/*
* linux/drivers/ide/pci/it821x.c Version 0.09 December 2004
*
* Copyright (C) 2004 Red Hat <alan@redhat.com>
*
* May be copied or modified under the terms of the GNU General Public License
* Based in part on the ITE vendor provided SCSI driver.
*
* Documentation available from
* http://www.ite.com.tw/pc/IT8212F_V04.pdf
* Some other documents are NDA.
*
* The ITE8212 isn't exactly a standard IDE controller. It has two
* modes. In pass through mode then it is an IDE controller. In its smart
* mode its actually quite a capable hardware raid controller disguised
* as an IDE controller. Smart mode only understands DMA read/write and
* identify, none of the fancier commands apply. The IT8211 is identical
* in other respects but lacks the raid mode.
*
* Errata:
* o Rev 0x10 also requires master/slave hold the same DMA timings and
* cannot do ATAPI MWDMA.
* o The identify data for raid volumes lacks CHS info (technically ok)
* but also fails to set the LBA28 and other bits. We fix these in
* the IDE probe quirk code.
* o If you write LBA48 sized I/O's (ie > 256 sector) in smart mode
* raid then the controller firmware dies
* o Smart mode without RAID doesn't clear all the necessary identify
* bits to reduce the command set to the one used
*
* This has a few impacts on the driver
* - In pass through mode we do all the work you would expect
* - In smart mode the clocking set up is done by the controller generally
* but we must watch the other limits and filter.
* - There are a few extra vendor commands that actually talk to the
* controller but only work PIO with no IRQ.
*
* Vendor areas of the identify block in smart mode are used for the
* timing and policy set up. Each HDD in raid mode also has a serial
* block on the disk. The hardware extra commands are get/set chip status,
* rebuild, get rebuild status.
*
* In Linux the driver supports pass through mode as if the device was
* just another IDE controller. If the smart mode is running then
* volumes are managed by the controller firmware and each IDE "disk"
* is a raid volume. Even more cute - the controller can do automated
* hotplug and rebuild.
*
* The pass through controller itself is a little demented. It has a
* flaw that it has a single set of PIO/MWDMA timings per channel so
* non UDMA devices restrict each others performance. It also has a
* single clock source per channel so mixed UDMA100/133 performance
* isn't perfect and we have to pick a clock. Thankfully none of this
* matters in smart mode. ATAPI DMA is not currently supported.
*
* It seems the smart mode is a win for RAID1/RAID10 but otherwise not.
*
* TODO
* - ATAPI UDMA is ok but not MWDMA it seems
* - RAID configuration ioctls
* - Move to libata once it grows up
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/hdreg.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <asm/io.h>
struct it821x_dev
{
unsigned int smart:1, /* Are we in smart raid mode */
timing10:1; /* Rev 0x10 */
u8 clock_mode; /* 0, ATA_50 or ATA_66 */
u8 want[2][2]; /* Mode/Pri log for master slave */
/* We need these for switching the clock when DMA goes on/off
The high byte is the 66Mhz timing */
u16 pio[2]; /* Cached PIO values */
u16 mwdma[2]; /* Cached MWDMA values */
u16 udma[2]; /* Cached UDMA values (per drive) */
};
#define ATA_66 0
#define ATA_50 1
#define ATA_ANY 2
#define UDMA_OFF 0
#define MWDMA_OFF 0
/*
* We allow users to force the card into non raid mode without
* flashing the alternative BIOS. This is also neccessary right now
* for embedded platforms that cannot run a PC BIOS but are using this
* device.
*/
static int it8212_noraid;
/**
* it821x_program - program the PIO/MWDMA registers
* @drive: drive to tune
*
* Program the PIO/MWDMA timing for this channel according to the
* current clock.
*/
static void it821x_program(ide_drive_t *drive, u16 timing)
{
ide_hwif_t *hwif = drive->hwif;
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
int channel = hwif->channel;
u8 conf;
/* Program PIO/MWDMA timing bits */
if(itdev->clock_mode == ATA_66)
conf = timing >> 8;
else
conf = timing & 0xFF;
pci_write_config_byte(hwif->pci_dev, 0x54 + 4 * channel, conf);
}
/**
* it821x_program_udma - program the UDMA registers
* @drive: drive to tune
*
* Program the UDMA timing for this drive according to the
* current clock.
*/
static void it821x_program_udma(ide_drive_t *drive, u16 timing)
{
ide_hwif_t *hwif = drive->hwif;
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
int channel = hwif->channel;
int unit = drive->select.b.unit;
u8 conf;
/* Program UDMA timing bits */
if(itdev->clock_mode == ATA_66)
conf = timing >> 8;
else
conf = timing & 0xFF;
if(itdev->timing10 == 0)
pci_write_config_byte(hwif->pci_dev, 0x56 + 4 * channel + unit, conf);
else {
pci_write_config_byte(hwif->pci_dev, 0x56 + 4 * channel, conf);
pci_write_config_byte(hwif->pci_dev, 0x56 + 4 * channel + 1, conf);
}
}
/**
* it821x_clock_strategy
* @hwif: hardware interface
*
* Select between the 50 and 66Mhz base clocks to get the best
* results for this interface.
*/
static void it821x_clock_strategy(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
u8 unit = drive->select.b.unit;
ide_drive_t *pair = &hwif->drives[1-unit];
int clock, altclock;
u8 v;
int sel = 0;
if(itdev->want[0][0] > itdev->want[1][0]) {
clock = itdev->want[0][1];
altclock = itdev->want[1][1];
} else {
clock = itdev->want[1][1];
altclock = itdev->want[0][1];
}
/* Master doesn't care does the slave ? */
if(clock == ATA_ANY)
clock = altclock;
/* Nobody cares - keep the same clock */
if(clock == ATA_ANY)
return;
/* No change */
if(clock == itdev->clock_mode)
return;
/* Load this into the controller ? */
if(clock == ATA_66)
itdev->clock_mode = ATA_66;
else {
itdev->clock_mode = ATA_50;
sel = 1;
}
pci_read_config_byte(hwif->pci_dev, 0x50, &v);
v &= ~(1 << (1 + hwif->channel));
v |= sel << (1 + hwif->channel);
pci_write_config_byte(hwif->pci_dev, 0x50, v);
/*
* Reprogram the UDMA/PIO of the pair drive for the switch
* MWDMA will be dealt with by the dma switcher
*/
if(pair && itdev->udma[1-unit] != UDMA_OFF) {
it821x_program_udma(pair, itdev->udma[1-unit]);
it821x_program(pair, itdev->pio[1-unit]);
}
/*
* Reprogram the UDMA/PIO of our drive for the switch.
* MWDMA will be dealt with by the dma switcher
*/
if(itdev->udma[unit] != UDMA_OFF) {
it821x_program_udma(drive, itdev->udma[unit]);
it821x_program(drive, itdev->pio[unit]);
}
}
/**
* it821x_ratemask - Compute available modes
* @drive: IDE drive
*
* Compute the available speeds for the devices on the interface. This
* is all modes to ATA133 clipped by drive cable setup.
*/
static u8 it821x_ratemask (ide_drive_t *drive)
{
u8 mode = 4;
if (!eighty_ninty_three(drive))
mode = min(mode, (u8)1);
return mode;
}
/**
* it821x_tuneproc - tune a drive
* @drive: drive to tune
* @mode_wanted: the target operating mode
*
* Load the timing settings for this device mode into the
* controller. By the time we are called the mode has been
* modified as neccessary to handle the absence of seperate
* master/slave timers for MWDMA/PIO.
*
* This code is only used in pass through mode.
*/
static void it821x_tuneproc (ide_drive_t *drive, byte mode_wanted)
{
ide_hwif_t *hwif = drive->hwif;
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
int unit = drive->select.b.unit;
/* Spec says 89 ref driver uses 88 */
static u16 pio[] = { 0xAA88, 0xA382, 0xA181, 0x3332, 0x3121 };
static u8 pio_want[] = { ATA_66, ATA_66, ATA_66, ATA_66, ATA_ANY };
if(itdev->smart)
return;
/* We prefer 66Mhz clock for PIO 0-3, don't care for PIO4 */
itdev->want[unit][1] = pio_want[mode_wanted];
itdev->want[unit][0] = 1; /* PIO is lowest priority */
itdev->pio[unit] = pio[mode_wanted];
it821x_clock_strategy(drive);
it821x_program(drive, itdev->pio[unit]);
}
/**
* it821x_tune_mwdma - tune a channel for MWDMA
* @drive: drive to set up
* @mode_wanted: the target operating mode
*
* Load the timing settings for this device mode into the
* controller when doing MWDMA in pass through mode. The caller
* must manage the whole lack of per device MWDMA/PIO timings and
* the shared MWDMA/PIO timing register.
*/
static void it821x_tune_mwdma (ide_drive_t *drive, byte mode_wanted)
{
ide_hwif_t *hwif = drive->hwif;
struct it821x_dev *itdev = (void *)ide_get_hwifdata(hwif);
int unit = drive->select.b.unit;
int channel = hwif->channel;
u8 conf;
static u16 dma[] = { 0x8866, 0x3222, 0x3121 };
static u8 mwdma_want[] = { ATA_ANY, ATA_66, ATA_ANY };
itdev->want[unit][1] = mwdma_want[mode_wanted];
itdev->want[unit][0] = 2; /* MWDMA is low priority */
itdev->mwdma[unit] = dma[mode_wanted];
itdev->udma[unit] = UDMA_OFF;
/* UDMA bits off - Revision 0x10 do them in pairs */
pci_read_config_byte(hwif->pci_dev, 0x50, &conf);
if(itdev->timing10)
conf |= channel ? 0x60: 0x18;
else
conf |= 1 << (3 + 2 * channel + unit);
pci_write_config_byte(hwif->pci_dev, 0x50, conf);
it821x_clock_strategy(drive);
/* FIXME: do we need to program this ? */
/* it821x_program(drive, itdev->mwdma[unit]); */
}
/**
* it821x_tune_udma - tune a channel for UDMA
* @drive: drive to set up
* @mode_wanted: the target operating mode
*
* Load the timing settings for this device mode into the
* controller when doing UDMA modes in pass through.
*/
static void it821x_tune_udma (ide_drive_t *drive, byte mode_wanted)
{
ide_hwif_t *hwif = drive->hwif;
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
int unit = drive->select.b.unit;
int channel = hwif->channel;
u8 conf;
static u16 udma[] = { 0x4433, 0x4231, 0x3121, 0x2121, 0x1111, 0x2211, 0x1111 };
static u8 udma_want[] = { ATA_ANY, ATA_50, ATA_ANY, ATA_66, ATA_66, ATA_50, ATA_66 };
itdev->want[unit][1] = udma_want[mode_wanted];
itdev->want[unit][0] = 3; /* UDMA is high priority */
itdev->mwdma[unit] = MWDMA_OFF;
itdev->udma[unit] = udma[mode_wanted];
if(mode_wanted >= 5)
itdev->udma[unit] |= 0x8080; /* UDMA 5/6 select on */
/* UDMA on. Again revision 0x10 must do the pair */
pci_read_config_byte(hwif->pci_dev, 0x50, &conf);
if(itdev->timing10)
conf &= channel ? 0x9F: 0xE7;
else
conf &= ~ (1 << (3 + 2 * channel + unit));
pci_write_config_byte(hwif->pci_dev, 0x50, conf);
it821x_clock_strategy(drive);
it821x_program_udma(drive, itdev->udma[unit]);
}
/**
* config_it821x_chipset_for_pio - set drive timings
* @drive: drive to tune
* @speed we want
*
* Compute the best pio mode we can for a given device. We must
* pick a speed that does not cause problems with the other device
* on the cable.
*/
static void config_it821x_chipset_for_pio (ide_drive_t *drive, byte set_speed)
{
u8 unit = drive->select.b.unit;
ide_hwif_t *hwif = drive->hwif;
ide_drive_t *pair = &hwif->drives[1-unit];
u8 speed = 0, set_pio = ide_get_best_pio_mode(drive, 255, 5, NULL);
u8 pair_pio;
/* We have to deal with this mess in pairs */
if(pair != NULL) {
pair_pio = ide_get_best_pio_mode(pair, 255, 5, NULL);
/* Trim PIO to the slowest of the master/slave */
if(pair_pio < set_pio)
set_pio = pair_pio;
}
it821x_tuneproc(drive, set_pio);
speed = XFER_PIO_0 + set_pio;
/* XXX - We trim to the lowest of the pair so the other drive
will always be fine at this point until we do hotplug passthru */
if (set_speed)
(void) ide_config_drive_speed(drive, speed);
}
/**
* it821x_dma_read - DMA hook
* @drive: drive for DMA
*
* The IT821x has a single timing register for MWDMA and for PIO
* operations. As we flip back and forth we have to reload the
* clock. In addition the rev 0x10 device only works if the same
* timing value is loaded into the master and slave UDMA clock
* so we must also reload that.
*
* FIXME: we could figure out in advance if we need to do reloads
*/
static void it821x_dma_start(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
int unit = drive->select.b.unit;
if(itdev->mwdma[unit] != MWDMA_OFF)
it821x_program(drive, itdev->mwdma[unit]);
else if(itdev->udma[unit] != UDMA_OFF && itdev->timing10)
it821x_program_udma(drive, itdev->udma[unit]);
ide_dma_start(drive);
}
/**
* it821x_dma_write - DMA hook
* @drive: drive for DMA stop
*
* The IT821x has a single timing register for MWDMA and for PIO
* operations. As we flip back and forth we have to reload the
* clock.
*/
static int it821x_dma_end(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
int unit = drive->select.b.unit;
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
int ret = __ide_dma_end(drive);
if(itdev->mwdma[unit] != MWDMA_OFF)
it821x_program(drive, itdev->pio[unit]);
return ret;
}
/**
* it821x_tune_chipset - set controller timings
* @drive: Drive to set up
* @xferspeed: speed we want to achieve
*
* Tune the ITE chipset for the desired mode. If we can't achieve
* the desired mode then tune for a lower one, but ultimately
* make the thing work.
*/
static int it821x_tune_chipset (ide_drive_t *drive, byte xferspeed)
{
ide_hwif_t *hwif = drive->hwif;
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
u8 speed = ide_rate_filter(it821x_ratemask(drive), xferspeed);
if(!itdev->smart) {
switch(speed) {
case XFER_PIO_4:
case XFER_PIO_3:
case XFER_PIO_2:
case XFER_PIO_1:
case XFER_PIO_0:
it821x_tuneproc(drive, (speed - XFER_PIO_0));
break;
/* MWDMA tuning is really hard because our MWDMA and PIO
timings are kept in the same place. We can switch in the
host dma on/off callbacks */
case XFER_MW_DMA_2:
case XFER_MW_DMA_1:
case XFER_MW_DMA_0:
it821x_tune_mwdma(drive, (speed - XFER_MW_DMA_0));
break;
case XFER_UDMA_6:
case XFER_UDMA_5:
case XFER_UDMA_4:
case XFER_UDMA_3:
case XFER_UDMA_2:
case XFER_UDMA_1:
case XFER_UDMA_0:
it821x_tune_udma(drive, (speed - XFER_UDMA_0));
break;
default:
return 1;
}
}
/*
* In smart mode the clocking is done by the host controller
* snooping the mode we picked. The rest of it is not our problem
*/
return ide_config_drive_speed(drive, speed);
}
/**
* config_chipset_for_dma - configure for DMA
* @drive: drive to configure
*
* Called by the IDE layer when it wants the timings set up.
*/
static int config_chipset_for_dma (ide_drive_t *drive)
{
u8 speed = ide_dma_speed(drive, it821x_ratemask(drive));
config_it821x_chipset_for_pio(drive, !speed);
it821x_tune_chipset(drive, speed);
return ide_dma_enable(drive);
}
/**
* it821x_configure_drive_for_dma - set up for DMA transfers
* @drive: drive we are going to set up
*
* Set up the drive for DMA, tune the controller and drive as
* required. If the drive isn't suitable for DMA or we hit
* other problems then we will drop down to PIO and set up
* PIO appropriately
*/
static int it821x_config_drive_for_dma (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
if (ide_use_dma(drive)) {
if (config_chipset_for_dma(drive))
return hwif->ide_dma_on(drive);
}
config_it821x_chipset_for_pio(drive, 1);
return hwif->ide_dma_off_quietly(drive);
}
/**
* ata66_it821x - check for 80 pin cable
* @hwif: interface to check
*
* Check for the presence of an ATA66 capable cable on the
* interface. Problematic as it seems some cards don't have
* the needed logic onboard.
*/
static unsigned int __devinit ata66_it821x(ide_hwif_t *hwif)
{
/* The reference driver also only does disk side */
return 1;
}
/**
* it821x_fixup - post init callback
* @hwif: interface
*
* This callback is run after the drives have been probed but
* before anything gets attached. It allows drivers to do any
* final tuning that is needed, or fixups to work around bugs.
*/
static void __devinit it821x_fixups(ide_hwif_t *hwif)
{
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
int i;
if(!itdev->smart) {
/*
* If we are in pass through mode then not much
* needs to be done, but we do bother to clear the
* IRQ mask as we may well be in PIO (eg rev 0x10)
* for now and we know unmasking is safe on this chipset.
*/
for (i = 0; i < 2; i++) {
ide_drive_t *drive = &hwif->drives[i];
if(drive->present)
drive->unmask = 1;
}
return;
}
/*
* Perform fixups on smart mode. We need to "lose" some
* capabilities the firmware lacks but does not filter, and
* also patch up some capability bits that it forgets to set
* in RAID mode.
*/
for(i = 0; i < 2; i++) {
ide_drive_t *drive = &hwif->drives[i];
struct hd_driveid *id;
u16 *idbits;
if(!drive->present)
continue;
id = drive->id;
idbits = (u16 *)drive->id;
/* Check for RAID v native */
if(strstr(id->model, "Integrated Technology Express")) {
/* In raid mode the ident block is slightly buggy
We need to set the bits so that the IDE layer knows
LBA28. LBA48 and DMA ar valid */
id->capability |= 3; /* LBA28, DMA */
id->command_set_2 |= 0x0400; /* LBA48 valid */
id->cfs_enable_2 |= 0x0400; /* LBA48 on */
/* Reporting logic */
printk(KERN_INFO "%s: IT8212 %sRAID %d volume",
drive->name,
idbits[147] ? "Bootable ":"",
idbits[129]);
if(idbits[129] != 1)
printk("(%dK stripe)", idbits[146]);
printk(".\n");
/* Now the core code will have wrongly decided no DMA
so we need to fix this */
hwif->ide_dma_off_quietly(drive);
#ifdef CONFIG_IDEDMA_ONLYDISK
if (drive->media == ide_disk)
#endif
hwif->ide_dma_check(drive);
} else {
/* Non RAID volume. Fixups to stop the core code
doing unsupported things */
id->field_valid &= 1;
id->queue_depth = 0;
id->command_set_1 = 0;
id->command_set_2 &= 0xC400;
id->cfsse &= 0xC000;
id->cfs_enable_1 = 0;
id->cfs_enable_2 &= 0xC400;
id->csf_default &= 0xC000;
id->word127 = 0;
id->dlf = 0;
id->csfo = 0;
id->cfa_power = 0;
printk(KERN_INFO "%s: Performing identify fixups.\n",
drive->name);
}
}
}
/**
* init_hwif_it821x - set up hwif structs
* @hwif: interface to set up
*
* We do the basic set up of the interface structure. The IT8212
* requires several custom handlers so we override the default
* ide DMA handlers appropriately
*/
static void __devinit init_hwif_it821x(ide_hwif_t *hwif)
{
struct it821x_dev *idev = kmalloc(sizeof(struct it821x_dev), GFP_KERNEL);
u8 conf;
if(idev == NULL) {
printk(KERN_ERR "it821x: out of memory, falling back to legacy behaviour.\n");
goto fallback;
}
memset(idev, 0, sizeof(struct it821x_dev));
ide_set_hwifdata(hwif, idev);
pci_read_config_byte(hwif->pci_dev, 0x50, &conf);
if(conf & 1) {
idev->smart = 1;
hwif->atapi_dma = 0;
/* Long I/O's although allowed in LBA48 space cause the
onboard firmware to enter the twighlight zone */
hwif->rqsize = 256;
}
/* Pull the current clocks from 0x50 also */
if (conf & (1 << (1 + hwif->channel)))
idev->clock_mode = ATA_50;
else
idev->clock_mode = ATA_66;
idev->want[0][1] = ATA_ANY;
idev->want[1][1] = ATA_ANY;
/*
* Not in the docs but according to the reference driver
* this is neccessary.
*/
pci_read_config_byte(hwif->pci_dev, 0x08, &conf);
if(conf == 0x10) {
idev->timing10 = 1;
hwif->atapi_dma = 0;
if(!idev->smart)
printk(KERN_WARNING "it821x: Revision 0x10, workarounds activated.\n");
}
hwif->speedproc = &it821x_tune_chipset;
hwif->tuneproc = &it821x_tuneproc;
/* MWDMA/PIO clock switching for pass through mode */
if(!idev->smart) {
hwif->dma_start = &it821x_dma_start;
hwif->ide_dma_end = &it821x_dma_end;
}
hwif->drives[0].autotune = 1;
hwif->drives[1].autotune = 1;
if (!hwif->dma_base)
goto fallback;
hwif->ultra_mask = 0x7f;
hwif->mwdma_mask = 0x07;
hwif->swdma_mask = 0x07;
hwif->ide_dma_check = &it821x_config_drive_for_dma;
if (!(hwif->udma_four))
hwif->udma_four = ata66_it821x(hwif);
/*
* The BIOS often doesn't set up DMA on this controller
* so we always do it.
*/
hwif->autodma = 1;
hwif->drives[0].autodma = hwif->autodma;
hwif->drives[1].autodma = hwif->autodma;
return;
fallback:
hwif->autodma = 0;
return;
}
static void __devinit it8212_disable_raid(struct pci_dev *dev)
{
/* Reset local CPU, and set BIOS not ready */
pci_write_config_byte(dev, 0x5E, 0x01);
/* Set to bypass mode, and reset PCI bus */
pci_write_config_byte(dev, 0x50, 0x00);
pci_write_config_word(dev, PCI_COMMAND,
PCI_COMMAND_PARITY | PCI_COMMAND_IO |
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
pci_write_config_word(dev, 0x40, 0xA0F3);
pci_write_config_dword(dev,0x4C, 0x02040204);
pci_write_config_byte(dev, 0x42, 0x36);
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0);
}
static unsigned int __devinit init_chipset_it821x(struct pci_dev *dev, const char *name)
{
u8 conf;
static char *mode[2] = { "pass through", "smart" };
/* Force the card into bypass mode if so requested */
if (it8212_noraid) {
printk(KERN_INFO "it8212: forcing bypass mode.\n");
it8212_disable_raid(dev);
}
pci_read_config_byte(dev, 0x50, &conf);
printk(KERN_INFO "it821x: controller in %s mode.\n", mode[conf & 1]);
return 0;
}
#define DECLARE_ITE_DEV(name_str) \
{ \
.name = name_str, \
.init_chipset = init_chipset_it821x, \
.init_hwif = init_hwif_it821x, \
.channels = 2, \
.autodma = AUTODMA, \
.bootable = ON_BOARD, \
.fixup = it821x_fixups \
}
static ide_pci_device_t it821x_chipsets[] __devinitdata = {
/* 0 */ DECLARE_ITE_DEV("IT8212"),
};
/**
* it821x_init_one - pci layer discovery entry
* @dev: PCI device
* @id: ident table entry
*
* Called by the PCI code when it finds an ITE821x controller.
* We then use the IDE PCI generic helper to do most of the work.
*/
static int __devinit it821x_init_one(struct pci_dev *dev, const struct pci_device_id *id)
{
ide_setup_pci_device(dev, &it821x_chipsets[id->driver_data]);
return 0;
}
static struct pci_device_id it821x_pci_tbl[] = {
{ PCI_VENDOR_ID_ITE, PCI_DEVICE_ID_ITE_8211, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{ PCI_VENDOR_ID_ITE, PCI_DEVICE_ID_ITE_8212, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{ 0, },
};
MODULE_DEVICE_TABLE(pci, it821x_pci_tbl);
static struct pci_driver driver = {
.name = "ITE821x IDE",
.id_table = it821x_pci_tbl,
.probe = it821x_init_one,
};
static int __init it821x_ide_init(void)
{
return ide_pci_register_driver(&driver);
}
module_init(it821x_ide_init);
module_param_named(noraid, it8212_noraid, int, S_IRUGO);
MODULE_PARM_DESC(it8212_noraid, "Force card into bypass mode");
MODULE_AUTHOR("Alan Cox");
MODULE_DESCRIPTION("PCI driver module for the ITE 821x");
MODULE_LICENSE("GPL");