/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "dvo.h"
/*
* register definitions for the i82807aa.
*
* Documentation on this chipset can be found in datasheet #29069001 at
* intel.com.
*/
/*
* VCH Revision & GMBus Base Addr
*/
#define VR00 0x00
# define VR00_BASE_ADDRESS_MASK 0x007f
/*
* Functionality Enable
*/
#define VR01 0x01
/*
* Enable the panel fitter
*/
# define VR01_PANEL_FIT_ENABLE (1 << 3)
/*
* Enables the LCD display.
*
* This must not be set while VR01_DVO_BYPASS_ENABLE is set.
*/
# define VR01_LCD_ENABLE (1 << 2)
/** Enables the DVO repeater. */
# define VR01_DVO_BYPASS_ENABLE (1 << 1)
/** Enables the DVO clock */
# define VR01_DVO_ENABLE (1 << 0)
/*
* LCD Interface Format
*/
#define VR10 0x10
/** Enables LVDS output instead of CMOS */
# define VR10_LVDS_ENABLE (1 << 4)
/** Enables 18-bit LVDS output. */
# define VR10_INTERFACE_1X18 (0 << 2)
/** Enables 24-bit LVDS or CMOS output */
# define VR10_INTERFACE_1X24 (1 << 2)
/** Enables 2x18-bit LVDS or CMOS output. */
# define VR10_INTERFACE_2X18 (2 << 2)
/** Enables 2x24-bit LVDS output */
# define VR10_INTERFACE_2X24 (3 << 2)
/*
* VR20 LCD Horizontal Display Size
*/
#define VR20 0x20
/*
* LCD Vertical Display Size
*/
#define VR21 0x20
/*
* Panel power down status
*/
#define VR30 0x30
/** Read only bit indicating that the panel is not in a safe poweroff state. */
# define VR30_PANEL_ON (1 << 15)
#define VR40 0x40
# define VR40_STALL_ENABLE (1 << 13)
# define VR40_VERTICAL_INTERP_ENABLE (1 << 12)
# define VR40_ENHANCED_PANEL_FITTING (1 << 11)
# define VR40_HORIZONTAL_INTERP_ENABLE (1 << 10)
# define VR40_AUTO_RATIO_ENABLE (1 << 9)
# define VR40_CLOCK_GATING_ENABLE (1 << 8)
/*
* Panel Fitting Vertical Ratio
* (((image_height - 1) << 16) / ((panel_height - 1))) >> 2
*/
#define VR41 0x41
/*
* Panel Fitting Horizontal Ratio
* (((image_width - 1) << 16) / ((panel_width - 1))) >> 2
*/
#define VR42 0x42
/*
* Horizontal Image Size
*/
#define VR43 0x43
/* VR80 GPIO 0
*/
#define VR80 0x80
#define VR81 0x81
#define VR82 0x82
#define VR83 0x83
#define VR84 0x84
#define VR85 0x85
#define VR86 0x86
#define VR87 0x87
/* VR88 GPIO 8
*/
#define VR88 0x88
/* Graphics BIOS scratch 0
*/
#define VR8E 0x8E
# define VR8E_PANEL_TYPE_MASK (0xf << 0)
# define VR8E_PANEL_INTERFACE_CMOS (0 << 4)
# define VR8E_PANEL_INTERFACE_LVDS (1 << 4)
# define VR8E_FORCE_DEFAULT_PANEL (1 << 5)
/* Graphics BIOS scratch 1
*/
#define VR8F 0x8F
# define VR8F_VCH_PRESENT (1 << 0)
# define VR8F_DISPLAY_CONN (1 << 1)
# define VR8F_POWER_MASK (0x3c)
# define VR8F_POWER_POS (2)
struct ivch_priv {
bool quiet;
uint16_t width, height;
uint16_t save_VR01;
uint16_t save_VR40;
};
static void ivch_dump_regs(struct intel_dvo_device *dvo);
/**
* Reads a register on the ivch.
*
* Each of the 256 registers are 16 bits long.
*/
static bool ivch_read(struct intel_dvo_device *dvo, int addr, uint16_t *data)
{
struct ivch_priv *priv = dvo->dev_priv;
struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
u8 out_buf[1];
u8 in_buf[2];
struct i2c_msg msgs[] = {
{
.addr = dvo->slave_addr,
.flags = I2C_M_RD,
.len = 0,
},
{
.addr = 0,
.flags = I2C_M_NOSTART,
.len = 1,
.buf = out_buf,
},
{
.addr = dvo->slave_addr,
.flags = I2C_M_RD | I2C_M_NOSTART,
.len = 2,
.buf = in_buf,
}
};
out_buf[0] = addr;
if (i2c_transfer(&i2cbus->adapter, msgs, 3) == 3) {
*data = (in_buf[1] << 8) | in_buf[0];
return true;
};
if (!priv->quiet) {
DRM_DEBUG("Unable to read register 0x%02x from %s:%02x.\n",
addr, i2cbus->adapter.name, dvo->slave_addr);
}
return false;
}
/** Writes a 16-bit register on the ivch */
static bool ivch_write(struct intel_dvo_device *dvo, int addr, uint16_t data)
{
struct ivch_priv *priv = dvo->dev_priv;
struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
u8 out_buf[3];
struct i2c_msg msg = {
.addr = dvo->slave_addr,
.flags = 0,
.len = 3,
.buf = out_buf,
};
out_buf[0] = addr;
out_buf[1] = data & 0xff;
out_buf[2] = data >> 8;
if (i2c_transfer(&i2cbus->adapter, &msg, 1) == 1)
return true;
if (!priv->quiet) {
DRM_DEBUG("Unable to write register 0x%02x to %s:%d.\n",
addr, i2cbus->adapter.name, dvo->slave_addr);
}
return false;
}
/** Probes the given bus and slave address for an ivch */
static bool ivch_init(struct intel_dvo_device *dvo,
struct i2c_adapter *adapter)
{
struct ivch_priv *priv;
uint16_t temp;
priv = kzalloc(sizeof(struct ivch_priv), GFP_KERNEL);
if (priv == NULL)
return false;
dvo->i2c_bus = adapter;
dvo->dev_priv = priv;
priv->quiet = true;
if (!ivch_read(dvo, VR00, &temp))
goto out;
priv->quiet = false;
/* Since the identification bits are probably zeroes, which doesn't seem
* very unique, check that the value in the base address field matches
* the address it's responding on.
*/
if ((temp & VR00_BASE_ADDRESS_MASK) != dvo->slave_addr) {
DRM_DEBUG("ivch detect failed due to address mismatch "
"(%d vs %d)\n",
(temp & VR00_BASE_ADDRESS_MASK), dvo->slave_addr);
goto out;
}
ivch_read(dvo, VR20, &priv->width);
ivch_read(dvo, VR21, &priv->height);
return true;
out:
kfree(priv);
return false;
}
static enum drm_connector_status ivch_detect(struct intel_dvo_device *dvo)
{
return connector_status_connected;
}
static enum drm_mode_status ivch_mode_valid(struct intel_dvo_device *dvo,
struct drm_display_mode *mode)
{
if (mode->clock > 112000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
/** Sets the power state of the panel connected to the ivch */
static void ivch_dpms(struct intel_dvo_device *dvo, int mode)
{
int i;
uint16_t vr01, vr30, backlight;
/* Set the new power state of the panel. */
if (!ivch_read(dvo, VR01, &vr01))
return;
if (mode == DRM_MODE_DPMS_ON)
backlight = 1;
else
backlight = 0;
ivch_write(dvo, VR80, backlight);
if (mode == DRM_MODE_DPMS_ON)
vr01 |= VR01_LCD_ENABLE | VR01_DVO_ENABLE;
else
vr01 &= ~(VR01_LCD_ENABLE | VR01_DVO_ENABLE);
ivch_write(dvo, VR01, vr01);
/* Wait for the panel to make its state transition */
for (i = 0; i < 100; i++) {
if (!ivch_read(dvo, VR30, &vr30))
break;
if (((vr30 & VR30_PANEL_ON) != 0) == (mode == DRM_MODE_DPMS_ON))
break;
udelay(1000);
}
/* wait some more; vch may fail to resync sometimes without this */
udelay(16 * 1000);
}
static void ivch_mode_set(struct intel_dvo_device *dvo,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
uint16_t vr40 = 0;
uint16_t vr01;
vr01 = 0;
vr40 = (VR40_STALL_ENABLE | VR40_VERTICAL_INTERP_ENABLE |
VR40_HORIZONTAL_INTERP_ENABLE);
if (mode->hdisplay != adjusted_mode->hdisplay ||
mode->vdisplay != adjusted_mode->vdisplay) {
uint16_t x_ratio, y_ratio;
vr01 |= VR01_PANEL_FIT_ENABLE;
vr40 |= VR40_CLOCK_GATING_ENABLE;
x_ratio = (((mode->hdisplay - 1) << 16) /
(adjusted_mode->hdisplay - 1)) >> 2;
y_ratio = (((mode->vdisplay - 1) << 16) /
(adjusted_mode->vdisplay - 1)) >> 2;
ivch_write (dvo, VR42, x_ratio);
ivch_write (dvo, VR41, y_ratio);
} else {
vr01 &= ~VR01_PANEL_FIT_ENABLE;
vr40 &= ~VR40_CLOCK_GATING_ENABLE;
}
vr40 &= ~VR40_AUTO_RATIO_ENABLE;
ivch_write(dvo, VR01, vr01);
ivch_write(dvo, VR40, vr40);
ivch_dump_regs(dvo);
}
static void ivch_dump_regs(struct intel_dvo_device *dvo)
{
uint16_t val;
ivch_read(dvo, VR00, &val);
DRM_DEBUG("VR00: 0x%04x\n", val);
ivch_read(dvo, VR01, &val);
DRM_DEBUG("VR01: 0x%04x\n", val);
ivch_read(dvo, VR30, &val);
DRM_DEBUG("VR30: 0x%04x\n", val);
ivch_read(dvo, VR40, &val);
DRM_DEBUG("VR40: 0x%04x\n", val);
/* GPIO registers */
ivch_read(dvo, VR80, &val);
DRM_DEBUG("VR80: 0x%04x\n", val);
ivch_read(dvo, VR81, &val);
DRM_DEBUG("VR81: 0x%04x\n", val);
ivch_read(dvo, VR82, &val);
DRM_DEBUG("VR82: 0x%04x\n", val);
ivch_read(dvo, VR83, &val);
DRM_DEBUG("VR83: 0x%04x\n", val);
ivch_read(dvo, VR84, &val);
DRM_DEBUG("VR84: 0x%04x\n", val);
ivch_read(dvo, VR85, &val);
DRM_DEBUG("VR85: 0x%04x\n", val);
ivch_read(dvo, VR86, &val);
DRM_DEBUG("VR86: 0x%04x\n", val);
ivch_read(dvo, VR87, &val);
DRM_DEBUG("VR87: 0x%04x\n", val);
ivch_read(dvo, VR88, &val);
DRM_DEBUG("VR88: 0x%04x\n", val);
/* Scratch register 0 - AIM Panel type */
ivch_read(dvo, VR8E, &val);
DRM_DEBUG("VR8E: 0x%04x\n", val);
/* Scratch register 1 - Status register */
ivch_read(dvo, VR8F, &val);
DRM_DEBUG("VR8F: 0x%04x\n", val);
}
static void ivch_save(struct intel_dvo_device *dvo)
{
struct ivch_priv *priv = dvo->dev_priv;
ivch_read(dvo, VR01, &priv->save_VR01);
ivch_read(dvo, VR40, &priv->save_VR40);
}
static void ivch_restore(struct intel_dvo_device *dvo)
{
struct ivch_priv *priv = dvo->dev_priv;
ivch_write(dvo, VR01, priv->save_VR01);
ivch_write(dvo, VR40, priv->save_VR40);
}
static void ivch_destroy(struct intel_dvo_device *dvo)
{
struct ivch_priv *priv = dvo->dev_priv;
if (priv) {
kfree(priv);
dvo->dev_priv = NULL;
}
}
struct intel_dvo_dev_ops ivch_ops= {
.init = ivch_init,
.dpms = ivch_dpms,
.save = ivch_save,
.restore = ivch_restore,
.mode_valid = ivch_mode_valid,
.mode_set = ivch_mode_set,
.detect = ivch_detect,
.dump_regs = ivch_dump_regs,
.destroy = ivch_destroy,
};