aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/edac/i5400_edac.c
blob: b08b6d8e2dc7c20cb101c7c611c3cd99a483a97b (plain) (tree)
1
2
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
  
                                                              






















































                                                                                             



                                                                  
   















































































































                                                                                                                    
                                   




                                                                    
                                     


                                                                        
                                      






                                                                            
                                      

































































                                                                        









                                                                  
 






                                                                  





                                                           

                                                                    















                                                                            
                                        






                           
                                        






































                                                                       
                                                                          


                                                                         
                                                                          























                                                                             
                                                                         




























































































































































































                                                                              



                                                                           

























                                                                       
                                                                   







































                                                                              



                                                                           




































































                                                                           



                                            






























































































                                                                                


                                                                               




























                                                                        
                                                                               













                                                                       

                                                                         


























                                                               
                                                                   












































































































































































































































































































































































                                                                                


                                              













































































































































































                                                                               
                             




































                                                                      




                                                                    


                                                                            
/*
 * Intel 5400 class Memory Controllers kernel module (Seaburg)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 * Copyright (c) 2008 by:
 *	 Ben Woodard <woodard@redhat.com>
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5000_edac driver which was
 * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
 *
 * This module is based on the following document:
 *
 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/mmzone.h>

#include "edac_core.h"

/*
 * Alter this version for the I5400 module when modifications are made
 */
#define I5400_REVISION    " Ver: 1.0.0 " __DATE__

#define EDAC_MOD_STR      "i5400_edac"

#define i5400_printk(level, fmt, arg...) \
	edac_printk(level, "i5400", fmt, ##arg)

#define i5400_mc_printk(mci, level, fmt, arg...) \
	edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)

/* Limits for i5400 */
#define NUM_MTRS_PER_BRANCH	4
#define CHANNELS_PER_BRANCH	2
#define	MAX_CHANNELS		4
#define MAX_DIMMS		(MAX_CHANNELS * 4)	/* Up to 4 DIMM's per channel */
#define MAX_CSROWS		(MAX_DIMMS * 2)		/* max possible csrows per channel */

/* Device 16,
 * Function 0: System Address
 * Function 1: Memory Branch Map, Control, Errors Register
 * Function 2: FSB Error Registers
 *
 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
 * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
 * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
 * for device 21 (0,1).
 */

	/* OFFSETS for Function 0 */
#define		AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
#define		MAXCH			0x56 /* Max Channel Number */
#define		MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */

	/* OFFSETS for Function 1 */
#define		TOLM			0x6C
#define		REDMEMB			0x7C
#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
#define		MIR0			0x80
#define		MIR1			0x84
#define		AMIR0			0x8c
#define		AMIR1			0x90

	/* Fatal error registers */
#define		FERR_FAT_FBD		0x98	/* also called as FERR_FAT_FB_DIMM at datasheet */
#define			FERR_FAT_FBDCHAN (3<<28)	/* channel index where the highest-order error occurred */

#define		NERR_FAT_FBD		0x9c
#define		FERR_NF_FBD		0xa0	/* also called as FERR_NFAT_FB_DIMM at datasheet */

	/* Non-fatal error register */
#define		NERR_NF_FBD		0xa4

	/* Enable error mask */
#define		EMASK_FBD		0xa8

#define		ERR0_FBD		0xac
#define		ERR1_FBD		0xb0
#define		ERR2_FBD		0xb4
#define		MCERR_FBD		0xb8

	/* No OFFSETS for Device 16 Function 2 */

/*
 * Device 21,
 * Function 0: Memory Map Branch 0
 *
 * Device 22,
 * Function 0: Memory Map Branch 1
 */

	/* OFFSETS for Function 0 */
#define AMBPRESENT_0	0x64
#define AMBPRESENT_1	0x66
#define MTR0		0x80
#define MTR1		0x82
#define MTR2		0x84
#define MTR3		0x86

	/* OFFSETS for Function 1 */
#define NRECFGLOG		0x74
#define RECFGLOG		0x78
#define NRECMEMA		0xbe
#define NRECMEMB		0xc0
#define NRECFB_DIMMA		0xc4
#define NRECFB_DIMMB		0xc8
#define NRECFB_DIMMC		0xcc
#define NRECFB_DIMMD		0xd0
#define NRECFB_DIMME		0xd4
#define NRECFB_DIMMF		0xd8
#define REDMEMA			0xdC
#define RECMEMA			0xf0
#define RECMEMB			0xf4
#define RECFB_DIMMA		0xf8
#define RECFB_DIMMB		0xec
#define RECFB_DIMMC		0xf0
#define RECFB_DIMMD		0xf4
#define RECFB_DIMME		0xf8
#define RECFB_DIMMF		0xfC

/*
 * Error indicator bits and masks
 * Error masks are according with Table 5-17 of i5400 datasheet
 */

enum error_mask {
	EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
	EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
	EMASK_M3  = 1<<2,  /* Reserved */
	EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
	EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
	EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
	EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
	EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
	EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
	EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
	EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
	EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
	EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
	EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
	EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
	EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
	EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
	EMASK_M18 = 1<<17, /* Unsupported on i5400 */
	EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
	EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
	EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
	EMASK_M22 = 1<<21, /* SPD protocol Error */
	EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
	EMASK_M24 = 1<<23, /* Refresh error */
	EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
	EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
	EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
	EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
	EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
};

/*
 * Names to translate bit error into something useful
 */
static const char *error_name[] = {
	[0]  = "Memory Write error on non-redundant retry",
	[1]  = "Memory or FB-DIMM configuration CRC read error",
	/* Reserved */
	[3]  = "Uncorrectable Data ECC on Replay",
	[4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
	/* M6 Unsupported on i5400 */
	[6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
	[7]  = "Aliased Uncorrectable Patrol Data ECC",
	[8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
	/* M10 Unsupported on i5400 */
	[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
	[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
	[12] = "Memory Write error on first attempt",
	[13] = "FB-DIMM Configuration Write error on first attempt",
	[14] = "Memory or FB-DIMM configuration CRC read error",
	[15] = "Channel Failed-Over Occurred",
	[16] = "Correctable Non-Mirrored Demand Data ECC",
	/* M18 Unsupported on i5400 */
	[18] = "Correctable Resilver- or Spare-Copy Data ECC",
	[19] = "Correctable Patrol Data ECC",
	[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
	[21] = "SPD protocol Error",
	[22] = "Non-Redundant Fast Reset Timeout",
	[23] = "Refresh error",
	[24] = "Memory Write error on redundant retry",
	[25] = "Redundant Fast Reset Timeout",
	[26] = "Correctable Counter Threshold Exceeded",
	[27] = "DIMM-Spare Copy Completed",
	[28] = "DIMM-Isolation Completed",
};

/* Fatal errors */
#define ERROR_FAT_MASK		(EMASK_M1 | \
				 EMASK_M2 | \
				 EMASK_M23)

/* Correctable errors */
#define ERROR_NF_CORRECTABLE	(EMASK_M27 | \
				 EMASK_M20 | \
				 EMASK_M19 | \
				 EMASK_M18 | \
				 EMASK_M17 | \
				 EMASK_M16)
#define ERROR_NF_DIMM_SPARE	(EMASK_M29 | \
				 EMASK_M28)
#define ERROR_NF_SPD_PROTOCOL	(EMASK_M22)
#define ERROR_NF_NORTH_CRC	(EMASK_M21)

/* Recoverable errors */
#define ERROR_NF_RECOVERABLE	(EMASK_M26 | \
				 EMASK_M25 | \
				 EMASK_M24 | \
				 EMASK_M15 | \
				 EMASK_M14 | \
				 EMASK_M13 | \
				 EMASK_M12 | \
				 EMASK_M11 | \
				 EMASK_M9  | \
				 EMASK_M8  | \
				 EMASK_M7  | \
				 EMASK_M5)

/* uncorrectable errors */
#define ERROR_NF_UNCORRECTABLE	(EMASK_M4)

/* mask to all non-fatal errors */
#define ERROR_NF_MASK		(ERROR_NF_CORRECTABLE   | \
				 ERROR_NF_UNCORRECTABLE | \
				 ERROR_NF_RECOVERABLE   | \
				 ERROR_NF_DIMM_SPARE    | \
				 ERROR_NF_SPD_PROTOCOL  | \
				 ERROR_NF_NORTH_CRC)

/*
 * Define error masks for the several registers
 */

/* Enable all fatal and non fatal errors */
#define ENABLE_EMASK_ALL	(ERROR_FAT_MASK | ERROR_NF_MASK)

/* mask for fatal error registers */
#define FERR_FAT_MASK ERROR_FAT_MASK

/* masks for non-fatal error register */
static inline int to_nf_mask(unsigned int mask)
{
	return (mask & EMASK_M29) | (mask >> 3);
};

static inline int from_nf_ferr(unsigned int mask)
{
	return (mask & EMASK_M29) |		/* Bit 28 */
	       (mask & ((1 << 28) - 1) << 3);	/* Bits 0 to 27 */
};

#define FERR_NF_MASK		to_nf_mask(ERROR_NF_MASK)
#define FERR_NF_CORRECTABLE	to_nf_mask(ERROR_NF_CORRECTABLE)
#define FERR_NF_DIMM_SPARE	to_nf_mask(ERROR_NF_DIMM_SPARE)
#define FERR_NF_SPD_PROTOCOL	to_nf_mask(ERROR_NF_SPD_PROTOCOL)
#define FERR_NF_NORTH_CRC	to_nf_mask(ERROR_NF_NORTH_CRC)
#define FERR_NF_RECOVERABLE	to_nf_mask(ERROR_NF_RECOVERABLE)
#define FERR_NF_UNCORRECTABLE	to_nf_mask(ERROR_NF_UNCORRECTABLE)

/* Defines to extract the vaious fields from the
 *	MTRx - Memory Technology Registers
 */
#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 10))
#define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 9))
#define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 8)) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
#define MTR_DIMM_RANK(mtr)		(((mtr) >> 5) & 0x1)
#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)

/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
static inline int extract_fbdchan_indx(u32 x)
{
	return (x>>28) & 0x3;
}

#ifdef CONFIG_EDAC_DEBUG
/* MTR NUMROW */
static const char *numrow_toString[] = {
	"8,192 - 13 rows",
	"16,384 - 14 rows",
	"32,768 - 15 rows",
	"65,536 - 16 rows"
};

/* MTR NUMCOL */
static const char *numcol_toString[] = {
	"1,024 - 10 columns",
	"2,048 - 11 columns",
	"4,096 - 12 columns",
	"reserved"
};
#endif

/* Device name and register DID (Device ID) */
struct i5400_dev_info {
	const char *ctl_name;	/* name for this device */
	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
};

/* Table of devices attributes supported by this driver */
static const struct i5400_dev_info i5400_devs[] = {
	{
		.ctl_name = "I5400",
		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
	},
};

struct i5400_dimm_info {
	int megabytes;		/* size, 0 means not present  */
	int dual_rank;
};

/* driver private data structure */
struct i5400_pvt {
	struct pci_dev *system_address;		/* 16.0 */
	struct pci_dev *branchmap_werrors;	/* 16.1 */
	struct pci_dev *fsb_error_regs;		/* 16.2 */
	struct pci_dev *branch_0;		/* 21.0 */
	struct pci_dev *branch_1;		/* 22.0 */

	u16 tolm;				/* top of low memory */
	u64 ambase;				/* AMB BAR */

	u16 mir0, mir1;

	u16 b0_mtr[NUM_MTRS_PER_BRANCH];	/* Memory Technlogy Reg */
	u16 b0_ambpresent0;			/* Branch 0, Channel 0 */
	u16 b0_ambpresent1;			/* Brnach 0, Channel 1 */

	u16 b1_mtr[NUM_MTRS_PER_BRANCH];	/* Memory Technlogy Reg */
	u16 b1_ambpresent0;			/* Branch 1, Channel 8 */
	u16 b1_ambpresent1;			/* Branch 1, Channel 1 */

	/* DIMM information matrix, allocating architecture maximums */
	struct i5400_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];

	/* Actual values for this controller */
	int maxch;				/* Max channels */
	int maxdimmperch;			/* Max DIMMs per channel */
};

/* I5400 MCH error information retrieved from Hardware */
struct i5400_error_info {
	/* These registers are always read from the MC */
	u32 ferr_fat_fbd;	/* First Errors Fatal */
	u32 nerr_fat_fbd;	/* Next Errors Fatal */
	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */

	/* These registers are input ONLY if there was a Recoverable Error */
	u32 redmemb;		/* Recoverable Mem Data Error log B */
	u16 recmema;		/* Recoverable Mem Error log A */
	u32 recmemb;		/* Recoverable Mem Error log B */

	/* These registers are input ONLY if there was a Non-Rec Error */
	u16 nrecmema;		/* Non-Recoverable Mem log A */
	u16 nrecmemb;		/* Non-Recoverable Mem log B */

};

/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
   5400 better to use an inline function than a macro in this case */
static inline int nrec_bank(struct i5400_error_info *info)
{
	return ((info->nrecmema) >> 12) & 0x7;
}
static inline int nrec_rank(struct i5400_error_info *info)
{
	return ((info->nrecmema) >> 8) & 0xf;
}
static inline int nrec_buf_id(struct i5400_error_info *info)
{
	return ((info->nrecmema)) & 0xff;
}
static inline int nrec_rdwr(struct i5400_error_info *info)
{
	return (info->nrecmemb) >> 31;
}
/* This applies to both NREC and REC string so it can be used with nrec_rdwr
   and rec_rdwr */
static inline const char *rdwr_str(int rdwr)
{
	return rdwr ? "Write" : "Read";
}
static inline int nrec_cas(struct i5400_error_info *info)
{
	return ((info->nrecmemb) >> 16) & 0x1fff;
}
static inline int nrec_ras(struct i5400_error_info *info)
{
	return (info->nrecmemb) & 0xffff;
}
static inline int rec_bank(struct i5400_error_info *info)
{
	return ((info->recmema) >> 12) & 0x7;
}
static inline int rec_rank(struct i5400_error_info *info)
{
	return ((info->recmema) >> 8) & 0xf;
}
static inline int rec_rdwr(struct i5400_error_info *info)
{
	return (info->recmemb) >> 31;
}
static inline int rec_cas(struct i5400_error_info *info)
{
	return ((info->recmemb) >> 16) & 0x1fff;
}
static inline int rec_ras(struct i5400_error_info *info)
{
	return (info->recmemb) & 0xffff;
}

static struct edac_pci_ctl_info *i5400_pci;

/*
 *	i5400_get_error_info	Retrieve the hardware error information from
 *				the hardware and cache it in the 'info'
 *				structure
 */
static void i5400_get_error_info(struct mem_ctl_info *mci,
				 struct i5400_error_info *info)
{
	struct i5400_pvt *pvt;
	u32 value;

	pvt = mci->pvt_info;

	/* read in the 1st FATAL error register */
	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);

	/* Mask only the bits that the doc says are valid
	 */
	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);

	/* If there is an error, then read in the
	   NEXT FATAL error register and the Memory Error Log Register A
	 */
	if (value & FERR_FAT_MASK) {
		info->ferr_fat_fbd = value;

		/* harvest the various error data we need */
		pci_read_config_dword(pvt->branchmap_werrors,
				NERR_FAT_FBD, &info->nerr_fat_fbd);
		pci_read_config_word(pvt->branchmap_werrors,
				NRECMEMA, &info->nrecmema);
		pci_read_config_word(pvt->branchmap_werrors,
				NRECMEMB, &info->nrecmemb);

		/* Clear the error bits, by writing them back */
		pci_write_config_dword(pvt->branchmap_werrors,
				FERR_FAT_FBD, value);
	} else {
		info->ferr_fat_fbd = 0;
		info->nerr_fat_fbd = 0;
		info->nrecmema = 0;
		info->nrecmemb = 0;
	}

	/* read in the 1st NON-FATAL error register */
	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);

	/* If there is an error, then read in the 1st NON-FATAL error
	 * register as well */
	if (value & FERR_NF_MASK) {
		info->ferr_nf_fbd = value;

		/* harvest the various error data we need */
		pci_read_config_dword(pvt->branchmap_werrors,
				NERR_NF_FBD, &info->nerr_nf_fbd);
		pci_read_config_word(pvt->branchmap_werrors,
				RECMEMA, &info->recmema);
		pci_read_config_dword(pvt->branchmap_werrors,
				RECMEMB, &info->recmemb);
		pci_read_config_dword(pvt->branchmap_werrors,
				REDMEMB, &info->redmemb);

		/* Clear the error bits, by writing them back */
		pci_write_config_dword(pvt->branchmap_werrors,
				FERR_NF_FBD, value);
	} else {
		info->ferr_nf_fbd = 0;
		info->nerr_nf_fbd = 0;
		info->recmema = 0;
		info->recmemb = 0;
		info->redmemb = 0;
	}
}

/*
 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
 * 					struct i5400_error_info *info,
 * 					int handle_errors);
 *
 *	handle the Intel FATAL and unrecoverable errors, if any
 */
static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
				    struct i5400_error_info *info,
				    unsigned long allErrors)
{
	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
	int branch;
	int channel;
	int bank;
	int buf_id;
	int rank;
	int rdwr;
	int ras, cas;
	int errnum;
	char *type = NULL;

	if (!allErrors)
		return;		/* if no error, return now */

	if (allErrors &  ERROR_FAT_MASK)
		type = "FATAL";
	else if (allErrors & FERR_NF_UNCORRECTABLE)
		type = "NON-FATAL uncorrected";
	else
		type = "NON-FATAL recoverable";

	/* ONLY ONE of the possible error bits will be set, as per the docs */

	branch = extract_fbdchan_indx(info->ferr_fat_fbd);
	channel = branch;

	/* Use the NON-Recoverable macros to extract data */
	bank = nrec_bank(info);
	rank = nrec_rank(info);
	buf_id = nrec_buf_id(info);
	rdwr = nrec_rdwr(info);
	ras = nrec_ras(info);
	cas = nrec_cas(info);

	debugf0("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
		"DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
		rank, channel, channel + 1, branch >> 1, bank,
		buf_id, rdwr_str(rdwr), ras, cas);

	/* Only 1 bit will be on */
	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));

	/* Form out message */
	snprintf(msg, sizeof(msg),
		 "%s (Branch=%d DRAM-Bank=%d Buffer ID = %d RDWR=%s "
		 "RAS=%d CAS=%d %s Err=0x%lx (%s))",
		 type, branch >> 1, bank, buf_id, rdwr_str(rdwr), ras, cas,
		 type, allErrors, error_name[errnum]);

	/* Call the helper to output message */
	edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
}

/*
 * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
 * 				struct i5400_error_info *info,
 * 				int handle_errors);
 *
 *	handle the Intel NON-FATAL errors, if any
 */
static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
					struct i5400_error_info *info)
{
	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
	unsigned long allErrors;
	int branch;
	int channel;
	int bank;
	int rank;
	int rdwr;
	int ras, cas;
	int errnum;

	/* mask off the Error bits that are possible */
	allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
	if (!allErrors)
		return;		/* if no error, return now */

	/* ONLY ONE of the possible error bits will be set, as per the docs */

	if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
		i5400_proccess_non_recoverable_info(mci, info, allErrors);
		return;
	}

	/* Correctable errors */
	if (allErrors & ERROR_NF_CORRECTABLE) {
		debugf0("\tCorrected bits= 0x%lx\n", allErrors);

		branch = extract_fbdchan_indx(info->ferr_nf_fbd);

		channel = 0;
		if (REC_ECC_LOCATOR_ODD(info->redmemb))
			channel = 1;

		/* Convert channel to be based from zero, instead of
		 * from branch base of 0 */
		channel += branch;

		bank = rec_bank(info);
		rank = rec_rank(info);
		rdwr = rec_rdwr(info);
		ras = rec_ras(info);
		cas = rec_cas(info);

		/* Only 1 bit will be on */
		errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));

		debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
			rank, channel, branch >> 1, bank,
			rdwr_str(rdwr), ras, cas);

		/* Form out message */
		snprintf(msg, sizeof(msg),
			 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
			 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
			 branch >> 1, bank, rdwr_str(rdwr), ras, cas,
			 allErrors, error_name[errnum]);

		/* Call the helper to output message */
		edac_mc_handle_fbd_ce(mci, rank, channel, msg);

		return;
	}

	/* Miscelaneous errors */
	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));

	branch = extract_fbdchan_indx(info->ferr_nf_fbd);

	i5400_mc_printk(mci, KERN_EMERG,
			"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
			branch >> 1, allErrors, error_name[errnum]);
}

/*
 *	i5400_process_error_info	Process the error info that is
 *	in the 'info' structure, previously retrieved from hardware
 */
static void i5400_process_error_info(struct mem_ctl_info *mci,
				struct i5400_error_info *info)
{	u32 allErrors;

	/* First handle any fatal errors that occurred */
	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
	i5400_proccess_non_recoverable_info(mci, info, allErrors);

	/* now handle any non-fatal errors that occurred */
	i5400_process_nonfatal_error_info(mci, info);
}

/*
 *	i5400_clear_error	Retrieve any error from the hardware
 *				but do NOT process that error.
 *				Used for 'clearing' out of previous errors
 *				Called by the Core module.
 */
static void i5400_clear_error(struct mem_ctl_info *mci)
{
	struct i5400_error_info info;

	i5400_get_error_info(mci, &info);
}

/*
 *	i5400_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i5400_check_error(struct mem_ctl_info *mci)
{
	struct i5400_error_info info;
	debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
	i5400_get_error_info(mci, &info);
	i5400_process_error_info(mci, &info);
}

/*
 *	i5400_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void i5400_put_devices(struct mem_ctl_info *mci)
{
	struct i5400_pvt *pvt;

	pvt = mci->pvt_info;

	/* Decrement usage count for devices */
	pci_dev_put(pvt->branch_1);
	pci_dev_put(pvt->branch_0);
	pci_dev_put(pvt->fsb_error_regs);
	pci_dev_put(pvt->branchmap_werrors);
}

/*
 *	i5400_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
{
	struct i5400_pvt *pvt;
	struct pci_dev *pdev;

	pvt = mci->pvt_info;
	pvt->branchmap_werrors = NULL;
	pvt->fsb_error_regs = NULL;
	pvt->branch_0 = NULL;
	pvt->branch_1 = NULL;

	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
	while (!pvt->branchmap_werrors || !pvt->fsb_error_regs) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
		if (!pdev) {
			/* End of list, leave */
			i5400_printk(KERN_ERR,
				"'system address,Process Bus' "
				"device not found:"
				"vendor 0x%x device 0x%x ERR funcs "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_5400_ERR);
			goto error;
		}

		/* Store device 16 funcs 1 and 2 */
		switch (PCI_FUNC(pdev->devfn)) {
		case 1:
			pvt->branchmap_werrors = pdev;
			break;
		case 2:
			pvt->fsb_error_regs = pdev;
			break;
		}
	}

	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
		pci_name(pvt->system_address),
		pvt->system_address->vendor, pvt->system_address->device);
	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
		pci_name(pvt->branchmap_werrors),
		pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
		pci_name(pvt->fsb_error_regs),
		pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);

	pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
				       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
	if (!pvt->branch_0) {
		i5400_printk(KERN_ERR,
			"MC: 'BRANCH 0' device not found:"
			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
		goto error;
	}

	/* If this device claims to have more than 2 channels then
	 * fetch Branch 1's information
	 */
	if (pvt->maxch < CHANNELS_PER_BRANCH)
		return 0;

	pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
				       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
	if (!pvt->branch_1) {
		i5400_printk(KERN_ERR,
			"MC: 'BRANCH 1' device not found:"
			"vendor 0x%x device 0x%x Func 0 "
			"(broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL,
			PCI_DEVICE_ID_INTEL_5400_FBD1);
		goto error;
	}

	return 0;

error:
	i5400_put_devices(mci);
	return -ENODEV;
}

/*
 *	determine_amb_present
 *
 *		the information is contained in NUM_MTRS_PER_BRANCH different
 *		registers determining which of the NUM_MTRS_PER_BRANCH requires
 *              knowing which channel is in question
 *
 *	2 branches, each with 2 channels
 *		b0_ambpresent0 for channel '0'
 *		b0_ambpresent1 for channel '1'
 *		b1_ambpresent0 for channel '2'
 *		b1_ambpresent1 for channel '3'
 */
static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
{
	int amb_present;

	if (channel < CHANNELS_PER_BRANCH) {
		if (channel & 0x1)
			amb_present = pvt->b0_ambpresent1;
		else
			amb_present = pvt->b0_ambpresent0;
	} else {
		if (channel & 0x1)
			amb_present = pvt->b1_ambpresent1;
		else
			amb_present = pvt->b1_ambpresent0;
	}

	return amb_present;
}

/*
 * determine_mtr(pvt, csrow, channel)
 *
 * return the proper MTR register as determine by the csrow and desired channel
 */
static int determine_mtr(struct i5400_pvt *pvt, int csrow, int channel)
{
	int mtr;
	int n;

	/* There is one MTR for each slot pair of FB-DIMMs,
	   Each slot may have one or two ranks (2 csrows),
	   Each slot pair may be at branch 0 or branch 1.
	   So, csrow should be divided by eight
	 */
	n = csrow >> 3;

	if (n >= NUM_MTRS_PER_BRANCH) {
		debugf0("ERROR: trying to access an invalid csrow: %d\n",
			csrow);
		return 0;
	}

	if (channel < CHANNELS_PER_BRANCH)
		mtr = pvt->b0_mtr[n];
	else
		mtr = pvt->b1_mtr[n];

	return mtr;
}

/*
 */
static void decode_mtr(int slot_row, u16 mtr)
{
	int ans;

	ans = MTR_DIMMS_PRESENT(mtr);

	debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
		ans ? "Present" : "NOT Present");
	if (!ans)
		return;

	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));

	debugf2("\t\tELECTRICAL THROTTLING is %s\n",
		MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");

	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
}

static void handle_channel(struct i5400_pvt *pvt, int csrow, int channel,
			struct i5400_dimm_info *dinfo)
{
	int mtr;
	int amb_present_reg;
	int addrBits;

	mtr = determine_mtr(pvt, csrow, channel);
	if (MTR_DIMMS_PRESENT(mtr)) {
		amb_present_reg = determine_amb_present_reg(pvt, channel);

		/* Determine if there is a DIMM present in this DIMM slot */
		if (amb_present_reg & (1 << (csrow >> 1))) {
			dinfo->dual_rank = MTR_DIMM_RANK(mtr);

			if (!((dinfo->dual_rank == 0) &&
				((csrow & 0x1) == 0x1))) {
				/* Start with the number of bits for a Bank
				 * on the DRAM */
				addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
				/* Add thenumber of ROW bits */
				addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
				/* add the number of COLUMN bits */
				addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);

				addrBits += 6;	/* add 64 bits per DIMM */
				addrBits -= 20;	/* divide by 2^^20 */
				addrBits -= 3;	/* 8 bits per bytes */

				dinfo->megabytes = 1 << addrBits;
			}
		}
	}
}

/*
 *	calculate_dimm_size
 *
 *	also will output a DIMM matrix map, if debug is enabled, for viewing
 *	how the DIMMs are populated
 */
static void calculate_dimm_size(struct i5400_pvt *pvt)
{
	struct i5400_dimm_info *dinfo;
	int csrow, max_csrows;
	char *p, *mem_buffer;
	int space, n;
	int channel;

	/* ================= Generate some debug output ================= */
	space = PAGE_SIZE;
	mem_buffer = p = kmalloc(space, GFP_KERNEL);
	if (p == NULL) {
		i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
			__FILE__, __func__);
		return;
	}

	/* Scan all the actual CSROWS (which is # of DIMMS * 2)
	 * and calculate the information for each DIMM
	 * Start with the highest csrow first, to display it first
	 * and work toward the 0th csrow
	 */
	max_csrows = pvt->maxdimmperch * 2;
	for (csrow = max_csrows - 1; csrow >= 0; csrow--) {

		/* on an odd csrow, first output a 'boundary' marker,
		 * then reset the message buffer  */
		if (csrow & 0x1) {
			n = snprintf(p, space, "---------------------------"
					"--------------------------------");
			p += n;
			space -= n;
			debugf2("%s\n", mem_buffer);
			p = mem_buffer;
			space = PAGE_SIZE;
		}
		n = snprintf(p, space, "csrow %2d    ", csrow);
		p += n;
		space -= n;

		for (channel = 0; channel < pvt->maxch; channel++) {
			dinfo = &pvt->dimm_info[csrow][channel];
			handle_channel(pvt, csrow, channel, dinfo);
			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
			p += n;
			space -= n;
		}
		debugf2("%s\n", mem_buffer);
		p = mem_buffer;
		space = PAGE_SIZE;
	}

	/* Output the last bottom 'boundary' marker */
	n = snprintf(p, space, "---------------------------"
			"--------------------------------");
	p += n;
	space -= n;
	debugf2("%s\n", mem_buffer);
	p = mem_buffer;
	space = PAGE_SIZE;

	/* now output the 'channel' labels */
	n = snprintf(p, space, "            ");
	p += n;
	space -= n;
	for (channel = 0; channel < pvt->maxch; channel++) {
		n = snprintf(p, space, "channel %d | ", channel);
		p += n;
		space -= n;
	}

	/* output the last message and free buffer */
	debugf2("%s\n", mem_buffer);
	kfree(mem_buffer);
}

/*
 *	i5400_get_mc_regs	read in the necessary registers and
 *				cache locally
 *
 *			Fills in the private data members
 */
static void i5400_get_mc_regs(struct mem_ctl_info *mci)
{
	struct i5400_pvt *pvt;
	u32 actual_tolm;
	u16 limit;
	int slot_row;
	int maxch;
	int maxdimmperch;
	int way0, way1;

	pvt = mci->pvt_info;

	pci_read_config_dword(pvt->system_address, AMBASE,
			(u32 *) &pvt->ambase);
	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
			((u32 *) &pvt->ambase) + sizeof(u32));

	maxdimmperch = pvt->maxdimmperch;
	maxch = pvt->maxch;

	debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
		(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);

	/* Get the Branch Map regs */
	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
	pvt->tolm >>= 12;
	debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
		pvt->tolm);

	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
	debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
		actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);

	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);

	/* Get the MIR[0-1] regs */
	limit = (pvt->mir0 >> 4) & 0x0fff;
	way0 = pvt->mir0 & 0x1;
	way1 = pvt->mir0 & 0x2;
	debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
	limit = (pvt->mir1 >> 4) & 0xfff;
	way0 = pvt->mir1 & 0x1;
	way1 = pvt->mir1 & 0x2;
	debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);

	/* Get the set of MTR[0-3] regs by each branch */
	for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++) {
		int where = MTR0 + (slot_row * sizeof(u32));

		/* Branch 0 set of MTR registers */
		pci_read_config_word(pvt->branch_0, where,
				&pvt->b0_mtr[slot_row]);

		debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
			pvt->b0_mtr[slot_row]);

		if (pvt->maxch < CHANNELS_PER_BRANCH) {
			pvt->b1_mtr[slot_row] = 0;
			continue;
		}

		/* Branch 1 set of MTR registers */
		pci_read_config_word(pvt->branch_1, where,
				&pvt->b1_mtr[slot_row]);
		debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row, where,
			pvt->b1_mtr[slot_row]);
	}

	/* Read and dump branch 0's MTRs */
	debugf2("\nMemory Technology Registers:\n");
	debugf2("   Branch 0:\n");
	for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);

	pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
			&pvt->b0_ambpresent0);
	debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
	pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
			&pvt->b0_ambpresent1);
	debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);

	/* Only if we have 2 branchs (4 channels) */
	if (pvt->maxch < CHANNELS_PER_BRANCH) {
		pvt->b1_ambpresent0 = 0;
		pvt->b1_ambpresent1 = 0;
	} else {
		/* Read and dump  branch 1's MTRs */
		debugf2("   Branch 1:\n");
		for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);

		pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
				&pvt->b1_ambpresent0);
		debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
			pvt->b1_ambpresent0);
		pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
				&pvt->b1_ambpresent1);
		debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
			pvt->b1_ambpresent1);
	}

	/* Go and determine the size of each DIMM and place in an
	 * orderly matrix */
	calculate_dimm_size(pvt);
}

/*
 *	i5400_init_csrows	Initialize the 'csrows' table within
 *				the mci control	structure with the
 *				addressing of memory.
 *
 *	return:
 *		0	success
 *		1	no actual memory found on this MC
 */
static int i5400_init_csrows(struct mem_ctl_info *mci)
{
	struct i5400_pvt *pvt;
	struct csrow_info *p_csrow;
	int empty, channel_count;
	int max_csrows;
	int mtr;
	int csrow_megs;
	int channel;
	int csrow;

	pvt = mci->pvt_info;

	channel_count = pvt->maxch;
	max_csrows = pvt->maxdimmperch * 2;

	empty = 1;		/* Assume NO memory */

	for (csrow = 0; csrow < max_csrows; csrow++) {
		p_csrow = &mci->csrows[csrow];

		p_csrow->csrow_idx = csrow;

		/* use branch 0 for the basis */
		mtr = determine_mtr(pvt, csrow, 0);

		/* if no DIMMS on this row, continue */
		if (!MTR_DIMMS_PRESENT(mtr))
			continue;

		/* FAKE OUT VALUES, FIXME */
		p_csrow->first_page = 0 + csrow * 20;
		p_csrow->last_page = 9 + csrow * 20;
		p_csrow->page_mask = 0xFFF;

		p_csrow->grain = 8;

		csrow_megs = 0;
		for (channel = 0; channel < pvt->maxch; channel++)
			csrow_megs += pvt->dimm_info[csrow][channel].megabytes;

		p_csrow->nr_pages = csrow_megs << 8;

		/* Assume DDR2 for now */
		p_csrow->mtype = MEM_FB_DDR2;

		/* ask what device type on this row */
		if (MTR_DRAM_WIDTH(mtr))
			p_csrow->dtype = DEV_X8;
		else
			p_csrow->dtype = DEV_X4;

		p_csrow->edac_mode = EDAC_S8ECD8ED;

		empty = 0;
	}

	return empty;
}

/*
 *	i5400_enable_error_reporting
 *			Turn on the memory reporting features of the hardware
 */
static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
{
	struct i5400_pvt *pvt;
	u32 fbd_error_mask;

	pvt = mci->pvt_info;

	/* Read the FBD Error Mask Register */
	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
			&fbd_error_mask);

	/* Enable with a '0' */
	fbd_error_mask &= ~(ENABLE_EMASK_ALL);

	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
			fbd_error_mask);
}

/*
 * i5400_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
 *
 *	ask the device how many channels are present and how many CSROWS
 *	 as well
 */
static void i5400_get_dimm_and_channel_counts(struct pci_dev *pdev,
					int *num_dimms_per_channel,
					int *num_channels)
{
	u8 value;

	/* Need to retrieve just how many channels and dimms per channel are
	 * supported on this memory controller
	 */
	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
	*num_dimms_per_channel = (int)value * 2;

	pci_read_config_byte(pdev, MAXCH, &value);
	*num_channels = (int)value;
}

/*
 *	i5400_probe1	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
{
	struct mem_ctl_info *mci;
	struct i5400_pvt *pvt;
	int num_channels;
	int num_dimms_per_channel;
	int num_csrows;

	if (dev_idx >= ARRAY_SIZE(i5400_devs))
		return -EINVAL;

	debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
		__func__,
		pdev->bus->number,
		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));

	/* We only are looking for func 0 of the set */
	if (PCI_FUNC(pdev->devfn) != 0)
		return -ENODEV;

	/* Ask the devices for the number of CSROWS and CHANNELS so
	 * that we can calculate the memory resources, etc
	 *
	 * The Chipset will report what it can handle which will be greater
	 * or equal to what the motherboard manufacturer will implement.
	 *
	 * As we don't have a motherboard identification routine to determine
	 * actual number of slots/dimms per channel, we thus utilize the
	 * resource as specified by the chipset. Thus, we might have
	 * have more DIMMs per channel than actually on the mobo, but this
	 * allows the driver to support upto the chipset max, without
	 * some fancy mobo determination.
	 */
	i5400_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
					&num_channels);
	num_csrows = num_dimms_per_channel * 2;

	debugf0("MC: %s(): Number of - Channels= %d  DIMMS= %d  CSROWS= %d\n",
		__func__, num_channels, num_dimms_per_channel, num_csrows);

	/* allocate a new MC control structure */
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);

	if (mci == NULL)
		return -ENOMEM;

	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);

	mci->dev = &pdev->dev;	/* record ptr  to the generic device */

	pvt = mci->pvt_info;
	pvt->system_address = pdev;	/* Record this device in our private */
	pvt->maxch = num_channels;
	pvt->maxdimmperch = num_dimms_per_channel;

	/* 'get' the pci devices we want to reserve for our use */
	if (i5400_get_devices(mci, dev_idx))
		goto fail0;

	/* Time to get serious */
	i5400_get_mc_regs(mci);	/* retrieve the hardware registers */

	mci->mc_idx = 0;
	mci->mtype_cap = MEM_FLAG_FB_DDR2;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i5400_edac.c";
	mci->mod_ver = I5400_REVISION;
	mci->ctl_name = i5400_devs[dev_idx].ctl_name;
	mci->dev_name = pci_name(pdev);
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = i5400_check_error;

	/* initialize the MC control structure 'csrows' table
	 * with the mapping and control information */
	if (i5400_init_csrows(mci)) {
		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
			"    because i5400_init_csrows() returned nonzero "
			"value\n");
		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
	} else {
		debugf1("MC: Enable error reporting now\n");
		i5400_enable_error_reporting(mci);
	}

	/* add this new MC control structure to EDAC's list of MCs */
	if (edac_mc_add_mc(mci)) {
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
		goto fail1;
	}

	i5400_clear_error(mci);

	/* allocating generic PCI control info */
	i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
	if (!i5400_pci) {
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

	return 0;

	/* Error exit unwinding stack */
fail1:

	i5400_put_devices(mci);

fail0:
	edac_mc_free(mci);
	return -ENODEV;
}

/*
 *	i5400_init_one	constructor for one instance of device
 *
 * 	returns:
 *		negative on error
 *		count (>= 0)
 */
static int __devinit i5400_init_one(struct pci_dev *pdev,
				const struct pci_device_id *id)
{
	int rc;

	debugf0("MC: " __FILE__ ": %s()\n", __func__);

	/* wake up device */
	rc = pci_enable_device(pdev);
	if (rc == -EIO)
		return rc;

	/* now probe and enable the device */
	return i5400_probe1(pdev, id->driver_data);
}

/*
 *	i5400_remove_one	destructor for one instance of device
 *
 */
static void __devexit i5400_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;

	debugf0(__FILE__ ": %s()\n", __func__);

	if (i5400_pci)
		edac_pci_release_generic_ctl(i5400_pci);

	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	/* retrieve references to resources, and free those resources */
	i5400_put_devices(mci);

	edac_mc_free(mci);
}

/*
 *	pci_device_id	table for which devices we are looking for
 *
 *	The "E500P" device is the first device supported.
 */
static const struct pci_device_id i5400_pci_tbl[] __devinitdata = {
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
	{0,}			/* 0 terminated list. */
};

MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);

/*
 *	i5400_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i5400_driver = {
	.name = "i5400_edac",
	.probe = i5400_init_one,
	.remove = __devexit_p(i5400_remove_one),
	.id_table = i5400_pci_tbl,
};

/*
 *	i5400_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i5400_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	pci_rc = pci_register_driver(&i5400_driver);

	return (pci_rc < 0) ? pci_rc : 0;
}

/*
 *	i5400_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i5400_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i5400_driver);
}

module_init(i5400_init);
module_exit(i5400_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
		   I5400_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");