/*
* Copyright (c) 2006 Luc Verhaegen (quirks list)
* Copyright (c) 2007-2008 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
* Copyright 2010 Red Hat, Inc.
*
* DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
* FB layer.
* Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/export.h>
#include "drmP.h"
#include "drm_edid.h"
#include "drm_edid_modes.h"
#define version_greater(edid, maj, min) \
(((edid)->version > (maj)) || \
((edid)->version == (maj) && (edid)->revision > (min)))
#define EDID_EST_TIMINGS 16
#define EDID_STD_TIMINGS 8
#define EDID_DETAILED_TIMINGS 4
/*
* EDID blocks out in the wild have a variety of bugs, try to collect
* them here (note that userspace may work around broken monitors first,
* but fixes should make their way here so that the kernel "just works"
* on as many displays as possible).
*/
/* First detailed mode wrong, use largest 60Hz mode */
#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
/* Reported 135MHz pixel clock is too high, needs adjustment */
#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
/* Prefer the largest mode at 75 Hz */
#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
/* Detail timing is in cm not mm */
#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
/* Detailed timing descriptors have bogus size values, so just take the
* maximum size and use that.
*/
#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
/* Monitor forgot to set the first detailed is preferred bit. */
#define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
/* use +hsync +vsync for detailed mode */
#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
struct detailed_mode_closure {
struct drm_connector *connector;
struct edid *edid;
bool preferred;
u32 quirks;
int modes;
};
#define LEVEL_DMT 0
#define LEVEL_GTF 1
#define LEVEL_GTF2 2
#define LEVEL_CVT 3
static struct edid_quirk {
char *vendor;
int product_id;
u32 quirks;
} edid_quirk_list[] = {
/* Acer AL1706 */
{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
/* Acer F51 */
{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
/* Unknown Acer */
{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
/* Belinea 10 15 55 */
{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
/* Envision Peripherals, Inc. EN-7100e */
{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
/* Envision EN2028 */
{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
/* Funai Electronics PM36B */
{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
EDID_QUIRK_DETAILED_IN_CM },
/* LG Philips LCD LP154W01-A5 */
{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
/* Philips 107p5 CRT */
{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
/* Proview AY765C */
{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
/* Samsung SyncMaster 205BW. Note: irony */
{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
/* Samsung SyncMaster 22[5-6]BW */
{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
};
/*** DDC fetch and block validation ***/
static const u8 edid_header[] = {
0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
};
/*
* Sanity check the header of the base EDID block. Return 8 if the header
* is perfect, down to 0 if it's totally wrong.
*/
int drm_edid_header_is_valid(const u8 *raw_edid)
{
int i, score = 0;
for (i = 0; i < sizeof(edid_header); i++)
if (raw_edid[i] == edid_header[i])
score++;
return score;
}
EXPORT_SYMBOL(drm_edid_header_is_valid);
/*
* Sanity check the EDID block (base or extension). Return 0 if the block
* doesn't check out, or 1 if it's valid.
*/
bool drm_edid_block_valid(u8 *raw_edid)
{
int i;
u8 csum = 0;
struct edid *edid = (struct edid *)raw_edid;
if (raw_edid[0] == 0x00) {
int score = drm_edid_header_is_valid(raw_edid);
if (score == 8) ;
else if (score >= 6) {
DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
memcpy(raw_edid, edid_header, sizeof(edid_header));
} else {
goto bad;
}
}
for (i = 0; i < EDID_LENGTH; i++)
csum += raw_edid[i];
if (csum) {
DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
/* allow CEA to slide through, switches mangle this */
if (raw_edid[0] != 0x02)
goto bad;
}
/* per-block-type checks */
switch (raw_edid[0]) {
case 0: /* base */
if (edid->version != 1) {
DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
goto bad;
}
if (edid->revision > 4)
DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
break;
default:
break;
}
return 1;
bad:
if (raw_edid) {
printk(KERN_ERR "Raw EDID:\n");
print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
raw_edid, EDID_LENGTH, false);
}
return 0;
}
EXPORT_SYMBOL(drm_edid_block_valid);
/**
* drm_edid_is_valid - sanity check EDID data
* @edid: EDID data
*
* Sanity-check an entire EDID record (including extensions)
*/
bool drm_edid_is_valid(struct edid *edid)
{
int i;
u8 *raw = (u8 *)edid;
if (!edid)
return false;
for (i = 0; i <= edid->extensions; i++)
if (!drm_edid_block_valid(raw + i * EDID_LENGTH))
return false;
return true;
}
EXPORT_SYMBOL(drm_edid_is_valid);
#define DDC_SEGMENT_ADDR 0x30
/**
* Get EDID information via I2C.
*
* \param adapter : i2c device adaptor
* \param buf : EDID data buffer to be filled
* \param len : EDID data buffer length
* \return 0 on success or -1 on failure.
*
* Try to fetch EDID information by calling i2c driver function.
*/
static int
drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
int block, int len)
{
unsigned char start = block * EDID_LENGTH;
int ret, retries = 5;
/* The core i2c driver will automatically retry the transfer if the
* adapter reports EAGAIN. However, we find that bit-banging transfers
* are susceptible to errors under a heavily loaded machine and
* generate spurious NAKs and timeouts. Retrying the transfer
* of the individual block a few times seems to overcome this.
*/
do {
struct i2c_msg msgs[] = {
{
.addr = DDC_ADDR,
.flags = 0,
.len = 1,
.buf = &start,
}, {
.addr = DDC_ADDR,
.flags = I2C_M_RD,
.len = len,
.buf = buf,
}
};
ret = i2c_transfer(adapter, msgs, 2);
if (ret == -ENXIO) {
DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
adapter->name);
break;
}
} while (ret != 2 && --retries);
return ret == 2 ? 0 : -1;
}
static bool drm_edid_is_zero(u8 *in_edid, int length)
{
int i;
u32 *raw_edid = (u32 *)in_edid;
for (i = 0; i < length / 4; i++)
if (*(raw_edid + i) != 0)
return false;
return true;
}
static u8 *
drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
{
int i, j = 0, valid_extensions = 0;
u8 *block, *new;
if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
return NULL;
/* base block fetch */
for (i = 0; i < 4; i++) {
if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
goto out;
if (drm_edid_block_valid(block))
break;
if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
connector->null_edid_counter++;
goto carp;
}
}
if (i == 4)
goto carp;
/* if there's no extensions, we're done */
if (block[0x7e] == 0)
return block;
new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
if (!new)
goto out;
block = new;
for (j = 1; j <= block[0x7e]; j++) {
for (i = 0; i < 4; i++) {
if (drm_do_probe_ddc_edid(adapter,
block + (valid_extensions + 1) * EDID_LENGTH,
j, EDID_LENGTH))
goto out;
if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH)) {
valid_extensions++;
break;
}
}
if (i == 4)
dev_warn(connector->dev->dev,
"%s: Ignoring invalid EDID block %d.\n",
drm_get_connector_name(connector), j);
}
if (valid_extensions != block[0x7e]) {
block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
block[0x7e] = valid_extensions;
new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
if (!new)
goto out;
block = new;
}
return block;
carp:
dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
drm_get_connector_name(connector), j);
out:
kfree(block);
return NULL;
}
/**
* Probe DDC presence.
*
* \param adapter : i2c device adaptor
* \return 1 on success
*/
static bool
drm_probe_ddc(struct i2c_adapter *adapter)
{
unsigned char out;
return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
}
/**
* drm_get_edid - get EDID data, if available
* @connector: connector we're probing
* @adapter: i2c adapter to use for DDC
*
* Poke the given i2c channel to grab EDID data if possible. If found,
* attach it to the connector.
*
* Return edid data or NULL if we couldn't find any.
*/
struct edid *drm_get_edid(struct drm_connector *connector,
struct i2c_adapter *adapter)
{
struct edid *edid = NULL;
if (drm_probe_ddc(adapter))
edid = (struct edid *)drm_do_get_edid(connector, adapter);
connector->display_info.raw_edid = (char *)edid;
return edid;
}
EXPORT_SYMBOL(drm_get_edid);
/*** EDID parsing ***/
/**
* edid_vendor - match a string against EDID's obfuscated vendor field
* @edid: EDID to match
* @vendor: vendor string
*
* Returns true if @vendor is in @edid, false otherwise
*/
static bool edid_vendor(struct edid *edid, char *vendor)
{
char edid_vendor[3];
edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
return !strncmp(edid_vendor, vendor, 3);
}
/**
* edid_get_quirks - return quirk flags for a given EDID
* @edid: EDID to process
*
* This tells subsequent routines what fixes they need to apply.
*/
static u32 edid_get_quirks(struct edid *edid)
{
struct edid_quirk *quirk;
int i;
for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
quirk = &edid_quirk_list[i];
if (edid_vendor(edid, quirk->vendor) &&
(EDID_PRODUCT_ID(edid) == quirk->product_id))
return quirk->quirks;
}
return 0;
}
#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
#define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
/**
* edid_fixup_preferred - set preferred modes based on quirk list
* @connector: has mode list to fix up
* @quirks: quirks list
*
* Walk the mode list for @connector, clearing the preferred status
* on existing modes and setting it anew for the right mode ala @quirks.
*/
static void edid_fixup_preferred(struct drm_connector *connector,
u32 quirks)
{
struct drm_display_mode *t, *cur_mode, *preferred_mode;
int target_refresh = 0;
if (list_empty(&connector->probed_modes))
return;
if (quirks & EDID_QUIRK_PREFER_LARGE_60)
target_refresh = 60;
if (quirks & EDID_QUIRK_PREFER_LARGE_75)
target_refresh = 75;
preferred_mode = list_first_entry(&connector->probed_modes,
struct drm_display_mode, head);
list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
if (cur_mode == preferred_mode)
continue;
/* Largest mode is preferred */
if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
preferred_mode = cur_mode;
/* At a given size, try to get closest to target refresh */
if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
MODE_REFRESH_DIFF(cur_mode, target_refresh) <
MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
preferred_mode = cur_mode;
}
}
preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
}
struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
int hsize, int vsize, int fresh)
{
struct drm_display_mode *mode = NULL;
int i;
for (i = 0; i < drm_num_dmt_modes; i++) {
const struct drm_display_mode *ptr = &drm_dmt_modes[i];
if (hsize == ptr->hdisplay &&
vsize == ptr->vdisplay &&
fresh == drm_mode_vrefresh(ptr)) {
/* get the expected default mode */
mode = drm_mode_duplicate(dev, ptr);
break;
}
}
return mode;
}
EXPORT_SYMBOL(drm_mode_find_dmt);
typedef void detailed_cb(struct detailed_timing *timing, void *closure);
static void
cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
{
int i, n = 0;
u8 d = ext[0x02];
u8 *det_base = ext + d;
n = (127 - d) / 18;
for (i = 0; i < n; i++)
cb((struct detailed_timing *)(det_base + 18 * i), closure);
}
static void
vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
{
unsigned int i, n = min((int)ext[0x02], 6);
u8 *det_base = ext + 5;
if (ext[0x01] != 1)
return; /* unknown version */
for (i = 0; i < n; i++)
cb((struct detailed_timing *)(det_base + 18 * i), closure);
}
static void
drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
{
int i;
struct edid *edid = (struct edid *)raw_edid;
if (edid == NULL)
return;
for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
cb(&(edid->detailed_timings[i]), closure);
for (i = 1; i <= raw_edid[0x7e]; i++) {
u8 *ext = raw_edid + (i * EDID_LENGTH);
switch (*ext) {
case CEA_EXT:
cea_for_each_detailed_block(ext, cb, closure);
break;
case VTB_EXT:
vtb_for_each_detailed_block(ext, cb, closure);
break;
default:
break;
}
}
}
static void
is_rb(struct detailed_timing *t, void *data)
{
u8 *r = (u8 *)t;
if (r[3] == EDID_DETAIL_MONITOR_RANGE)
if (r[15] & 0x10)
*(bool *)data = true;
}
/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
static bool
drm_monitor_supports_rb(struct edid *edid)
{
if (edid->revision >= 4) {
bool ret;
drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
return ret;
}
return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
}
static void
find_gtf2(struct detailed_timing *t, void *data)
{
u8 *r = (u8 *)t;
if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
*(u8 **)data = r;
}
/* Secondary GTF curve kicks in above some break frequency */
static int
drm_gtf2_hbreak(struct edid *edid)
{
u8 *r = NULL;
drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
return r ? (r[12] * 2) : 0;
}
static int
drm_gtf2_2c(struct edid *edid)
{
u8 *r = NULL;
drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
return r ? r[13] : 0;
}
static int
drm_gtf2_m(struct edid *edid)
{
u8 *r = NULL;
drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
return r ? (r[15] << 8) + r[14] : 0;
}
static int
drm_gtf2_k(struct edid *edid)
{
u8 *r = NULL;
drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
return r ? r[16] : 0;
}
static int
drm_gtf2_2j(struct edid *edid)
{
u8 *r = NULL;
drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
return r ? r[17] : 0;
}
/**
* standard_timing_level - get std. timing level(CVT/GTF/DMT)
* @edid: EDID block to scan
*/
static int standard_timing_level(struct edid *edid)
{
if (edid->revision >= 2) {
if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
return LEVEL_CVT;
if (drm_gtf2_hbreak(edid))
return LEVEL_GTF2;
return LEVEL_GTF;
}
return LEVEL_DMT;
}
/*
* 0 is reserved. The spec says 0x01 fill for unused timings. Some old
* monitors fill with ascii space (0x20) instead.
*/
static int
bad_std_timing(u8 a, u8 b)
{
return (a == 0x00 && b == 0x00) ||
(a == 0x01 && b == 0x01) ||
(a == 0x20 && b == 0x20);
}
/**
* drm_mode_std - convert standard mode info (width, height, refresh) into mode
* @t: standard timing params
* @timing_level: standard timing level
*
* Take the standard timing params (in this case width, aspect, and refresh)
* and convert them into a real mode using CVT/GTF/DMT.
*/
static struct drm_display_mode *
drm_mode_std(struct drm_connector *connector, struct edid *edid,
struct std_timing *t, int revision)
{
struct drm_device *dev = connector->dev;
struct drm_display_mode *m, *mode = NULL;
int hsize, vsize;
int vrefresh_rate;
unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
>> EDID_TIMING_ASPECT_SHIFT;
unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
>> EDID_TIMING_VFREQ_SHIFT;
int timing_level = standard_timing_level(edid);
if (bad_std_timing(t->hsize, t->vfreq_aspect))
return NULL;
/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
hsize = t->hsize * 8 + 248;
/* vrefresh_rate = vfreq + 60 */
vrefresh_rate = vfreq + 60;
/* the vdisplay is calculated based on the aspect ratio */
if (aspect_ratio == 0) {
if (revision < 3)
vsize = hsize;
else
vsize = (hsize * 10) / 16;
} else if (aspect_ratio == 1)
vsize = (hsize * 3) / 4;
else if (aspect_ratio == 2)
vsize = (hsize * 4) / 5;
else
vsize = (hsize * 9) / 16;
/* HDTV hack, part 1 */
if (vrefresh_rate == 60 &&
((hsize == 1360 && vsize == 765) ||
(hsize == 1368 && vsize == 769))) {
hsize = 1366;
vsize = 768;
}
/*
* If this connector already has a mode for this size and refresh
* rate (because it came from detailed or CVT info), use that
* instead. This way we don't have to guess at interlace or
* reduced blanking.
*/
list_for_each_entry(m, &connector->probed_modes, head)
if (m->hdisplay == hsize && m->vdisplay == vsize &&
drm_mode_vrefresh(m) == vrefresh_rate)
return NULL;
/* HDTV hack, part 2 */
if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
false);
mode->hdisplay = 1366;
mode->hsync_start = mode->hsync_start - 1;
mode->hsync_end = mode->hsync_end - 1;
return mode;
}
/* check whether it can be found in default mode table */
mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate);
if (mode)
return mode;
switch (timing_level) {
case LEVEL_DMT:
break;
case LEVEL_GTF:
mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
break;
case LEVEL_GTF2:
/*
* This is potentially wrong if there's ever a monitor with
* more than one ranges section, each claiming a different
* secondary GTF curve. Please don't do that.
*/
mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
drm_mode_destroy(dev, mode);
mode = drm_gtf_mode_complex(dev, hsize, vsize,
vrefresh_rate, 0, 0,
drm_gtf2_m(edid),
drm_gtf2_2c(edid),
drm_gtf2_k(edid),
drm_gtf2_2j(edid));
}
break;
case LEVEL_CVT:
mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
false);
break;
}
return mode;
}
/*
* EDID is delightfully ambiguous about how interlaced modes are to be
* encoded. Our internal representation is of frame height, but some
* HDTV detailed timings are encoded as field height.
*
* The format list here is from CEA, in frame size. Technically we
* should be checking refresh rate too. Whatever.
*/
static void
drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
struct detailed_pixel_timing *pt)
{
int i;
static const struct {
int w, h;
} cea_interlaced[] = {
{ 1920, 1080 },
{ 720, 480 },
{ 1440, 480 },
{ 2880, 480 },
{ 720, 576 },
{ 1440, 576 },
{ 2880, 576 },
};
if (!(pt->misc & DRM_EDID_PT_INTERLACED))
return;
for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
if ((mode->hdisplay == cea_interlaced[i].w) &&
(mode->vdisplay == cea_interlaced[i].h / 2)) {
mode->vdisplay *= 2;
mode->vsync_start *= 2;
mode->vsync_end *= 2;
mode->vtotal *= 2;
mode->vtotal |= 1;
}
}
mode->flags |= DRM_MODE_FLAG_INTERLACE;
}
/**
* drm_mode_detailed - create a new mode from an EDID detailed timing section
* @dev: DRM device (needed to create new mode)
* @edid: EDID block
* @timing: EDID detailed timing info
* @quirks: quirks to apply
*
* An EDID detailed timing block contains enough info for us to create and
* return a new struct drm_display_mode.
*/
static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
struct edid *edid,
struct detailed_timing *timing,
u32 quirks)
{
struct drm_display_mode *mode;
struct detailed_pixel_timing *pt = &timing->data.pixel_data;
unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) >> 2 | pt->vsync_offset_pulse_width_lo >> 4;
unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
/* ignore tiny modes */
if (hactive < 64 || vactive < 64)
return NULL;
if (pt->misc & DRM_EDID_PT_STEREO) {
printk(KERN_WARNING "stereo mode not supported\n");
return NULL;
}
if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
printk(KERN_WARNING "composite sync not supported\n");
}
/* it is incorrect if hsync/vsync width is zero */
if (!hsync_pulse_width || !vsync_pulse_width) {
DRM_DEBUG_KMS("Incorrect Detailed timing. "
"Wrong Hsync/Vsync pulse width\n");
return NULL;
}
mode = drm_mode_create(dev);
if (!mode)
return NULL;
mode->type = DRM_MODE_TYPE_DRIVER;
if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
timing->pixel_clock = cpu_to_le16(1088);
mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
mode->hdisplay = hactive;
mode->hsync_start = mode->hdisplay + hsync_offset;
mode->hsync_end = mode->hsync_start + hsync_pulse_width;
mode->htotal = mode->hdisplay + hblank;
mode->vdisplay = vactive;
mode->vsync_start = mode->vdisplay + vsync_offset;
mode->vsync_end = mode->vsync_start + vsync_pulse_width;
mode->vtotal = mode->vdisplay + vblank;
/* Some EDIDs have bogus h/vtotal values */
if (mode->hsync_end > mode->htotal)
mode->htotal = mode->hsync_end + 1;
if (mode->vsync_end > mode->vtotal)
mode->vtotal = mode->vsync_end + 1;
drm_mode_do_interlace_quirk(mode, pt);
drm_mode_set_name(mode);
if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
}
mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
mode->width_mm *= 10;
mode->height_mm *= 10;
}
if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
mode->width_mm = edid->width_cm * 10;
mode->height_mm = edid->height_cm * 10;
}
return mode;
}
static bool
mode_is_rb(const struct drm_display_mode *mode)
{
return (mode->htotal - mode->hdisplay == 160) &&
(mode->hsync_end - mode->hdisplay == 80) &&
(mode->hsync_end - mode->hsync_start == 32) &&
(mode->vsync_start - mode->vdisplay == 3);
}
static bool
mode_in_hsync_range(const struct drm_display_mode *mode,
struct edid *edid, u8 *t)
{
int hsync, hmin, hmax;
hmin = t[7];
if (edid->revision >= 4)
hmin += ((t[4] & 0x04) ? 255 : 0);
hmax = t[8];
if (edid->revision >= 4)
hmax += ((t[4] & 0x08) ? 255 : 0);
hsync = drm_mode_hsync(mode);
return (hsync <= hmax && hsync >= hmin);
}
static bool
mode_in_vsync_range(const struct drm_display_mode *mode,
struct edid *edid, u8 *t)
{
int vsync, vmin, vmax;
vmin = t[5];
if (edid->revision >= 4)
vmin += ((t[4] & 0x01) ? 255 : 0);
vmax = t[6];
if (edid->revision >= 4)
vmax += ((t[4] & 0x02) ? 255 : 0);
vsync = drm_mode_vrefresh(mode);
return (vsync <= vmax && vsync >= vmin);
}
static u32
range_pixel_clock(struct edid *edid, u8 *t)
{
/* unspecified */
if (t[9] == 0 || t[9] == 255)
return 0;
/* 1.4 with CVT support gives us real precision, yay */
if (edid->revision >= 4 && t[10] == 0x04)
return (t[9] * 10000) - ((t[12] >> 2) * 250);
/* 1.3 is pathetic, so fuzz up a bit */
return t[9] * 10000 + 5001;
}
static bool
mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
struct detailed_timing *timing)
{
u32 max_clock;
u8 *t = (u8 *)timing;
if (!mode_in_hsync_range(mode, edid, t))
return false;
if (!mode_in_vsync_range(mode, edid, t))
return false;
if ((max_clock = range_pixel_clock(edid, t)))
if (mode->clock > max_clock)
return false;
/* 1.4 max horizontal check */
if (edid->revision >= 4 && t[10] == 0x04)
if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
return false;
if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
return false;
return true;
}
/*
* XXX If drm_dmt_modes ever regrows the CVT-R modes (and it will) this will
* need to account for them.
*/
static int
drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
struct detailed_timing *timing)
{
int i, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
for (i = 0; i < drm_num_dmt_modes; i++) {
if (mode_in_range(drm_dmt_modes + i, edid, timing)) {
newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
}
return modes;
}
static void
do_inferred_modes(struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
struct detailed_non_pixel *data = &timing->data.other_data;
int gtf = (closure->edid->features & DRM_EDID_FEATURE_DEFAULT_GTF);
if (gtf && data->type == EDID_DETAIL_MONITOR_RANGE)
closure->modes += drm_gtf_modes_for_range(closure->connector,
closure->edid,
timing);
}
static int
add_inferred_modes(struct drm_connector *connector, struct edid *edid)
{
struct detailed_mode_closure closure = {
connector, edid, 0, 0, 0
};
if (version_greater(edid, 1, 0))
drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
&closure);
return closure.modes;
}
static int
drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
{
int i, j, m, modes = 0;
struct drm_display_mode *mode;
u8 *est = ((u8 *)timing) + 5;
for (i = 0; i < 6; i++) {
for (j = 7; j > 0; j--) {
m = (i * 8) + (7 - j);
if (m >= ARRAY_SIZE(est3_modes))
break;
if (est[i] & (1 << j)) {
mode = drm_mode_find_dmt(connector->dev,
est3_modes[m].w,
est3_modes[m].h,
est3_modes[m].r
/*, est3_modes[m].rb */);
if (mode) {
drm_mode_probed_add(connector, mode);
modes++;
}
}
}
}
return modes;
}
static void
do_established_modes(struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
struct detailed_non_pixel *data = &timing->data.other_data;
if (data->type == EDID_DETAIL_EST_TIMINGS)
closure->modes += drm_est3_modes(closure->connector, timing);
}
/**
* add_established_modes - get est. modes from EDID and add them
* @edid: EDID block to scan
*
* Each EDID block contains a bitmap of the supported "established modes" list
* (defined above). Tease them out and add them to the global modes list.
*/
static int
add_established_modes(struct drm_connector *connector, struct edid *edid)
{
struct drm_device *dev = connector->dev;
unsigned long est_bits = edid->established_timings.t1 |
(edid->established_timings.t2 << 8) |
((edid->established_timings.mfg_rsvd & 0x80) << 9);
int i, modes = 0;
struct detailed_mode_closure closure = {
connector, edid, 0, 0, 0
};
for (i = 0; i <= EDID_EST_TIMINGS; i++) {
if (est_bits & (1<<i)) {
struct drm_display_mode *newmode;
newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
}
if (version_greater(edid, 1, 0))
drm_for_each_detailed_block((u8 *)edid,
do_established_modes, &closure);
return modes + closure.modes;
}
static void
do_standard_modes(struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
struct detailed_non_pixel *data = &timing->data.other_data;
struct drm_connector *connector = closure->connector;
struct edid *edid = closure->edid;
if (data->type == EDID_DETAIL_STD_MODES) {
int i;
for (i = 0; i < 6; i++) {
struct std_timing *std;
struct drm_display_mode *newmode;
std = &data->data.timings[i];
newmode = drm_mode_std(connector, edid, std,
edid->revision);
if (newmode) {
drm_mode_probed_add(connector, newmode);
closure->modes++;
}
}
}
}
/**
* add_standard_modes - get std. modes from EDID and add them
* @edid: EDID block to scan
*
* Standard modes can be calculated using the appropriate standard (DMT,
* GTF or CVT. Grab them from @edid and add them to the list.
*/
static int
add_standard_modes(struct drm_connector *connector, struct edid *edid)
{
int i, modes = 0;
struct detailed_mode_closure closure = {
connector, edid, 0, 0, 0
};
for (i = 0; i < EDID_STD_TIMINGS; i++) {
struct drm_display_mode *newmode;
newmode = drm_mode_std(connector, edid,
&edid->standard_timings[i],
edid->revision);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
if (version_greater(edid, 1, 0))
drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
&closure);
/* XXX should also look for standard codes in VTB blocks */
return modes + closure.modes;
}
static int drm_cvt_modes(struct drm_connector *connector,
struct detailed_timing *timing)
{
int i, j, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
struct cvt_timing *cvt;
const int rates[] = { 60, 85, 75, 60, 50 };
const u8 empty[3] = { 0, 0, 0 };
for (i = 0; i < 4; i++) {
int uninitialized_var(width), height;
cvt = &(timing->data.other_data.data.cvt[i]);
if (!memcmp(cvt->code, empty, 3))
continue;
height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
switch (cvt->code[1] & 0x0c) {
case 0x00:
width = height * 4 / 3;
break;
case 0x04:
width = height * 16 / 9;
break;
case 0x08:
width = height * 16 / 10;
break;
case 0x0c:
width = height * 15 / 9;
break;
}
for (j = 1; j < 5; j++) {
if (cvt->code[2] & (1 << j)) {
newmode = drm_cvt_mode(dev, width, height,
rates[j], j == 0,
false, false);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
}
}
return modes;
}
static void
do_cvt_mode(struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
struct detailed_non_pixel *data = &timing->data.other_data;
if (data->type == EDID_DETAIL_CVT_3BYTE)
closure->modes += drm_cvt_modes(closure->connector, timing);
}
static int
add_cvt_modes(struct drm_connector *connector, struct edid *edid)
{
struct detailed_mode_closure closure = {
connector, edid, 0, 0, 0
};
if (version_greater(edid, 1, 2))
drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
/* XXX should also look for CVT codes in VTB blocks */
return closure.modes;
}
static void
do_detailed_mode(struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
struct drm_display_mode *newmode;
if (timing->pixel_clock) {
newmode = drm_mode_detailed(closure->connector->dev,
closure->edid, timing,
closure->quirks);
if (!newmode)
return;
if (closure->preferred)
newmode->type |= DRM_MODE_TYPE_PREFERRED;
drm_mode_probed_add(closure->connector, newmode);
closure->modes++;
closure->preferred = 0;
}
}
/*
* add_detailed_modes - Add modes from detailed timings
* @connector: attached connector
* @edid: EDID block to scan
* @quirks: quirks to apply
*/
static int
add_detailed_modes(struct drm_connector *connector, struct edid *edid,
u32 quirks)
{
struct detailed_mode_closure closure = {
connector,
edid,
1,
quirks,
0
};
if (closure.preferred && !version_greater(edid, 1, 3))
closure.preferred =
(edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
return closure.modes;
}
#define HDMI_IDENTIFIER 0x000C03
#define AUDIO_BLOCK 0x01
#define VIDEO_BLOCK 0x02
#define VENDOR_BLOCK 0x03
#define SPEAKER_BLOCK 0x04
#define EDID_BASIC_AUDIO (1 << 6)
/**
* Search EDID for CEA extension block.
*/
u8 *drm_find_cea_extension(struct edid *edid)
{
u8 *edid_ext = NULL;
int i;
/* No EDID or EDID extensions */
if (edid == NULL || edid->extensions == 0)
return NULL;
/* Find CEA extension */
for (i = 0; i < edid->extensions; i++) {
edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
if (edid_ext[0] == CEA_EXT)
break;
}
if (i == edid->extensions)
return NULL;
return edid_ext;
}
EXPORT_SYMBOL(drm_find_cea_extension);
static int
do_cea_modes (struct drm_connector *connector, u8 *db, u8 len)
{
struct drm_device *dev = connector->dev;
u8 * mode, cea_mode;
int modes = 0;
for (mode = db; mode < db + len; mode++) {
cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */
if (cea_mode < drm_num_cea_modes) {
struct drm_display_mode *newmode;
newmode = drm_mode_duplicate(dev,
&edid_cea_modes[cea_mode]);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
}
return modes;
}
static int
add_cea_modes(struct drm_connector *connector, struct edid *edid)
{
u8 * cea = drm_find_cea_extension(edid);
u8 * db, dbl;
int modes = 0;
if (cea && cea[1] >= 3) {
for (db = cea + 4; db < cea + cea[2]; db += dbl + 1) {
dbl = db[0] & 0x1f;
if (((db[0] & 0xe0) >> 5) == VIDEO_BLOCK)
modes += do_cea_modes (connector, db+1, dbl);
}
}
return modes;
}
static void
parse_hdmi_vsdb(struct drm_connector *connector, uint8_t *db)
{
connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */
connector->dvi_dual = db[6] & 1;
connector->max_tmds_clock = db[7] * 5;
connector->latency_present[0] = db[8] >> 7;
connector->latency_present[1] = (db[8] >> 6) & 1;
connector->video_latency[0] = db[9];
connector->audio_latency[0] = db[10];
connector->video_latency[1] = db[11];
connector->audio_latency[1] = db[12];
DRM_LOG_KMS("HDMI: DVI dual %d, "
"max TMDS clock %d, "
"latency present %d %d, "
"video latency %d %d, "
"audio latency %d %d\n",
connector->dvi_dual,
connector->max_tmds_clock,
(int) connector->latency_present[0],
(int) connector->latency_present[1],
connector->video_latency[0],
connector->video_latency[1],
connector->audio_latency[0],
connector->audio_latency[1]);
}
static void
monitor_name(struct detailed_timing *t, void *data)
{
if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
*(u8 **)data = t->data.other_data.data.str.str;
}
/**
* drm_edid_to_eld - build ELD from EDID
* @connector: connector corresponding to the HDMI/DP sink
* @edid: EDID to parse
*
* Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
* Some ELD fields are left to the graphics driver caller:
* - Conn_Type
* - HDCP
* - Port_ID
*/
void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
{
uint8_t *eld = connector->eld;
u8 *cea;
u8 *name;
u8 *db;
int sad_count = 0;
int mnl;
int dbl;
memset(eld, 0, sizeof(connector->eld));
cea = drm_find_cea_extension(edid);
if (!cea) {
DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
return;
}
name = NULL;
drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
for (mnl = 0; name && mnl < 13; mnl++) {
if (name[mnl] == 0x0a)
break;
eld[20 + mnl] = name[mnl];
}
eld[4] = (cea[1] << 5) | mnl;
DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
eld[0] = 2 << 3; /* ELD version: 2 */
eld[16] = edid->mfg_id[0];
eld[17] = edid->mfg_id[1];
eld[18] = edid->prod_code[0];
eld[19] = edid->prod_code[1];
if (cea[1] >= 3)
for (db = cea + 4; db < cea + cea[2]; db += dbl + 1) {
dbl = db[0] & 0x1f;
switch ((db[0] & 0xe0) >> 5) {
case AUDIO_BLOCK:
/* Audio Data Block, contains SADs */
sad_count = dbl / 3;
memcpy(eld + 20 + mnl, &db[1], dbl);
break;
case SPEAKER_BLOCK:
/* Speaker Allocation Data Block */
eld[7] = db[1];
break;
case VENDOR_BLOCK:
/* HDMI Vendor-Specific Data Block */
if (db[1] == 0x03 && db[2] == 0x0c && db[3] == 0)
parse_hdmi_vsdb(connector, db);
break;
default:
break;
}
}
eld[5] |= sad_count << 4;
eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
}
EXPORT_SYMBOL(drm_edid_to_eld);
/**
* drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
* @connector: connector associated with the HDMI/DP sink
* @mode: the display mode
*/
int drm_av_sync_delay(struct drm_connector *connector,
struct drm_display_mode *mode)
{
int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
int a, v;
if (!connector->latency_present[0])
return 0;
if (!connector->latency_present[1])
i = 0;
a = connector->audio_latency[i];
v = connector->video_latency[i];
/*
* HDMI/DP sink doesn't support audio or video?
*/
if (a == 255 || v == 255)
return 0;
/*
* Convert raw EDID values to millisecond.
* Treat unknown latency as 0ms.
*/
if (a)
a = min(2 * (a - 1), 500);
if (v)
v = min(2 * (v - 1), 500);
return max(v - a, 0);
}
EXPORT_SYMBOL(drm_av_sync_delay);
/**
* drm_select_eld - select one ELD from multiple HDMI/DP sinks
* @encoder: the encoder just changed display mode
* @mode: the adjusted display mode
*
* It's possible for one encoder to be associated with multiple HDMI/DP sinks.
* The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
*/
struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct drm_connector *connector;
struct drm_device *dev = encoder->dev;
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
if (connector->encoder == encoder && connector->eld[0])
return connector;
return NULL;
}
EXPORT_SYMBOL(drm_select_eld);
/**
* drm_detect_hdmi_monitor - detect whether monitor is hdmi.
* @edid: monitor EDID information
*
* Parse the CEA extension according to CEA-861-B.
* Return true if HDMI, false if not or unknown.
*/
bool drm_detect_hdmi_monitor(struct edid *edid)
{
u8 *edid_ext;
int i, hdmi_id;
int start_offset, end_offset;
bool is_hdmi = false;
edid_ext = drm_find_cea_extension(edid);
if (!edid_ext)
goto end;
/* Data block offset in CEA extension block */
start_offset = 4;
end_offset = edid_ext[2];
/*
* Because HDMI identifier is in Vendor Specific Block,
* search it from all data blocks of CEA extension.
*/
for (i = start_offset; i < end_offset;
/* Increased by data block len */
i += ((edid_ext[i] & 0x1f) + 1)) {
/* Find vendor specific block */
if ((edid_ext[i] >> 5) == VENDOR_BLOCK) {
hdmi_id = edid_ext[i + 1] | (edid_ext[i + 2] << 8) |
edid_ext[i + 3] << 16;
/* Find HDMI identifier */
if (hdmi_id == HDMI_IDENTIFIER)
is_hdmi = true;
break;
}
}
end:
return is_hdmi;
}
EXPORT_SYMBOL(drm_detect_hdmi_monitor);
/**
* drm_detect_monitor_audio - check monitor audio capability
*
* Monitor should have CEA extension block.
* If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
* audio' only. If there is any audio extension block and supported
* audio format, assume at least 'basic audio' support, even if 'basic
* audio' is not defined in EDID.
*
*/
bool drm_detect_monitor_audio(struct edid *edid)
{
u8 *edid_ext;
int i, j;
bool has_audio = false;
int start_offset, end_offset;
edid_ext = drm_find_cea_extension(edid);
if (!edid_ext)
goto end;
has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
if (has_audio) {
DRM_DEBUG_KMS("Monitor has basic audio support\n");
goto end;
}
/* Data block offset in CEA extension block */
start_offset = 4;
end_offset = edid_ext[2];
for (i = start_offset; i < end_offset;
i += ((edid_ext[i] & 0x1f) + 1)) {
if ((edid_ext[i] >> 5) == AUDIO_BLOCK) {
has_audio = true;
for (j = 1; j < (edid_ext[i] & 0x1f); j += 3)
DRM_DEBUG_KMS("CEA audio format %d\n",
(edid_ext[i + j] >> 3) & 0xf);
goto end;
}
}
end:
return has_audio;
}
EXPORT_SYMBOL(drm_detect_monitor_audio);
/**
* drm_add_display_info - pull display info out if present
* @edid: EDID data
* @info: display info (attached to connector)
*
* Grab any available display info and stuff it into the drm_display_info
* structure that's part of the connector. Useful for tracking bpp and
* color spaces.
*/
static void drm_add_display_info(struct edid *edid,
struct drm_display_info *info)
{
u8 *edid_ext;
info->width_mm = edid->width_cm * 10;
info->height_mm = edid->height_cm * 10;
/* driver figures it out in this case */
info->bpc = 0;
info->color_formats = 0;
/* Only defined for 1.4 with digital displays */
if (edid->revision < 4)
return;
if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
return;
switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
case DRM_EDID_DIGITAL_DEPTH_6:
info->bpc = 6;
break;
case DRM_EDID_DIGITAL_DEPTH_8:
info->bpc = 8;
break;
case DRM_EDID_DIGITAL_DEPTH_10:
info->bpc = 10;
break;
case DRM_EDID_DIGITAL_DEPTH_12:
info->bpc = 12;
break;
case DRM_EDID_DIGITAL_DEPTH_14:
info->bpc = 14;
break;
case DRM_EDID_DIGITAL_DEPTH_16:
info->bpc = 16;
break;
case DRM_EDID_DIGITAL_DEPTH_UNDEF:
default:
info->bpc = 0;
break;
}
info->color_formats = DRM_COLOR_FORMAT_RGB444;
if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
/* Get data from CEA blocks if present */
edid_ext = drm_find_cea_extension(edid);
if (!edid_ext)
return;
info->cea_rev = edid_ext[1];
}
/**
* drm_add_edid_modes - add modes from EDID data, if available
* @connector: connector we're probing
* @edid: edid data
*
* Add the specified modes to the connector's mode list.
*
* Return number of modes added or 0 if we couldn't find any.
*/
int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
{
int num_modes = 0;
u32 quirks;
if (edid == NULL) {
return 0;
}
if (!drm_edid_is_valid(edid)) {
dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
drm_get_connector_name(connector));
return 0;
}
quirks = edid_get_quirks(edid);
/*
* EDID spec says modes should be preferred in this order:
* - preferred detailed mode
* - other detailed modes from base block
* - detailed modes from extension blocks
* - CVT 3-byte code modes
* - standard timing codes
* - established timing codes
* - modes inferred from GTF or CVT range information
*
* We get this pretty much right.
*
* XXX order for additional mode types in extension blocks?
*/
num_modes += add_detailed_modes(connector, edid, quirks);
num_modes += add_cvt_modes(connector, edid);
num_modes += add_standard_modes(connector, edid);
num_modes += add_established_modes(connector, edid);
num_modes += add_inferred_modes(connector, edid);
num_modes += add_cea_modes(connector, edid);
if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
edid_fixup_preferred(connector, quirks);
drm_add_display_info(edid, &connector->display_info);
return num_modes;
}
EXPORT_SYMBOL(drm_add_edid_modes);
/**
* drm_add_modes_noedid - add modes for the connectors without EDID
* @connector: connector we're probing
* @hdisplay: the horizontal display limit
* @vdisplay: the vertical display limit
*
* Add the specified modes to the connector's mode list. Only when the
* hdisplay/vdisplay is not beyond the given limit, it will be added.
*
* Return number of modes added or 0 if we couldn't find any.
*/
int drm_add_modes_noedid(struct drm_connector *connector,
int hdisplay, int vdisplay)
{
int i, count, num_modes = 0;
struct drm_display_mode *mode;
struct drm_device *dev = connector->dev;
count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
if (hdisplay < 0)
hdisplay = 0;
if (vdisplay < 0)
vdisplay = 0;
for (i = 0; i < count; i++) {
const struct drm_display_mode *ptr = &drm_dmt_modes[i];
if (hdisplay && vdisplay) {
/*
* Only when two are valid, they will be used to check
* whether the mode should be added to the mode list of
* the connector.
*/
if (ptr->hdisplay > hdisplay ||
ptr->vdisplay > vdisplay)
continue;
}
if (drm_mode_vrefresh(ptr) > 61)
continue;
mode = drm_mode_duplicate(dev, ptr);
if (mode) {
drm_mode_probed_add(connector, mode);
num_modes++;
}
}
return num_modes;
}
EXPORT_SYMBOL(drm_add_modes_noedid);