/*
* sbp2.c - SBP-2 protocol driver for IEEE-1394
*
* Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
* jamesg@filanet.com (JSG)
*
* Copyright (C) 2003 Ben Collins <bcollins@debian.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* Brief Description:
*
* This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
* under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
* driver. It also registers as a SCSI lower-level driver in order to accept
* SCSI commands for transport using SBP-2.
*
* You may access any attached SBP-2 (usually storage devices) as regular
* SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
*
* See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
* specification and for where to purchase the official standard.
*
* TODO:
* - look into possible improvements of the SCSI error handlers
* - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
* - handle Logical_Unit_Number.ordered
* - handle src == 1 in status blocks
* - reimplement the DMA mapping in absence of physical DMA so that
* bus_to_virt is no longer required
* - debug the handling of absent physical DMA
* - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
* (this is easy but depends on the previous two TODO items)
* - make the parameter serialize_io configurable per device
* - move all requests to fetch agent registers into non-atomic context,
* replace all usages of sbp2util_node_write_no_wait by true transactions
* Grep for inline FIXME comments below.
*/
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/gfp.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/stringify.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <asm/byteorder.h>
#include <asm/errno.h>
#include <asm/param.h>
#include <asm/scatterlist.h>
#include <asm/system.h>
#include <asm/types.h>
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
#include <asm/io.h> /* for bus_to_virt */
#endif
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "csr1212.h"
#include "highlevel.h"
#include "hosts.h"
#include "ieee1394.h"
#include "ieee1394_core.h"
#include "ieee1394_hotplug.h"
#include "ieee1394_transactions.h"
#include "ieee1394_types.h"
#include "nodemgr.h"
#include "sbp2.h"
/*
* Module load parameter definitions
*/
/*
* Change max_speed on module load if you have a bad IEEE-1394
* controller that has trouble running 2KB packets at 400mb.
*
* NOTE: On certain OHCI parts I have seen short packets on async transmit
* (probably due to PCI latency/throughput issues with the part). You can
* bump down the speed if you are running into problems.
*/
static int sbp2_max_speed = IEEE1394_SPEED_MAX;
module_param_named(max_speed, sbp2_max_speed, int, 0644);
MODULE_PARM_DESC(max_speed, "Force max speed "
"(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
/*
* Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
* This is and always has been buggy in multiple subtle ways. See above TODOs.
*/
static int sbp2_serialize_io = 1;
module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
"(default = Y, faster but buggy = N)");
/*
* Bump up max_sectors if you'd like to support very large sized
* transfers. Please note that some older sbp2 bridge chips are broken for
* transfers greater or equal to 128KB. Default is a value of 255
* sectors, or just under 128KB (at 512 byte sector size). I can note that
* the Oxsemi sbp2 chipsets have no problems supporting very large
* transfer sizes.
*/
static int sbp2_max_sectors = SBP2_MAX_SECTORS;
module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
"(default = " __stringify(SBP2_MAX_SECTORS) ")");
/*
* Exclusive login to sbp2 device? In most cases, the sbp2 driver should
* do an exclusive login, as it's generally unsafe to have two hosts
* talking to a single sbp2 device at the same time (filesystem coherency,
* etc.). If you're running an sbp2 device that supports multiple logins,
* and you're either running read-only filesystems or some sort of special
* filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
* File System, or Lustre, then set exclusive_login to zero.
*
* So far only bridges from Oxford Semiconductor are known to support
* concurrent logins. Depending on firmware, four or two concurrent logins
* are possible on OXFW911 and newer Oxsemi bridges.
*/
static int sbp2_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
"(default = Y, use N for concurrent initiators)");
/*
* If any of the following workarounds is required for your device to work,
* please submit the kernel messages logged by sbp2 to the linux1394-devel
* mailing list.
*
* - 128kB max transfer
* Limit transfer size. Necessary for some old bridges.
*
* - 36 byte inquiry
* When scsi_mod probes the device, let the inquiry command look like that
* from MS Windows.
*
* - skip mode page 8
* Suppress sending of mode_sense for mode page 8 if the device pretends to
* support the SCSI Primary Block commands instead of Reduced Block Commands.
*
* - fix capacity
* Tell sd_mod to correct the last sector number reported by read_capacity.
* Avoids access beyond actual disk limits on devices with an off-by-one bug.
* Don't use this with devices which don't have this bug.
*
* - override internal blacklist
* Instead of adding to the built-in blacklist, use only the workarounds
* specified in the module load parameter.
* Useful if a blacklist entry interfered with a non-broken device.
*/
static int sbp2_default_workarounds;
module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
", or a combination)");
/*
* This influences the format of the sysfs attribute
* /sys/bus/scsi/devices/.../ieee1394_id.
*
* The default format is like in older kernels: %016Lx:%d:%d
* It contains the target's EUI-64, a number given to the logical unit by
* the ieee1394 driver's nodemgr (starting at 0), and the LUN.
*
* The long format is: %016Lx:%06x:%04x
* It contains the target's EUI-64, the unit directory's directory_ID as per
* IEEE 1212 clause 7.7.19, and the LUN. This format comes closest to the
* format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
* Architecture Model) rev.2 to 4 annex A. Therefore and because it is
* independent of the implementation of the ieee1394 nodemgr, the longer format
* is recommended for future use.
*/
static int sbp2_long_sysfs_ieee1394_id;
module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
"(default = backwards-compatible = N, SAM-conforming = Y)");
#define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
#define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
/*
* Globals
*/
static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
void (*)(struct scsi_cmnd *));
static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
static int sbp2_start_device(struct sbp2_lu *);
static void sbp2_remove_device(struct sbp2_lu *);
static int sbp2_login_device(struct sbp2_lu *);
static int sbp2_reconnect_device(struct sbp2_lu *);
static int sbp2_logout_device(struct sbp2_lu *);
static void sbp2_host_reset(struct hpsb_host *);
static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
u64, size_t, u16);
static int sbp2_agent_reset(struct sbp2_lu *, int);
static void sbp2_parse_unit_directory(struct sbp2_lu *,
struct unit_directory *);
static int sbp2_set_busy_timeout(struct sbp2_lu *);
static int sbp2_max_speed_and_size(struct sbp2_lu *);
static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
static struct hpsb_highlevel sbp2_highlevel = {
.name = SBP2_DEVICE_NAME,
.host_reset = sbp2_host_reset,
};
static struct hpsb_address_ops sbp2_ops = {
.write = sbp2_handle_status_write
};
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
u64, size_t, u16);
static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
size_t, u16);
static struct hpsb_address_ops sbp2_physdma_ops = {
.read = sbp2_handle_physdma_read,
.write = sbp2_handle_physdma_write,
};
#endif
/*
* Interface to driver core and IEEE 1394 core
*/
static struct ieee1394_device_id sbp2_id_table[] = {
{
.match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
.version = SBP2_SW_VERSION_ENTRY & 0xffffff},
{}
};
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
static int sbp2_probe(struct device *);
static int sbp2_remove(struct device *);
static int sbp2_update(struct unit_directory *);
static struct hpsb_protocol_driver sbp2_driver = {
.name = SBP2_DEVICE_NAME,
.id_table = sbp2_id_table,
.update = sbp2_update,
.driver = {
.probe = sbp2_probe,
.remove = sbp2_remove,
},
};
/*
* Interface to SCSI core
*/
static int sbp2scsi_queuecommand(struct scsi_cmnd *,
void (*)(struct scsi_cmnd *));
static int sbp2scsi_abort(struct scsi_cmnd *);
static int sbp2scsi_reset(struct scsi_cmnd *);
static int sbp2scsi_slave_alloc(struct scsi_device *);
static int sbp2scsi_slave_configure(struct scsi_device *);
static void sbp2scsi_slave_destroy(struct scsi_device *);
static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
struct device_attribute *, char *);
static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
&dev_attr_ieee1394_id,
NULL
};
static struct scsi_host_template sbp2_shost_template = {
.module = THIS_MODULE,
.name = "SBP-2 IEEE-1394",
.proc_name = SBP2_DEVICE_NAME,
.queuecommand = sbp2scsi_queuecommand,
.eh_abort_handler = sbp2scsi_abort,
.eh_device_reset_handler = sbp2scsi_reset,
.slave_alloc = sbp2scsi_slave_alloc,
.slave_configure = sbp2scsi_slave_configure,
.slave_destroy = sbp2scsi_slave_destroy,
.this_id = -1,
.sg_tablesize = SG_ALL,
.use_clustering = ENABLE_CLUSTERING,
.cmd_per_lun = SBP2_MAX_CMDS,
.can_queue = SBP2_MAX_CMDS,
.sdev_attrs = sbp2_sysfs_sdev_attrs,
};
/* for match-all entries in sbp2_workarounds_table */
#define SBP2_ROM_VALUE_WILDCARD 0x1000000
/*
* List of devices with known bugs.
*
* The firmware_revision field, masked with 0xffff00, is the best indicator
* for the type of bridge chip of a device. It yields a few false positives
* but this did not break correctly behaving devices so far.
*/
static const struct {
u32 firmware_revision;
u32 model_id;
unsigned workarounds;
} sbp2_workarounds_table[] = {
/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
.firmware_revision = 0x002800,
.model_id = 0x001010,
.workarounds = SBP2_WORKAROUND_INQUIRY_36 |
SBP2_WORKAROUND_MODE_SENSE_8,
},
/* Initio bridges, actually only needed for some older ones */ {
.firmware_revision = 0x000200,
.model_id = SBP2_ROM_VALUE_WILDCARD,
.workarounds = SBP2_WORKAROUND_INQUIRY_36,
},
/* Symbios bridge */ {
.firmware_revision = 0xa0b800,
.model_id = SBP2_ROM_VALUE_WILDCARD,
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
},
/* iPod 4th generation */ {
.firmware_revision = 0x0a2700,
.model_id = 0x000021,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod mini */ {
.firmware_revision = 0x0a2700,
.model_id = 0x000023,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod Photo */ {
.firmware_revision = 0x0a2700,
.model_id = 0x00007e,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
}
};
/**************************************
* General utility functions
**************************************/
#ifndef __BIG_ENDIAN
/*
* Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
*/
static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
{
u32 *temp = buffer;
for (length = (length >> 2); length--; )
temp[length] = be32_to_cpu(temp[length]);
}
/*
* Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
*/
static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
{
u32 *temp = buffer;
for (length = (length >> 2); length--; )
temp[length] = cpu_to_be32(temp[length]);
}
#else /* BIG_ENDIAN */
/* Why waste the cpu cycles? */
#define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
#define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
#endif
static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
/*
* Waits for completion of an SBP-2 access request.
* Returns nonzero if timed out or prematurely interrupted.
*/
static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
{
long leftover;
leftover = wait_event_interruptible_timeout(
sbp2_access_wq, lu->access_complete, timeout);
lu->access_complete = 0;
return leftover <= 0;
}
static void sbp2_free_packet(void *packet)
{
hpsb_free_tlabel(packet);
hpsb_free_packet(packet);
}
/*
* This is much like hpsb_node_write(), except it ignores the response
* subaction and returns immediately. Can be used from atomic context.
*/
static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
quadlet_t *buf, size_t len)
{
struct hpsb_packet *packet;
packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
if (!packet)
return -ENOMEM;
hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
hpsb_node_fill_packet(ne, packet);
if (hpsb_send_packet(packet) < 0) {
sbp2_free_packet(packet);
return -EIO;
}
return 0;
}
static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
quadlet_t *data, size_t len)
{
/* There is a small window after a bus reset within which the node
* entry's generation is current but the reconnect wasn't completed. */
if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
return;
if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
data, len))
SBP2_ERR("sbp2util_notify_fetch_agent failed.");
/* Now accept new SCSI commands, unless a bus reset happended during
* hpsb_node_write. */
if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
scsi_unblock_requests(lu->shost);
}
static void sbp2util_write_orb_pointer(struct work_struct *work)
{
struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
quadlet_t data[2];
data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
data[1] = lu->last_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
}
static void sbp2util_write_doorbell(struct work_struct *work)
{
struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
}
static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
{
struct sbp2_fwhost_info *hi = lu->hi;
struct sbp2_command_info *cmd;
int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
for (i = 0; i < orbs; i++) {
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->command_orb_dma = dma_map_single(hi->host->device.parent,
&cmd->command_orb,
sizeof(struct sbp2_command_orb),
DMA_TO_DEVICE);
cmd->sge_dma = dma_map_single(hi->host->device.parent,
&cmd->scatter_gather_element,
sizeof(cmd->scatter_gather_element),
DMA_TO_DEVICE);
INIT_LIST_HEAD(&cmd->list);
list_add_tail(&cmd->list, &lu->cmd_orb_completed);
}
return 0;
}
static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu)
{
struct hpsb_host *host = lu->hi->host;
struct list_head *lh, *next;
struct sbp2_command_info *cmd;
unsigned long flags;
spin_lock_irqsave(&lu->cmd_orb_lock, flags);
if (!list_empty(&lu->cmd_orb_completed))
list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
cmd = list_entry(lh, struct sbp2_command_info, list);
dma_unmap_single(host->device.parent,
cmd->command_orb_dma,
sizeof(struct sbp2_command_orb),
DMA_TO_DEVICE);
dma_unmap_single(host->device.parent, cmd->sge_dma,
sizeof(cmd->scatter_gather_element),
DMA_TO_DEVICE);
kfree(cmd);
}
spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
return;
}
/*
* Finds the sbp2_command for a given outstanding command ORB.
* Only looks at the in-use list.
*/
static struct sbp2_command_info *sbp2util_find_command_for_orb(
struct sbp2_lu *lu, dma_addr_t orb)
{
struct sbp2_command_info *cmd;
unsigned long flags;
spin_lock_irqsave(&lu->cmd_orb_lock, flags);
if (!list_empty(&lu->cmd_orb_inuse))
list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
if (cmd->command_orb_dma == orb) {
spin_unlock_irqrestore(
&lu->cmd_orb_lock, flags);
return cmd;
}
spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
return NULL;
}
/*
* Finds the sbp2_command for a given outstanding SCpnt.
* Only looks at the in-use list.
* Must be called with lu->cmd_orb_lock held.
*/
static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
struct sbp2_lu *lu, void *SCpnt)
{
struct sbp2_command_info *cmd;
if (!list_empty(&lu->cmd_orb_inuse))
list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
if (cmd->Current_SCpnt == SCpnt)
return cmd;
return NULL;
}
static struct sbp2_command_info *sbp2util_allocate_command_orb(
struct sbp2_lu *lu,
struct scsi_cmnd *Current_SCpnt,
void (*Current_done)(struct scsi_cmnd *))
{
struct list_head *lh;
struct sbp2_command_info *cmd = NULL;
unsigned long flags;
spin_lock_irqsave(&lu->cmd_orb_lock, flags);
if (!list_empty(&lu->cmd_orb_completed)) {
lh = lu->cmd_orb_completed.next;
list_del(lh);
cmd = list_entry(lh, struct sbp2_command_info, list);
cmd->Current_done = Current_done;
cmd->Current_SCpnt = Current_SCpnt;
list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
} else
SBP2_ERR("%s: no orbs available", __FUNCTION__);
spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
return cmd;
}
/*
* Unmaps the DMAs of a command and moves the command to the completed ORB list.
* Must be called with lu->cmd_orb_lock held.
*/
static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
struct sbp2_command_info *cmd)
{
struct hpsb_host *host = lu->ud->ne->host;
if (cmd->cmd_dma) {
if (cmd->dma_type == CMD_DMA_SINGLE)
dma_unmap_single(host->device.parent, cmd->cmd_dma,
cmd->dma_size, cmd->dma_dir);
else if (cmd->dma_type == CMD_DMA_PAGE)
dma_unmap_page(host->device.parent, cmd->cmd_dma,
cmd->dma_size, cmd->dma_dir);
/* XXX: Check for CMD_DMA_NONE bug */
cmd->dma_type = CMD_DMA_NONE;
cmd->cmd_dma = 0;
}
if (cmd->sge_buffer) {
dma_unmap_sg(host->device.parent, cmd->sge_buffer,
cmd->dma_size, cmd->dma_dir);
cmd->sge_buffer = NULL;
}
list_move_tail(&cmd->list, &lu->cmd_orb_completed);
}
/*
* Is lu valid? Is the 1394 node still present?
*/
static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
{
return lu && lu->ne && !lu->ne->in_limbo;
}
/*********************************************
* IEEE-1394 core driver stack related section
*********************************************/
static int sbp2_probe(struct device *dev)
{
struct unit_directory *ud;
struct sbp2_lu *lu;
ud = container_of(dev, struct unit_directory, device);
/* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
* instead. */
if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
return -ENODEV;
lu = sbp2_alloc_device(ud);
if (!lu)
return -ENOMEM;
sbp2_parse_unit_directory(lu, ud);
return sbp2_start_device(lu);
}
static int sbp2_remove(struct device *dev)
{
struct unit_directory *ud;
struct sbp2_lu *lu;
struct scsi_device *sdev;
ud = container_of(dev, struct unit_directory, device);
lu = ud->device.driver_data;
if (!lu)
return 0;
if (lu->shost) {
/* Get rid of enqueued commands if there is no chance to
* send them. */
if (!sbp2util_node_is_available(lu))
sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
/* scsi_remove_device() may trigger shutdown functions of SCSI
* highlevel drivers which would deadlock if blocked. */
atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
scsi_unblock_requests(lu->shost);
}
sdev = lu->sdev;
if (sdev) {
lu->sdev = NULL;
scsi_remove_device(sdev);
}
sbp2_logout_device(lu);
sbp2_remove_device(lu);
return 0;
}
static int sbp2_update(struct unit_directory *ud)
{
struct sbp2_lu *lu = ud->device.driver_data;
if (sbp2_reconnect_device(lu)) {
/* Reconnect has failed. Perhaps we didn't reconnect fast
* enough. Try a regular login, but first log out just in
* case of any weirdness. */
sbp2_logout_device(lu);
if (sbp2_login_device(lu)) {
/* Login failed too, just fail, and the backend
* will call our sbp2_remove for us */
SBP2_ERR("Failed to reconnect to sbp2 device!");
return -EBUSY;
}
}
sbp2_set_busy_timeout(lu);
sbp2_agent_reset(lu, 1);
sbp2_max_speed_and_size(lu);
/* Complete any pending commands with busy (so they get retried)
* and remove them from our queue. */
sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
/* Accept new commands unless there was another bus reset in the
* meantime. */
if (hpsb_node_entry_valid(lu->ne)) {
atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
scsi_unblock_requests(lu->shost);
}
return 0;
}
static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
{
struct sbp2_fwhost_info *hi;
struct Scsi_Host *shost = NULL;
struct sbp2_lu *lu = NULL;
lu = kzalloc(sizeof(*lu), GFP_KERNEL);
if (!lu) {
SBP2_ERR("failed to create lu");
goto failed_alloc;
}
lu->ne = ud->ne;
lu->ud = ud;
lu->speed_code = IEEE1394_SPEED_100;
lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
INIT_LIST_HEAD(&lu->cmd_orb_inuse);
INIT_LIST_HEAD(&lu->cmd_orb_completed);
INIT_LIST_HEAD(&lu->lu_list);
spin_lock_init(&lu->cmd_orb_lock);
atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
INIT_WORK(&lu->protocol_work, NULL);
ud->device.driver_data = lu;
hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
if (!hi) {
hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
sizeof(*hi));
if (!hi) {
SBP2_ERR("failed to allocate hostinfo");
goto failed_alloc;
}
hi->host = ud->ne->host;
INIT_LIST_HEAD(&hi->logical_units);
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
/* Handle data movement if physical dma is not
* enabled or not supported on host controller */
if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
&sbp2_physdma_ops,
0x0ULL, 0xfffffffcULL)) {
SBP2_ERR("failed to register lower 4GB address range");
goto failed_alloc;
}
#else
if (dma_set_mask(hi->host->device.parent, DMA_32BIT_MASK)) {
SBP2_ERR("failed to set 4GB DMA mask");
goto failed_alloc;
}
#endif
}
/* Prevent unloading of the 1394 host */
if (!try_module_get(hi->host->driver->owner)) {
SBP2_ERR("failed to get a reference on 1394 host driver");
goto failed_alloc;
}
lu->hi = hi;
list_add_tail(&lu->lu_list, &hi->logical_units);
/* Register the status FIFO address range. We could use the same FIFO
* for targets at different nodes. However we need different FIFOs per
* target in order to support multi-unit devices.
* The FIFO is located out of the local host controller's physical range
* but, if possible, within the posted write area. Status writes will
* then be performed as unified transactions. This slightly reduces
* bandwidth usage, and some Prolific based devices seem to require it.
*/
lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
&sbp2_highlevel, ud->ne->host, &sbp2_ops,
sizeof(struct sbp2_status_block), sizeof(quadlet_t),
ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
SBP2_ERR("failed to allocate status FIFO address range");
goto failed_alloc;
}
shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
if (!shost) {
SBP2_ERR("failed to register scsi host");
goto failed_alloc;
}
shost->hostdata[0] = (unsigned long)lu;
if (!scsi_add_host(shost, &ud->device)) {
lu->shost = shost;
return lu;
}
SBP2_ERR("failed to add scsi host");
scsi_host_put(shost);
failed_alloc:
sbp2_remove_device(lu);
return NULL;
}
static void sbp2_host_reset(struct hpsb_host *host)
{
struct sbp2_fwhost_info *hi;
struct sbp2_lu *lu;
hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
if (!hi)
return;
list_for_each_entry(lu, &hi->logical_units, lu_list)
if (likely(atomic_read(&lu->state) !=
SBP2LU_STATE_IN_SHUTDOWN)) {
atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
scsi_block_requests(lu->shost);
}
}
static int sbp2_start_device(struct sbp2_lu *lu)
{
struct sbp2_fwhost_info *hi = lu->hi;
int error;
lu->login_response = dma_alloc_coherent(hi->host->device.parent,
sizeof(struct sbp2_login_response),
&lu->login_response_dma, GFP_KERNEL);
if (!lu->login_response)
goto alloc_fail;
lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
sizeof(struct sbp2_query_logins_orb),
&lu->query_logins_orb_dma, GFP_KERNEL);
if (!lu->query_logins_orb)
goto alloc_fail;
lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
sizeof(struct sbp2_query_logins_response),
&lu->query_logins_response_dma, GFP_KERNEL);
if (!lu->query_logins_response)
goto alloc_fail;
lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
sizeof(struct sbp2_reconnect_orb),
&lu->reconnect_orb_dma, GFP_KERNEL);
if (!lu->reconnect_orb)
goto alloc_fail;
lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
sizeof(struct sbp2_logout_orb),
&lu->logout_orb_dma, GFP_KERNEL);
if (!lu->logout_orb)
goto alloc_fail;
lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
sizeof(struct sbp2_login_orb),
&lu->login_orb_dma, GFP_KERNEL);
if (!lu->login_orb)
goto alloc_fail;
if (sbp2util_create_command_orb_pool(lu))
goto alloc_fail;
/* Wait a second before trying to log in. Previously logged in
* initiators need a chance to reconnect. */
if (msleep_interruptible(1000)) {
sbp2_remove_device(lu);
return -EINTR;
}
if (sbp2_login_device(lu)) {
sbp2_remove_device(lu);
return -EBUSY;
}
sbp2_set_busy_timeout(lu);
sbp2_agent_reset(lu, 1);
sbp2_max_speed_and_size(lu);
error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
if (error) {
SBP2_ERR("scsi_add_device failed");
sbp2_logout_device(lu);
sbp2_remove_device(lu);
return error;
}
return 0;
alloc_fail:
SBP2_ERR("Could not allocate memory for lu");
sbp2_remove_device(lu);
return -ENOMEM;
}
static void sbp2_remove_device(struct sbp2_lu *lu)
{
struct sbp2_fwhost_info *hi;
if (!lu)
return;
hi = lu->hi;
if (lu->shost) {
scsi_remove_host(lu->shost);
scsi_host_put(lu->shost);
}
flush_scheduled_work();
sbp2util_remove_command_orb_pool(lu);
list_del(&lu->lu_list);
if (lu->login_response)
dma_free_coherent(hi->host->device.parent,
sizeof(struct sbp2_login_response),
lu->login_response,
lu->login_response_dma);
if (lu->login_orb)
dma_free_coherent(hi->host->device.parent,
sizeof(struct sbp2_login_orb),
lu->login_orb,
lu->login_orb_dma);
if (lu->reconnect_orb)
dma_free_coherent(hi->host->device.parent,
sizeof(struct sbp2_reconnect_orb),
lu->reconnect_orb,
lu->reconnect_orb_dma);
if (lu->logout_orb)
dma_free_coherent(hi->host->device.parent,
sizeof(struct sbp2_logout_orb),
lu->logout_orb,
lu->logout_orb_dma);
if (lu->query_logins_orb)
dma_free_coherent(hi->host->device.parent,
sizeof(struct sbp2_query_logins_orb),
lu->query_logins_orb,
lu->query_logins_orb_dma);
if (lu->query_logins_response)
dma_free_coherent(hi->host->device.parent,
sizeof(struct sbp2_query_logins_response),
lu->query_logins_response,
lu->query_logins_response_dma);
if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
lu->status_fifo_addr);
lu->ud->device.driver_data = NULL;
if (hi)
module_put(hi->host->driver->owner);
kfree(lu);
}
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
/*
* Deal with write requests on adapters which do not support physical DMA or
* have it switched off.
*/
static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
int destid, quadlet_t *data, u64 addr,
size_t length, u16 flags)
{
memcpy(bus_to_virt((u32) addr), data, length);
return RCODE_COMPLETE;
}
/*
* Deal with read requests on adapters which do not support physical DMA or
* have it switched off.
*/
static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
quadlet_t *data, u64 addr, size_t length,
u16 flags)
{
memcpy(data, bus_to_virt((u32) addr), length);
return RCODE_COMPLETE;
}
#endif
/**************************************
* SBP-2 protocol related section
**************************************/
static int sbp2_query_logins(struct sbp2_lu *lu)
{
struct sbp2_fwhost_info *hi = lu->hi;
quadlet_t data[2];
int max_logins;
int active_logins;
lu->query_logins_orb->reserved1 = 0x0;
lu->query_logins_orb->reserved2 = 0x0;
lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
lu->query_logins_orb->query_response_hi =
ORB_SET_NODE_ID(hi->host->node_id);
lu->query_logins_orb->lun_misc =
ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
lu->query_logins_orb->reserved_resp_length =
ORB_SET_QUERY_LOGINS_RESP_LENGTH(
sizeof(struct sbp2_query_logins_response));
lu->query_logins_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
lu->query_logins_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
sizeof(struct sbp2_query_logins_orb));
memset(lu->query_logins_response, 0,
sizeof(struct sbp2_query_logins_response));
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = lu->query_logins_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
if (sbp2util_access_timeout(lu, 2*HZ)) {
SBP2_INFO("Error querying logins to SBP-2 device - timed out");
return -EIO;
}
if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
SBP2_INFO("Error querying logins to SBP-2 device - timed out");
return -EIO;
}
if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
SBP2_INFO("Error querying logins to SBP-2 device - failed");
return -EIO;
}
sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
sizeof(struct sbp2_query_logins_response));
max_logins = RESPONSE_GET_MAX_LOGINS(
lu->query_logins_response->length_max_logins);
SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
active_logins = RESPONSE_GET_ACTIVE_LOGINS(
lu->query_logins_response->length_max_logins);
SBP2_INFO("Number of active logins: %d", active_logins);
if (active_logins >= max_logins) {
return -EIO;
}
return 0;
}
static int sbp2_login_device(struct sbp2_lu *lu)
{
struct sbp2_fwhost_info *hi = lu->hi;
quadlet_t data[2];
if (!lu->login_orb)
return -EIO;
if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
SBP2_INFO("Device does not support any more concurrent logins");
return -EIO;
}
/* assume no password */
lu->login_orb->password_hi = 0;
lu->login_orb->password_lo = 0;
lu->login_orb->login_response_lo = lu->login_response_dma;
lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
/* one second reconnect time */
lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
lu->login_orb->passwd_resp_lengths =
ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
lu->login_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
lu->login_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
sbp2util_cpu_to_be32_buffer(lu->login_orb,
sizeof(struct sbp2_login_orb));
memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = lu->login_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
/* wait up to 20 seconds for login status */
if (sbp2util_access_timeout(lu, 20*HZ)) {
SBP2_ERR("Error logging into SBP-2 device - timed out");
return -EIO;
}
/* make sure that the returned status matches the login ORB */
if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
SBP2_ERR("Error logging into SBP-2 device - timed out");
return -EIO;
}
if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
SBP2_ERR("Error logging into SBP-2 device - failed");
return -EIO;
}
sbp2util_cpu_to_be32_buffer(lu->login_response,
sizeof(struct sbp2_login_response));
lu->command_block_agent_addr =
((u64)lu->login_response->command_block_agent_hi) << 32;
lu->command_block_agent_addr |=
((u64)lu->login_response->command_block_agent_lo);
lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
SBP2_INFO("Logged into SBP-2 device");
return 0;
}
static int sbp2_logout_device(struct sbp2_lu *lu)
{
struct sbp2_fwhost_info *hi = lu->hi;
quadlet_t data[2];
int error;
lu->logout_orb->reserved1 = 0x0;
lu->logout_orb->reserved2 = 0x0;
lu->logout_orb->reserved3 = 0x0;
lu->logout_orb->reserved4 = 0x0;
lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
lu->logout_orb->login_ID_misc |=
ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
lu->logout_orb->reserved5 = 0x0;
lu->logout_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
lu->logout_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
sbp2util_cpu_to_be32_buffer(lu->logout_orb,
sizeof(struct sbp2_logout_orb));
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = lu->logout_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
if (error)
return error;
/* wait up to 1 second for the device to complete logout */
if (sbp2util_access_timeout(lu, HZ))
return -EIO;
SBP2_INFO("Logged out of SBP-2 device");
return 0;
}
static int sbp2_reconnect_device(struct sbp2_lu *lu)
{
struct sbp2_fwhost_info *hi = lu->hi;
quadlet_t data[2];
int error;
lu->reconnect_orb->reserved1 = 0x0;
lu->reconnect_orb->reserved2 = 0x0;
lu->reconnect_orb->reserved3 = 0x0;
lu->reconnect_orb->reserved4 = 0x0;
lu->reconnect_orb->login_ID_misc =
ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
lu->reconnect_orb->login_ID_misc |=
ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
lu->reconnect_orb->reserved5 = 0x0;
lu->reconnect_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
lu->reconnect_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
sizeof(struct sbp2_reconnect_orb));
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = lu->reconnect_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
if (error)
return error;
/* wait up to 1 second for reconnect status */
if (sbp2util_access_timeout(lu, HZ)) {
SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
return -EIO;
}
/* make sure that the returned status matches the reconnect ORB */
if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
return -EIO;
}
if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
SBP2_ERR("Error reconnecting to SBP-2 device - failed");
return -EIO;
}
SBP2_INFO("Reconnected to SBP-2 device");
return 0;
}
/*
* Set the target node's Single Phase Retry limit. Affects the target's retry
* behaviour if our node is too busy to accept requests.
*/
static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
{
quadlet_t data;
data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
SBP2_ERR("%s error", __FUNCTION__);
return 0;
}
static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
struct unit_directory *ud)
{
struct csr1212_keyval *kv;
struct csr1212_dentry *dentry;
u64 management_agent_addr;
u32 unit_characteristics, firmware_revision;
unsigned workarounds;
int i;
management_agent_addr = 0;
unit_characteristics = 0;
firmware_revision = 0;
csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
switch (kv->key.id) {
case CSR1212_KV_ID_DEPENDENT_INFO:
if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
management_agent_addr =
CSR1212_REGISTER_SPACE_BASE +
(kv->value.csr_offset << 2);
else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
lu->lun = ORB_SET_LUN(kv->value.immediate);
break;
case SBP2_UNIT_CHARACTERISTICS_KEY:
/* FIXME: This is ignored so far.
* See SBP-2 clause 7.4.8. */
unit_characteristics = kv->value.immediate;
break;
case SBP2_FIRMWARE_REVISION_KEY:
firmware_revision = kv->value.immediate;
break;
default:
/* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
* Its "ordered" bit has consequences for command ORB
* list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
break;
}
}
workarounds = sbp2_default_workarounds;
if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
if (sbp2_workarounds_table[i].firmware_revision !=
SBP2_ROM_VALUE_WILDCARD &&
sbp2_workarounds_table[i].firmware_revision !=
(firmware_revision & 0xffff00))
continue;
if (sbp2_workarounds_table[i].model_id !=
SBP2_ROM_VALUE_WILDCARD &&
sbp2_workarounds_table[i].model_id != ud->model_id)
continue;
workarounds |= sbp2_workarounds_table[i].workarounds;
break;
}
if (workarounds)
SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
"(firmware_revision 0x%06x, vendor_id 0x%06x,"
" model_id 0x%06x)",
NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
workarounds, firmware_revision,
ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
ud->model_id);
/* We would need one SCSI host template for each target to adjust
* max_sectors on the fly, therefore warn only. */
if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
(sbp2_max_sectors * 512) > (128 * 1024))
SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
"max transfer size. WARNING: Current max_sectors "
"setting is larger than 128KB (%d sectors)",
NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
sbp2_max_sectors);
/* If this is a logical unit directory entry, process the parent
* to get the values. */
if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
struct unit_directory *parent_ud = container_of(
ud->device.parent, struct unit_directory, device);
sbp2_parse_unit_directory(lu, parent_ud);
} else {
lu->management_agent_addr = management_agent_addr;
lu->workarounds = workarounds;
if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
lu->lun = ORB_SET_LUN(ud->lun);
}
}
#define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
/*
* This function is called in order to determine the max speed and packet
* size we can use in our ORBs. Note, that we (the driver and host) only
* initiate the transaction. The SBP-2 device actually transfers the data
* (by reading from the DMA area we tell it). This means that the SBP-2
* device decides the actual maximum data it can transfer. We just tell it
* the speed that it needs to use, and the max_rec the host supports, and
* it takes care of the rest.
*/
static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
{
struct sbp2_fwhost_info *hi = lu->hi;
u8 payload;
lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
if (lu->speed_code > sbp2_max_speed) {
lu->speed_code = sbp2_max_speed;
SBP2_INFO("Reducing speed to %s",
hpsb_speedto_str[sbp2_max_speed]);
}
/* Payload size is the lesser of what our speed supports and what
* our host supports. */
payload = min(sbp2_speedto_max_payload[lu->speed_code],
(u8) (hi->host->csr.max_rec - 1));
/* If physical DMA is off, work around limitation in ohci1394:
* packet size must not exceed PAGE_SIZE */
if (lu->ne->host->low_addr_space < (1ULL << 32))
while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
payload)
payload--;
SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
hpsb_speedto_str[lu->speed_code],
SBP2_PAYLOAD_TO_BYTES(payload));
lu->max_payload_size = payload;
return 0;
}
static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
{
quadlet_t data;
u64 addr;
int retval;
unsigned long flags;
/* flush lu->protocol_work */
if (wait)
flush_scheduled_work();
data = ntohl(SBP2_AGENT_RESET_DATA);
addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
if (wait)
retval = hpsb_node_write(lu->ne, addr, &data, 4);
else
retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
if (retval < 0) {
SBP2_ERR("hpsb_node_write failed.\n");
return -EIO;
}
/* make sure that the ORB_POINTER is written on next command */
spin_lock_irqsave(&lu->cmd_orb_lock, flags);
lu->last_orb = NULL;
spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
return 0;
}
static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
struct sbp2_fwhost_info *hi,
struct sbp2_command_info *cmd,
unsigned int scsi_use_sg,
struct scatterlist *sgpnt,
u32 orb_direction,
enum dma_data_direction dma_dir)
{
cmd->dma_dir = dma_dir;
orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
orb->misc |= ORB_SET_DIRECTION(orb_direction);
/* special case if only one element (and less than 64KB in size) */
if ((scsi_use_sg == 1) &&
(sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) {
cmd->dma_size = sgpnt[0].length;
cmd->dma_type = CMD_DMA_PAGE;
cmd->cmd_dma = dma_map_page(hi->host->device.parent,
sgpnt[0].page, sgpnt[0].offset,
cmd->dma_size, cmd->dma_dir);
orb->data_descriptor_lo = cmd->cmd_dma;
orb->misc |= ORB_SET_DATA_SIZE(cmd->dma_size);
} else {
struct sbp2_unrestricted_page_table *sg_element =
&cmd->scatter_gather_element[0];
u32 sg_count, sg_len;
dma_addr_t sg_addr;
int i, count = dma_map_sg(hi->host->device.parent, sgpnt,
scsi_use_sg, dma_dir);
cmd->dma_size = scsi_use_sg;
cmd->sge_buffer = sgpnt;
/* use page tables (s/g) */
orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
orb->data_descriptor_lo = cmd->sge_dma;
/* loop through and fill out our SBP-2 page tables
* (and split up anything too large) */
for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) {
sg_len = sg_dma_len(sgpnt);
sg_addr = sg_dma_address(sgpnt);
while (sg_len) {
sg_element[sg_count].segment_base_lo = sg_addr;
if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
sg_element[sg_count].length_segment_base_hi =
PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
} else {
sg_element[sg_count].length_segment_base_hi =
PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
sg_len = 0;
}
sg_count++;
}
}
orb->misc |= ORB_SET_DATA_SIZE(sg_count);
sbp2util_cpu_to_be32_buffer(sg_element,
(sizeof(struct sbp2_unrestricted_page_table)) *
sg_count);
}
}
static void sbp2_create_command_orb(struct sbp2_lu *lu,
struct sbp2_command_info *cmd,
unchar *scsi_cmd,
unsigned int scsi_use_sg,
unsigned int scsi_request_bufflen,
void *scsi_request_buffer,
enum dma_data_direction dma_dir)
{
struct sbp2_fwhost_info *hi = lu->hi;
struct scatterlist *sgpnt = (struct scatterlist *)scsi_request_buffer;
struct sbp2_command_orb *orb = &cmd->command_orb;
u32 orb_direction;
/*
* Set-up our command ORB.
*
* NOTE: We're doing unrestricted page tables (s/g), as this is
* best performance (at least with the devices I have). This means
* that data_size becomes the number of s/g elements, and
* page_size should be zero (for unrestricted).
*/
orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
orb->next_ORB_lo = 0x0;
orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
orb->misc |= ORB_SET_SPEED(lu->speed_code);
orb->misc |= ORB_SET_NOTIFY(1);
if (dma_dir == DMA_NONE)
orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
else {
SBP2_INFO("Falling back to DMA_NONE");
orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
}
/* set up our page table stuff */
if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
orb->data_descriptor_hi = 0x0;
orb->data_descriptor_lo = 0x0;
orb->misc |= ORB_SET_DIRECTION(1);
} else
sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_use_sg, sgpnt,
orb_direction, dma_dir);
sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
memset(orb->cdb, 0, 12);
memcpy(orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd));
}
static void sbp2_link_orb_command(struct sbp2_lu *lu,
struct sbp2_command_info *cmd)
{
struct sbp2_fwhost_info *hi = lu->hi;
struct sbp2_command_orb *last_orb;
dma_addr_t last_orb_dma;
u64 addr = lu->command_block_agent_addr;
quadlet_t data[2];
size_t length;
unsigned long flags;
dma_sync_single_for_device(hi->host->device.parent,
cmd->command_orb_dma,
sizeof(struct sbp2_command_orb),
DMA_TO_DEVICE);
dma_sync_single_for_device(hi->host->device.parent, cmd->sge_dma,
sizeof(cmd->scatter_gather_element),
DMA_TO_DEVICE);
/* check to see if there are any previous orbs to use */
spin_lock_irqsave(&lu->cmd_orb_lock, flags);
last_orb = lu->last_orb;
last_orb_dma = lu->last_orb_dma;
if (!last_orb) {
/*
* last_orb == NULL means: We know that the target's fetch agent
* is not active right now.
*/
addr += SBP2_ORB_POINTER_OFFSET;
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = cmd->command_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
length = 8;
} else {
/*
* last_orb != NULL means: We know that the target's fetch agent
* is (very probably) not dead or in reset state right now.
* We have an ORB already sent that we can append a new one to.
* The target's fetch agent may or may not have read this
* previous ORB yet.
*/
dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
sizeof(struct sbp2_command_orb),
DMA_TO_DEVICE);
last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
wmb();
/* Tells hardware that this pointer is valid */
last_orb->next_ORB_hi = 0;
dma_sync_single_for_device(hi->host->device.parent,
last_orb_dma,
sizeof(struct sbp2_command_orb),
DMA_TO_DEVICE);
addr += SBP2_DOORBELL_OFFSET;
data[0] = 0;
length = 4;
}
lu->last_orb = &cmd->command_orb;
lu->last_orb_dma = cmd->command_orb_dma;
spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
/*
* sbp2util_node_write_no_wait failed. We certainly ran out
* of transaction labels, perhaps just because there were no
* context switches which gave khpsbpkt a chance to collect
* free tlabels. Try again in non-atomic context. If necessary,
* the workqueue job will sleep to guaranteedly get a tlabel.
* We do not accept new commands until the job is over.
*/
scsi_block_requests(lu->shost);
PREPARE_WORK(&lu->protocol_work,
last_orb ? sbp2util_write_doorbell:
sbp2util_write_orb_pointer);
schedule_work(&lu->protocol_work);
}
}
static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *))
{
unchar *scsi_cmd = (unchar *)SCpnt->cmnd;
unsigned int request_bufflen = scsi_bufflen(SCpnt);
struct sbp2_command_info *cmd;
cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
if (!cmd)
return -EIO;
sbp2_create_command_orb(lu, cmd, scsi_cmd, scsi_sg_count(SCpnt),
request_bufflen, scsi_sglist(SCpnt),
SCpnt->sc_data_direction);
sbp2_link_orb_command(lu, cmd);
return 0;
}
/*
* Translates SBP-2 status into SCSI sense data for check conditions
*/
static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
unchar *sense_data)
{
/* OK, it's pretty ugly... ;-) */
sense_data[0] = 0x70;
sense_data[1] = 0x0;
sense_data[2] = sbp2_status[9];
sense_data[3] = sbp2_status[12];
sense_data[4] = sbp2_status[13];
sense_data[5] = sbp2_status[14];
sense_data[6] = sbp2_status[15];
sense_data[7] = 10;
sense_data[8] = sbp2_status[16];
sense_data[9] = sbp2_status[17];
sense_data[10] = sbp2_status[18];
sense_data[11] = sbp2_status[19];
sense_data[12] = sbp2_status[10];
sense_data[13] = sbp2_status[11];
sense_data[14] = sbp2_status[20];
sense_data[15] = sbp2_status[21];
return sbp2_status[8] & 0x3f;
}
static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
int destid, quadlet_t *data, u64 addr,
size_t length, u16 fl)
{
struct sbp2_fwhost_info *hi;
struct sbp2_lu *lu = NULL, *lu_tmp;
struct scsi_cmnd *SCpnt = NULL;
struct sbp2_status_block *sb;
u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
struct sbp2_command_info *cmd;
unsigned long flags;
if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
SBP2_ERR("Wrong size of status block");
return RCODE_ADDRESS_ERROR;
}
if (unlikely(!host)) {
SBP2_ERR("host is NULL - this is bad!");
return RCODE_ADDRESS_ERROR;
}
hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
if (unlikely(!hi)) {
SBP2_ERR("host info is NULL - this is bad!");
return RCODE_ADDRESS_ERROR;
}
/* Find the unit which wrote the status. */
list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
if (lu_tmp->ne->nodeid == nodeid &&
lu_tmp->status_fifo_addr == addr) {
lu = lu_tmp;
break;
}
}
if (unlikely(!lu)) {
SBP2_ERR("lu is NULL - device is gone?");
return RCODE_ADDRESS_ERROR;
}
/* Put response into lu status fifo buffer. The first two bytes
* come in big endian bit order. Often the target writes only a
* truncated status block, minimally the first two quadlets. The rest
* is implied to be zeros. */
sb = &lu->status_block;
memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
memcpy(sb, data, length);
sbp2util_be32_to_cpu_buffer(sb, 8);
/* Ignore unsolicited status. Handle command ORB status. */
if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
cmd = NULL;
else
cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
if (cmd) {
dma_sync_single_for_cpu(hi->host->device.parent,
cmd->command_orb_dma,
sizeof(struct sbp2_command_orb),
DMA_TO_DEVICE);
dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
sizeof(cmd->scatter_gather_element),
DMA_TO_DEVICE);
/* Grab SCSI command pointers and check status. */
/*
* FIXME: If the src field in the status is 1, the ORB DMA must
* not be reused until status for a subsequent ORB is received.
*/
SCpnt = cmd->Current_SCpnt;
spin_lock_irqsave(&lu->cmd_orb_lock, flags);
sbp2util_mark_command_completed(lu, cmd);
spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
if (SCpnt) {
u32 h = sb->ORB_offset_hi_misc;
u32 r = STATUS_GET_RESP(h);
if (r != RESP_STATUS_REQUEST_COMPLETE) {
SBP2_INFO("resp 0x%x, sbp_status 0x%x",
r, STATUS_GET_SBP_STATUS(h));
scsi_status =
r == RESP_STATUS_TRANSPORT_FAILURE ?
SBP2_SCSI_STATUS_BUSY :
SBP2_SCSI_STATUS_COMMAND_TERMINATED;
}
if (STATUS_GET_LEN(h) > 1)
scsi_status = sbp2_status_to_sense_data(
(unchar *)sb, SCpnt->sense_buffer);
if (STATUS_TEST_DEAD(h))
sbp2_agent_reset(lu, 0);
}
/* Check here to see if there are no commands in-use. If there
* are none, we know that the fetch agent left the active state
* _and_ that we did not reactivate it yet. Therefore clear
* last_orb so that next time we write directly to the
* ORB_POINTER register. That way the fetch agent does not need
* to refetch the next_ORB. */
spin_lock_irqsave(&lu->cmd_orb_lock, flags);
if (list_empty(&lu->cmd_orb_inuse))
lu->last_orb = NULL;
spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
} else {
/* It's probably status after a management request. */
if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
(sb->ORB_offset_lo == lu->login_orb_dma) ||
(sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
(sb->ORB_offset_lo == lu->logout_orb_dma)) {
lu->access_complete = 1;
wake_up_interruptible(&sbp2_access_wq);
}
}
if (SCpnt)
sbp2scsi_complete_command(lu, scsi_status, SCpnt,
cmd->Current_done);
return RCODE_COMPLETE;
}
/**************************************
* SCSI interface related section
**************************************/
static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *))
{
struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
struct sbp2_fwhost_info *hi;
int result = DID_NO_CONNECT << 16;
if (unlikely(!sbp2util_node_is_available(lu)))
goto done;
hi = lu->hi;
if (unlikely(!hi)) {
SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
goto done;
}
/* Multiple units are currently represented to the SCSI core as separate
* targets, not as one target with multiple LUs. Therefore return
* selection time-out to any IO directed at non-zero LUNs. */
if (unlikely(SCpnt->device->lun))
goto done;
if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
SBP2_ERR("Bus reset in progress - rejecting command");
result = DID_BUS_BUSY << 16;
goto done;
}
/* Bidirectional commands are not yet implemented,
* and unknown transfer direction not handled. */
if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
result = DID_ERROR << 16;
goto done;
}
if (sbp2_send_command(lu, SCpnt, done)) {
SBP2_ERR("Error sending SCSI command");
sbp2scsi_complete_command(lu,
SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
SCpnt, done);
}
return 0;
done:
SCpnt->result = result;
done(SCpnt);
return 0;
}
static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
{
struct sbp2_fwhost_info *hi = lu->hi;
struct list_head *lh;
struct sbp2_command_info *cmd;
unsigned long flags;
spin_lock_irqsave(&lu->cmd_orb_lock, flags);
while (!list_empty(&lu->cmd_orb_inuse)) {
lh = lu->cmd_orb_inuse.next;
cmd = list_entry(lh, struct sbp2_command_info, list);
dma_sync_single_for_cpu(hi->host->device.parent,
cmd->command_orb_dma,
sizeof(struct sbp2_command_orb),
DMA_TO_DEVICE);
dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
sizeof(cmd->scatter_gather_element),
DMA_TO_DEVICE);
sbp2util_mark_command_completed(lu, cmd);
if (cmd->Current_SCpnt) {
cmd->Current_SCpnt->result = status << 16;
cmd->Current_done(cmd->Current_SCpnt);
}
}
spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
return;
}
/*
* Complete a regular SCSI command. Can be called in atomic context.
*/
static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *))
{
if (!SCpnt) {
SBP2_ERR("SCpnt is NULL");
return;
}
switch (scsi_status) {
case SBP2_SCSI_STATUS_GOOD:
SCpnt->result = DID_OK << 16;
break;
case SBP2_SCSI_STATUS_BUSY:
SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
SCpnt->result = DID_BUS_BUSY << 16;
break;
case SBP2_SCSI_STATUS_CHECK_CONDITION:
SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
break;
case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
SCpnt->result = DID_NO_CONNECT << 16;
scsi_print_command(SCpnt);
break;
case SBP2_SCSI_STATUS_CONDITION_MET:
case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
SBP2_ERR("Bad SCSI status = %x", scsi_status);
SCpnt->result = DID_ERROR << 16;
scsi_print_command(SCpnt);
break;
default:
SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
SCpnt->result = DID_ERROR << 16;
}
/* If a bus reset is in progress and there was an error, complete
* the command as busy so that it will get retried. */
if (!hpsb_node_entry_valid(lu->ne)
&& (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
SBP2_ERR("Completing command with busy (bus reset)");
SCpnt->result = DID_BUS_BUSY << 16;
}
/* Tell the SCSI stack that we're done with this command. */
done(SCpnt);
}
static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
{
struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
lu->sdev = sdev;
sdev->allow_restart = 1;
if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
sdev->inquiry_len = 36;
return 0;
}
static int sbp2scsi_slave_configure(struct scsi_device *sdev)
{
struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
sdev->use_10_for_rw = 1;
if (sdev->type == TYPE_ROM)
sdev->use_10_for_ms = 1;
if (sdev->type == TYPE_DISK &&
lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
sdev->skip_ms_page_8 = 1;
if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
sdev->fix_capacity = 1;
return 0;
}
static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
{
((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
return;
}
/*
* Called by scsi stack when something has really gone wrong.
* Usually called when a command has timed-out for some reason.
*/
static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
{
struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
struct sbp2_fwhost_info *hi = lu->hi;
struct sbp2_command_info *cmd;
unsigned long flags;
SBP2_INFO("aborting sbp2 command");
scsi_print_command(SCpnt);
if (sbp2util_node_is_available(lu)) {
sbp2_agent_reset(lu, 1);
/* Return a matching command structure to the free pool. */
spin_lock_irqsave(&lu->cmd_orb_lock, flags);
cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
if (cmd) {
dma_sync_single_for_cpu(hi->host->device.parent,
cmd->command_orb_dma,
sizeof(struct sbp2_command_orb),
DMA_TO_DEVICE);
dma_sync_single_for_cpu(hi->host->device.parent,
cmd->sge_dma,
sizeof(cmd->scatter_gather_element),
DMA_TO_DEVICE);
sbp2util_mark_command_completed(lu, cmd);
if (cmd->Current_SCpnt) {
cmd->Current_SCpnt->result = DID_ABORT << 16;
cmd->Current_done(cmd->Current_SCpnt);
}
}
spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
}
return SUCCESS;
}
/*
* Called by scsi stack when something has really gone wrong.
*/
static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
{
struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
SBP2_INFO("reset requested");
if (sbp2util_node_is_available(lu)) {
SBP2_INFO("generating sbp2 fetch agent reset");
sbp2_agent_reset(lu, 1);
}
return SUCCESS;
}
static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev;
struct sbp2_lu *lu;
if (!(sdev = to_scsi_device(dev)))
return 0;
if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
return 0;
if (sbp2_long_sysfs_ieee1394_id)
return sprintf(buf, "%016Lx:%06x:%04x\n",
(unsigned long long)lu->ne->guid,
lu->ud->directory_id, ORB_SET_LUN(lu->lun));
else
return sprintf(buf, "%016Lx:%d:%d\n",
(unsigned long long)lu->ne->guid,
lu->ud->id, ORB_SET_LUN(lu->lun));
}
MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
MODULE_LICENSE("GPL");
static int sbp2_module_init(void)
{
int ret;
if (sbp2_serialize_io) {
sbp2_shost_template.can_queue = 1;
sbp2_shost_template.cmd_per_lun = 1;
}
if (sbp2_default_workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
(sbp2_max_sectors * 512) > (128 * 1024))
sbp2_max_sectors = 128 * 1024 / 512;
sbp2_shost_template.max_sectors = sbp2_max_sectors;
hpsb_register_highlevel(&sbp2_highlevel);
ret = hpsb_register_protocol(&sbp2_driver);
if (ret) {
SBP2_ERR("Failed to register protocol");
hpsb_unregister_highlevel(&sbp2_highlevel);
return ret;
}
return 0;
}
static void __exit sbp2_module_exit(void)
{
hpsb_unregister_protocol(&sbp2_driver);
hpsb_unregister_highlevel(&sbp2_highlevel);
}
module_init(sbp2_module_init);
module_exit(sbp2_module_exit);