/*
* Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/idr.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/bitmap.h>
#include <linux/slab.h>
#include <linux/module.h>
#include "ipath_kernel.h"
#include "ipath_verbs.h"
static void ipath_update_pio_bufs(struct ipath_devdata *);
const char *ipath_get_unit_name(int unit)
{
static char iname[16];
snprintf(iname, sizeof iname, "infinipath%u", unit);
return iname;
}
#define DRIVER_LOAD_MSG "QLogic " IPATH_DRV_NAME " loaded: "
#define PFX IPATH_DRV_NAME ": "
/*
* The size has to be longer than this string, so we can append
* board/chip information to it in the init code.
*/
const char ib_ipath_version[] = IPATH_IDSTR "\n";
static struct idr unit_table;
DEFINE_SPINLOCK(ipath_devs_lock);
LIST_HEAD(ipath_dev_list);
wait_queue_head_t ipath_state_wait;
unsigned ipath_debug = __IPATH_INFO;
module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(debug, "mask for debug prints");
EXPORT_SYMBOL_GPL(ipath_debug);
unsigned ipath_mtu4096 = 1; /* max 4KB IB mtu by default, if supported */
module_param_named(mtu4096, ipath_mtu4096, uint, S_IRUGO);
MODULE_PARM_DESC(mtu4096, "enable MTU of 4096 bytes, if supported");
static unsigned ipath_hol_timeout_ms = 13000;
module_param_named(hol_timeout_ms, ipath_hol_timeout_ms, uint, S_IRUGO);
MODULE_PARM_DESC(hol_timeout_ms,
"duration of user app suspension after link failure");
unsigned ipath_linkrecovery = 1;
module_param_named(linkrecovery, ipath_linkrecovery, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(linkrecovery, "enable workaround for link recovery issue");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("QLogic <support@qlogic.com>");
MODULE_DESCRIPTION("QLogic InfiniPath driver");
/*
* Table to translate the LINKTRAININGSTATE portion of
* IBCStatus to a human-readable form.
*/
const char *ipath_ibcstatus_str[] = {
"Disabled",
"LinkUp",
"PollActive",
"PollQuiet",
"SleepDelay",
"SleepQuiet",
"LState6", /* unused */
"LState7", /* unused */
"CfgDebounce",
"CfgRcvfCfg",
"CfgWaitRmt",
"CfgIdle",
"RecovRetrain",
"CfgTxRevLane", /* unused before IBA7220 */
"RecovWaitRmt",
"RecovIdle",
/* below were added for IBA7220 */
"CfgEnhanced",
"CfgTest",
"CfgWaitRmtTest",
"CfgWaitCfgEnhanced",
"SendTS_T",
"SendTstIdles",
"RcvTS_T",
"SendTst_TS1s",
"LTState18", "LTState19", "LTState1A", "LTState1B",
"LTState1C", "LTState1D", "LTState1E", "LTState1F"
};
static void ipath_remove_one(struct pci_dev *);
static int ipath_init_one(struct pci_dev *, const struct pci_device_id *);
/* Only needed for registration, nothing else needs this info */
#define PCI_VENDOR_ID_PATHSCALE 0x1fc1
#define PCI_DEVICE_ID_INFINIPATH_HT 0xd
/* Number of seconds before our card status check... */
#define STATUS_TIMEOUT 60
static const struct pci_device_id ipath_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ipath_pci_tbl);
static struct pci_driver ipath_driver = {
.name = IPATH_DRV_NAME,
.probe = ipath_init_one,
.remove = ipath_remove_one,
.id_table = ipath_pci_tbl,
.driver = {
.groups = ipath_driver_attr_groups,
},
};
static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev,
u32 *bar0, u32 *bar1)
{
int ret;
ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0);
if (ret)
ipath_dev_err(dd, "failed to read bar0 before enable: "
"error %d\n", -ret);
ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1);
if (ret)
ipath_dev_err(dd, "failed to read bar1 before enable: "
"error %d\n", -ret);
ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1);
}
static void ipath_free_devdata(struct pci_dev *pdev,
struct ipath_devdata *dd)
{
unsigned long flags;
pci_set_drvdata(pdev, NULL);
if (dd->ipath_unit != -1) {
spin_lock_irqsave(&ipath_devs_lock, flags);
idr_remove(&unit_table, dd->ipath_unit);
list_del(&dd->ipath_list);
spin_unlock_irqrestore(&ipath_devs_lock, flags);
}
vfree(dd);
}
static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev)
{
unsigned long flags;
struct ipath_devdata *dd;
int ret;
dd = vzalloc(sizeof(*dd));
if (!dd) {
dd = ERR_PTR(-ENOMEM);
goto bail;
}
dd->ipath_unit = -1;
idr_preload(GFP_KERNEL);
spin_lock_irqsave(&ipath_devs_lock, flags);
ret = idr_alloc(&unit_table, dd, 0, 0, GFP_NOWAIT);
if (ret < 0) {
printk(KERN_ERR IPATH_DRV_NAME
": Could not allocate unit ID: error %d\n", -ret);
ipath_free_devdata(pdev, dd);
dd = ERR_PTR(ret);
goto bail_unlock;
}
dd->ipath_unit = ret;
dd->pcidev = pdev;
pci_set_drvdata(pdev, dd);
list_add(&dd->ipath_list, &ipath_dev_list);
bail_unlock:
spin_unlock_irqrestore(&ipath_devs_lock, flags);
idr_preload_end();
bail:
return dd;
}
static inline struct ipath_devdata *__ipath_lookup(int unit)
{
return idr_find(&unit_table, unit);
}
struct ipath_devdata *ipath_lookup(int unit)
{
struct ipath_devdata *dd;
unsigned long flags;
spin_lock_irqsave(&ipath_devs_lock, flags);
dd = __ipath_lookup(unit);
spin_unlock_irqrestore(&ipath_devs_lock, flags);
return dd;
}
int ipath_count_units(int *npresentp, int *nupp, int *maxportsp)
{
int nunits, npresent, nup;
struct ipath_devdata *dd;
unsigned long flags;
int maxports;
nunits = npresent = nup = maxports = 0;
spin_lock_irqsave(&ipath_devs_lock, flags);
list_for_each_entry(dd, &ipath_dev_list, ipath_list) {
nunits++;
if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase)
npresent++;
if (dd->ipath_lid &&
!(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN
| IPATH_LINKUNK)))
nup++;
if (dd->ipath_cfgports > maxports)
maxports = dd->ipath_cfgports;
}
spin_unlock_irqrestore(&ipath_devs_lock, flags);
if (npresentp)
*npresentp = npresent;
if (nupp)
*nupp = nup;
if (maxportsp)
*maxportsp = maxports;
return nunits;
}
/*
* These next two routines are placeholders in case we don't have per-arch
* code for controlling write combining. If explicit control of write
* combining is not available, performance will probably be awful.
*/
int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd)
{
return -EOPNOTSUPP;
}
void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd)
{
}
/*
* Perform a PIO buffer bandwidth write test, to verify proper system
* configuration. Even when all the setup calls work, occasionally
* BIOS or other issues can prevent write combining from working, or
* can cause other bandwidth problems to the chip.
*
* This test simply writes the same buffer over and over again, and
* measures close to the peak bandwidth to the chip (not testing
* data bandwidth to the wire). On chips that use an address-based
* trigger to send packets to the wire, this is easy. On chips that
* use a count to trigger, we want to make sure that the packet doesn't
* go out on the wire, or trigger flow control checks.
*/
static void ipath_verify_pioperf(struct ipath_devdata *dd)
{
u32 pbnum, cnt, lcnt;
u32 __iomem *piobuf;
u32 *addr;
u64 msecs, emsecs;
piobuf = ipath_getpiobuf(dd, 0, &pbnum);
if (!piobuf) {
dev_info(&dd->pcidev->dev,
"No PIObufs for checking perf, skipping\n");
return;
}
/*
* Enough to give us a reasonable test, less than piobuf size, and
* likely multiple of store buffer length.
*/
cnt = 1024;
addr = vmalloc(cnt);
if (!addr) {
dev_info(&dd->pcidev->dev,
"Couldn't get memory for checking PIO perf,"
" skipping\n");
goto done;
}
preempt_disable(); /* we want reasonably accurate elapsed time */
msecs = 1 + jiffies_to_msecs(jiffies);
for (lcnt = 0; lcnt < 10000U; lcnt++) {
/* wait until we cross msec boundary */
if (jiffies_to_msecs(jiffies) >= msecs)
break;
udelay(1);
}
ipath_disable_armlaunch(dd);
/*
* length 0, no dwords actually sent, and mark as VL15
* on chips where that may matter (due to IB flowcontrol)
*/
if ((dd->ipath_flags & IPATH_HAS_PBC_CNT))
writeq(1UL << 63, piobuf);
else
writeq(0, piobuf);
ipath_flush_wc();
/*
* this is only roughly accurate, since even with preempt we
* still take interrupts that could take a while. Running for
* >= 5 msec seems to get us "close enough" to accurate values
*/
msecs = jiffies_to_msecs(jiffies);
for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) {
__iowrite32_copy(piobuf + 64, addr, cnt >> 2);
emsecs = jiffies_to_msecs(jiffies) - msecs;
}
/* 1 GiB/sec, slightly over IB SDR line rate */
if (lcnt < (emsecs * 1024U))
ipath_dev_err(dd,
"Performance problem: bandwidth to PIO buffers is "
"only %u MiB/sec\n",
lcnt / (u32) emsecs);
else
ipath_dbg("PIO buffer bandwidth %u MiB/sec is OK\n",
lcnt / (u32) emsecs);
preempt_enable();
vfree(addr);
done:
/* disarm piobuf, so it's available again */
ipath_disarm_piobufs(dd, pbnum, 1);
ipath_enable_armlaunch(dd);
}
static void cleanup_device(struct ipath_devdata *dd);
static int ipath_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int ret, len, j;
struct ipath_devdata *dd;
unsigned long long addr;
u32 bar0 = 0, bar1 = 0;
dd = ipath_alloc_devdata(pdev);
if (IS_ERR(dd)) {
ret = PTR_ERR(dd);
printk(KERN_ERR IPATH_DRV_NAME
": Could not allocate devdata: error %d\n", -ret);
goto bail;
}
ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit);
ret = pci_enable_device(pdev);
if (ret) {
/* This can happen iff:
*
* We did a chip reset, and then failed to reprogram the
* BAR, or the chip reset due to an internal error. We then
* unloaded the driver and reloaded it.
*
* Both reset cases set the BAR back to initial state. For
* the latter case, the AER sticky error bit at offset 0x718
* should be set, but the Linux kernel doesn't yet know
* about that, it appears. If the original BAR was retained
* in the kernel data structures, this may be OK.
*/
ipath_dev_err(dd, "enable unit %d failed: error %d\n",
dd->ipath_unit, -ret);
goto bail_devdata;
}
addr = pci_resource_start(pdev, 0);
len = pci_resource_len(pdev, 0);
ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %d, vend %x/%x "
"driver_data %lx\n", addr, len, pdev->irq, ent->vendor,
ent->device, ent->driver_data);
read_bars(dd, pdev, &bar0, &bar1);
if (!bar1 && !(bar0 & ~0xf)) {
if (addr) {
dev_info(&pdev->dev, "BAR is 0 (probable RESET), "
"rewriting as %llx\n", addr);
ret = pci_write_config_dword(
pdev, PCI_BASE_ADDRESS_0, addr);
if (ret) {
ipath_dev_err(dd, "rewrite of BAR0 "
"failed: err %d\n", -ret);
goto bail_disable;
}
ret = pci_write_config_dword(
pdev, PCI_BASE_ADDRESS_1, addr >> 32);
if (ret) {
ipath_dev_err(dd, "rewrite of BAR1 "
"failed: err %d\n", -ret);
goto bail_disable;
}
} else {
ipath_dev_err(dd, "BAR is 0 (probable RESET), "
"not usable until reboot\n");
ret = -ENODEV;
goto bail_disable;
}
}
ret = pci_request_regions(pdev, IPATH_DRV_NAME);
if (ret) {
dev_info(&pdev->dev, "pci_request_regions unit %u fails: "
"err %d\n", dd->ipath_unit, -ret);
goto bail_disable;
}
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (ret) {
/*
* if the 64 bit setup fails, try 32 bit. Some systems
* do not setup 64 bit maps on systems with 2GB or less
* memory installed.
*/
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret) {
dev_info(&pdev->dev,
"Unable to set DMA mask for unit %u: %d\n",
dd->ipath_unit, ret);
goto bail_regions;
}
else {
ipath_dbg("No 64bit DMA mask, used 32 bit mask\n");
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret)
dev_info(&pdev->dev,
"Unable to set DMA consistent mask "
"for unit %u: %d\n",
dd->ipath_unit, ret);
}
}
else {
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (ret)
dev_info(&pdev->dev,
"Unable to set DMA consistent mask "
"for unit %u: %d\n",
dd->ipath_unit, ret);
}
pci_set_master(pdev);
/*
* Save BARs to rewrite after device reset. Save all 64 bits of
* BAR, just in case.
*/
dd->ipath_pcibar0 = addr;
dd->ipath_pcibar1 = addr >> 32;
dd->ipath_deviceid = ent->device; /* save for later use */
dd->ipath_vendorid = ent->vendor;
/* setup the chip-specific functions, as early as possible. */
switch (ent->device) {
case PCI_DEVICE_ID_INFINIPATH_HT:
ipath_init_iba6110_funcs(dd);
break;
default:
ipath_dev_err(dd, "Found unknown QLogic deviceid 0x%x, "
"failing\n", ent->device);
return -ENODEV;
}
for (j = 0; j < 6; j++) {
if (!pdev->resource[j].start)
continue;
ipath_cdbg(VERBOSE, "BAR %d %pR, len %llx\n",
j, &pdev->resource[j],
(unsigned long long)pci_resource_len(pdev, j));
}
if (!addr) {
ipath_dev_err(dd, "No valid address in BAR 0!\n");
ret = -ENODEV;
goto bail_regions;
}
dd->ipath_pcirev = pdev->revision;
#if defined(__powerpc__)
/* There isn't a generic way to specify writethrough mappings */
dd->ipath_kregbase = __ioremap(addr, len,
(_PAGE_NO_CACHE|_PAGE_WRITETHRU));
#else
dd->ipath_kregbase = ioremap_nocache(addr, len);
#endif
if (!dd->ipath_kregbase) {
ipath_dbg("Unable to map io addr %llx to kvirt, failing\n",
addr);
ret = -ENOMEM;
goto bail_iounmap;
}
dd->ipath_kregend = (u64 __iomem *)
((void __iomem *)dd->ipath_kregbase + len);
dd->ipath_physaddr = addr; /* used for io_remap, etc. */
/* for user mmap */
ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p\n",
addr, dd->ipath_kregbase);
if (dd->ipath_f_bus(dd, pdev))
ipath_dev_err(dd, "Failed to setup config space; "
"continuing anyway\n");
/*
* set up our interrupt handler; IRQF_SHARED probably not needed,
* since MSI interrupts shouldn't be shared but won't hurt for now.
* check 0 irq after we return from chip-specific bus setup, since
* that can affect this due to setup
*/
if (!dd->ipath_irq)
ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't "
"work\n");
else {
ret = request_irq(dd->ipath_irq, ipath_intr, IRQF_SHARED,
IPATH_DRV_NAME, dd);
if (ret) {
ipath_dev_err(dd, "Couldn't setup irq handler, "
"irq=%d: %d\n", dd->ipath_irq, ret);
goto bail_iounmap;
}
}
ret = ipath_init_chip(dd, 0); /* do the chip-specific init */
if (ret)
goto bail_irqsetup;
ret = ipath_enable_wc(dd);
if (ret) {
ipath_dev_err(dd, "Write combining not enabled "
"(err %d): performance may be poor\n",
-ret);
ret = 0;
}
ipath_verify_pioperf(dd);
ipath_device_create_group(&pdev->dev, dd);
ipathfs_add_device(dd);
ipath_user_add(dd);
ipath_diag_add(dd);
ipath_register_ib_device(dd);
goto bail;
bail_irqsetup:
cleanup_device(dd);
if (dd->ipath_irq)
dd->ipath_f_free_irq(dd);
if (dd->ipath_f_cleanup)
dd->ipath_f_cleanup(dd);
bail_iounmap:
iounmap((volatile void __iomem *) dd->ipath_kregbase);
bail_regions:
pci_release_regions(pdev);
bail_disable:
pci_disable_device(pdev);
bail_devdata:
ipath_free_devdata(pdev, dd);
bail:
return ret;
}
static void cleanup_device(struct ipath_devdata *dd)
{
int port;
struct ipath_portdata **tmp;
unsigned long flags;
if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) {
/* can't do anything more with chip; needs re-init */
*dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT;
if (dd->ipath_kregbase) {
/*
* if we haven't already cleaned up before these are
* to ensure any register reads/writes "fail" until
* re-init
*/
dd->ipath_kregbase = NULL;
dd->ipath_uregbase = 0;
dd->ipath_sregbase = 0;
dd->ipath_cregbase = 0;
dd->ipath_kregsize = 0;
}
ipath_disable_wc(dd);
}
if (dd->ipath_spectriggerhit)
dev_info(&dd->pcidev->dev, "%lu special trigger hits\n",
dd->ipath_spectriggerhit);
if (dd->ipath_pioavailregs_dma) {
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
(void *) dd->ipath_pioavailregs_dma,
dd->ipath_pioavailregs_phys);
dd->ipath_pioavailregs_dma = NULL;
}
if (dd->ipath_dummy_hdrq) {
dma_free_coherent(&dd->pcidev->dev,
dd->ipath_pd[0]->port_rcvhdrq_size,
dd->ipath_dummy_hdrq, dd->ipath_dummy_hdrq_phys);
dd->ipath_dummy_hdrq = NULL;
}
if (dd->ipath_pageshadow) {
struct page **tmpp = dd->ipath_pageshadow;
dma_addr_t *tmpd = dd->ipath_physshadow;
int i, cnt = 0;
ipath_cdbg(VERBOSE, "Unlocking any expTID pages still "
"locked\n");
for (port = 0; port < dd->ipath_cfgports; port++) {
int port_tidbase = port * dd->ipath_rcvtidcnt;
int maxtid = port_tidbase + dd->ipath_rcvtidcnt;
for (i = port_tidbase; i < maxtid; i++) {
if (!tmpp[i])
continue;
pci_unmap_page(dd->pcidev, tmpd[i],
PAGE_SIZE, PCI_DMA_FROMDEVICE);
ipath_release_user_pages(&tmpp[i], 1);
tmpp[i] = NULL;
cnt++;
}
}
if (cnt) {
ipath_stats.sps_pageunlocks += cnt;
ipath_cdbg(VERBOSE, "There were still %u expTID "
"entries locked\n", cnt);
}
if (ipath_stats.sps_pagelocks ||
ipath_stats.sps_pageunlocks)
ipath_cdbg(VERBOSE, "%llu pages locked, %llu "
"unlocked via ipath_m{un}lock\n",
(unsigned long long)
ipath_stats.sps_pagelocks,
(unsigned long long)
ipath_stats.sps_pageunlocks);
ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n",
dd->ipath_pageshadow);
tmpp = dd->ipath_pageshadow;
dd->ipath_pageshadow = NULL;
vfree(tmpp);
dd->ipath_egrtidbase = NULL;
}
/*
* free any resources still in use (usually just kernel ports)
* at unload; we do for portcnt, because that's what we allocate.
* We acquire lock to be really paranoid that ipath_pd isn't being
* accessed from some interrupt-related code (that should not happen,
* but best to be sure).
*/
spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
tmp = dd->ipath_pd;
dd->ipath_pd = NULL;
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
for (port = 0; port < dd->ipath_portcnt; port++) {
struct ipath_portdata *pd = tmp[port];
tmp[port] = NULL; /* debugging paranoia */
ipath_free_pddata(dd, pd);
}
kfree(tmp);
}
static void ipath_remove_one(struct pci_dev *pdev)
{
struct ipath_devdata *dd = pci_get_drvdata(pdev);
ipath_cdbg(VERBOSE, "removing, pdev=%p, dd=%p\n", pdev, dd);
/*
* disable the IB link early, to be sure no new packets arrive, which
* complicates the shutdown process
*/
ipath_shutdown_device(dd);
flush_workqueue(ib_wq);
if (dd->verbs_dev)
ipath_unregister_ib_device(dd->verbs_dev);
ipath_diag_remove(dd);
ipath_user_remove(dd);
ipathfs_remove_device(dd);
ipath_device_remove_group(&pdev->dev, dd);
ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, "
"unit %u\n", dd, (u32) dd->ipath_unit);
cleanup_device(dd);
/*
* turn off rcv, send, and interrupts for all ports, all drivers
* should also hard reset the chip here?
* free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs
* for all versions of the driver, if they were allocated
*/
if (dd->ipath_irq) {
ipath_cdbg(VERBOSE, "unit %u free irq %d\n",
dd->ipath_unit, dd->ipath_irq);
dd->ipath_f_free_irq(dd);
} else
ipath_dbg("irq is 0, not doing free_irq "
"for unit %u\n", dd->ipath_unit);
/*
* we check for NULL here, because it's outside
* the kregbase check, and we need to call it
* after the free_irq. Thus it's possible that
* the function pointers were never initialized.
*/
if (dd->ipath_f_cleanup)
/* clean up chip-specific stuff */
dd->ipath_f_cleanup(dd);
ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n", dd->ipath_kregbase);
iounmap((volatile void __iomem *) dd->ipath_kregbase);
pci_release_regions(pdev);
ipath_cdbg(VERBOSE, "calling pci_disable_device\n");
pci_disable_device(pdev);
ipath_free_devdata(pdev, dd);
}
/* general driver use */
DEFINE_MUTEX(ipath_mutex);
static DEFINE_SPINLOCK(ipath_pioavail_lock);
/**
* ipath_disarm_piobufs - cancel a range of PIO buffers
* @dd: the infinipath device
* @first: the first PIO buffer to cancel
* @cnt: the number of PIO buffers to cancel
*
* cancel a range of PIO buffers, used when they might be armed, but
* not triggered. Used at init to ensure buffer state, and also user
* process close, in case it died while writing to a PIO buffer
* Also after errors.
*/
void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first,
unsigned cnt)
{
unsigned i, last = first + cnt;
unsigned long flags;
ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first);
for (i = first; i < last; i++) {
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
/*
* The disarm-related bits are write-only, so it
* is ok to OR them in with our copy of sendctrl
* while we hold the lock.
*/
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
dd->ipath_sendctrl | INFINIPATH_S_DISARM |
(i << INFINIPATH_S_DISARMPIOBUF_SHIFT));
/* can't disarm bufs back-to-back per iba7220 spec */
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
}
/* on some older chips, update may not happen after cancel */
ipath_force_pio_avail_update(dd);
}
/**
* ipath_wait_linkstate - wait for an IB link state change to occur
* @dd: the infinipath device
* @state: the state to wait for
* @msecs: the number of milliseconds to wait
*
* wait up to msecs milliseconds for IB link state change to occur for
* now, take the easy polling route. Currently used only by
* ipath_set_linkstate. Returns 0 if state reached, otherwise
* -ETIMEDOUT state can have multiple states set, for any of several
* transitions.
*/
int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs)
{
dd->ipath_state_wanted = state;
wait_event_interruptible_timeout(ipath_state_wait,
(dd->ipath_flags & state),
msecs_to_jiffies(msecs));
dd->ipath_state_wanted = 0;
if (!(dd->ipath_flags & state)) {
u64 val;
ipath_cdbg(VERBOSE, "Didn't reach linkstate %s within %u"
" ms\n",
/* test INIT ahead of DOWN, both can be set */
(state & IPATH_LINKINIT) ? "INIT" :
((state & IPATH_LINKDOWN) ? "DOWN" :
((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")),
msecs);
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n",
(unsigned long long) ipath_read_kreg64(
dd, dd->ipath_kregs->kr_ibcctrl),
(unsigned long long) val,
ipath_ibcstatus_str[val & dd->ibcs_lts_mask]);
}
return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT;
}
static void decode_sdma_errs(struct ipath_devdata *dd, ipath_err_t err,
char *buf, size_t blen)
{
static const struct {
ipath_err_t err;
const char *msg;
} errs[] = {
{ INFINIPATH_E_SDMAGENMISMATCH, "SDmaGenMismatch" },
{ INFINIPATH_E_SDMAOUTOFBOUND, "SDmaOutOfBound" },
{ INFINIPATH_E_SDMATAILOUTOFBOUND, "SDmaTailOutOfBound" },
{ INFINIPATH_E_SDMABASE, "SDmaBase" },
{ INFINIPATH_E_SDMA1STDESC, "SDma1stDesc" },
{ INFINIPATH_E_SDMARPYTAG, "SDmaRpyTag" },
{ INFINIPATH_E_SDMADWEN, "SDmaDwEn" },
{ INFINIPATH_E_SDMAMISSINGDW, "SDmaMissingDw" },
{ INFINIPATH_E_SDMAUNEXPDATA, "SDmaUnexpData" },
{ INFINIPATH_E_SDMADESCADDRMISALIGN, "SDmaDescAddrMisalign" },
{ INFINIPATH_E_SENDBUFMISUSE, "SendBufMisuse" },
{ INFINIPATH_E_SDMADISABLED, "SDmaDisabled" },
};
int i;
int expected;
size_t bidx = 0;
for (i = 0; i < ARRAY_SIZE(errs); i++) {
expected = (errs[i].err != INFINIPATH_E_SDMADISABLED) ? 0 :
test_bit(IPATH_SDMA_ABORTING, &dd->ipath_sdma_status);
if ((err & errs[i].err) && !expected)
bidx += snprintf(buf + bidx, blen - bidx,
"%s ", errs[i].msg);
}
}
/*
* Decode the error status into strings, deciding whether to always
* print * it or not depending on "normal packet errors" vs everything
* else. Return 1 if "real" errors, otherwise 0 if only packet
* errors, so caller can decide what to print with the string.
*/
int ipath_decode_err(struct ipath_devdata *dd, char *buf, size_t blen,
ipath_err_t err)
{
int iserr = 1;
*buf = '\0';
if (err & INFINIPATH_E_PKTERRS) {
if (!(err & ~INFINIPATH_E_PKTERRS))
iserr = 0; // if only packet errors.
if (ipath_debug & __IPATH_ERRPKTDBG) {
if (err & INFINIPATH_E_REBP)
strlcat(buf, "EBP ", blen);
if (err & INFINIPATH_E_RVCRC)
strlcat(buf, "VCRC ", blen);
if (err & INFINIPATH_E_RICRC) {
strlcat(buf, "CRC ", blen);
// clear for check below, so only once
err &= INFINIPATH_E_RICRC;
}
if (err & INFINIPATH_E_RSHORTPKTLEN)
strlcat(buf, "rshortpktlen ", blen);
if (err & INFINIPATH_E_SDROPPEDDATAPKT)
strlcat(buf, "sdroppeddatapkt ", blen);
if (err & INFINIPATH_E_SPKTLEN)
strlcat(buf, "spktlen ", blen);
}
if ((err & INFINIPATH_E_RICRC) &&
!(err&(INFINIPATH_E_RVCRC|INFINIPATH_E_REBP)))
strlcat(buf, "CRC ", blen);
if (!iserr)
goto done;
}
if (err & INFINIPATH_E_RHDRLEN)
strlcat(buf, "rhdrlen ", blen);
if (err & INFINIPATH_E_RBADTID)
strlcat(buf, "rbadtid ", blen);
if (err & INFINIPATH_E_RBADVERSION)
strlcat(buf, "rbadversion ", blen);
if (err & INFINIPATH_E_RHDR)
strlcat(buf, "rhdr ", blen);
if (err & INFINIPATH_E_SENDSPECIALTRIGGER)
strlcat(buf, "sendspecialtrigger ", blen);
if (err & INFINIPATH_E_RLONGPKTLEN)
strlcat(buf, "rlongpktlen ", blen);
if (err & INFINIPATH_E_RMAXPKTLEN)
strlcat(buf, "rmaxpktlen ", blen);
if (err & INFINIPATH_E_RMINPKTLEN)
strlcat(buf, "rminpktlen ", blen);
if (err & INFINIPATH_E_SMINPKTLEN)
strlcat(buf, "sminpktlen ", blen);
if (err & INFINIPATH_E_RFORMATERR)
strlcat(buf, "rformaterr ", blen);
if (err & INFINIPATH_E_RUNSUPVL)
strlcat(buf, "runsupvl ", blen);
if (err & INFINIPATH_E_RUNEXPCHAR)
strlcat(buf, "runexpchar ", blen);
if (err & INFINIPATH_E_RIBFLOW)
strlcat(buf, "ribflow ", blen);
if (err & INFINIPATH_E_SUNDERRUN)
strlcat(buf, "sunderrun ", blen);
if (err & INFINIPATH_E_SPIOARMLAUNCH)
strlcat(buf, "spioarmlaunch ", blen);
if (err & INFINIPATH_E_SUNEXPERRPKTNUM)
strlcat(buf, "sunexperrpktnum ", blen);
if (err & INFINIPATH_E_SDROPPEDSMPPKT)
strlcat(buf, "sdroppedsmppkt ", blen);
if (err & INFINIPATH_E_SMAXPKTLEN)
strlcat(buf, "smaxpktlen ", blen);
if (err & INFINIPATH_E_SUNSUPVL)
strlcat(buf, "sunsupVL ", blen);
if (err & INFINIPATH_E_INVALIDADDR)
strlcat(buf, "invalidaddr ", blen);
if (err & INFINIPATH_E_RRCVEGRFULL)
strlcat(buf, "rcvegrfull ", blen);
if (err & INFINIPATH_E_RRCVHDRFULL)
strlcat(buf, "rcvhdrfull ", blen);
if (err & INFINIPATH_E_IBSTATUSCHANGED)
strlcat(buf, "ibcstatuschg ", blen);
if (err & INFINIPATH_E_RIBLOSTLINK)
strlcat(buf, "riblostlink ", blen);
if (err & INFINIPATH_E_HARDWARE)
strlcat(buf, "hardware ", blen);
if (err & INFINIPATH_E_RESET)
strlcat(buf, "reset ", blen);
if (err & INFINIPATH_E_SDMAERRS)
decode_sdma_errs(dd, err, buf, blen);
if (err & INFINIPATH_E_INVALIDEEPCMD)
strlcat(buf, "invalideepromcmd ", blen);
done:
return iserr;
}
/**
* get_rhf_errstring - decode RHF errors
* @err: the err number
* @msg: the output buffer
* @len: the length of the output buffer
*
* only used one place now, may want more later
*/
static void get_rhf_errstring(u32 err, char *msg, size_t len)
{
/* if no errors, and so don't need to check what's first */
*msg = '\0';
if (err & INFINIPATH_RHF_H_ICRCERR)
strlcat(msg, "icrcerr ", len);
if (err & INFINIPATH_RHF_H_VCRCERR)
strlcat(msg, "vcrcerr ", len);
if (err & INFINIPATH_RHF_H_PARITYERR)
strlcat(msg, "parityerr ", len);
if (err & INFINIPATH_RHF_H_LENERR)
strlcat(msg, "lenerr ", len);
if (err & INFINIPATH_RHF_H_MTUERR)
strlcat(msg, "mtuerr ", len);
if (err & INFINIPATH_RHF_H_IHDRERR)
/* infinipath hdr checksum error */
strlcat(msg, "ipathhdrerr ", len);
if (err & INFINIPATH_RHF_H_TIDERR)
strlcat(msg, "tiderr ", len);
if (err & INFINIPATH_RHF_H_MKERR)
/* bad port, offset, etc. */
strlcat(msg, "invalid ipathhdr ", len);
if (err & INFINIPATH_RHF_H_IBERR)
strlcat(msg, "iberr ", len);
if (err & INFINIPATH_RHF_L_SWA)
strlcat(msg, "swA ", len);
if (err & INFINIPATH_RHF_L_SWB)
strlcat(msg, "swB ", len);
}
/**
* ipath_get_egrbuf - get an eager buffer
* @dd: the infinipath device
* @bufnum: the eager buffer to get
*
* must only be called if ipath_pd[port] is known to be allocated
*/
static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum)
{
return dd->ipath_port0_skbinfo ?
(void *) dd->ipath_port0_skbinfo[bufnum].skb->data : NULL;
}
/**
* ipath_alloc_skb - allocate an skb and buffer with possible constraints
* @dd: the infinipath device
* @gfp_mask: the sk_buff SFP mask
*/
struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd,
gfp_t gfp_mask)
{
struct sk_buff *skb;
u32 len;
/*
* Only fully supported way to handle this is to allocate lots
* extra, align as needed, and then do skb_reserve(). That wastes
* a lot of memory... I'll have to hack this into infinipath_copy
* also.
*/
/*
* We need 2 extra bytes for ipath_ether data sent in the
* key header. In order to keep everything dword aligned,
* we'll reserve 4 bytes.
*/
len = dd->ipath_ibmaxlen + 4;
if (dd->ipath_flags & IPATH_4BYTE_TID) {
/* We need a 2KB multiple alignment, and there is no way
* to do it except to allocate extra and then skb_reserve
* enough to bring it up to the right alignment.
*/
len += 2047;
}
skb = __dev_alloc_skb(len, gfp_mask);
if (!skb) {
ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n",
len);
goto bail;
}
skb_reserve(skb, 4);
if (dd->ipath_flags & IPATH_4BYTE_TID) {
u32 una = (unsigned long)skb->data & 2047;
if (una)
skb_reserve(skb, 2048 - una);
}
bail:
return skb;
}
static void ipath_rcv_hdrerr(struct ipath_devdata *dd,
u32 eflags,
u32 l,
u32 etail,
__le32 *rhf_addr,
struct ipath_message_header *hdr)
{
char emsg[128];
get_rhf_errstring(eflags, emsg, sizeof emsg);
ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u "
"tlen=%x opcode=%x egridx=%x: %s\n",
eflags, l,
ipath_hdrget_rcv_type(rhf_addr),
ipath_hdrget_length_in_bytes(rhf_addr),
be32_to_cpu(hdr->bth[0]) >> 24,
etail, emsg);
/* Count local link integrity errors. */
if (eflags & (INFINIPATH_RHF_H_ICRCERR | INFINIPATH_RHF_H_VCRCERR)) {
u8 n = (dd->ipath_ibcctrl >>
INFINIPATH_IBCC_PHYERRTHRESHOLD_SHIFT) &
INFINIPATH_IBCC_PHYERRTHRESHOLD_MASK;
if (++dd->ipath_lli_counter > n) {
dd->ipath_lli_counter = 0;
dd->ipath_lli_errors++;
}
}
}
/*
* ipath_kreceive - receive a packet
* @pd: the infinipath port
*
* called from interrupt handler for errors or receive interrupt
*/
void ipath_kreceive(struct ipath_portdata *pd)
{
struct ipath_devdata *dd = pd->port_dd;
__le32 *rhf_addr;
void *ebuf;
const u32 rsize = dd->ipath_rcvhdrentsize; /* words */
const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */
u32 etail = -1, l, hdrqtail;
struct ipath_message_header *hdr;
u32 eflags, i, etype, tlen, pkttot = 0, updegr = 0, reloop = 0;
static u64 totcalls; /* stats, may eventually remove */
int last;
l = pd->port_head;
rhf_addr = (__le32 *) pd->port_rcvhdrq + l + dd->ipath_rhf_offset;
if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
u32 seq = ipath_hdrget_seq(rhf_addr);
if (seq != pd->port_seq_cnt)
goto bail;
hdrqtail = 0;
} else {
hdrqtail = ipath_get_rcvhdrtail(pd);
if (l == hdrqtail)
goto bail;
smp_rmb();
}
reloop:
for (last = 0, i = 1; !last; i += !last) {
hdr = dd->ipath_f_get_msgheader(dd, rhf_addr);
eflags = ipath_hdrget_err_flags(rhf_addr);
etype = ipath_hdrget_rcv_type(rhf_addr);
/* total length */
tlen = ipath_hdrget_length_in_bytes(rhf_addr);
ebuf = NULL;
if ((dd->ipath_flags & IPATH_NODMA_RTAIL) ?
ipath_hdrget_use_egr_buf(rhf_addr) :
(etype != RCVHQ_RCV_TYPE_EXPECTED)) {
/*
* It turns out that the chip uses an eager buffer
* for all non-expected packets, whether it "needs"
* one or not. So always get the index, but don't
* set ebuf (so we try to copy data) unless the
* length requires it.
*/
etail = ipath_hdrget_index(rhf_addr);
updegr = 1;
if (tlen > sizeof(*hdr) ||
etype == RCVHQ_RCV_TYPE_NON_KD)
ebuf = ipath_get_egrbuf(dd, etail);
}
/*
* both tiderr and ipathhdrerr are set for all plain IB
* packets; only ipathhdrerr should be set.
*/
if (etype != RCVHQ_RCV_TYPE_NON_KD &&
etype != RCVHQ_RCV_TYPE_ERROR &&
ipath_hdrget_ipath_ver(hdr->iph.ver_port_tid_offset) !=
IPS_PROTO_VERSION)
ipath_cdbg(PKT, "Bad InfiniPath protocol version "
"%x\n", etype);
if (unlikely(eflags))
ipath_rcv_hdrerr(dd, eflags, l, etail, rhf_addr, hdr);
else if (etype == RCVHQ_RCV_TYPE_NON_KD) {
ipath_ib_rcv(dd->verbs_dev, (u32 *)hdr, ebuf, tlen);
if (dd->ipath_lli_counter)
dd->ipath_lli_counter--;
} else if (etype == RCVHQ_RCV_TYPE_EAGER) {
u8 opcode = be32_to_cpu(hdr->bth[0]) >> 24;
u32 qp = be32_to_cpu(hdr->bth[1]) & 0xffffff;
ipath_cdbg(PKT, "typ %x, opcode %x (eager, "
"qp=%x), len %x; ignored\n",
etype, opcode, qp, tlen);
}
else if (etype == RCVHQ_RCV_TYPE_EXPECTED)
ipath_dbg("Bug: Expected TID, opcode %x; ignored\n",
be32_to_cpu(hdr->bth[0]) >> 24);
else {
/*
* error packet, type of error unknown.
* Probably type 3, but we don't know, so don't
* even try to print the opcode, etc.
* Usually caused by a "bad packet", that has no
* BTH, when the LRH says it should.
*/
ipath_cdbg(ERRPKT, "Error Pkt, but no eflags! egrbuf"
" %x, len %x hdrq+%x rhf: %Lx\n",
etail, tlen, l, (unsigned long long)
le64_to_cpu(*(__le64 *) rhf_addr));
if (ipath_debug & __IPATH_ERRPKTDBG) {
u32 j, *d, dw = rsize-2;
if (rsize > (tlen>>2))
dw = tlen>>2;
d = (u32 *)hdr;
printk(KERN_DEBUG "EPkt rcvhdr(%x dw):\n",
dw);
for (j = 0; j < dw; j++)
printk(KERN_DEBUG "%8x%s", d[j],
(j%8) == 7 ? "\n" : " ");
printk(KERN_DEBUG ".\n");
}
}
l += rsize;
if (l >= maxcnt)
l = 0;
rhf_addr = (__le32 *) pd->port_rcvhdrq +
l + dd->ipath_rhf_offset;
if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
u32 seq = ipath_hdrget_seq(rhf_addr);
if (++pd->port_seq_cnt > 13)
pd->port_seq_cnt = 1;
if (seq != pd->port_seq_cnt)
last = 1;
} else if (l == hdrqtail)
last = 1;
/*
* update head regs on last packet, and every 16 packets.
* Reduce bus traffic, while still trying to prevent
* rcvhdrq overflows, for when the queue is nearly full
*/
if (last || !(i & 0xf)) {
u64 lval = l;
/* request IBA6120 and 7220 interrupt only on last */
if (last)
lval |= dd->ipath_rhdrhead_intr_off;
ipath_write_ureg(dd, ur_rcvhdrhead, lval,
pd->port_port);
if (updegr) {
ipath_write_ureg(dd, ur_rcvegrindexhead,
etail, pd->port_port);
updegr = 0;
}
}
}
if (!dd->ipath_rhdrhead_intr_off && !reloop &&
!(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
/* IBA6110 workaround; we can have a race clearing chip
* interrupt with another interrupt about to be delivered,
* and can clear it before it is delivered on the GPIO
* workaround. By doing the extra check here for the
* in-memory tail register updating while we were doing
* earlier packets, we "almost" guarantee we have covered
* that case.
*/
u32 hqtail = ipath_get_rcvhdrtail(pd);
if (hqtail != hdrqtail) {
hdrqtail = hqtail;
reloop = 1; /* loop 1 extra time at most */
goto reloop;
}
}
pkttot += i;
pd->port_head = l;
if (pkttot > ipath_stats.sps_maxpkts_call)
ipath_stats.sps_maxpkts_call = pkttot;
ipath_stats.sps_port0pkts += pkttot;
ipath_stats.sps_avgpkts_call =
ipath_stats.sps_port0pkts / ++totcalls;
bail:;
}
/**
* ipath_update_pio_bufs - update shadow copy of the PIO availability map
* @dd: the infinipath device
*
* called whenever our local copy indicates we have run out of send buffers
* NOTE: This can be called from interrupt context by some code
* and from non-interrupt context by ipath_getpiobuf().
*/
static void ipath_update_pio_bufs(struct ipath_devdata *dd)
{
unsigned long flags;
int i;
const unsigned piobregs = (unsigned)dd->ipath_pioavregs;
/* If the generation (check) bits have changed, then we update the
* busy bit for the corresponding PIO buffer. This algorithm will
* modify positions to the value they already have in some cases
* (i.e., no change), but it's faster than changing only the bits
* that have changed.
*
* We would like to do this atomicly, to avoid spinlocks in the
* critical send path, but that's not really possible, given the
* type of changes, and that this routine could be called on
* multiple cpu's simultaneously, so we lock in this routine only,
* to avoid conflicting updates; all we change is the shadow, and
* it's a single 64 bit memory location, so by definition the update
* is atomic in terms of what other cpu's can see in testing the
* bits. The spin_lock overhead isn't too bad, since it only
* happens when all buffers are in use, so only cpu overhead, not
* latency or bandwidth is affected.
*/
if (!dd->ipath_pioavailregs_dma) {
ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n");
return;
}
if (ipath_debug & __IPATH_VERBDBG) {
/* only if packet debug and verbose */
volatile __le64 *dma = dd->ipath_pioavailregs_dma;
unsigned long *shadow = dd->ipath_pioavailshadow;
ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, "
"d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx "
"s3=%lx\n",
(unsigned long long) le64_to_cpu(dma[0]),
shadow[0],
(unsigned long long) le64_to_cpu(dma[1]),
shadow[1],
(unsigned long long) le64_to_cpu(dma[2]),
shadow[2],
(unsigned long long) le64_to_cpu(dma[3]),
shadow[3]);
if (piobregs > 4)
ipath_cdbg(
PKT, "2nd group, dma4=%llx shad4=%lx, "
"d5=%llx s5=%lx, d6=%llx s6=%lx, "
"d7=%llx s7=%lx\n",
(unsigned long long) le64_to_cpu(dma[4]),
shadow[4],
(unsigned long long) le64_to_cpu(dma[5]),
shadow[5],
(unsigned long long) le64_to_cpu(dma[6]),
shadow[6],
(unsigned long long) le64_to_cpu(dma[7]),
shadow[7]);
}
spin_lock_irqsave(&ipath_pioavail_lock, flags);
for (i = 0; i < piobregs; i++) {
u64 pchbusy, pchg, piov, pnew;
/*
* Chip Errata: bug 6641; even and odd qwords>3 are swapped
*/
if (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS))
piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i ^ 1]);
else
piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]);
pchg = dd->ipath_pioavailkernel[i] &
~(dd->ipath_pioavailshadow[i] ^ piov);
pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT;
if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) {
pnew = dd->ipath_pioavailshadow[i] & ~pchbusy;
pnew |= piov & pchbusy;
dd->ipath_pioavailshadow[i] = pnew;
}
}
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
}
/*
* used to force update of pioavailshadow if we can't get a pio buffer.
* Needed primarily due to exitting freeze mode after recovering
* from errors. Done lazily, because it's safer (known to not
* be writing pio buffers).
*/
static void ipath_reset_availshadow(struct ipath_devdata *dd)
{
int i, im;
unsigned long flags;
spin_lock_irqsave(&ipath_pioavail_lock, flags);
for (i = 0; i < dd->ipath_pioavregs; i++) {
u64 val, oldval;
/* deal with 6110 chip bug on high register #s */
im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
i ^ 1 : i;
val = le64_to_cpu(dd->ipath_pioavailregs_dma[im]);
/*
* busy out the buffers not in the kernel avail list,
* without changing the generation bits.
*/
oldval = dd->ipath_pioavailshadow[i];
dd->ipath_pioavailshadow[i] = val |
((~dd->ipath_pioavailkernel[i] <<
INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT) &
0xaaaaaaaaaaaaaaaaULL); /* All BUSY bits in qword */
if (oldval != dd->ipath_pioavailshadow[i])
ipath_dbg("shadow[%d] was %Lx, now %lx\n",
i, (unsigned long long) oldval,
dd->ipath_pioavailshadow[i]);
}
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
}
/**
* ipath_setrcvhdrsize - set the receive header size
* @dd: the infinipath device
* @rhdrsize: the receive header size
*
* called from user init code, and also layered driver init
*/
int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize)
{
int ret = 0;
if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) {
if (dd->ipath_rcvhdrsize != rhdrsize) {
dev_info(&dd->pcidev->dev,
"Error: can't set protocol header "
"size %u, already %u\n",
rhdrsize, dd->ipath_rcvhdrsize);
ret = -EAGAIN;
} else
ipath_cdbg(VERBOSE, "Reuse same protocol header "
"size %u\n", dd->ipath_rcvhdrsize);
} else if (rhdrsize > (dd->ipath_rcvhdrentsize -
(sizeof(u64) / sizeof(u32)))) {
ipath_dbg("Error: can't set protocol header size %u "
"(> max %u)\n", rhdrsize,
dd->ipath_rcvhdrentsize -
(u32) (sizeof(u64) / sizeof(u32)));
ret = -EOVERFLOW;
} else {
dd->ipath_flags |= IPATH_RCVHDRSZ_SET;
dd->ipath_rcvhdrsize = rhdrsize;
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize,
dd->ipath_rcvhdrsize);
ipath_cdbg(VERBOSE, "Set protocol header size to %u\n",
dd->ipath_rcvhdrsize);
}
return ret;
}
/*
* debugging code and stats updates if no pio buffers available.
*/
static noinline void no_pio_bufs(struct ipath_devdata *dd)
{
unsigned long *shadow = dd->ipath_pioavailshadow;
__le64 *dma = (__le64 *)dd->ipath_pioavailregs_dma;
dd->ipath_upd_pio_shadow = 1;
/*
* not atomic, but if we lose a stat count in a while, that's OK
*/
ipath_stats.sps_nopiobufs++;
if (!(++dd->ipath_consec_nopiobuf % 100000)) {
ipath_force_pio_avail_update(dd); /* at start */
ipath_dbg("%u tries no piobufavail ts%lx; dmacopy: "
"%llx %llx %llx %llx\n"
"ipath shadow: %lx %lx %lx %lx\n",
dd->ipath_consec_nopiobuf,
(unsigned long)get_cycles(),
(unsigned long long) le64_to_cpu(dma[0]),
(unsigned long long) le64_to_cpu(dma[1]),
(unsigned long long) le64_to_cpu(dma[2]),
(unsigned long long) le64_to_cpu(dma[3]),
shadow[0], shadow[1], shadow[2], shadow[3]);
/*
* 4 buffers per byte, 4 registers above, cover rest
* below
*/
if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) >
(sizeof(shadow[0]) * 4 * 4))
ipath_dbg("2nd group: dmacopy: "
"%llx %llx %llx %llx\n"
"ipath shadow: %lx %lx %lx %lx\n",
(unsigned long long)le64_to_cpu(dma[4]),
(unsigned long long)le64_to_cpu(dma[5]),
(unsigned long long)le64_to_cpu(dma[6]),
(unsigned long long)le64_to_cpu(dma[7]),
shadow[4], shadow[5], shadow[6], shadow[7]);
/* at end, so update likely happened */
ipath_reset_availshadow(dd);
}
}
/*
* common code for normal driver pio buffer allocation, and reserved
* allocation.
*
* do appropriate marking as busy, etc.
* returns buffer number if one found (>=0), negative number is error.
*/
static u32 __iomem *ipath_getpiobuf_range(struct ipath_devdata *dd,
u32 *pbufnum, u32 first, u32 last, u32 firsti)
{
int i, j, updated = 0;
unsigned piobcnt;
unsigned long flags;
unsigned long *shadow = dd->ipath_pioavailshadow;
u32 __iomem *buf;
piobcnt = last - first;
if (dd->ipath_upd_pio_shadow) {
/*
* Minor optimization. If we had no buffers on last call,
* start out by doing the update; continue and do scan even
* if no buffers were updated, to be paranoid
*/
ipath_update_pio_bufs(dd);
updated++;
i = first;
} else
i = firsti;
rescan:
/*
* while test_and_set_bit() is atomic, we do that and then the
* change_bit(), and the pair is not. See if this is the cause
* of the remaining armlaunch errors.
*/
spin_lock_irqsave(&ipath_pioavail_lock, flags);
for (j = 0; j < piobcnt; j++, i++) {
if (i >= last)
i = first;
if (__test_and_set_bit((2 * i) + 1, shadow))
continue;
/* flip generation bit */
__change_bit(2 * i, shadow);
break;
}
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
if (j == piobcnt) {
if (!updated) {
/*
* first time through; shadow exhausted, but may be
* buffers available, try an update and then rescan.
*/
ipath_update_pio_bufs(dd);
updated++;
i = first;
goto rescan;
} else if (updated == 1 && piobcnt <=
((dd->ipath_sendctrl
>> INFINIPATH_S_UPDTHRESH_SHIFT) &
INFINIPATH_S_UPDTHRESH_MASK)) {
/*
* for chips supporting and using the update
* threshold we need to force an update of the
* in-memory copy if the count is less than the
* thershold, then check one more time.
*/
ipath_force_pio_avail_update(dd);
ipath_update_pio_bufs(dd);
updated++;
i = first;
goto rescan;
}
no_pio_bufs(dd);
buf = NULL;
} else {
if (i < dd->ipath_piobcnt2k)
buf = (u32 __iomem *) (dd->ipath_pio2kbase +
i * dd->ipath_palign);
else
buf = (u32 __iomem *)
(dd->ipath_pio4kbase +
(i - dd->ipath_piobcnt2k) * dd->ipath_4kalign);
if (pbufnum)
*pbufnum = i;
}
return buf;
}
/**
* ipath_getpiobuf - find an available pio buffer
* @dd: the infinipath device
* @plen: the size of the PIO buffer needed in 32-bit words
* @pbufnum: the buffer number is placed here
*/
u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 plen, u32 *pbufnum)
{
u32 __iomem *buf;
u32 pnum, nbufs;
u32 first, lasti;
if (plen + 1 >= IPATH_SMALLBUF_DWORDS) {
first = dd->ipath_piobcnt2k;
lasti = dd->ipath_lastpioindexl;
} else {
first = 0;
lasti = dd->ipath_lastpioindex;
}
nbufs = dd->ipath_piobcnt2k + dd->ipath_piobcnt4k;
buf = ipath_getpiobuf_range(dd, &pnum, first, nbufs, lasti);
if (buf) {
/*
* Set next starting place. It's just an optimization,
* it doesn't matter who wins on this, so no locking
*/
if (plen + 1 >= IPATH_SMALLBUF_DWORDS)
dd->ipath_lastpioindexl = pnum + 1;
else
dd->ipath_lastpioindex = pnum + 1;
if (dd->ipath_upd_pio_shadow)
dd->ipath_upd_pio_shadow = 0;
if (dd->ipath_consec_nopiobuf)
dd->ipath_consec_nopiobuf = 0;
ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n",
pnum, (pnum < dd->ipath_piobcnt2k) ? 2 : 4, buf);
if (pbufnum)
*pbufnum = pnum;
}
return buf;
}
/**
* ipath_chg_pioavailkernel - change which send buffers are available for kernel
* @dd: the infinipath device
* @start: the starting send buffer number
* @len: the number of send buffers
* @avail: true if the buffers are available for kernel use, false otherwise
*/
void ipath_chg_pioavailkernel(struct ipath_devdata *dd, unsigned start,
unsigned len, int avail)
{
unsigned long flags;
unsigned end, cnt = 0;
/* There are two bits per send buffer (busy and generation) */
start *= 2;
end = start + len * 2;
spin_lock_irqsave(&ipath_pioavail_lock, flags);
/* Set or clear the busy bit in the shadow. */
while (start < end) {
if (avail) {
unsigned long dma;
int i, im;
/*
* the BUSY bit will never be set, because we disarm
* the user buffers before we hand them back to the
* kernel. We do have to make sure the generation
* bit is set correctly in shadow, since it could
* have changed many times while allocated to user.
* We can't use the bitmap functions on the full
* dma array because it is always little-endian, so
* we have to flip to host-order first.
* BITS_PER_LONG is slightly wrong, since it's
* always 64 bits per register in chip...
* We only work on 64 bit kernels, so that's OK.
*/
/* deal with 6110 chip bug on high register #s */
i = start / BITS_PER_LONG;
im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
i ^ 1 : i;
__clear_bit(INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT
+ start, dd->ipath_pioavailshadow);
dma = (unsigned long) le64_to_cpu(
dd->ipath_pioavailregs_dma[im]);
if (test_bit((INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
+ start) % BITS_PER_LONG, &dma))
__set_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
+ start, dd->ipath_pioavailshadow);
else
__clear_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
+ start, dd->ipath_pioavailshadow);
__set_bit(start, dd->ipath_pioavailkernel);
} else {
__set_bit(start + INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT,
dd->ipath_pioavailshadow);
__clear_bit(start, dd->ipath_pioavailkernel);
}
start += 2;
}
if (dd->ipath_pioupd_thresh) {
end = 2 * (dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
cnt = bitmap_weight(dd->ipath_pioavailkernel, end);
}
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
/*
* When moving buffers from kernel to user, if number assigned to
* the user is less than the pio update threshold, and threshold
* is supported (cnt was computed > 0), drop the update threshold
* so we update at least once per allocated number of buffers.
* In any case, if the kernel buffers are less than the threshold,
* drop the threshold. We don't bother increasing it, having once
* decreased it, since it would typically just cycle back and forth.
* If we don't decrease below buffers in use, we can wait a long
* time for an update, until some other context uses PIO buffers.
*/
if (!avail && len < cnt)
cnt = len;
if (cnt < dd->ipath_pioupd_thresh) {
dd->ipath_pioupd_thresh = cnt;
ipath_dbg("Decreased pio update threshold to %u\n",
dd->ipath_pioupd_thresh);
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
dd->ipath_sendctrl &= ~(INFINIPATH_S_UPDTHRESH_MASK
<< INFINIPATH_S_UPDTHRESH_SHIFT);
dd->ipath_sendctrl |= dd->ipath_pioupd_thresh
<< INFINIPATH_S_UPDTHRESH_SHIFT;
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
dd->ipath_sendctrl);
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
}
}
/**
* ipath_create_rcvhdrq - create a receive header queue
* @dd: the infinipath device
* @pd: the port data
*
* this must be contiguous memory (from an i/o perspective), and must be
* DMA'able (which means for some systems, it will go through an IOMMU,
* or be forced into a low address range).
*/
int ipath_create_rcvhdrq(struct ipath_devdata *dd,
struct ipath_portdata *pd)
{
int ret = 0;
if (!pd->port_rcvhdrq) {
dma_addr_t phys_hdrqtail;
gfp_t gfp_flags = GFP_USER | __GFP_COMP;
int amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize *
sizeof(u32), PAGE_SIZE);
pd->port_rcvhdrq = dma_alloc_coherent(
&dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys,
gfp_flags);
if (!pd->port_rcvhdrq) {
ipath_dev_err(dd, "attempt to allocate %d bytes "
"for port %u rcvhdrq failed\n",
amt, pd->port_port);
ret = -ENOMEM;
goto bail;
}
if (!(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
pd->port_rcvhdrtail_kvaddr = dma_alloc_coherent(
&dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
GFP_KERNEL);
if (!pd->port_rcvhdrtail_kvaddr) {
ipath_dev_err(dd, "attempt to allocate 1 page "
"for port %u rcvhdrqtailaddr "
"failed\n", pd->port_port);
ret = -ENOMEM;
dma_free_coherent(&dd->pcidev->dev, amt,
pd->port_rcvhdrq,
pd->port_rcvhdrq_phys);
pd->port_rcvhdrq = NULL;
goto bail;
}
pd->port_rcvhdrqtailaddr_phys = phys_hdrqtail;
ipath_cdbg(VERBOSE, "port %d hdrtailaddr, %llx "
"physical\n", pd->port_port,
(unsigned long long) phys_hdrqtail);
}
pd->port_rcvhdrq_size = amt;
ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu "
"for port %u rcvhdr Q\n",
amt >> PAGE_SHIFT, pd->port_rcvhdrq,
(unsigned long) pd->port_rcvhdrq_phys,
(unsigned long) pd->port_rcvhdrq_size,
pd->port_port);
}
else
ipath_cdbg(VERBOSE, "reuse port %d rcvhdrq @%p %llx phys; "
"hdrtailaddr@%p %llx physical\n",
pd->port_port, pd->port_rcvhdrq,
(unsigned long long) pd->port_rcvhdrq_phys,
pd->port_rcvhdrtail_kvaddr, (unsigned long long)
pd->port_rcvhdrqtailaddr_phys);
/* clear for security and sanity on each use */
memset(pd->port_rcvhdrq, 0, pd->port_rcvhdrq_size);
if (pd->port_rcvhdrtail_kvaddr)
memset(pd->port_rcvhdrtail_kvaddr, 0, PAGE_SIZE);
/*
* tell chip each time we init it, even if we are re-using previous
* memory (we zero the register at process close)
*/
ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdrtailaddr,
pd->port_port, pd->port_rcvhdrqtailaddr_phys);
ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr,
pd->port_port, pd->port_rcvhdrq_phys);
bail:
return ret;
}
/*
* Flush all sends that might be in the ready to send state, as well as any
* that are in the process of being sent. Used whenever we need to be
* sure the send side is idle. Cleans up all buffer state by canceling
* all pio buffers, and issuing an abort, which cleans up anything in the
* launch fifo. The cancel is superfluous on some chip versions, but
* it's safer to always do it.
* PIOAvail bits are updated by the chip as if normal send had happened.
*/
void ipath_cancel_sends(struct ipath_devdata *dd, int restore_sendctrl)
{
unsigned long flags;
if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) {
ipath_cdbg(VERBOSE, "Ignore while in autonegotiation\n");
goto bail;
}
/*
* If we have SDMA, and it's not disabled, we have to kick off the
* abort state machine, provided we aren't already aborting.
* If we are in the process of aborting SDMA (!DISABLED, but ABORTING),
* we skip the rest of this routine. It is already "in progress"
*/
if (dd->ipath_flags & IPATH_HAS_SEND_DMA) {
int skip_cancel;
unsigned long *statp = &dd->ipath_sdma_status;
spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
skip_cancel =
test_and_set_bit(IPATH_SDMA_ABORTING, statp)
&& !test_bit(IPATH_SDMA_DISABLED, statp);
spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
if (skip_cancel)
goto bail;
}
ipath_dbg("Cancelling all in-progress send buffers\n");
/* skip armlaunch errs for a while */
dd->ipath_lastcancel = jiffies + HZ / 2;
/*
* The abort bit is auto-clearing. We also don't want pioavail
* update happening during this, and we don't want any other
* sends going out, so turn those off for the duration. We read
* the scratch register to be sure that cancels and the abort
* have taken effect in the chip. Otherwise two parts are same
* as ipath_force_pio_avail_update()
*/
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
dd->ipath_sendctrl &= ~(INFINIPATH_S_PIOBUFAVAILUPD
| INFINIPATH_S_PIOENABLE);
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
dd->ipath_sendctrl | INFINIPATH_S_ABORT);
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
/* disarm all send buffers */
ipath_disarm_piobufs(dd, 0,
dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
set_bit(IPATH_SDMA_DISARMED, &dd->ipath_sdma_status);
if (restore_sendctrl) {
/* else done by caller later if needed */
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
dd->ipath_sendctrl |= INFINIPATH_S_PIOBUFAVAILUPD |
INFINIPATH_S_PIOENABLE;
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
dd->ipath_sendctrl);
/* and again, be sure all have hit the chip */
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
}
if ((dd->ipath_flags & IPATH_HAS_SEND_DMA) &&
!test_bit(IPATH_SDMA_DISABLED, &dd->ipath_sdma_status) &&
test_bit(IPATH_SDMA_RUNNING, &dd->ipath_sdma_status)) {
spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
/* only wait so long for intr */
dd->ipath_sdma_abort_intr_timeout = jiffies + HZ;
dd->ipath_sdma_reset_wait = 200;
if (!test_bit(IPATH_SDMA_SHUTDOWN, &dd->ipath_sdma_status))
tasklet_hi_schedule(&dd->ipath_sdma_abort_task);
spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
}
bail:;
}
/*
* Force an update of in-memory copy of the pioavail registers, when
* needed for any of a variety of reasons. We read the scratch register
* to make it highly likely that the update will have happened by the
* time we return. If already off (as in cancel_sends above), this
* routine is a nop, on the assumption that the caller will "do the
* right thing".
*/
void ipath_force_pio_avail_update(struct ipath_devdata *dd)
{
unsigned long flags;
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
if (dd->ipath_sendctrl & INFINIPATH_S_PIOBUFAVAILUPD) {
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
dd->ipath_sendctrl & ~INFINIPATH_S_PIOBUFAVAILUPD);
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
dd->ipath_sendctrl);
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
}
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
}
static void ipath_set_ib_lstate(struct ipath_devdata *dd, int linkcmd,
int linitcmd)
{
u64 mod_wd;
static const char *what[4] = {
[0] = "NOP",
[INFINIPATH_IBCC_LINKCMD_DOWN] = "DOWN",
[INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED",
[INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE"
};
if (linitcmd == INFINIPATH_IBCC_LINKINITCMD_DISABLE) {
/*
* If we are told to disable, note that so link-recovery
* code does not attempt to bring us back up.
*/
preempt_disable();
dd->ipath_flags |= IPATH_IB_LINK_DISABLED;
preempt_enable();
} else if (linitcmd) {
/*
* Any other linkinitcmd will lead to LINKDOWN and then
* to INIT (if all is well), so clear flag to let
* link-recovery code attempt to bring us back up.
*/
preempt_disable();
dd->ipath_flags &= ~IPATH_IB_LINK_DISABLED;
preempt_enable();
}
mod_wd = (linkcmd << dd->ibcc_lc_shift) |
(linitcmd << INFINIPATH_IBCC_LINKINITCMD_SHIFT);
ipath_cdbg(VERBOSE,
"Moving unit %u to %s (initcmd=0x%x), current ltstate is %s\n",
dd->ipath_unit, what[linkcmd], linitcmd,
ipath_ibcstatus_str[ipath_ib_linktrstate(dd,
ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus))]);
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
dd->ipath_ibcctrl | mod_wd);
/* read from chip so write is flushed */
(void) ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
}
int ipath_set_linkstate(struct ipath_devdata *dd, u8 newstate)
{
u32 lstate;
int ret;
switch (newstate) {
case IPATH_IB_LINKDOWN_ONLY:
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, 0);
/* don't wait */
ret = 0;
goto bail;
case IPATH_IB_LINKDOWN:
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
INFINIPATH_IBCC_LINKINITCMD_POLL);
/* don't wait */
ret = 0;
goto bail;
case IPATH_IB_LINKDOWN_SLEEP:
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
INFINIPATH_IBCC_LINKINITCMD_SLEEP);
/* don't wait */
ret = 0;
goto bail;
case IPATH_IB_LINKDOWN_DISABLE:
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
INFINIPATH_IBCC_LINKINITCMD_DISABLE);
/* don't wait */
ret = 0;
goto bail;
case IPATH_IB_LINKARM:
if (dd->ipath_flags & IPATH_LINKARMED) {
ret = 0;
goto bail;
}
if (!(dd->ipath_flags &
(IPATH_LINKINIT | IPATH_LINKACTIVE))) {
ret = -EINVAL;
goto bail;
}
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ARMED, 0);
/*
* Since the port can transition to ACTIVE by receiving
* a non VL 15 packet, wait for either state.
*/
lstate = IPATH_LINKARMED | IPATH_LINKACTIVE;
break;
case IPATH_IB_LINKACTIVE:
if (dd->ipath_flags & IPATH_LINKACTIVE) {
ret = 0;
goto bail;
}
if (!(dd->ipath_flags & IPATH_LINKARMED)) {
ret = -EINVAL;
goto bail;
}
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ACTIVE, 0);
lstate = IPATH_LINKACTIVE;
break;
case IPATH_IB_LINK_LOOPBACK:
dev_info(&dd->pcidev->dev, "Enabling IB local loopback\n");
dd->ipath_ibcctrl |= INFINIPATH_IBCC_LOOPBACK;
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
dd->ipath_ibcctrl);
/* turn heartbeat off, as it causes loopback to fail */
dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
IPATH_IB_HRTBT_OFF);
/* don't wait */
ret = 0;
goto bail;
case IPATH_IB_LINK_EXTERNAL:
dev_info(&dd->pcidev->dev,
"Disabling IB local loopback (normal)\n");
dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
IPATH_IB_HRTBT_ON);
dd->ipath_ibcctrl &= ~INFINIPATH_IBCC_LOOPBACK;
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
dd->ipath_ibcctrl);
/* don't wait */
ret = 0;
goto bail;
/*
* Heartbeat can be explicitly enabled by the user via
* "hrtbt_enable" "file", and if disabled, trying to enable here
* will have no effect. Implicit changes (heartbeat off when
* loopback on, and vice versa) are included to ease testing.
*/
case IPATH_IB_LINK_HRTBT:
ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
IPATH_IB_HRTBT_ON);
goto bail;
case IPATH_IB_LINK_NO_HRTBT:
ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
IPATH_IB_HRTBT_OFF);
goto bail;
default:
ipath_dbg("Invalid linkstate 0x%x requested\n", newstate);
ret = -EINVAL;
goto bail;
}
ret = ipath_wait_linkstate(dd, lstate, 2000);
bail:
return ret;
}
/**
* ipath_set_mtu - set the MTU
* @dd: the infinipath device
* @arg: the new MTU
*
* we can handle "any" incoming size, the issue here is whether we
* need to restrict our outgoing size. For now, we don't do any
* sanity checking on this, and we don't deal with what happens to
* programs that are already running when the size changes.
* NOTE: changing the MTU will usually cause the IBC to go back to
* link INIT state...
*/
int ipath_set_mtu(struct ipath_devdata *dd, u16 arg)
{
u32 piosize;
int changed = 0;
int ret;
/*
* mtu is IB data payload max. It's the largest power of 2 less
* than piosize (or even larger, since it only really controls the
* largest we can receive; we can send the max of the mtu and
* piosize). We check that it's one of the valid IB sizes.
*/
if (arg != 256 && arg != 512 && arg != 1024 && arg != 2048 &&
(arg != 4096 || !ipath_mtu4096)) {
ipath_dbg("Trying to set invalid mtu %u, failing\n", arg);
ret = -EINVAL;
goto bail;
}
if (dd->ipath_ibmtu == arg) {
ret = 0; /* same as current */
goto bail;
}
piosize = dd->ipath_ibmaxlen;
dd->ipath_ibmtu = arg;
if (arg >= (piosize - IPATH_PIO_MAXIBHDR)) {
/* Only if it's not the initial value (or reset to it) */
if (piosize != dd->ipath_init_ibmaxlen) {
if (arg > piosize && arg <= dd->ipath_init_ibmaxlen)
piosize = dd->ipath_init_ibmaxlen;
dd->ipath_ibmaxlen = piosize;
changed = 1;
}
} else if ((arg + IPATH_PIO_MAXIBHDR) != dd->ipath_ibmaxlen) {
piosize = arg + IPATH_PIO_MAXIBHDR;
ipath_cdbg(VERBOSE, "ibmaxlen was 0x%x, setting to 0x%x "
"(mtu 0x%x)\n", dd->ipath_ibmaxlen, piosize,
arg);
dd->ipath_ibmaxlen = piosize;
changed = 1;
}
if (changed) {
u64 ibc = dd->ipath_ibcctrl, ibdw;
/*
* update our housekeeping variables, and set IBC max
* size, same as init code; max IBC is max we allow in
* buffer, less the qword pbc, plus 1 for ICRC, in dwords
*/
dd->ipath_ibmaxlen = piosize - 2 * sizeof(u32);
ibdw = (dd->ipath_ibmaxlen >> 2) + 1;
ibc &= ~(INFINIPATH_IBCC_MAXPKTLEN_MASK <<
dd->ibcc_mpl_shift);
ibc |= ibdw << dd->ibcc_mpl_shift;
dd->ipath_ibcctrl = ibc;
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
dd->ipath_ibcctrl);
dd->ipath_f_tidtemplate(dd);
}
ret = 0;
bail:
return ret;
}
int ipath_set_lid(struct ipath_devdata *dd, u32 lid, u8 lmc)
{
dd->ipath_lid = lid;
dd->ipath_lmc = lmc;
dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_LIDLMC, lid |
(~((1U << lmc) - 1)) << 16);
dev_info(&dd->pcidev->dev, "We got a lid: 0x%x\n", lid);
return 0;
}
/**
* ipath_write_kreg_port - write a device's per-port 64-bit kernel register
* @dd: the infinipath device
* @regno: the register number to write
* @port: the port containing the register
* @value: the value to write
*
* Registers that vary with the chip implementation constants (port)
* use this routine.
*/
void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno,
unsigned port, u64 value)
{
u16 where;
if (port < dd->ipath_portcnt &&
(regno == dd->ipath_kregs->kr_rcvhdraddr ||
regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
where = regno + port;
else
where = -1;
ipath_write_kreg(dd, where, value);
}
/*
* Following deal with the "obviously simple" task of overriding the state
* of the LEDS, which normally indicate link physical and logical status.
* The complications arise in dealing with different hardware mappings
* and the board-dependent routine being called from interrupts.
* and then there's the requirement to _flash_ them.
*/
#define LED_OVER_FREQ_SHIFT 8
#define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
/* Below is "non-zero" to force override, but both actual LEDs are off */
#define LED_OVER_BOTH_OFF (8)
static void ipath_run_led_override(unsigned long opaque)
{
struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
int timeoff;
int pidx;
u64 lstate, ltstate, val;
if (!(dd->ipath_flags & IPATH_INITTED))
return;
pidx = dd->ipath_led_override_phase++ & 1;
dd->ipath_led_override = dd->ipath_led_override_vals[pidx];
timeoff = dd->ipath_led_override_timeoff;
/*
* below potentially restores the LED values per current status,
* should also possibly setup the traffic-blink register,
* but leave that to per-chip functions.
*/
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
ltstate = ipath_ib_linktrstate(dd, val);
lstate = ipath_ib_linkstate(dd, val);
dd->ipath_f_setextled(dd, lstate, ltstate);
mod_timer(&dd->ipath_led_override_timer, jiffies + timeoff);
}
void ipath_set_led_override(struct ipath_devdata *dd, unsigned int val)
{
int timeoff, freq;
if (!(dd->ipath_flags & IPATH_INITTED))
return;
/* First check if we are blinking. If not, use 1HZ polling */
timeoff = HZ;
freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
if (freq) {
/* For blink, set each phase from one nybble of val */
dd->ipath_led_override_vals[0] = val & 0xF;
dd->ipath_led_override_vals[1] = (val >> 4) & 0xF;
timeoff = (HZ << 4)/freq;
} else {
/* Non-blink set both phases the same. */
dd->ipath_led_override_vals[0] = val & 0xF;
dd->ipath_led_override_vals[1] = val & 0xF;
}
dd->ipath_led_override_timeoff = timeoff;
/*
* If the timer has not already been started, do so. Use a "quick"
* timeout so the function will be called soon, to look at our request.
*/
if (atomic_inc_return(&dd->ipath_led_override_timer_active) == 1) {
/* Need to start timer */
init_timer(&dd->ipath_led_override_timer);
dd->ipath_led_override_timer.function =
ipath_run_led_override;
dd->ipath_led_override_timer.data = (unsigned long) dd;
dd->ipath_led_override_timer.expires = jiffies + 1;
add_timer(&dd->ipath_led_override_timer);
} else
atomic_dec(&dd->ipath_led_override_timer_active);
}
/**
* ipath_shutdown_device - shut down a device
* @dd: the infinipath device
*
* This is called to make the device quiet when we are about to
* unload the driver, and also when the device is administratively
* disabled. It does not free any data structures.
* Everything it does has to be setup again by ipath_init_chip(dd,1)
*/
void ipath_shutdown_device(struct ipath_devdata *dd)
{
unsigned long flags;
ipath_dbg("Shutting down the device\n");
ipath_hol_up(dd); /* make sure user processes aren't suspended */
dd->ipath_flags |= IPATH_LINKUNK;
dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN |
IPATH_LINKINIT | IPATH_LINKARMED |
IPATH_LINKACTIVE);
*dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF |
IPATH_STATUS_IB_READY);
/* mask interrupts, but not errors */
ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
dd->ipath_rcvctrl = 0;
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
dd->ipath_rcvctrl);
if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
teardown_sdma(dd);
/*
* gracefully stop all sends allowing any in progress to trickle out
* first.
*/
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
dd->ipath_sendctrl = 0;
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl);
/* flush it */
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
/*
* enough for anything that's going to trickle out to have actually
* done so.
*/
udelay(5);
dd->ipath_f_setextled(dd, 0, 0); /* make sure LEDs are off */
ipath_set_ib_lstate(dd, 0, INFINIPATH_IBCC_LINKINITCMD_DISABLE);
ipath_cancel_sends(dd, 0);
/*
* we are shutting down, so tell components that care. We don't do
* this on just a link state change, much like ethernet, a cable
* unplug, etc. doesn't change driver state
*/
signal_ib_event(dd, IB_EVENT_PORT_ERR);
/* disable IBC */
dd->ipath_control &= ~INFINIPATH_C_LINKENABLE;
ipath_write_kreg(dd, dd->ipath_kregs->kr_control,
dd->ipath_control | INFINIPATH_C_FREEZEMODE);
/*
* clear SerdesEnable and turn the leds off; do this here because
* we are unloading, so don't count on interrupts to move along
* Turn the LEDs off explicitly for the same reason.
*/
dd->ipath_f_quiet_serdes(dd);
/* stop all the timers that might still be running */
del_timer_sync(&dd->ipath_hol_timer);
if (dd->ipath_stats_timer_active) {
del_timer_sync(&dd->ipath_stats_timer);
dd->ipath_stats_timer_active = 0;
}
if (dd->ipath_intrchk_timer.data) {
del_timer_sync(&dd->ipath_intrchk_timer);
dd->ipath_intrchk_timer.data = 0;
}
if (atomic_read(&dd->ipath_led_override_timer_active)) {
del_timer_sync(&dd->ipath_led_override_timer);
atomic_set(&dd->ipath_led_override_timer_active, 0);
}
/*
* clear all interrupts and errors, so that the next time the driver
* is loaded or device is enabled, we know that whatever is set
* happened while we were unloaded
*/
ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED);
ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL);
ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL);
ipath_cdbg(VERBOSE, "Flush time and errors to EEPROM\n");
ipath_update_eeprom_log(dd);
}
/**
* ipath_free_pddata - free a port's allocated data
* @dd: the infinipath device
* @pd: the portdata structure
*
* free up any allocated data for a port
* This should not touch anything that would affect a simultaneous
* re-allocation of port data, because it is called after ipath_mutex
* is released (and can be called from reinit as well).
* It should never change any chip state, or global driver state.
* (The only exception to global state is freeing the port0 port0_skbs.)
*/
void ipath_free_pddata(struct ipath_devdata *dd, struct ipath_portdata *pd)
{
if (!pd)
return;
if (pd->port_rcvhdrq) {
ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p "
"(size=%lu)\n", pd->port_port, pd->port_rcvhdrq,
(unsigned long) pd->port_rcvhdrq_size);
dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size,
pd->port_rcvhdrq, pd->port_rcvhdrq_phys);
pd->port_rcvhdrq = NULL;
if (pd->port_rcvhdrtail_kvaddr) {
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
pd->port_rcvhdrtail_kvaddr,
pd->port_rcvhdrqtailaddr_phys);
pd->port_rcvhdrtail_kvaddr = NULL;
}
}
if (pd->port_port && pd->port_rcvegrbuf) {
unsigned e;
for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) {
void *base = pd->port_rcvegrbuf[e];
size_t size = pd->port_rcvegrbuf_size;
ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), "
"chunk %u/%u\n", base,
(unsigned long) size,
e, pd->port_rcvegrbuf_chunks);
dma_free_coherent(&dd->pcidev->dev, size,
base, pd->port_rcvegrbuf_phys[e]);
}
kfree(pd->port_rcvegrbuf);
pd->port_rcvegrbuf = NULL;
kfree(pd->port_rcvegrbuf_phys);
pd->port_rcvegrbuf_phys = NULL;
pd->port_rcvegrbuf_chunks = 0;
} else if (pd->port_port == 0 && dd->ipath_port0_skbinfo) {
unsigned e;
struct ipath_skbinfo *skbinfo = dd->ipath_port0_skbinfo;
dd->ipath_port0_skbinfo = NULL;
ipath_cdbg(VERBOSE, "free closed port %d "
"ipath_port0_skbinfo @ %p\n", pd->port_port,
skbinfo);
for (e = 0; e < dd->ipath_p0_rcvegrcnt; e++)
if (skbinfo[e].skb) {
pci_unmap_single(dd->pcidev, skbinfo[e].phys,
dd->ipath_ibmaxlen,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(skbinfo[e].skb);
}
vfree(skbinfo);
}
kfree(pd->port_tid_pg_list);
vfree(pd->subport_uregbase);
vfree(pd->subport_rcvegrbuf);
vfree(pd->subport_rcvhdr_base);
kfree(pd);
}
static int __init infinipath_init(void)
{
int ret;
if (ipath_debug & __IPATH_DBG)
printk(KERN_INFO DRIVER_LOAD_MSG "%s", ib_ipath_version);
/*
* These must be called before the driver is registered with
* the PCI subsystem.
*/
idr_init(&unit_table);
ret = pci_register_driver(&ipath_driver);
if (ret < 0) {
printk(KERN_ERR IPATH_DRV_NAME
": Unable to register driver: error %d\n", -ret);
goto bail_unit;
}
ret = ipath_init_ipathfs();
if (ret < 0) {
printk(KERN_ERR IPATH_DRV_NAME ": Unable to create "
"ipathfs: error %d\n", -ret);
goto bail_pci;
}
goto bail;
bail_pci:
pci_unregister_driver(&ipath_driver);
bail_unit:
idr_destroy(&unit_table);
bail:
return ret;
}
static void __exit infinipath_cleanup(void)
{
ipath_exit_ipathfs();
ipath_cdbg(VERBOSE, "Unregistering pci driver\n");
pci_unregister_driver(&ipath_driver);
idr_destroy(&unit_table);
}
/**
* ipath_reset_device - reset the chip if possible
* @unit: the device to reset
*
* Whether or not reset is successful, we attempt to re-initialize the chip
* (that is, much like a driver unload/reload). We clear the INITTED flag
* so that the various entry points will fail until we reinitialize. For
* now, we only allow this if no user ports are open that use chip resources
*/
int ipath_reset_device(int unit)
{
int ret, i;
struct ipath_devdata *dd = ipath_lookup(unit);
unsigned long flags;
if (!dd) {
ret = -ENODEV;
goto bail;
}
if (atomic_read(&dd->ipath_led_override_timer_active)) {
/* Need to stop LED timer, _then_ shut off LEDs */
del_timer_sync(&dd->ipath_led_override_timer);
atomic_set(&dd->ipath_led_override_timer_active, 0);
}
/* Shut off LEDs after we are sure timer is not running */
dd->ipath_led_override = LED_OVER_BOTH_OFF;
dd->ipath_f_setextled(dd, 0, 0);
dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit);
if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) {
dev_info(&dd->pcidev->dev, "Invalid unit number %u or "
"not initialized or not present\n", unit);
ret = -ENXIO;
goto bail;
}
spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
if (dd->ipath_pd)
for (i = 1; i < dd->ipath_cfgports; i++) {
if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
continue;
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
ipath_dbg("unit %u port %d is in use "
"(PID %u cmd %s), can't reset\n",
unit, i,
pid_nr(dd->ipath_pd[i]->port_pid),
dd->ipath_pd[i]->port_comm);
ret = -EBUSY;
goto bail;
}
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
teardown_sdma(dd);
dd->ipath_flags &= ~IPATH_INITTED;
ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
ret = dd->ipath_f_reset(dd);
if (ret == 1) {
ipath_dbg("Reinitializing unit %u after reset attempt\n",
unit);
ret = ipath_init_chip(dd, 1);
} else
ret = -EAGAIN;
if (ret)
ipath_dev_err(dd, "Reinitialize unit %u after "
"reset failed with %d\n", unit, ret);
else
dev_info(&dd->pcidev->dev, "Reinitialized unit %u after "
"resetting\n", unit);
bail:
return ret;
}
/*
* send a signal to all the processes that have the driver open
* through the normal interfaces (i.e., everything other than diags
* interface). Returns number of signalled processes.
*/
static int ipath_signal_procs(struct ipath_devdata *dd, int sig)
{
int i, sub, any = 0;
struct pid *pid;
unsigned long flags;
if (!dd->ipath_pd)
return 0;
spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
for (i = 1; i < dd->ipath_cfgports; i++) {
if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
continue;
pid = dd->ipath_pd[i]->port_pid;
if (!pid)
continue;
dev_info(&dd->pcidev->dev, "context %d in use "
"(PID %u), sending signal %d\n",
i, pid_nr(pid), sig);
kill_pid(pid, sig, 1);
any++;
for (sub = 0; sub < INFINIPATH_MAX_SUBPORT; sub++) {
pid = dd->ipath_pd[i]->port_subpid[sub];
if (!pid)
continue;
dev_info(&dd->pcidev->dev, "sub-context "
"%d:%d in use (PID %u), sending "
"signal %d\n", i, sub, pid_nr(pid), sig);
kill_pid(pid, sig, 1);
any++;
}
}
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
return any;
}
static void ipath_hol_signal_down(struct ipath_devdata *dd)
{
if (ipath_signal_procs(dd, SIGSTOP))
ipath_dbg("Stopped some processes\n");
ipath_cancel_sends(dd, 1);
}
static void ipath_hol_signal_up(struct ipath_devdata *dd)
{
if (ipath_signal_procs(dd, SIGCONT))
ipath_dbg("Continued some processes\n");
}
/*
* link is down, stop any users processes, and flush pending sends
* to prevent HoL blocking, then start the HoL timer that
* periodically continues, then stop procs, so they can detect
* link down if they want, and do something about it.
* Timer may already be running, so use mod_timer, not add_timer.
*/
void ipath_hol_down(struct ipath_devdata *dd)
{
dd->ipath_hol_state = IPATH_HOL_DOWN;
ipath_hol_signal_down(dd);
dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
dd->ipath_hol_timer.expires = jiffies +
msecs_to_jiffies(ipath_hol_timeout_ms);
mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires);
}
/*
* link is up, continue any user processes, and ensure timer
* is a nop, if running. Let timer keep running, if set; it
* will nop when it sees the link is up
*/
void ipath_hol_up(struct ipath_devdata *dd)
{
ipath_hol_signal_up(dd);
dd->ipath_hol_state = IPATH_HOL_UP;
}
/*
* toggle the running/not running state of user proceses
* to prevent HoL blocking on chip resources, but still allow
* user processes to do link down special case handling.
* Should only be called via the timer
*/
void ipath_hol_event(unsigned long opaque)
{
struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
if (dd->ipath_hol_next == IPATH_HOL_DOWNSTOP
&& dd->ipath_hol_state != IPATH_HOL_UP) {
dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
ipath_dbg("Stopping processes\n");
ipath_hol_signal_down(dd);
} else { /* may do "extra" if also in ipath_hol_up() */
dd->ipath_hol_next = IPATH_HOL_DOWNSTOP;
ipath_dbg("Continuing processes\n");
ipath_hol_signal_up(dd);
}
if (dd->ipath_hol_state == IPATH_HOL_UP)
ipath_dbg("link's up, don't resched timer\n");
else {
dd->ipath_hol_timer.expires = jiffies +
msecs_to_jiffies(ipath_hol_timeout_ms);
mod_timer(&dd->ipath_hol_timer,
dd->ipath_hol_timer.expires);
}
}
int ipath_set_rx_pol_inv(struct ipath_devdata *dd, u8 new_pol_inv)
{
u64 val;
if (new_pol_inv > INFINIPATH_XGXS_RX_POL_MASK)
return -1;
if (dd->ipath_rx_pol_inv != new_pol_inv) {
dd->ipath_rx_pol_inv = new_pol_inv;
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig);
val &= ~(INFINIPATH_XGXS_RX_POL_MASK <<
INFINIPATH_XGXS_RX_POL_SHIFT);
val |= ((u64)dd->ipath_rx_pol_inv) <<
INFINIPATH_XGXS_RX_POL_SHIFT;
ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val);
}
return 0;
}
/*
* Disable and enable the armlaunch error. Used for PIO bandwidth testing on
* the 7220, which is count-based, rather than trigger-based. Safe for the
* driver check, since it's at init. Not completely safe when used for
* user-mode checking, since some error checking can be lost, but not
* particularly risky, and only has problematic side-effects in the face of
* very buggy user code. There is no reference counting, but that's also
* fine, given the intended use.
*/
void ipath_enable_armlaunch(struct ipath_devdata *dd)
{
dd->ipath_lasterror &= ~INFINIPATH_E_SPIOARMLAUNCH;
ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear,
INFINIPATH_E_SPIOARMLAUNCH);
dd->ipath_errormask |= INFINIPATH_E_SPIOARMLAUNCH;
ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
dd->ipath_errormask);
}
void ipath_disable_armlaunch(struct ipath_devdata *dd)
{
/* so don't re-enable if already set */
dd->ipath_maskederrs &= ~INFINIPATH_E_SPIOARMLAUNCH;
dd->ipath_errormask &= ~INFINIPATH_E_SPIOARMLAUNCH;
ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
dd->ipath_errormask);
}
module_init(infinipath_init);
module_exit(infinipath_cleanup);