/*
* Tty buffer allocation management
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/tty_flip.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/wait.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/module.h>
/**
* tty_buffer_free_all - free buffers used by a tty
* @tty: tty to free from
*
* Remove all the buffers pending on a tty whether queued with data
* or in the free ring. Must be called when the tty is no longer in use
*
* Locking: none
*/
void tty_buffer_free_all(struct tty_struct *tty)
{
struct tty_buffer *thead;
while ((thead = tty->buf.head) != NULL) {
tty->buf.head = thead->next;
kfree(thead);
}
while ((thead = tty->buf.free) != NULL) {
tty->buf.free = thead->next;
kfree(thead);
}
tty->buf.tail = NULL;
tty->buf.memory_used = 0;
}
/**
* tty_buffer_alloc - allocate a tty buffer
* @tty: tty device
* @size: desired size (characters)
*
* Allocate a new tty buffer to hold the desired number of characters.
* Return NULL if out of memory or the allocation would exceed the
* per device queue
*
* Locking: Caller must hold tty->buf.lock
*/
static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
{
struct tty_buffer *p;
if (tty->buf.memory_used + size > 65536)
return NULL;
p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
if (p == NULL)
return NULL;
p->used = 0;
p->size = size;
p->next = NULL;
p->commit = 0;
p->read = 0;
p->char_buf_ptr = (char *)(p->data);
p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
tty->buf.memory_used += size;
return p;
}
/**
* tty_buffer_free - free a tty buffer
* @tty: tty owning the buffer
* @b: the buffer to free
*
* Free a tty buffer, or add it to the free list according to our
* internal strategy
*
* Locking: Caller must hold tty->buf.lock
*/
static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
{
/* Dumb strategy for now - should keep some stats */
tty->buf.memory_used -= b->size;
WARN_ON(tty->buf.memory_used < 0);
if (b->size >= 512)
kfree(b);
else {
b->next = tty->buf.free;
tty->buf.free = b;
}
}
/**
* __tty_buffer_flush - flush full tty buffers
* @tty: tty to flush
*
* flush all the buffers containing receive data. Caller must
* hold the buffer lock and must have ensured no parallel flush to
* ldisc is running.
*
* Locking: Caller must hold tty->buf.lock
*/
static void __tty_buffer_flush(struct tty_struct *tty)
{
struct tty_buffer *thead;
while ((thead = tty->buf.head) != NULL) {
tty->buf.head = thead->next;
tty_buffer_free(tty, thead);
}
tty->buf.tail = NULL;
}
/**
* tty_buffer_flush - flush full tty buffers
* @tty: tty to flush
*
* flush all the buffers containing receive data. If the buffer is
* being processed by flush_to_ldisc then we defer the processing
* to that function
*
* Locking: none
*/
void tty_buffer_flush(struct tty_struct *tty)
{
unsigned long flags;
spin_lock_irqsave(&tty->buf.lock, flags);
/* If the data is being pushed to the tty layer then we can't
process it here. Instead set a flag and the flush_to_ldisc
path will process the flush request before it exits */
if (test_bit(TTY_FLUSHING, &tty->flags)) {
set_bit(TTY_FLUSHPENDING, &tty->flags);
spin_unlock_irqrestore(&tty->buf.lock, flags);
wait_event(tty->read_wait,
test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
return;
} else
__tty_buffer_flush(tty);
spin_unlock_irqrestore(&tty->buf.lock, flags);
}
/**
* tty_buffer_find - find a free tty buffer
* @tty: tty owning the buffer
* @size: characters wanted
*
* Locate an existing suitable tty buffer or if we are lacking one then
* allocate a new one. We round our buffers off in 256 character chunks
* to get better allocation behaviour.
*
* Locking: Caller must hold tty->buf.lock
*/
static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
{
struct tty_buffer **tbh = &tty->buf.free;
while ((*tbh) != NULL) {
struct tty_buffer *t = *tbh;
if (t->size >= size) {
*tbh = t->next;
t->next = NULL;
t->used = 0;
t->commit = 0;
t->read = 0;
tty->buf.memory_used += t->size;
return t;
}
tbh = &((*tbh)->next);
}
/* Round the buffer size out */
size = (size + 0xFF) & ~0xFF;
return tty_buffer_alloc(tty, size);
/* Should possibly check if this fails for the largest buffer we
have queued and recycle that ? */
}
/**
* tty_buffer_request_room - grow tty buffer if needed
* @tty: tty structure
* @size: size desired
*
* Make at least size bytes of linear space available for the tty
* buffer. If we fail return the size we managed to find.
*
* Locking: Takes tty->buf.lock
*/
int tty_buffer_request_room(struct tty_struct *tty, size_t size)
{
struct tty_buffer *b, *n;
int left;
unsigned long flags;
spin_lock_irqsave(&tty->buf.lock, flags);
/* OPTIMISATION: We could keep a per tty "zero" sized buffer to
remove this conditional if its worth it. This would be invisible
to the callers */
if ((b = tty->buf.tail) != NULL)
left = b->size - b->used;
else
left = 0;
if (left < size) {
/* This is the slow path - looking for new buffers to use */
if ((n = tty_buffer_find(tty, size)) != NULL) {
if (b != NULL) {
b->next = n;
b->commit = b->used;
} else
tty->buf.head = n;
tty->buf.tail = n;
} else
size = left;
}
spin_unlock_irqrestore(&tty->buf.lock, flags);
return size;
}
EXPORT_SYMBOL_GPL(tty_buffer_request_room);
/**
* tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
* @tty: tty structure
* @chars: characters
* @flag: flag value for each character
* @size: size
*
* Queue a series of bytes to the tty buffering. All the characters
* passed are marked with the supplied flag. Returns the number added.
*
* Locking: Called functions may take tty->buf.lock
*/
int tty_insert_flip_string_fixed_flag(struct tty_struct *tty,
const unsigned char *chars, char flag, size_t size)
{
int copied = 0;
do {
int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
int space = tty_buffer_request_room(tty, goal);
struct tty_buffer *tb = tty->buf.tail;
/* If there is no space then tb may be NULL */
if (unlikely(space == 0))
break;
memcpy(tb->char_buf_ptr + tb->used, chars, space);
memset(tb->flag_buf_ptr + tb->used, flag, space);
tb->used += space;
copied += space;
chars += space;
/* There is a small chance that we need to split the data over
several buffers. If this is the case we must loop */
} while (unlikely(size > copied));
return copied;
}
EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
/**
* tty_insert_flip_string_flags - Add characters to the tty buffer
* @tty: tty structure
* @chars: characters
* @flags: flag bytes
* @size: size
*
* Queue a series of bytes to the tty buffering. For each character
* the flags array indicates the status of the character. Returns the
* number added.
*
* Locking: Called functions may take tty->buf.lock
*/
int tty_insert_flip_string_flags(struct tty_struct *tty,
const unsigned char *chars, const char *flags, size_t size)
{
int copied = 0;
do {
int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
int space = tty_buffer_request_room(tty, goal);
struct tty_buffer *tb = tty->buf.tail;
/* If there is no space then tb may be NULL */
if (unlikely(space == 0))
break;
memcpy(tb->char_buf_ptr + tb->used, chars, space);
memcpy(tb->flag_buf_ptr + tb->used, flags, space);
tb->used += space;
copied += space;
chars += space;
flags += space;
/* There is a small chance that we need to split the data over
several buffers. If this is the case we must loop */
} while (unlikely(size > copied));
return copied;
}
EXPORT_SYMBOL(tty_insert_flip_string_flags);
/**
* tty_schedule_flip - push characters to ldisc
* @tty: tty to push from
*
* Takes any pending buffers and transfers their ownership to the
* ldisc side of the queue. It then schedules those characters for
* processing by the line discipline.
*
* Locking: Takes tty->buf.lock
*/
void tty_schedule_flip(struct tty_struct *tty)
{
unsigned long flags;
spin_lock_irqsave(&tty->buf.lock, flags);
if (tty->buf.tail != NULL)
tty->buf.tail->commit = tty->buf.tail->used;
spin_unlock_irqrestore(&tty->buf.lock, flags);
schedule_delayed_work(&tty->buf.work, 1);
}
EXPORT_SYMBOL(tty_schedule_flip);
/**
* tty_prepare_flip_string - make room for characters
* @tty: tty
* @chars: return pointer for character write area
* @size: desired size
*
* Prepare a block of space in the buffer for data. Returns the length
* available and buffer pointer to the space which is now allocated and
* accounted for as ready for normal characters. This is used for drivers
* that need their own block copy routines into the buffer. There is no
* guarantee the buffer is a DMA target!
*
* Locking: May call functions taking tty->buf.lock
*/
int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars,
size_t size)
{
int space = tty_buffer_request_room(tty, size);
if (likely(space)) {
struct tty_buffer *tb = tty->buf.tail;
*chars = tb->char_buf_ptr + tb->used;
memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
tb->used += space;
}
return space;
}
EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
/**
* tty_prepare_flip_string_flags - make room for characters
* @tty: tty
* @chars: return pointer for character write area
* @flags: return pointer for status flag write area
* @size: desired size
*
* Prepare a block of space in the buffer for data. Returns the length
* available and buffer pointer to the space which is now allocated and
* accounted for as ready for characters. This is used for drivers
* that need their own block copy routines into the buffer. There is no
* guarantee the buffer is a DMA target!
*
* Locking: May call functions taking tty->buf.lock
*/
int tty_prepare_flip_string_flags(struct tty_struct *tty,
unsigned char **chars, char **flags, size_t size)
{
int space = tty_buffer_request_room(tty, size);
if (likely(space)) {
struct tty_buffer *tb = tty->buf.tail;
*chars = tb->char_buf_ptr + tb->used;
*flags = tb->flag_buf_ptr + tb->used;
tb->used += space;
}
return space;
}
EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
/**
* flush_to_ldisc
* @work: tty structure passed from work queue.
*
* This routine is called out of the software interrupt to flush data
* from the buffer chain to the line discipline.
*
* Locking: holds tty->buf.lock to guard buffer list. Drops the lock
* while invoking the line discipline receive_buf method. The
* receive_buf method is single threaded for each tty instance.
*/
static void flush_to_ldisc(struct work_struct *work)
{
struct tty_struct *tty =
container_of(work, struct tty_struct, buf.work.work);
unsigned long flags;
struct tty_ldisc *disc;
disc = tty_ldisc_ref(tty);
if (disc == NULL) /* !TTY_LDISC */
return;
spin_lock_irqsave(&tty->buf.lock, flags);
if (!test_and_set_bit(TTY_FLUSHING, &tty->flags)) {
struct tty_buffer *head, *tail = tty->buf.tail;
int seen_tail = 0;
while ((head = tty->buf.head) != NULL) {
int count;
char *char_buf;
unsigned char *flag_buf;
count = head->commit - head->read;
if (!count) {
if (head->next == NULL)
break;
/*
There's a possibility tty might get new buffer
added during the unlock window below. We could
end up spinning in here forever hogging the CPU
completely. To avoid this let's have a rest each
time we processed the tail buffer.
*/
if (tail == head)
seen_tail = 1;
tty->buf.head = head->next;
tty_buffer_free(tty, head);
continue;
}
/* Ldisc or user is trying to flush the buffers
we are feeding to the ldisc, stop feeding the
line discipline as we want to empty the queue */
if (test_bit(TTY_FLUSHPENDING, &tty->flags))
break;
if (!tty->receive_room || seen_tail) {
schedule_delayed_work(&tty->buf.work, 1);
break;
}
if (count > tty->receive_room)
count = tty->receive_room;
char_buf = head->char_buf_ptr + head->read;
flag_buf = head->flag_buf_ptr + head->read;
head->read += count;
spin_unlock_irqrestore(&tty->buf.lock, flags);
disc->ops->receive_buf(tty, char_buf,
flag_buf, count);
spin_lock_irqsave(&tty->buf.lock, flags);
}
clear_bit(TTY_FLUSHING, &tty->flags);
}
/* We may have a deferred request to flush the input buffer,
if so pull the chain under the lock and empty the queue */
if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
__tty_buffer_flush(tty);
clear_bit(TTY_FLUSHPENDING, &tty->flags);
wake_up(&tty->read_wait);
}
spin_unlock_irqrestore(&tty->buf.lock, flags);
tty_ldisc_deref(disc);
}
/**
* tty_flush_to_ldisc
* @tty: tty to push
*
* Push the terminal flip buffers to the line discipline.
*
* Must not be called from IRQ context.
*/
void tty_flush_to_ldisc(struct tty_struct *tty)
{
flush_delayed_work(&tty->buf.work);
}
/**
* tty_flip_buffer_push - terminal
* @tty: tty to push
*
* Queue a push of the terminal flip buffers to the line discipline. This
* function must not be called from IRQ context if tty->low_latency is set.
*
* In the event of the queue being busy for flipping the work will be
* held off and retried later.
*
* Locking: tty buffer lock. Driver locks in low latency mode.
*/
void tty_flip_buffer_push(struct tty_struct *tty)
{
unsigned long flags;
spin_lock_irqsave(&tty->buf.lock, flags);
if (tty->buf.tail != NULL)
tty->buf.tail->commit = tty->buf.tail->used;
spin_unlock_irqrestore(&tty->buf.lock, flags);
if (tty->low_latency)
flush_to_ldisc(&tty->buf.work.work);
else
schedule_delayed_work(&tty->buf.work, 1);
}
EXPORT_SYMBOL(tty_flip_buffer_push);
/**
* tty_buffer_init - prepare a tty buffer structure
* @tty: tty to initialise
*
* Set up the initial state of the buffer management for a tty device.
* Must be called before the other tty buffer functions are used.
*
* Locking: none
*/
void tty_buffer_init(struct tty_struct *tty)
{
spin_lock_init(&tty->buf.lock);
tty->buf.head = NULL;
tty->buf.tail = NULL;
tty->buf.free = NULL;
tty->buf.memory_used = 0;
INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
}