copy the updated array, with ipath_tid's filled in, back
* to user. Since we did the copy in already, this "should
* never fail" If it does, we have to clean up...
*/
if (copy_to_user((void __user *)
(unsigned long) ti->tidlist,
tidlist, cnt * sizeof(*tidlist))) {
ret = -EFAULT;
goto cleanup;
}
if (copy_to_user((void __user *) (unsigned long) ti->tidmap,
tidmap, sizeof tidmap)) {
ret = -EFAULT;
goto cleanup;
}
if (tid == tidcnt)
tid = 0;
if (!pd->port_subport_cnt)
pd->port_tidcursor = tid;
else
tidcursor_fp(fp) = tid;
}
done:
if (ret)
ipath_dbg("Failed to map %u TID pages, failing with %d\n",
ti->tidcnt, -ret);
return ret;
}
/**
* ipath_tid_free - free a port TID
* @pd: the port
* @subport: the subport
* @ti: the TID info
*
* right now we are unlocking one page at a time, but since
* the intended use of this routine is for a single group of
* virtually contiguous pages, that should change to improve
* performance. We check that the TID is in range for this port
* but otherwise don't check validity; if user has an error and
* frees the wrong tid, it's only their own data that can thereby
* be corrupted. We do check that the TID was in use, for sanity
* We always use our idea of the saved address, not the address that
* they pass in to us.
*/
static int ipath_tid_free(struct ipath_portdata *pd, unsigned subport,
const struct ipath_tid_info *ti)
{
int ret = 0;
u32 tid, porttid, cnt, limit, tidcnt;
struct ipath_devdata *dd = pd->port_dd;
u64 __iomem *tidbase;
unsigned long tidmap[8];
if (!dd->ipath_pageshadow) {
ret = -ENOMEM;
goto done;
}
if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap,
sizeof tidmap)) {
ret = -EFAULT;
goto done;
}
porttid = pd->port_port * dd->ipath_rcvtidcnt;
if (!pd->port_subport_cnt)
tidcnt = dd->ipath_rcvtidcnt;
else if (!subport) {
tidcnt = (dd->ipath_rcvtidcnt / pd->port_subport_cnt) +
(dd->ipath_rcvtidcnt % pd->port_subport_cnt);
porttid += dd->ipath_rcvtidcnt - tidcnt;
} else {
tidcnt = dd->ipath_rcvtidcnt / pd->port_subport_cnt;
porttid += tidcnt * (subport - 1);
}
tidbase = (u64 __iomem *) ((char __iomem *)(dd->ipath_kregbase) +
dd->ipath_rcvtidbase +
porttid * sizeof(*tidbase));
limit = sizeof(tidmap) * BITS_PER_BYTE;
if (limit > tidcnt)
/* just in case size changes in future */
limit = tidcnt;
tid = find_first_bit(tidmap, limit);
ipath_cdbg(VERBOSE, "Port%u free %u tids; first bit (max=%d) "
"set is %d, porttid %u\n", pd->port_port, ti->tidcnt,
limit, tid, porttid);
for (cnt = 0; tid < limit; tid++) {
/*
* small optimization; if we detect a run of 3 or so without
* any set, use find_first_bit again. That's mainly to
* accelerate the case where we wrapped, so we have some at
* the beginning, and some at the end, and a big gap
* in the middle.
*/
if (!test_bit(tid, tidmap))
continue;
cnt++;
if (dd->ipath_pageshadow[porttid + tid]) {
ipath_cdbg(VERBOSE, "PID %u freeing TID %u\n",
pd->port_pid, tid);
dd->ipath_f_put_tid(dd, &tidbase[tid], 1,
dd->ipath_tidinvalid);
pci_unmap_page(dd->pcidev,
dd->ipath_physshadow[porttid + tid],
PAGE_SIZE, PCI_DMA_FROMDEVICE);
ipath_release_user_pages(
&dd->ipath_pageshadow[porttid + tid], 1);
dd->ipath_pageshadow[porttid + tid] = NULL;
ipath_stats.sps_pageunlocks++;
} else
ipath_dbg("Unused tid %u, ignoring\n", tid);
}
if (cnt != ti->tidcnt)
ipath_dbg("passed in tidcnt %d, only %d bits set in map\n",
ti->tidcnt, cnt);
done:
if (ret)
ipath_dbg("Failed to unmap %u TID pages, failing with %d\n",
ti->tidcnt, -ret);
return ret;
}
/**
* ipath_set_part_key - set a partition key
* @pd: the port
* @key: the key
*
* We can have up to 4 active at a time (other than the default, which is
* always allowed). This is somewhat tricky, since multiple ports may set
* the same key, so we reference count them, and clean up at exit. All 4
* partition keys are packed into a single infinipath register. It's an
* error for a process to set the same pkey multiple times. We provide no
* mechanism to de-allocate a pkey at this time, we may eventually need to
* do that. I've used the atomic operations, and no locking, and only make
* a single pass through what's available. This should be more than
* adequate for some time. I'll think about spinlocks or the like if and as
* it's necessary.
*/
static int ipath_set_part_key(struct ipath_portdata *pd, u16 key)
{
struct ipath_devdata *dd = pd->port_dd;
int i, any = 0, pidx = -1;
u16 lkey = key & 0x7FFF;
int ret;
if (lkey == (IPATH_DEFAULT_P_KEY & 0x7FFF)) {
/* nothing to do; this key always valid */
ret = 0;
goto bail;
}
ipath_cdbg(VERBOSE, "p%u try to set pkey %hx, current keys "
"%hx:%x %hx:%x %hx:%x %hx:%x\n",
pd->port_port, key, dd->ipath_pkeys[0],
atomic_read(&dd->ipath_pkeyrefs[0]), dd->ipath_pkeys[1],
atomic_read(&dd->ipath_pkeyrefs[1]), dd->ipath_pkeys[2],
atomic_read(&dd->ipath_pkeyrefs[2]), dd->ipath_pkeys[3],
atomic_read(&dd->ipath_pkeyrefs[3]));
if (!lkey) {
ipath_cdbg(PROC, "p%u tries to set key 0, not allowed\n",
pd->port_port);
ret = -EINVAL;
goto bail;
}
/*
* Set the full membership bit, because it has to be
* set in the register or the packet, and it seems
* cleaner to set in the register than to force all
* callers to set it. (see bug 4331)
*/
key |= 0x8000;
for (i = 0; i < ARRAY_SIZE(pd->port_pkeys); i++) {
if (!pd->port_pkeys[i] && pidx == -1)
pidx = i;
if (pd->port_pkeys[i] == key) {
ipath_cdbg(VERBOSE, "p%u tries to set same pkey "
"(%x) more than once\n",
pd->port_port, key);
ret = -EEXIST;
goto bail;
}
}
if (pidx == -1) {
ipath_dbg("All pkeys for port %u already in use, "
"can't set %x\n", pd->port_port, key);
ret = -EBUSY;
goto bail;
}
for (any = i = 0; i < ARRAY_SIZE(dd->ipath_pkeys); i++) {
if (!dd->ipath_pkeys[i]) {
any++;
continue;
}
if (dd->ipath_pkeys[i] == key) {
atomic_t *pkrefs = &dd->ipath_pkeyrefs[i];
if (atomic_inc_return(pkrefs) > 1) {
pd->port_pkeys[pidx] = key;
ipath_cdbg(VERBOSE, "p%u set key %x "
"matches #%d, count now %d\n",
pd->port_port, key, i,
atomic_read(pkrefs));
ret = 0;
goto bail;
} else {
/*
* lost race, decrement count, catch below
*/
atomic_dec(pkrefs);
ipath_cdbg(VERBOSE, "Lost race, count was "
"0, after dec, it's %d\n",
atomic_read(pkrefs));
any++;
}
}
if ((dd->ipath_pkeys[i] & 0x7FFF) == lkey) {
/*
* It makes no sense to have both the limited and
* full membership PKEY set at the same time since
* the unlimited one will disable the limited one.
*/
ret = -EEXIST;
goto bail;
}
}
if (!any) {
ipath_dbg("port %u, all pkeys already in use, "
"can't set %x\n", pd->port_port, key);
ret = -EBUSY;
goto bail;
}
for (any = i = 0; i < ARRAY_SIZE(dd->ipath_pkeys); i++) {
if (!dd->ipath_pkeys[i] &&
atomic_inc_return(&dd->ipath_pkeyrefs[i]) == 1) {
u64 pkey;
/* for ipathstats, etc. */
ipath_stats.sps_pkeys[i] = lkey;
pd->port_pkeys[pidx] = dd->ipath_pkeys[i] = key;
pkey =
(u64) dd->ipath_pkeys[0] |
((u64) dd->ipath_pkeys[1] << 16) |
((u64) dd->ipath_pkeys[2] << 32) |
((u64) dd->ipath_pkeys[3] << 48);
ipath_cdbg(PROC, "p%u set key %x in #%d, "
"portidx %d, new pkey reg %llx\n",
pd->port_port, key, i, pidx,
(unsigned long long) pkey);
ipath_write_kreg(
dd, dd->ipath_kregs->kr_partitionkey, pkey);
ret = 0;
goto bail;
}
}
ipath_dbg("port %u, all pkeys already in use 2nd pass, "
"can't set %x\n", pd->port_port, key);
ret = -EBUSY;
bail:
return ret;
}
/**
* ipath_manage_rcvq - manage a port's receive queue
* @pd: the port
* @subport: the subport
* @start_stop: action to carry out
*
* start_stop == 0 disables receive on the port, for use in queue
* overflow conditions. start_stop==1 re-enables, to be used to
* re-init the software copy of the head register
*/
static int ipath_manage_rcvq(struct ipath_portdata *pd, unsigned subport,
int start_stop)
{
struct ipath_devdata *dd = pd->port_dd;
ipath_cdbg(PROC, "%sabling rcv for unit %u port %u:%u\n",
start_stop ? "en" : "dis", dd->ipath_unit,
pd->port_port, subport);
if (subport)
goto bail;
/* atomically clear receive enable port. */
if (start_stop) {
/*
* On enable, force in-memory copy of the tail register to
* 0, so that protocol code doesn't have to worry about
* whether or not the chip has yet updated the in-memory
* copy or not on return from the system call. The chip
* always resets it's tail register back to 0 on a
* transition from disabled to enabled. This could cause a
* problem if software was broken, and did the enable w/o
* the disable, but eventually the in-memory copy will be
* updated and correct itself, even in the face of software
* bugs.
*/
*(volatile u64 *)pd->port_rcvhdrtail_kvaddr = 0;
set_bit(INFINIPATH_R_PORTENABLE_SHIFT + pd->port_port,
&dd->ipath_rcvctrl);
} else
clear_bit(INFINIPATH_R_PORTENABLE_SHIFT + pd->port_port,
&dd->ipath_rcvctrl);
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
dd->ipath_rcvctrl);
/* now be sure chip saw it before we return */
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
if (start_stop) {
/*
* And try to be sure that tail reg update has happened too.
* This should in theory interlock with the RXE changes to
* the tail register. Don't assign it to the tail register
* in memory copy, since we could overwrite an update by the
* chip if we did.
*/
ipath_read_ureg32(dd, ur_rcvhdrtail, pd->port_port);
}
/* always; new head should be equal to new tail; see above */
bail:
return 0;
}
static void ipath_clean_part_key(struct ipath_portdata *pd,
struct ipath_devdata *dd)
{
int i, j, pchanged = 0;
u64 oldpkey;
/* for debugging only */
oldpkey = (u64) dd->ipath_pkeys[0] |
((u64) dd->ipath_pkeys[1] << 16) |
((u64) dd->ipath_pkeys[2] << 32) |
((u64) dd->ipath_pkeys[3] << 48);
for (i = 0; i < ARRAY_SIZE(pd->port_pkeys); i++) {
if (!pd->port_pkeys[i])
continue;
ipath_cdbg(VERBOSE, "look for key[%d] %hx in pkeys\n", i,
pd->port_pkeys[i]);
for (j = 0; j < ARRAY_SIZE(dd->ipath_pkeys); j++) {
/* check for match independent of the global bit */
if ((dd->ipath_pkeys[j] & 0x7fff) !=
(pd->port_pkeys[i] & 0x7fff))
continue;
if (atomic_dec_and_test(&dd->ipath_pkeyrefs[j])) {
ipath_cdbg(VERBOSE, "p%u clear key "
"%x matches #%d\n",
pd->port_port,
pd->port_pkeys[i], j);
ipath_stats.sps_pkeys[j] =
dd->ipath_pkeys[j] = 0;
pchanged++;
}
else ipath_cdbg(
VERBOSE, "p%u key %x matches #%d, "
"but ref still %d\n", pd->port_port,
pd->port_pkeys[i], j,
atomic_read(&dd->ipath_pkeyrefs[j]));
break;
}
pd->port_pkeys[i] = 0;
}
if (pchanged) {
u64 pkey = (u64) dd->ipath_pkeys[0] |
((u64) dd->ipath_pkeys[1] << 16) |
((u64) dd->ipath_pkeys[2] << 32) |
((u64) dd->ipath_pkeys[3] << 48);
ipath_cdbg(VERBOSE, "p%u old pkey reg %llx, "
"new pkey reg %llx\n", pd->port_port,
(unsigned long long) oldpkey,
(unsigned long long) pkey);
ipath_write_kreg(dd, dd->ipath_kregs->kr_partitionkey,
pkey);
}
}
/*
* Initialize the port data with the receive buffer sizes
* so this can be done while the master port is locked.
* Otherwise, there is a race with a slave opening the port
* and seeing these fields uninitialized.
*/
static void init_user_egr_sizes(struct ipath_portdata *pd)
{
struct ipath_devdata *dd = pd->port_dd;
unsigned egrperchunk, egrcnt, size;
/*
* to avoid wasting a lot of memory, we allocate 32KB chunks of
* physically contiguous memory, advance through it until used up
* and then allocate more. Of course, we need memory to store those
* extra pointers, now. Started out with 256KB, but under heavy
* memory pressure (creating large files and then copying them over
* NFS while doing lots of MPI jobs), we hit some allocation
* failures, even though we can sleep... (2.6.10) Still get
* failures at 64K. 32K is the lowest we can go without wasting
* additional memory.
*/
size = 0x8000;
egrperchunk = size / dd->ipath_rcvegrbufsize;
egrcnt = dd->ipath_rcvegrcnt;
pd->port_rcvegrbuf_chunks = (egrcnt + egrperchunk - 1) / egrperchunk;
pd->port_rcvegrbufs_perchunk = egrperchunk;
pd->port_rcvegrbuf_size = size;
}
/**
* ipath_create_user_egr - allocate eager TID buffers
* @pd: the port to allocate TID buffers for
*
* This routine is now quite different for user and kernel, because
* the kernel uses skb's, for the accelerated network performance
* This is the user port version
*
* Allocate the eager TID buffers and program them into infinipath
* They are no longer completely contiguous, we do multiple allocation
* calls.
*/
static int ipath_create_user_egr(struct ipath_portdata *pd)
{
struct ipath_devdata *dd = pd->port_dd;
unsigned e, egrcnt, egrperchunk, chunk, egrsize, egroff;
size_t size;
int ret;
gfp_t gfp_flags;
/*
* GFP_USER, but without GFP_FS, so buffer cache can be
* coalesced (we hope); otherwise, even at order 4,
* heavy filesystem activity makes these fail, and we can
* use compound pages.
*/
gfp_flags = __GFP_WAIT | __GFP_IO | __GFP_COMP;
egrcnt = dd->ipath_rcvegrcnt;
/* TID number offset for this port */
egroff = pd->port_port * egrcnt;
egrsize = dd->ipath_rcvegrbufsize;
ipath_cdbg(VERBOSE, "Allocating %d egr buffers, at egrtid "
"offset %x, egrsize %u\n", egrcnt, egroff, egrsize);
chunk = pd->port_rcvegrbuf_chunks;
egrperchunk = pd->port_rcvegrbufs_perchunk;
size = pd->port_rcvegrbuf_size;
pd->port_rcvegrbuf = kmalloc(chunk * sizeof(pd->port_rcvegrbuf[0]),
GFP_KERNEL);
if (!pd->port_rcvegrbuf) {
ret = -ENOMEM;
goto bail;
}
pd->port_rcvegrbuf_phys =
kmalloc(chunk * sizeof(pd->port_rcvegrbuf_phys[0]),
GFP_KERNEL);
if (!pd->port_rcvegrbuf_phys) {
ret = -ENOMEM;
goto bail_rcvegrbuf;
}
for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) {
pd->port_rcvegrbuf[e] = dma_alloc_coherent(
&dd->pcidev->dev, size, &pd->port_rcvegrbuf_phys[e],
gfp_flags);
if (!pd->port_rcvegrbuf[e]) {
ret = -ENOMEM;
goto bail_rcvegrbuf_phys;
}
}
pd->port_rcvegr_phys = pd->port_rcvegrbuf_phys[0];
for (e = chunk = 0; chunk < pd->port_rcvegrbuf_chunks; chunk++) {
dma_addr_t pa = pd->port_rcvegrbuf_phys[chunk];
unsigned i;
for (i = 0; e < egrcnt && i < egrperchunk; e++, i++) {
dd->ipath_f_put_tid(dd, e + egroff +
(u64 __iomem *)
((char __iomem *)
dd->ipath_kregbase +
dd->ipath_rcvegrbase), 0, pa);
pa += egrsize;
}
cond_resched(); /* don't hog the cpu */
}
ret = 0;
goto bail;
bail_rcvegrbuf_phys:
for (e = 0; e < pd->port_rcvegrbuf_chunks &&
pd->port_rcvegrbuf[e]; e++) {
dma_free_coherent(&dd->pcidev->dev, size,
pd->port_rcvegrbuf[e],
pd->port_rcvegrbuf_phys[e]);
}
kfree(pd->port_rcvegrbuf_phys);
pd->port_rcvegrbuf_phys = NULL;
bail_rcvegrbuf:
kfree(pd->port_rcvegrbuf);
pd->port_rcvegrbuf = NULL;
bail:
return ret;
}
/* common code for the mappings on dma_alloc_coherent mem */
static int ipath_mmap_mem(struct vm_area_struct *vma,
struct ipath_portdata *pd, unsigned len, int write_ok,
void *kvaddr, char *what)
{
struct ipath_devdata *dd = pd->port_dd;
unsigned long pfn;
int ret;
if ((vma->vm_end - vma->vm_start) > len) {
dev_info(&dd->pcidev->dev,
"FAIL on %s: len %lx > %x\n", what,
vma->vm_end - vma->vm_start, len);
ret = -EFAULT;
goto bail;
}
if (!write_ok) {
if (vma->vm_flags & VM_WRITE) {
dev_info(&dd->pcidev->dev,
"%s must be mapped readonly\n", what);
ret = -EPERM;
goto bail;
}
/* don't allow them to later change with mprotect */
vma->vm_flags &= ~VM_MAYWRITE;
}
pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT;
ret = remap_pfn_range(vma, vma->vm_start, pfn,
len, vma->vm_page_prot);
if (ret)
dev_info(&dd->pcidev->dev, "%s port%u mmap of %lx, %x "
"bytes r%c failed: %d\n", what, pd->port_port,
pfn, len, write_ok?'w':'o', ret);
else
ipath_cdbg(VERBOSE, "%s port%u mmaped %lx, %x bytes "
"r%c\n", what, pd->port_port, pfn, len,
write_ok?'w':'o');
bail:
return ret;
}
static int mmap_ureg(struct vm_area_struct *vma, struct ipath_devdata *dd,
u64 ureg)
{
unsigned long phys;
int ret;
/*
* This is real hardware, so use io_remap. This is the mechanism
* for the user process to update the head registers for their port
* in the chip.
*/
if ((vma->vm_end - vma->vm_start) > PAGE_SIZE) {
dev_info(&dd->pcidev->dev, "FAIL mmap userreg: reqlen "
"%lx > PAGE\n", vma->vm_end - vma->vm_start);
ret = -EFAULT;
} else {
phys = dd->ipath_physaddr + ureg;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
ret = io_remap_pfn_range(vma, vma->vm_start,
phys >> PAGE_SHIFT,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
return ret;
}
static int mmap_piobufs(struct vm_area_struct *vma,
struct ipath_devdata *dd,
struct ipath_portdata *pd,
unsigned piobufs, unsigned piocnt)
{
unsigned long phys;
int ret;
/*
* When we map the PIO buffers in the chip, we want to map them as
* writeonly, no read possible. This prevents access to previous
* process data, and catches users who might try to read the i/o
* space due to a bug.
*/
if ((vma->vm_end - vma->vm_start) > (piocnt * dd->ipath_palign)) {
dev_info(&dd->pcidev->dev, "FAIL mmap piobufs: "
"reqlen %lx > PAGE\n",
vma->vm_end - vma->vm_start);
ret = -EINVAL;
goto bail;
}
phys = dd->ipath_physaddr + piobufs;
/*
* Don't mark this as non-cached, or we don't get the
* write combining behavior we want on the PIO buffers!
*/
#if defined(__powerpc__)
/* There isn't a generic way to specify writethrough mappings */
pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE;
pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU;
pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED;
#endif
/*
* don't allow them to later change to readable with mprotect (for when
* not initially mapped readable, as is normally the case)
*/
vma->vm_flags &= ~VM_MAYREAD;
vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
bail:
return ret;
}
static int mmap_rcvegrbufs(struct vm_area_struct *vma,
struct ipath_portdata *pd)
{
struct ipath_devdata *dd = pd->port_dd;
unsigned long start, size;
size_t total_size, i;
unsigned long pfn;
int ret;
size = pd->port_rcvegrbuf_size;
total_size = pd->port_rcvegrbuf_chunks * size;
if ((vma->vm_end - vma->vm_start) > total_size) {
dev_info(&dd->pcidev->dev, "FAIL on egr bufs: "
"reqlen %lx > actual %lx\n",
vma->vm_end - vma->vm_start,
(unsigned long) total_size);
ret = -EINVAL;
goto bail;
}
if (vma->vm_flags & VM_WRITE) {
dev_info(&dd->pcidev->dev, "Can't map eager buffers as "
"writable (flags=%lx)\n", vma->vm_flags);
ret = -EPERM;
goto bail;
}
/* don't allow them to later change to writeable with mprotect */
vma->vm_flags &= ~VM_MAYWRITE;
start = vma->vm_start;
for (i = 0; i < pd->port_rcvegrbuf_chunks; i++, start += size) {
pfn = virt_to_phys(pd->port_rcvegrbuf[i]) >> PAGE_SHIFT;
ret = remap_pfn_range(vma, start, pfn, size,
vma->vm_page_prot);
if (ret < 0)
goto bail;
}
ret = 0;
bail:
return ret;
}
/*
* ipath_file_vma_nopage - handle a VMA page fault.
*/
static struct page *ipath_file_vma_nopage(struct vm_area_struct *vma,
unsigned long address, int *type)
{
unsigned long offset = address - vma->vm_start;
struct page *page = NOPAGE_SIGBUS;
void *pageptr;
/*
* Convert the vmalloc address into a struct page.
*/
pageptr = (void *)(offset + (vma->vm_pgoff << PAGE_SHIFT));
page = vmalloc_to_page(pageptr);
if (!page)
goto out;
/* Increment the reference count. */
get_page(page);
if (type)
*type = VM_FAULT_MINOR;
out:
return page;
}
static struct vm_operations_struct ipath_file_vm_ops = {
.nopage = ipath_file_vma_nopage,
};
static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr,
struct ipath_portdata *pd, unsigned subport)
{
unsigned long len;
struct ipath_devdata *dd;
void *addr;
size_t size;
int ret;
/* If the port is not shared, all addresses should be physical */
if (!pd->port_subport_cnt) {
ret = -EINVAL;
goto bail;
}
dd = pd->port_dd;
size = pd->port_rcvegrbuf_chunks * pd->port_rcvegrbuf_size;
/*
* Master has all the slave uregbase, rcvhdrq, and
* rcvegrbufs mmapped.
*/
if (subport == 0) {
unsigned num_slaves = pd->port_subport_cnt - 1;
if (pgaddr == ((u64) pd->subport_uregbase & MMAP64_MASK)) {
addr = pd->subport_uregbase;
size = PAGE_SIZE * num_slaves;
} else if (pgaddr == ((u64) pd->subport_rcvhdr_base &
MMAP64_MASK)) {
addr = pd->subport_rcvhdr_base;
size = pd->port_rcvhdrq_size * num_slaves;
} else if (pgaddr == ((u64) pd->subport_rcvegrbuf &
MMAP64_MASK)) {
addr = pd->subport_rcvegrbuf;
size *= num_slaves;
} else {
ret = -EINVAL;
goto bail;
}
} else if (pgaddr == (((u64) pd->subport_uregbase +
PAGE_SIZE * (subport - 1)) & MMAP64_MASK)) {
addr = pd->subport_uregbase + PAGE_SIZE * (subport - 1);
size = PAGE_SIZE;
} else if (pgaddr == (((u64) pd->subport_rcvhdr_base +
pd->port_rcvhdrq_size * (subport - 1)) &
MMAP64_MASK)) {
addr = pd->subport_rcvhdr_base +
pd->port_rcvhdrq_size * (subport - 1);
size = pd->port_rcvhdrq_size;
} else if (pgaddr == (((u64) pd->subport_rcvegrbuf +
size * (subport - 1)) & MMAP64_MASK)) {
addr = pd->subport_rcvegrbuf + size * (subport - 1);
/* rcvegrbufs are read-only on the slave */
if (vma->vm_flags & VM_WRITE) {
dev_info(&dd->pcidev->dev,
"Can't map eager buffers as "
"writable (flags=%lx)\n", vma->vm_flags);
ret = -EPERM;
goto bail;
}
/*
* Don't allow permission to later change to writeable
* with mprotect.
*/
vma->vm_flags &= ~VM_MAYWRITE;
} else {
ret = -EINVAL;
goto bail;
}
len = vma->vm_end - vma->vm_start;
if (len > size) {
ipath_cdbg(MM, "FAIL: reqlen %lx > %zx\n", len, size);
ret = -EINVAL;
goto bail;
}
vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT;
vma->vm_ops = &ipath_file_vm_ops;
vma->vm_flags |= VM_RESERVED | VM_DONTEXPAND;
ret = 0;
bail:
return ret;
}
/**
* ipath_mmap - mmap various structures into user space
* @fp: the file pointer
* @vma: the VM area
*
* We use this to have a shared buffer between the kernel and the user code
* for the rcvhdr queue, egr buffers, and the per-port user regs and pio
* buffers in the chip. We have the open and close entries so we can bump
* the ref count and keep the driver from being unloaded while still mapped.
*/
static int ipath_mmap(struct file *fp, struct vm_area_struct *vma)
{
struct ipath_portdata *pd;
struct ipath_devdata *dd;
u64 pgaddr, ureg;
unsigned piobufs, piocnt;
int ret;
pd = port_fp(fp);
if (!pd) {
ret = -EINVAL;
goto bail;
}
dd = pd->port_dd;
/*
* This is the ipath_do_user_init() code, mapping the shared buffers
* into the user process. The address referred to by vm_pgoff is the
* file offset passed via mmap(). For shared ports, this is the
* kernel vmalloc() address of the pages to share with the master.
* For non-shared or master ports, this is a physical address.
* We only do one mmap for each space mapped.
*/
pgaddr = vma->vm_pgoff << PAGE_SHIFT;
/*
* Check for 0 in case one of the allocations failed, but user
* called mmap anyway.
*/
if (!pgaddr) {
ret = -EINVAL;
goto bail;
}
ipath_cdbg(MM, "pgaddr %llx vm_start=%lx len %lx port %u:%u:%u\n",
(unsigned long long) pgaddr, vma->vm_start,
vma->vm_end - vma->vm_start, dd->ipath_unit,
pd->port_port, subport_fp(fp));
/*
* Physical addresses must fit in 40 bits for our hardware.
* Check for kernel virtual addresses first, anything else must
* match a HW or memory address.
*/
if (pgaddr >= (1ULL<<40)) {
ret = mmap_kvaddr(vma, pgaddr, pd, subport_fp(fp));
goto bail;
}
if (!pd->port_subport_cnt) {
/* port is not shared */
ureg = dd->ipath_uregbase + dd->ipath_palign * pd->port_port;
piocnt = dd->ipath_pbufsport;
piobufs = pd->port_piobufs;
} else if (!subport_fp(fp)) {
/* caller is the master */
ureg = dd->ipath_uregbase + dd->ipath_palign * pd->port_port;
piocnt = (dd->ipath_pbufsport / pd->port_subport_cnt) +
(dd->ipath_pbufsport % pd->port_subport_cnt);
piobufs = pd->port_piobufs +
dd->ipath_palign * (dd->ipath_pbufsport - piocnt);
} else {
unsigned slave = subport_fp(fp) - 1;
/* caller is a slave */
ureg = 0;
piocnt = dd->ipath_pbufsport / pd->port_subport_cnt;
piobufs = pd->port_piobufs + dd->ipath_palign * piocnt * slave;
}
if (pgaddr == ureg)
ret = mmap_ureg(vma, dd, ureg);
else if (pgaddr == piobufs)
ret = mmap_piobufs(vma, dd, pd, piobufs, piocnt);
else if (pgaddr == dd->ipath_pioavailregs_phys)
/* in-memory copy of pioavail registers */
ret = ipath_mmap_mem(vma, pd, PAGE_SIZE, 0,
(void *) dd->ipath_pioavailregs_dma,
"pioavail registers");
else if (subport_fp(fp))
/* Subports don't mmap the physical receive buffers */
ret = -EINVAL;
else if (pgaddr == pd->port_rcvegr_phys)
ret = mmap_rcvegrbufs(vma, pd);
else if (pgaddr == (u64) pd->port_rcvhdrq_phys)
/*
* The rcvhdrq itself; readonly except on HT (so have
* to allow writable mapping), multiple pages, contiguous
* from an i/o perspective.
*/
ret = ipath_mmap_mem(vma, pd, pd->port_rcvhdrq_size, 1,
pd->port_rcvhdrq,
"rcvhdrq");
else if (pgaddr == (u64) pd->port_rcvhdrqtailaddr_phys)
/* in-memory copy of rcvhdrq tail register */
ret = ipath_mmap_mem(vma, pd, PAGE_SIZE, 0,
pd->port_rcvhdrtail_kvaddr,
"rcvhdrq tail");
else
ret = -EINVAL;
vma->vm_private_data = NULL;
if (ret < 0)
dev_info(&dd->pcidev->dev,
"Failure %d on off %llx len %lx\n",
-ret, (unsigned long long)pgaddr,
vma->vm_end - vma->vm_start);
bail:
return ret;
}
static unsigned int ipath_poll(struct file *fp,
struct poll_table_struct *pt)
{
struct ipath_portdata *pd;
u32 head, tail;
int bit;
unsigned pollflag = 0;
struct ipath_devdata *dd;
pd = port_fp(fp);
if (!pd)
goto bail;
dd = pd->port_dd;
bit = pd->port_port + INFINIPATH_R_INTRAVAIL_SHIFT;
set_bit(bit, &dd->ipath_rcvctrl);
/*
* Before blocking, make sure that head is still == tail,
* reading from the chip, so we can be sure the interrupt
* enable has made it to the chip. If not equal, disable
* interrupt again and return immediately. This avoids races,
* and the overhead of the chip read doesn't matter much at
* this point, since we are waiting for something anyway.
*/
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
dd->ipath_rcvctrl);
head = ipath_read_ureg32(dd, ur_rcvhdrhead, pd->port_port);
tail = ipath_read_ureg32(dd, ur_rcvhdrtail, pd->port_port);
if (tail == head) {
set_bit(IPATH_PORT_WAITING_RCV, &pd->port_flag);
if (dd->ipath_rhdrhead_intr_off) /* arm rcv interrupt */
(void)ipath_write_ureg(dd, ur_rcvhdrhead,
dd->ipath_rhdrhead_intr_off
| head, pd->port_port);
poll_wait(fp, &pd->port_wait, pt);
if (test_bit(IPATH_PORT_WAITING_RCV, &pd->port_flag)) {
/* timed out, no packets received */
clear_bit(IPATH_PORT_WAITING_RCV, &pd->port_flag);
pd->port_rcvwait_to++;
}
else
pollflag = POLLIN | POLLRDNORM;
}
else {
/* it's already happened; don't do wait_event overhead */
pollflag = POLLIN | POLLRDNORM;
pd->port_rcvnowait++;
}
clear_bit(bit, &dd->ipath_rcvctrl);
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
dd->ipath_rcvctrl);
bail:
return pollflag;
}
static int init_subports(struct ipath_devdata *dd,
struct ipath_portdata *pd,
const struct ipath_user_info *uinfo)
{
int ret = 0;
unsigned num_slaves;
size_t size;
/* Old user binaries don't know about subports */
if ((uinfo->spu_userversion & 0xffff) != IPATH_USER_SWMINOR)
goto bail;
/*
* If the user is requesting zero or one port,
* skip the subport allocation.
*/
if (uinfo->spu_subport_cnt <= 1)
goto bail;
if (uinfo->spu_subport_cnt > 4) {
ret = -EINVAL;
goto bail;
}
num_slaves = uinfo->spu_subport_cnt - 1;
pd->subport_uregbase = vmalloc(PAGE_SIZE * num_slaves);
if (!pd->subport_uregbase) {
ret = -ENOMEM;
goto bail;
}
/* Note: pd->port_rcvhdrq_size isn't initialized yet. */
size = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize *
sizeof(u32), PAGE_SIZE) * num_slaves;
pd->subport_rcvhdr_base = vmalloc(size);
if (!pd->subport_rcvhdr_base) {
ret = -ENOMEM;
goto bail_ureg;
}
pd->subport_rcvegrbuf = vmalloc(pd->port_rcvegrbuf_chunks *
pd->port_rcvegrbuf_size *
num_slaves);
if (!pd->subport_rcvegrbuf) {
ret = -ENOMEM;
goto bail_rhdr;
}
pd->port_subport_cnt = uinfo->spu_subport_cnt;
pd->port_subport_id = uinfo->spu_subport_id;
pd->active_slaves = 1;
goto bail;
bail_rhdr:
vfree(pd->subport_rcvhdr_base);
bail_ureg:
vfree(pd->subport_uregbase);
pd->subport_uregbase = NULL;
bail:
return ret;
}
static int try_alloc_port(struct ipath_devdata *dd, int port,
struct file *fp,
const struct ipath_user_info *uinfo)
{
struct ipath_portdata *pd;
int ret;
if (!(pd = dd->ipath_pd[port])) {
void *ptmp;
pd = kzalloc(sizeof(struct ipath_portdata), GFP_KERNEL);
/*
* Allocate memory for use in ipath_tid_update() just once
* at open, not per call. Reduces cost of expected send
* setup.
*/
ptmp = kmalloc(dd->ipath_rcvtidcnt * sizeof(u16) +
dd->ipath_rcvtidcnt * sizeof(struct page **),
GFP_KERNEL);
if (!pd || !ptmp) {
ipath_dev_err(dd, "Unable to allocate portdata "
"memory, failing open\n");
ret = -ENOMEM;
kfree(pd);
kfree(ptmp);
goto bail;
}
dd->ipath_pd[port] = pd;
dd->ipath_pd[port]->port_port = port;
dd->ipath_pd[port]->port_dd = dd;
dd->ipath_pd[port]->port_tid_pg_list = ptmp;
init_waitqueue_head(&dd->ipath_pd[port]->port_wait);
}
if (!pd->port_cnt) {
pd->userversion = uinfo->spu_userversion;
init_user_egr_sizes(pd);
if ((ret = init_subports(dd, pd, uinfo)) != 0)
goto bail;
ipath_cdbg(PROC, "%s[%u] opened unit:port %u:%u\n",
current->comm, current->pid, dd->ipath_unit,
port);
pd->port_cnt = 1;
port_fp(fp) = pd;
pd->port_pid = current->pid;
strncpy(pd->port_comm, current->comm, sizeof(pd->port_comm));
ipath_stats.sps_ports++;
ret = 0;
} else
ret = -EBUSY;
bail:
return ret;
}
static inline int usable(struct ipath_devdata *dd)
{
return dd &&
(dd->ipath_flags & IPATH_PRESENT) &&
dd->ipath_kregbase &&
dd->ipath_lid &&
!(dd->ipath_flags & (IPATH_LINKDOWN | IPATH_DISABLED
| IPATH_LINKUNK));
}
static int find_free_port(int unit, struct file *fp,
const struct ipath_user_info *uinfo)
{
struct ipath_devdata *dd = ipath_lookup(unit);
int ret, i;
if (!dd) {
ret = -ENODEV;
goto bail;
}
if (!usable(dd)) {
ret = -ENETDOWN;
goto bail;
}
for (i = 1; i < dd->ipath_cfgports; i++) {
ret = try_alloc_port(dd, i, fp, uinfo);
if (ret != -EBUSY)
goto bail;
}
ret = -EBUSY;
bail:
return ret;
}
static int find_best_unit(struct file *fp,
const struct ipath_user_info *uinfo)
{
int ret = 0, i, prefunit = -1, devmax;
int maxofallports, npresent, nup;
int ndev;
devmax = ipath_count_units(&npresent, &nup, &maxofallports);
/*
* This code is present to allow a knowledgeable person to
* specify the layout of processes to processors before opening
* this driver, and then we'll assign the process to the "closest"
* InfiniPath chip to that processor (we assume reasonable connectivity,
* for now). This code assumes that if affinity has been set
* before this point, that at most one cpu is set; for now this
* is reasonable. I check for both cpus_empty() and cpus_full(),
* in case some kernel variant sets none of the bits when no
* affinity is set. 2.6.11 and 12 kernels have all present
* cpus set. Some day we'll have to fix it up further to handle
* a cpu subset. This algorithm fails for two HT chips connected
* in tunnel fashion. Eventually this needs real topology
* information. There may be some issues with dual core numbering
* as well. This needs more work prior to release.
*/
if (!cpus_empty(current->cpus_allowed) &&
!cpus_full(current->cpus_allowed)) {
int ncpus = num_online_cpus(), curcpu = -1;
for (i = 0; i < ncpus; i++)
if (cpu_isset(i, current->cpus_allowed)) {
ipath_cdbg(PROC, "%s[%u] affinity set for "
"cpu %d\n", current->comm,
current->pid, i);
curcpu = i;
}
if (curcpu != -1) {
if (npresent) {
prefunit = curcpu / (ncpus / npresent);
ipath_dbg("%s[%u] %d chips, %d cpus, "
"%d cpus/chip, select unit %d\n",
current->comm, current->pid,
npresent, ncpus, ncpus / npresent,
prefunit);
}
}
}
/*
* user ports start at 1, kernel port is 0
* For now, we do round-robin access across all chips
*/
if (prefunit != -1)
devmax = prefunit + 1;
recheck:
for (i = 1; i < maxofallports; i++) {
for (ndev = prefunit != -1 ? prefunit : 0; ndev < devmax;
ndev++) {
struct ipath_devdata *dd = ipath_lookup(ndev);
if (!usable(dd))
continue; /* can't use this unit */
if (i >= dd->ipath_cfgports)
/*
* Maxed out on users of this unit. Try
* next.
*/
continue;
ret = try_alloc_port(dd, i, fp, uinfo);
if (!ret)
goto done;
}
}
if (npresent) {
if (nup == 0) {
ret = -ENETDOWN;
ipath_dbg("No ports available (none initialized "
"and ready)\n");
} else {
if (prefunit > 0) {
/* if started above 0, retry from 0 */
ipath_cdbg(PROC,
"%s[%u] no ports on prefunit "
"%d, clear and re-check\n",
current->comm, current->pid,
prefunit);
devmax = ipath_count_units(NULL, NULL,
NULL);
prefunit = -1;
goto recheck;
}
ret = -EBUSY;
ipath_dbg("No ports available\n");
}
} else {
ret = -ENXIO;
ipath_dbg("No boards found\n");
}
done:
return ret;
}
static int find_shared_port(struct file *fp,
const struct ipath_user_info *uinfo)
{
int devmax, ndev, i;
int ret = 0;
devmax = ipath_count_units(NULL, NULL, NULL);
for (ndev = 0; ndev < devmax; ndev++) {
struct ipath_devdata *dd = ipath_lookup(ndev);
if (!dd)
continue;
for (i = 1; i < dd->ipath_cfgports; i++) {
struct ipath_portdata *pd = dd->ipath_pd[i];
/* Skip ports which are not yet open */
if (!pd || !pd->port_cnt)
continue;
/* Skip port if it doesn't match the requested one */
if (pd->port_subport_id != uinfo->spu_subport_id)
continue;
/* Verify the sharing process matches the master */
if (pd->port_subport_cnt != uinfo->spu_subport_cnt ||
pd->userversion != uinfo->spu_userversion ||
pd->port_cnt >= pd->port_subport_cnt) {
ret = -EINVAL;
goto done;
}
port_fp(fp) = pd;
subport_fp(fp) = pd->port_cnt++;
tidcursor_fp(fp) = 0;
pd->active_slaves |= 1 << subport_fp(fp);
ipath_cdbg(PROC,
"%s[%u] %u sharing %s[%u] unit:port %u:%u\n",
current->comm, current->pid,
subport_fp(fp),
pd->port_comm, pd->port_pid,
dd->ipath_unit, pd->port_port);
ret = 1;
goto done;
}
}
done:
return ret;
}
static int ipath_open(struct inode *in, struct file *fp)
{
/* The real work is performed later in ipath_assign_port() */
fp->private_data = kzalloc(sizeof(struct ipath_filedata), GFP_KERNEL);
return fp->private_data ? 0 : -ENOMEM;
}
/* Get port early, so can set affinity prior to memory allocation */
static int ipath_assign_port(struct file *fp,
const struct ipath_user_info *uinfo)
{
int ret;
int i_minor;
unsigned swminor;
/* Check to be sure we haven't already initialized this file */
if (port_fp(fp)) {
ret = -EINVAL;
goto done;
}
/* for now, if major version is different, bail */
if ((uinfo->spu_userversion >> 16) != IPATH_USER_SWMAJOR) {
ipath_dbg("User major version %d not same as driver "
"major %d\n", uinfo->spu_userversion >> 16,
IPATH_USER_SWMAJOR);
ret = -ENODEV;
goto done;
}
swminor = uinfo->spu_userversion & 0xffff;
if (swminor != IPATH_USER_SWMINOR)
ipath_dbg("User minor version %d not same as driver "
"minor %d\n", swminor, IPATH_USER_SWMINOR);
mutex_lock(&ipath_mutex);
if (swminor == IPATH_USER_SWMINOR && uinfo->spu_subport_cnt &&
(ret = find_shared_port(fp, uinfo))) {
mutex_unlock(&ipath_mutex);
if (ret > 0)
ret = 0;
goto done;
}
i_minor = iminor(fp->f_path.dentry->d_inode) - IPATH_USER_MINOR_BASE;
ipath_cdbg(VERBOSE, "open on dev %lx (minor %d)\n",
(long)fp->f_path.dentry->d_inode->i_rdev, i_minor);
if (i_minor)
ret = find_free_port(i_minor - 1, fp, uinfo);
else
ret = find_best_unit(fp, uinfo);
mutex_unlock(&ipath_mutex);
done:
return ret;
}
static int ipath_do_user_init(struct file *fp,
const struct ipath_user_info *uinfo)
{
int ret;
struct ipath_portdata *pd;
struct ipath_devdata *dd;
u32 head32;
pd = port_fp(fp);
dd = pd->port_dd;
if (uinfo->spu_rcvhdrsize) {
ret = ipath_setrcvhdrsize(dd, uinfo->spu_rcvhdrsize);
if (ret)
goto done;
}
/* for now we do nothing with rcvhdrcnt: uinfo->spu_rcvhdrcnt */
/* for right now, kernel piobufs are at end, so port 1 is at 0 */
pd->port_piobufs = dd->ipath_piobufbase +
dd->ipath_pbufsport * (pd->port_port - 1) * dd->ipath_palign;
ipath_cdbg(VERBOSE, "Set base of piobufs for port %u to 0x%x\n",
pd->port_port, pd->port_piobufs);
/*
* Now allocate the rcvhdr Q and eager TIDs; skip the TID
* array for time being. If pd->port_port > chip-supported,
* we need to do extra stuff here to handle by handling overflow
* through port 0, someday
*/
ret = ipath_create_rcvhdrq(dd, pd);
if (!ret)
ret = ipath_create_user_egr(pd);
if (ret)
goto done;
/*
* set the eager head register for this port to the current values
* of the tail pointers, since we don't know if they were
* updated on last use of the port.
*/
head32 = ipath_read_ureg32(dd, ur_rcvegrindextail, pd->port_port);
ipath_write_ureg(dd, ur_rcvegrindexhead, head32, pd->port_port);
dd->ipath_lastegrheads[pd->port_port] = -1;
dd->ipath_lastrcvhdrqtails[pd->port_port] = -1;
ipath_cdbg(VERBOSE, "Wrote port%d egrhead %x from tail regs\n",
pd->port_port, head32);
pd->port_tidcursor = 0; /* start at beginning after open */
/*
* now enable the port; the tail registers will be written to memory
* by the chip as soon as it sees the write to
* dd->ipath_kregs->kr_rcvctrl. The update only happens on
* transition from 0 to 1, so clear it first, then set it as part of
* enabling the port. This will (very briefly) affect any other
* open ports, but it shouldn't be long enough to be an issue.
* We explictly set the in-memory copy to 0 beforehand, so we don't
* have to wait to be sure the DMA update has happened.
*/
*(volatile u64 *)pd->port_rcvhdrtail_kvaddr = 0ULL;
set_bit(INFINIPATH_R_PORTENABLE_SHIFT + pd->port_port,
&dd->ipath_rcvctrl);
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
dd->ipath_rcvctrl & ~INFINIPATH_R_TAILUPD);
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
dd->ipath_rcvctrl);
done:
return ret;
}
/**
* unlock_exptid - unlock any expected TID entries port still had in use
* @pd: port
*
* We don't actually update the chip here, because we do a bulk update
* below, using ipath_f_clear_tids.
*/
static void unlock_expected_tids(struct ipath_portdata *pd)
{
struct ipath_devdata *dd = pd->port_dd;
int port_tidbase = pd->port_port * dd->ipath_rcvtidcnt;
int i, cnt = 0, maxtid = port_tidbase + dd->ipath_rcvtidcnt;
ipath_cdbg(VERBOSE, "Port %u unlocking any locked expTID pages\n",
pd->port_port);
for (i = port_tidbase; i < maxtid; i++) {
if (!dd->ipath_pageshadow[i])
continue;
pci_unmap_page(dd->pcidev, dd->ipath_physshadow[i],
PAGE_SIZE, PCI_DMA_FROMDEVICE);
ipath_release_user_pages_on_close(&dd->ipath_pageshadow[i],
1);
dd->ipath_pageshadow[i] = NULL;
cnt++;
ipath_stats.sps_pageunlocks++;
}
if (cnt)
ipath_cdbg(VERBOSE, "Port %u locked %u expTID entries\n",
pd->port_port, cnt);
if (ipath_stats.sps_pagelocks || ipath_stats.sps_pageunlocks)
ipath_cdbg(VERBOSE, "%llu pages locked, %llu unlocked\n",
(unsigned long long) ipath_stats.sps_pagelocks,
(unsigned long long)
ipath_stats.sps_pageunlocks);
}
static int ipath_close(struct inode *in, struct file *fp)
{
int ret = 0;
struct ipath_filedata *fd;
struct ipath_portdata *pd;
struct ipath_devdata *dd;
unsigned port;
ipath_cdbg(VERBOSE, "close on dev %lx, private data %p\n",
(long)in->i_rdev, fp->private_data);
mutex_lock(&ipath_mutex);
fd = (struct ipath_filedata *) fp->private_data;
fp->private_data = NULL;
pd = fd->pd;
if (!pd) {
mutex_unlock(&ipath_mutex);
goto bail;
}
if (--pd->port_cnt) {
/*
* XXX If the master closes the port before the slave(s),
* revoke the mmap for the eager receive queue so
* the slave(s) don't wait for receive data forever.
*/
pd->active_slaves &= ~(1 << fd->subport);
mutex_unlock(&ipath_mutex);
goto bail;
}
port = pd->port_port;
dd = pd->port_dd;
if (pd->port_hdrqfull) {
ipath_cdbg(PROC, "%s[%u] had %u rcvhdrqfull errors "
"during run\n", pd->port_comm, pd->port_pid,
pd->port_hdrqfull);
pd->port_hdrqfull = 0;
}
if (pd->port_rcvwait_to || pd->port_piowait_to
|| pd->port_rcvnowait || pd->port_pionowait) {
ipath_cdbg(VERBOSE, "port%u, %u rcv, %u pio wait timeo; "
"%u rcv %u, pio already\n",
pd->port_port, pd->port_rcvwait_to,
pd->port_piowait_to, pd->port_rcvnowait,
pd->port_pionowait);
pd->port_rcvwait_to = pd->port_piowait_to =
pd->port_rcvnowait = pd->port_pionowait = 0;
}
if (pd->port_flag) {
ipath_dbg("port %u port_flag still set to 0x%lx\n",
pd->port_port, pd->port_flag);
pd->port_flag = 0;
}
if (dd->ipath_kregbase) {
int i;
/* atomically clear receive enable port. */
clear_bit(INFINIPATH_R_PORTENABLE_SHIFT + port,
&dd->ipath_rcvctrl);
ipath_write_kreg( dd, dd->ipath_kregs->kr_rcvctrl,
dd->ipath_rcvctrl);
/* and read back from chip to be sure that nothing
* else is in flight when we do the rest */
(void)ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
/* clean up the pkeys for this port user */
ipath_clean_part_key(pd, dd);
/*
* be paranoid, and never write 0's to these, just use an
* unused part of the port 0 tail page. Of course,
* rcvhdraddr points to a large chunk of memory, so this
* could still trash things, but at least it won't trash
* page 0, and by disabling the port, it should stop "soon",
* even if a packet or two is in already in flight after we
* disabled the port.
*/
ipath_write_kreg_port(dd,
dd->ipath_kregs->kr_rcvhdrtailaddr, port,
dd->ipath_dummy_hdrq_phys);
ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr,
pd->port_port, dd->ipath_dummy_hdrq_phys);
i = dd->ipath_pbufsport * (port - 1);
ipath_disarm_piobufs(dd, i, dd->ipath_pbufsport);
dd->ipath_f_clear_tids(dd, pd->port_port);
if (dd->ipath_pageshadow)
unlock_expected_tids(pd);
ipath_stats.sps_ports--;
ipath_cdbg(PROC, "%s[%u] closed port %u:%u\n",
pd->port_comm, pd->port_pid,
dd->ipath_unit, port);
}
pd->port_pid = 0;
dd->ipath_pd[pd->port_port] = NULL; /* before releasing mutex */
mutex_unlock(&ipath_mutex);
ipath_free_pddata(dd, pd); /* after releasing the mutex */
bail:
kfree(fd);
return ret;
}
static int ipath_port_info(struct ipath_portdata *pd, u16 subport,
struct ipath_port_info __user *uinfo)
{
struct ipath_port_info info;
int nup;
int ret;
size_t sz;
(void) ipath_count_units(NULL, &nup, NULL);
info.num_active = nup;
info.unit = pd->port_dd->ipath_unit;
info.port = pd->port_port;
info.subport = subport;
/* Don't return new fields if old library opened the port. */
if ((pd->userversion & 0xffff) == IPATH_USER_SWMINOR) {
/* Number of user ports available for this device. */
info.num_ports = pd->port_dd->ipath_cfgports - 1;
info.num_subports = pd->port_subport_cnt;
sz = sizeof(info);
} else
sz = sizeof(info) - 2 * sizeof(u16);
if (copy_to_user(uinfo, &info, sz)) {
ret = -EFAULT;
goto bail;
}
ret = 0;
bail:
return ret;
}
static int ipath_get_slave_info(struct ipath_portdata *pd,
void __user *slave_mask_addr)
{
int ret = 0;
if (copy_to_user(slave_mask_addr, &pd->active_slaves, sizeof(u32)))
ret = -EFAULT;
return ret;
}
static ssize_t ipath_write(struct file *fp, const char __user *data,
size_t count, loff_t *off)
{
const struct ipath_cmd __user *ucmd;
struct ipath_portdata *pd;
const void __user *src;
size_t consumed, copy;
struct ipath_cmd cmd;
ssize_t ret = 0;
void *dest;
if (count < sizeof(cmd.type)) {
ret = -EINVAL;
goto bail;
}
ucmd = (const struct ipath_cmd __user *) data;
if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) {
ret = -EFAULT;
goto bail;
}
consumed = sizeof(cmd.type);
switch (cmd.type) {
case IPATH_CMD_ASSIGN_PORT:
case __IPATH_CMD_USER_INIT:
case IPATH_CMD_USER_INIT:
copy = sizeof(cmd.cmd.user_info);
dest = &cmd.cmd.user_info;
src = &ucmd->cmd.user_info;
break;
case IPATH_CMD_RECV_CTRL:
copy = sizeof(cmd.cmd.recv_ctrl);
dest = &cmd.cmd.recv_ctrl;
src = &ucmd->cmd.recv_ctrl;
break;
case IPATH_CMD_PORT_INFO:
copy = sizeof(cmd.cmd.port_info);
dest = &cmd.cmd.port_info;
src = &ucmd->cmd.port_info;
break;
case IPATH_CMD_TID_UPDATE:
case IPATH_CMD_TID_FREE:
copy = sizeof(cmd.cmd.tid_info);
dest = &cmd.cmd.tid_info;
src = &ucmd->cmd.tid_info;
break;
case IPATH_CMD_SET_PART_KEY:
copy = sizeof(cmd.cmd.part_key);
dest = &cmd.cmd.part_key;
src = &ucmd->cmd.part_key;
break;
case IPATH_CMD_SLAVE_INFO:
copy = sizeof(cmd.cmd.slave_mask_addr);
dest = &cmd.cmd.slave_mask_addr;
src = &ucmd->cmd.slave_mask_addr;
break;
default:
ret = -EINVAL;
goto bail;
}
if ((count - consumed) < copy) {
ret = -EINVAL;
goto bail;
}
if (copy_from_user(dest, src, copy)) {
ret = -EFAULT;
goto bail;
}
consumed += copy;
pd = port_fp(fp);
if (!pd && cmd.type != __IPATH_CMD_USER_INIT &&
cmd.type != IPATH_CMD_ASSIGN_PORT) {
ret = -EINVAL;
goto bail;
}
switch (cmd.type) {
case IPATH_CMD_ASSIGN_PORT:
ret = ipath_assign_port(fp, &cmd.cmd.user_info);
if (ret)
goto bail;
break;
case __IPATH_CMD_USER_INIT:
/* backwards compatibility, get port first */
ret = ipath_assign_port(fp, &cmd.cmd.user_info);
if (ret)
goto bail;
/* and fall through to current version. */
case IPATH_CMD_USER_INIT:
ret = ipath_do_user_init(fp, &cmd.cmd.user_info);
if (ret)
goto bail;
ret = ipath_get_base_info(
fp, (void __user *) (unsigned long)
cmd.cmd.user_info.spu_base_info,
cmd.cmd.user_info.spu_base_info_size);
break;
case IPATH_CMD_RECV_CTRL:
ret = ipath_manage_rcvq(pd, subport_fp(fp), cmd.cmd.recv_ctrl);
break;
case IPATH_CMD_PORT_INFO:
ret = ipath_port_info(pd, subport_fp(fp),
(struct ipath_port_info __user *)
(unsigned long) cmd.cmd.port_info);
break;
case IPATH_CMD_TID_UPDATE:
ret = ipath_tid_update(pd, fp, &cmd.cmd.tid_info);
break;
case IPATH_CMD_TID_FREE:
ret = ipath_tid_free(pd, subport_fp(fp), &cmd.cmd.tid_info);
break;
case IPATH_CMD_SET_PART_KEY:
ret = ipath_set_part_key(pd, cmd.cmd.part_key);
break;
case IPATH_CMD_SLAVE_INFO:
ret = ipath_get_slave_info(pd,
(void __user *) (unsigned long)
cmd.cmd.slave_mask_addr);
break;
}
if (ret >= 0)
ret = consumed;
bail:
return ret;
}
static struct class *ipath_class;
static int init_cdev(int minor, char *name, struct file_operations *fops,
struct cdev **cdevp, struct class_device **class_devp)
{
const dev_t dev = MKDEV(IPATH_MAJOR, minor);
struct cdev *cdev = NULL;
struct class_device *class_dev = NULL;
int ret;
cdev = cdev_alloc();
if (!cdev) {
printk(KERN_ERR IPATH_DRV_NAME
": Could not allocate cdev for minor %d, %s\n",
minor, name);
ret = -ENOMEM;
goto done;
}
cdev->owner = THIS_MODULE;
cdev->ops = fops;
kobject_set_name(&cdev->kobj, name);
ret = cdev_add(cdev, dev, 1);
if (ret < 0) {
printk(KERN_ERR IPATH_DRV_NAME
": Could not add cdev for minor %d, %s (err %d)\n",
minor, name, -ret);
goto err_cdev;
}
class_dev = class_device_create(ipath_class, NULL, dev, NULL, name);
if (IS_ERR(class_dev)) {
ret = PTR_ERR(class_dev);
printk(KERN_ERR IPATH_DRV_NAME ": Could not create "
"class_dev for minor %d, %s (err %d)\n",
minor, name, -ret);
goto err_cdev;
}
goto done;
err_cdev:
cdev_del(cdev);
cdev = NULL;
done:
if (ret >= 0) {
*cdevp = cdev;
*class_devp = class_dev;
} else {
*cdevp = NULL;
*class_devp = NULL;
}
return ret;
}
int ipath_cdev_init(int minor, char *name, struct file_operations *fops,
struct cdev **cdevp, struct class_device **class_devp)
{
return init_cdev(minor, name, fops, cdevp, class_devp);
}
static void cleanup_cdev(struct cdev **cdevp,
struct class_device **class_devp)
{
struct class_device *class_dev = *class_devp;
if (class_dev) {
class_device_unregister(class_dev);
*class_devp = NULL;
}
if (*cdevp) {
cdev_del(*cdevp);
*cdevp = NULL;
}
}
void ipath_cdev_cleanup(struct cdev **cdevp,
struct class_device **class_devp)
{
cleanup_cdev(cdevp, class_devp);
}
static struct cdev *wildcard_cdev;
static struct class_device *wildcard_class_dev;
static const dev_t dev = MKDEV(IPATH_MAJOR, 0);
static int user_init(void)
{
int ret;
ret = register_chrdev_region(dev, IPATH_NMINORS, IPATH_DRV_NAME);
if (ret < 0) {
printk(KERN_ERR IPATH_DRV_NAME ": Could not register "
"chrdev region (err %d)\n", -ret);
goto done;
}
ipath_class = class_create(THIS_MODULE, IPATH_DRV_NAME);
if (IS_ERR(ipath_class)) {
ret = PTR_ERR(ipath_class);
printk(KERN_ERR IPATH_DRV_NAME ": Could not create "
"device class (err %d)\n", -ret);
goto bail;
}
goto done;
bail:
unregister_chrdev_region(dev, IPATH_NMINORS);
done:
return ret;
}
static void user_cleanup(void)
{
if (ipath_class) {
class_destroy(ipath_class);
ipath_class = NULL;
}
unregister_chrdev_region(dev, IPATH_NMINORS);
}
static atomic_t user_count = ATOMIC_INIT(0);
static atomic_t user_setup = ATOMIC_INIT(0);
int ipath_user_add(struct ipath_devdata *dd)
{
char name[10];
int ret;
if (atomic_inc_return(&user_count) == 1) {
ret = user_init();
if (ret < 0) {
ipath_dev_err(dd, "Unable to set up user support: "
"error %d\n", -ret);
goto bail;
}
ret = init_cdev(0, "ipath", &ipath_file_ops, &wildcard_cdev,
&wildcard_class_dev);
if (ret < 0) {
ipath_dev_err(dd, "Could not create wildcard "
"minor: error %d\n", -ret);
goto bail_user;
}
atomic_set(&user_setup, 1);
}
snprintf(name, sizeof(name), "ipath%d", dd->ipath_unit);
ret = init_cdev(dd->ipath_unit + 1, name, &ipath_file_ops,
&dd->user_cdev, &dd->user_class_dev);
if (ret < 0)
ipath_dev_err(dd, "Could not create user minor %d, %s\n",
dd->ipath_unit + 1, name);
goto bail;
bail_user:
user_cleanup();
bail:
return ret;
}
void ipath_user_remove(struct ipath_devdata *dd)
{
cleanup_cdev(&dd->user_cdev, &dd->user_class_dev);
if (atomic_dec_return(&user_count) == 0) {
if (atomic_read(&user_setup) == 0)
goto bail;
cleanup_cdev(&wildcard_cdev, &wildcard_class_dev);
user_cleanup();
atomic_set(&user_setup, 0);
}
bail:
return;
}