/*
* ipmi_bt_sm.c
*
* The state machine for an Open IPMI BT sub-driver under ipmi_si.c, part
* of the driver architecture at http://sourceforge.net/projects/openipmi
*
* Author: Rocky Craig <first.last@hp.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <linux/kernel.h> /* For printk. */
#include <linux/string.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/ipmi_msgdefs.h> /* for completion codes */
#include "ipmi_si_sm.h"
#define BT_DEBUG_OFF 0 /* Used in production */
#define BT_DEBUG_ENABLE 1 /* Generic messages */
#define BT_DEBUG_MSG 2 /* Prints all request/response buffers */
#define BT_DEBUG_STATES 4 /* Verbose look at state changes */
/*
* BT_DEBUG_OFF must be zero to correspond to the default uninitialized
* value
*/
static int bt_debug; /* 0 == BT_DEBUG_OFF */
module_param(bt_debug, int, 0644);
MODULE_PARM_DESC(bt_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
/*
* Typical "Get BT Capabilities" values are 2-3 retries, 5-10 seconds,
* and 64 byte buffers. However, one HP implementation wants 255 bytes of
* buffer (with a documented message of 160 bytes) so go for the max.
* Since the Open IPMI architecture is single-message oriented at this
* stage, the queue depth of BT is of no concern.
*/
#define BT_NORMAL_TIMEOUT 5 /* seconds */
#define BT_NORMAL_RETRY_LIMIT 2
#define BT_RESET_DELAY 6 /* seconds after warm reset */
/*
* States are written in chronological order and usually cover
* multiple rows of the state table discussion in the IPMI spec.
*/
enum bt_states {
BT_STATE_IDLE = 0, /* Order is critical in this list */
BT_STATE_XACTION_START,
BT_STATE_WRITE_BYTES,
BT_STATE_WRITE_CONSUME,
BT_STATE_READ_WAIT,
BT_STATE_CLEAR_B2H,
BT_STATE_READ_BYTES,
BT_STATE_RESET1, /* These must come last */
BT_STATE_RESET2,
BT_STATE_RESET3,
BT_STATE_RESTART,
BT_STATE_PRINTME,
BT_STATE_CAPABILITIES_BEGIN,
BT_STATE_CAPABILITIES_END,
BT_STATE_LONG_BUSY /* BT doesn't get hosed :-) */
};
/*
* Macros seen at the end of state "case" blocks. They help with legibility
* and debugging.
*/
#define BT_STATE_CHANGE(X, Y) { bt->state = X; return Y; }
#define BT_SI_SM_RETURN(Y) { last_printed = BT_STATE_PRINTME; return Y; }
struct si_sm_data {
enum bt_states state;
unsigned char seq; /* BT sequence number */
struct si_sm_io *io;
unsigned char write_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */
int write_count;
unsigned char read_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */
int read_count;
int truncated;
long timeout; /* microseconds countdown */
int error_retries; /* end of "common" fields */
int nonzero_status; /* hung BMCs stay all 0 */
enum bt_states complete; /* to divert the state machine */
int BT_CAP_outreqs;
long BT_CAP_req2rsp;
int BT_CAP_retries; /* Recommended retries */
};
#define BT_CLR_WR_PTR 0x01 /* See IPMI 1.5 table 11.6.4 */
#define BT_CLR_RD_PTR 0x02
#define BT_H2B_ATN 0x04
#define BT_B2H_ATN 0x08
#define BT_SMS_ATN 0x10
#define BT_OEM0 0x20
#define BT_H_BUSY 0x40
#define BT_B_BUSY 0x80
/*
* Some bits are toggled on each write: write once to set it, once
* more to clear it; writing a zero does nothing. To absolutely
* clear it, check its state and write if set. This avoids the "get
* current then use as mask" scheme to modify one bit. Note that the
* variable "bt" is hardcoded into these macros.
*/
#define BT_STATUS bt->io->inputb(bt->io, 0)
#define BT_CONTROL(x) bt->io->outputb(bt->io, 0, x)
#define BMC2HOST bt->io->inputb(bt->io, 1)
#define HOST2BMC(x) bt->io->outputb(bt->io, 1, x)
#define BT_INTMASK_R bt->io->inputb(bt->io, 2)
#define BT_INTMASK_W(x) bt->io->outputb(bt->io, 2, x)
/*
* Convenience routines for debugging. These are not multi-open safe!
* Note the macros have hardcoded variables in them.
*/
static char *state2txt(unsigned char state)
{
switch (state) {
case BT_STATE_IDLE: return("IDLE");
case BT_STATE_XACTION_START: return("XACTION");
case BT_STATE_WRITE_BYTES: return("WR_BYTES");
case BT_STATE_WRITE_CONSUME: return("WR_CONSUME");
case BT_STATE_READ_WAIT: return("RD_WAIT");
case BT_STATE_CLEAR_B2H: return("CLEAR_B2H");
case BT_STATE_READ_BYTES: return("RD_BYTES");
case BT_STATE_RESET1: return("RESET1");
case BT_STATE_RESET2: return("RESET2");
case BT_STATE_RESET3: return("RESET3");
case BT_STATE_RESTART: return("RESTART");
case BT_STATE_LONG_BUSY: return("LONG_BUSY");
case BT_STATE_CAPABILITIES_BEGIN: return("CAP_BEGIN");
case BT_STATE_CAPABILITIES_END: return("CAP_END");
}
return("BAD STATE");
}
#define STATE2TXT state2txt(bt->state)
static char *status2txt(unsigned char status)
{
/*
* This cannot be called by two threads at the same time and
* the buffer is always consumed immediately, so the static is
* safe to use.
*/
static char buf[40];
strcpy(buf, "[ ");
if (status & BT_B_BUSY)
strcat(buf, "B_BUSY ");
if (status & BT_H_BUSY)
strcat(buf, "H_BUSY ");
if (status & BT_OEM0)
strcat(buf, "OEM0 ");
if (status & BT_SMS_ATN)
strcat(buf, "SMS ");
if (status & BT_B2H_ATN)
strcat(buf, "B2H ");
if (status & BT_H2B_ATN)
strcat(buf, "H2B ");
strcat(buf, "]");
return buf;
}
#define STATUS2TXT status2txt(status)
/* called externally at insmod time, and internally on cleanup */
static unsigned int bt_init_data(struct si_sm_data *bt, struct si_sm_io *io)
{
memset(bt, 0, sizeof(struct si_sm_data));
if (bt->io != io) {
/* external: one-time only things */
bt->io = io;
bt->seq = 0;
}
bt->state = BT_STATE_IDLE; /* start here */
bt->complete = BT_STATE_IDLE; /* end here */
bt->BT_CAP_req2rsp = BT_NORMAL_TIMEOUT * USEC_PER_SEC;
bt->BT_CAP_retries = BT_NORMAL_RETRY_LIMIT;
/* BT_CAP_outreqs == zero is a flag to read BT Capabilities */
return 3; /* We claim 3 bytes of space; ought to check SPMI table */
}
/* Jam a completion code (probably an error) into a response */
static void force_result(struct si_sm_data *bt, unsigned char completion_code)
{
bt->read_data[0] = 4; /* # following bytes */
bt->read_data[1] = bt->write_data[1] | 4; /* Odd NetFn/LUN */
bt->read_data[2] = bt->write_data[2]; /* seq (ignored) */
bt->read_data[3] = bt->write_data[3]; /* Command */
bt->read_data[4] = completion_code;
bt->read_count = 5;
}
/* The upper state machine starts here */
static int bt_start_transaction(struct si_sm_data *bt,
unsigned char *data,
unsigned int size)
{
unsigned int i;
if (size < 2)
return IPMI_REQ_LEN_INVALID_ERR;
if (size > IPMI_MAX_MSG_LENGTH)
return IPMI_REQ_LEN_EXCEEDED_ERR;
if (bt->state == BT_STATE_LONG_BUSY)
return IPMI_NODE_BUSY_ERR;
if (bt->state != BT_STATE_IDLE)
return IPMI_NOT_IN_MY_STATE_ERR;
if (bt_debug & BT_DEBUG_MSG) {
printk(KERN_WARNING "BT: +++++++++++++++++ New command\n");
printk(KERN_WARNING "BT: NetFn/LUN CMD [%d data]:", size - 2);
for (i = 0; i < size; i ++)
printk(" %02x", data[i]);
printk("\n");
}
bt->write_data[0] = size + 1; /* all data plus seq byte */
bt->write_data[1] = *data; /* NetFn/LUN */
bt->write_data[2] = bt->seq++;
memcpy(bt->write_data + 3, data + 1, size - 1);
bt->write_count = size + 2;
bt->error_retries = 0;
bt->nonzero_status = 0;
bt->truncated = 0;
bt->state = BT_STATE_XACTION_START;
bt->timeout = bt->BT_CAP_req2rsp;
force_result(bt, IPMI_ERR_UNSPECIFIED);
return 0;
}
/*
* After the upper state machine has been told SI_SM_TRANSACTION_COMPLETE
* it calls this. Strip out the length and seq bytes.
*/
static int bt_get_result(struct si_sm_data *bt,
unsigned char *data,
unsigned int length)
{
int i, msg_len;
msg_len = bt->read_count - 2; /* account for length & seq */
if (msg_len < 3 || msg_len > IPMI_MAX_MSG_LENGTH) {
force_result(bt, IPMI_ERR_UNSPECIFIED);
msg_len = 3;
}
data[0] = bt->read_data[1];
data[1] = bt->read_data[3];
if (length < msg_len || bt->truncated) {
data[2] = IPMI_ERR_MSG_TRUNCATED;
msg_len = 3;
} else
memcpy(data + 2, bt->read_data + 4, msg_len - 2);
if (bt_debug & BT_DEBUG_MSG) {
printk(KERN_WARNING "BT: result %d bytes:", msg_len);
for (i = 0; i < msg_len; i++)
printk(" %02x", data[i]);
printk("\n");
}
return msg_len;
}
/* This bit's functionality is optional */
#define BT_BMC_HWRST 0x80
static void reset_flags(struct si_sm_data *bt)
{
if (bt_debug)
printk(KERN_WARNING "IPMI BT: flag reset %s\n",
status2txt(BT_STATUS));
if (BT_STATUS & BT_H_BUSY)
BT_CONTROL(BT_H_BUSY); /* force clear */
BT_CONTROL(BT_CLR_WR_PTR); /* always reset */
BT_CONTROL(BT_SMS_ATN); /* always clear */
BT_INTMASK_W(BT_BMC_HWRST);
}
/*
* Get rid of an unwanted/stale response. This should only be needed for
* BMCs that support multiple outstanding requests.
*/
static void drain_BMC2HOST(struct si_sm_data *bt)
{
int i, size;
if (!(BT_STATUS & BT_B2H_ATN)) /* Not signalling a response */
return;
BT_CONTROL(BT_H_BUSY); /* now set */
BT_CONTROL(BT_B2H_ATN); /* always clear */
BT_STATUS; /* pause */
BT_CONTROL(BT_B2H_ATN); /* some BMCs are stubborn */
BT_CONTROL(BT_CLR_RD_PTR); /* always reset */
if (bt_debug)
printk(KERN_WARNING "IPMI BT: stale response %s; ",
status2txt(BT_STATUS));
size = BMC2HOST;
for (i = 0; i < size ; i++)
BMC2HOST;
BT_CONTROL(BT_H_BUSY); /* now clear */
if (bt_debug)
printk("drained %d bytes\n", size + 1);
}
static inline void write_all_bytes(struct si_sm_data *bt)
{
int i;
if (bt_debug & BT_DEBUG_MSG) {
printk(KERN_WARNING "BT: write %d bytes seq=0x%02X",
bt->write_count, bt->seq);
for (i = 0; i < bt->write_count; i++)
printk(" %02x", bt->write_data[i]);
printk("\n");
}
for (i = 0; i < bt->write_count; i++)
HOST2BMC(bt->write_data[i]);
}
static inline int read_all_bytes(struct si_sm_data *bt)
{
unsigned int i;
/*
* length is "framing info", minimum = 4: NetFn, Seq, Cmd, cCode.
* Keep layout of first four bytes aligned with write_data[]
*/
bt->read_data[0] = BMC2HOST;
bt->read_count = bt->read_data[0];
if (bt->read_count < 4 || bt->read_count >= IPMI_MAX_MSG_LENGTH) {
if (bt_debug & BT_DEBUG_MSG)
printk(KERN_WARNING "BT: bad raw rsp len=%d\n",
bt->read_count);
bt->truncated = 1;
return 1; /* let next XACTION START clean it up */
}
for (i = 1; i <= bt->read_count; i++)
bt->read_data[i] = BMC2HOST;
bt->read_count++; /* Account internally for length byte */
if (bt_debug & BT_DEBUG_MSG) {
int max = bt->read_count;
printk(KERN_WARNING "BT: got %d bytes seq=0x%02X",
max, bt->read_data[2]);
if (max > 16)
max = 16;
for (i = 0; i < max; i++)
printk(KERN_CONT " %02x", bt->read_data[i]);
printk(KERN_CONT "%s\n", bt->read_count == max ? "" : " ...");
}
/* per the spec, the (NetFn[1], Seq[2], Cmd[3]) tuples must match */
if ((bt->read_data[3] == bt->write_data[3]) &&
(bt->read_data[2] == bt->write_data[2]) &&
((bt->read_data[1] & 0xF8) == (bt->write_data[1] & 0xF8)))
return 1;
if (bt_debug & BT_DEBUG_MSG)
printk(KERN_WARNING "IPMI BT: bad packet: "
"want 0x(%02X, %02X, %02X) got (%02X, %02X, %02X)\n",
bt->write_data[1] | 0x04, bt->write_data[2], bt->write_data[3],
bt->read_data[1], bt->read_data[2], bt->read_data[3]);
return 0;
}
/* Restart if retries are left, or return an error completion code */
static enum si_sm_result error_recovery(struct si_sm_data *bt,
unsigned char status,
unsigned char cCode)
{
char *reason;
bt->timeout = bt->BT_CAP_req2rsp;
switch (cCode) {
case IPMI_TIMEOUT_ERR:
reason = "timeout";
break;
default:
reason = "internal error";
break;
}
printk(KERN_WARNING "IPMI BT: %s in %s %s ", /* open-ended line */
reason, STATE2TXT, STATUS2TXT);
/*
* Per the IPMI spec, retries are based on the sequence number
* known only to this module, so manage a restart here.
*/
(bt->error_retries)++;
if (bt->error_retries < bt->BT_CAP_retries) {
printk("%d retries left\n",
bt->BT_CAP_retries - bt->error_retries);
bt->state = BT_STATE_RESTART;
return SI_SM_CALL_WITHOUT_DELAY;
}
printk(KERN_WARNING "failed %d retries, sending error response\n",
bt->BT_CAP_retries);
if (!bt->nonzero_status)
printk(KERN_ERR "IPMI BT: stuck, try power cycle\n");
/* this is most likely during insmod */
else if (bt->seq <= (unsigned char)(bt->BT_CAP_retries & 0xFF)) {
printk(KERN_WARNING "IPMI: BT reset (takes 5 secs)\n");
bt->state = BT_STATE_RESET1;
return SI_SM_CALL_WITHOUT_DELAY;
}
/*
* Concoct a useful error message, set up the next state, and
* be done with this sequence.
*/
bt->state = BT_STATE_IDLE;
switch (cCode) {
case IPMI_TIMEOUT_ERR:
if (status & BT_B_BUSY) {
cCode = IPMI_NODE_BUSY_ERR;
bt->state = BT_STATE_LONG_BUSY;
}
break;
default:
break;
}
force_result(bt, cCode);
return SI_SM_TRANSACTION_COMPLETE;
}
/* Check status and (usually) take action and change this state machine. */
static enum si_sm_result bt_event(struct si_sm_data *bt, long time)
{
unsigned char status, BT_CAP[8];
static enum bt_states last_printed = BT_STATE_PRINTME;
int i;
status = BT_STATUS;
bt->nonzero_status |= status;
if ((bt_debug & BT_DEBUG_STATES) && (bt->state != last_printed)) {
printk(KERN_WARNING "BT: %s %s TO=%ld - %ld \n",
STATE2TXT,
STATUS2TXT,
bt->timeout,
time);
last_printed = bt->state;
}
/*
* Commands that time out may still (eventually) provide a response.
* This stale response will get in the way of a new response so remove
* it if possible (hopefully during IDLE). Even if it comes up later
* it will be rejected by its (now-forgotten) seq number.
*/
if ((bt->state < BT_STATE_WRITE_BYTES) && (status & BT_B2H_ATN)) {
drain_BMC2HOST(bt);
BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
}
if ((bt->state != BT_STATE_IDLE) &&
(bt->state < BT_STATE_PRINTME)) {
/* check timeout */
bt->timeout -= time;
if ((bt->timeout < 0) && (bt->state < BT_STATE_RESET1))
return error_recovery(bt,
status,
IPMI_TIMEOUT_ERR);
}
switch (bt->state) {
/*
* Idle state first checks for asynchronous messages from another
* channel, then does some opportunistic housekeeping.
*/
case BT_STATE_IDLE:
if (status & BT_SMS_ATN) {
BT_CONTROL(BT_SMS_ATN); /* clear it */
return SI_SM_ATTN;
}
if (status & BT_H_BUSY) /* clear a leftover H_BUSY */
BT_CONTROL(BT_H_BUSY);
/* Read BT capabilities if it hasn't been done yet */
if (!bt->BT_CAP_outreqs)
BT_STATE_CHANGE(BT_STATE_CAPABILITIES_BEGIN,
SI_SM_CALL_WITHOUT_DELAY);
bt->timeout = bt->BT_CAP_req2rsp;
BT_SI_SM_RETURN(SI_SM_IDLE);
case BT_STATE_XACTION_START:
if (status & (BT_B_BUSY | BT_H2B_ATN))
BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
if (BT_STATUS & BT_H_BUSY)
BT_CONTROL(BT_H_BUSY); /* force clear */
BT_STATE_CHANGE(BT_STATE_WRITE_BYTES,
SI_SM_CALL_WITHOUT_DELAY);
case BT_STATE_WRITE_BYTES:
if (status & BT_H_BUSY)
BT_CONTROL(BT_H_BUSY); /* clear */
BT_CONTROL(BT_CLR_WR_PTR);
write_all_bytes(bt);
BT_CONTROL(BT_H2B_ATN); /* can clear too fast to catch */
BT_STATE_CHANGE(BT_STATE_WRITE_CONSUME,
SI_SM_CALL_WITHOUT_DELAY);
case BT_STATE_WRITE_CONSUME:
if (status & (BT_B_BUSY | BT_H2B_ATN))
BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
BT_STATE_CHANGE(BT_STATE_READ_WAIT,
SI_SM_CALL_WITHOUT_DELAY);
/* Spinning hard can suppress B2H_ATN and force a timeout */
case BT_STATE_READ_WAIT:
if (!(status & BT_B2H_ATN))
BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
BT_CONTROL(BT_H_BUSY); /* set */
/*
* Uncached, ordered writes should just proceed serially but
* some BMCs don't clear B2H_ATN with one hit. Fast-path a
* workaround without too much penalty to the general case.
*/
BT_CONTROL(BT_B2H_ATN); /* clear it to ACK the BMC */
BT_STATE_CHANGE(BT_STATE_CLEAR_B2H,
SI_SM_CALL_WITHOUT_DELAY);
case BT_STATE_CLEAR_B2H:
if (status & BT_B2H_ATN) {
/* keep hitting it */
BT_CONTROL(BT_B2H_ATN);
BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
}
BT_STATE_CHANGE(BT_STATE_READ_BYTES,
SI_SM_CALL_WITHOUT_DELAY);
case BT_STATE_READ_BYTES:
if (!(status & BT_H_BUSY))
/* check in case of retry */
BT_CONTROL(BT_H_BUSY);
BT_CONTROL(BT_CLR_RD_PTR); /* start of BMC2HOST buffer */
i = read_all_bytes(bt); /* true == packet seq match */
BT_CONTROL(BT_H_BUSY); /* NOW clear */
if (!i) /* Not my message */
BT_STATE_CHANGE(BT_STATE_READ_WAIT,
SI_SM_CALL_WITHOUT_DELAY);
bt->state = bt->complete;
return bt->state == BT_STATE_IDLE ? /* where to next? */
SI_SM_TRANSACTION_COMPLETE : /* normal */
SI_SM_CALL_WITHOUT_DELAY; /* Startup magic */
case BT_STATE_LONG_BUSY: /* For example: after FW update */
if (!(status & BT_B_BUSY)) {
reset_flags(bt); /* next state is now IDLE */
bt_init_data(bt, bt->io);
}
return SI_SM_CALL_WITH_DELAY; /* No repeat printing */
case BT_STATE_RESET1:
reset_flags(bt);
drain_BMC2HOST(bt);
BT_STATE_CHANGE(BT_STATE_RESET2,
SI_SM_CALL_WITH_DELAY);
case BT_STATE_RESET2: /* Send a soft reset */
BT_CONTROL(BT_CLR_WR_PTR);
HOST2BMC(3); /* number of bytes following */
HOST2BMC(0x18); /* NetFn/LUN == Application, LUN 0 */
HOST2BMC(42); /* Sequence number */
HOST2BMC(3); /* Cmd == Soft reset */
BT_CONTROL(BT_H2B_ATN);
bt->timeout = BT_RESET_DELAY * USEC_PER_SEC;
BT_STATE_CHANGE(BT_STATE_RESET3,
SI_SM_CALL_WITH_DELAY);
case BT_STATE_RESET3: /* Hold off everything for a bit */
if (bt->timeout > 0)
return SI_SM_CALL_WITH_DELAY;
drain_BMC2HOST(bt);
BT_STATE_CHANGE(BT_STATE_RESTART,
SI_SM_CALL_WITH_DELAY);
case BT_STATE_RESTART: /* don't reset retries or seq! */
bt->read_count = 0;
bt->nonzero_status = 0;
bt->timeout = bt->BT_CAP_req2rsp;
BT_STATE_CHANGE(BT_STATE_XACTION_START,
SI_SM_CALL_WITH_DELAY);
/*
* Get BT Capabilities, using timing of upper level state machine.
* Set outreqs to prevent infinite loop on timeout.
*/
case BT_STATE_CAPABILITIES_BEGIN:
bt->BT_CAP_outreqs = 1;
{
unsigned char GetBT_CAP[] = { 0x18, 0x36 };
bt->state = BT_STATE_IDLE;
bt_start_transaction(bt, GetBT_CAP, sizeof(GetBT_CAP));
}
bt->complete = BT_STATE_CAPABILITIES_END;
BT_STATE_CHANGE(BT_STATE_XACTION_START,
SI_SM_CALL_WITH_DELAY);
case BT_STATE_CAPABILITIES_END:
i = bt_get_result(bt, BT_CAP, sizeof(BT_CAP));
bt_init_data(bt, bt->io);
if ((i == 8) && !BT_CAP[2]) {
bt->BT_CAP_outreqs = BT_CAP[3];
bt->BT_CAP_req2rsp = BT_CAP[6] * USEC_PER_SEC;
bt->BT_CAP_retries = BT_CAP[7];
} else
printk(KERN_WARNING "IPMI BT: using default values\n");
if (!bt->BT_CAP_outreqs)
bt->BT_CAP_outreqs = 1;
printk(KERN_WARNING "IPMI BT: req2rsp=%ld secs retries=%d\n",
bt->BT_CAP_req2rsp / USEC_PER_SEC, bt->BT_CAP_retries);
bt->timeout = bt->BT_CAP_req2rsp;
return SI_SM_CALL_WITHOUT_DELAY;
default: /* should never occur */
return error_recovery(bt,
status,
IPMI_ERR_UNSPECIFIED);
}
return SI_SM_CALL_WITH_DELAY;
}
static int bt_detect(struct si_sm_data *bt)
{
/*
* It's impossible for the BT status and interrupt registers to be
* all 1's, (assuming a properly functioning, self-initialized BMC)
* but that's what you get from reading a bogus address, so we
* test that first. The calling routine uses negative logic.
*/
if ((BT_STATUS == 0xFF) && (BT_INTMASK_R == 0xFF))
return 1;
reset_flags(bt);
return 0;
}
static void bt_cleanup(struct si_sm_data *bt)
{
}
static int bt_size(void)
{
return sizeof(struct si_sm_data);
}
struct si_sm_handlers bt_smi_handlers = {
.init_data = bt_init_data,
.start_transaction = bt_start_transaction,
.get_result = bt_get_result,
.event = bt_event,
.detect = bt_detect,
.cleanup = bt_cleanup,
.size = bt_size,
};