/*
* RTC related functions
*/
#include <linux/platform_device.h>
#include <linux/mc146818rtc.h>
#include <linux/acpi.h>
#include <linux/bcd.h>
#include <linux/pnp.h>
#include <linux/of.h>
#include <asm/vsyscall.h>
#include <asm/x86_init.h>
#include <asm/time.h>
#ifdef CONFIG_X86_32
/*
* This is a special lock that is owned by the CPU and holds the index
* register we are working with. It is required for NMI access to the
* CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details.
*/
volatile unsigned long cmos_lock;
EXPORT_SYMBOL(cmos_lock);
#endif /* CONFIG_X86_32 */
/* For two digit years assume time is always after that */
#define CMOS_YEARS_OFFS 2000
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
/*
* In order to set the CMOS clock precisely, set_rtc_mmss has to be
* called 500 ms after the second nowtime has started, because when
* nowtime is written into the registers of the CMOS clock, it will
* jump to the next second precisely 500 ms later. Check the Motorola
* MC146818A or Dallas DS12887 data sheet for details.
*
* BUG: This routine does not handle hour overflow properly; it just
* sets the minutes. Usually you'll only notice that after reboot!
*/
int mach_set_rtc_mmss(unsigned long nowtime)
{
int real_seconds, real_minutes, cmos_minutes;
unsigned char save_control, save_freq_select;
int retval = 0;
/* tell the clock it's being set */
save_control = CMOS_READ(RTC_CONTROL);
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
/* stop and reset prescaler */
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
cmos_minutes = CMOS_READ(RTC_MINUTES);
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
cmos_minutes = bcd2bin(cmos_minutes);
/*
* since we're only adjusting minutes and seconds,
* don't interfere with hour overflow. This avoids
* messing with unknown time zones but requires your
* RTC not to be off by more than 15 minutes
*/
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
/* correct for half hour time zone */
if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
real_minutes += 30;
real_minutes %= 60;
if (abs(real_minutes - cmos_minutes) < 30) {
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
real_seconds = bin2bcd(real_seconds);
real_minutes = bin2bcd(real_minutes);
}
CMOS_WRITE(real_seconds, RTC_SECONDS);
CMOS_WRITE(real_minutes, RTC_MINUTES);
} else {
printk_once(KERN_NOTICE
"set_rtc_mmss: can't update from %d to %d\n",
cmos_minutes, real_minutes);
retval = -1;
}
/* The following flags have to be released exactly in this order,
* otherwise the DS12887 (popular MC146818A clone with integrated
* battery and quartz) will not reset the oscillator and will not
* update precisely 500 ms later. You won't find this mentioned in
* the Dallas Semiconductor data sheets, but who believes data
* sheets anyway ... -- Markus Kuhn
*/
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
return retval;
}
unsigned long mach_get_cmos_time(void)
{
unsigned int status, year, mon, day, hour, min, sec, century = 0;
/*
* If UIP is clear, then we have >= 244 microseconds before
* RTC registers will be updated. Spec sheet says that this
* is the reliable way to read RTC - registers. If UIP is set
* then the register access might be invalid.
*/
while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
cpu_relax();
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
#ifdef CONFIG_ACPI
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
acpi_gbl_FADT.century)
century = CMOS_READ(acpi_gbl_FADT.century);
#endif
status = CMOS_READ(RTC_CONTROL);
WARN_ON_ONCE(RTC_ALWAYS_BCD && (status & RTC_DM_BINARY));
if (RTC_ALWAYS_BCD || !(status & RTC_DM_BINARY)) {
sec = bcd2bin(sec);
min = bcd2bin(min);
hour = bcd2bin(hour);
day = bcd2bin(day);
mon = bcd2bin(mon);
year = bcd2bin(year);
}
if (century) {
century = bcd2bin(century);
year += century * 100;
printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
} else
year += CMOS_YEARS_OFFS;
return mktime(year, mon, day, hour, min, sec);
}
/* Routines for accessing the CMOS RAM/RTC. */
unsigned char rtc_cmos_read(unsigned char addr)
{
unsigned char val;
lock_cmos_prefix(addr);
outb(addr, RTC_PORT(0));
val = inb(RTC_PORT(1));
lock_cmos_suffix(addr);
return val;
}
EXPORT_SYMBOL(rtc_cmos_read);
void rtc_cmos_write(unsigned char val, unsigned char addr)
{
lock_cmos_prefix(addr);
outb(addr, RTC_PORT(0));
outb(val, RTC_PORT(1));
lock_cmos_suffix(addr);
}
EXPORT_SYMBOL(rtc_cmos_write);
int update_persistent_clock(struct timespec now)
{
unsigned long flags;
int retval;
spin_lock_irqsave(&rtc_lock, flags);
retval = x86_platform.set_wallclock(now.tv_sec);
spin_unlock_irqrestore(&rtc_lock, flags);
return retval;
}
/* not static: needed by APM */
void read_persistent_clock(struct timespec *ts)
{
unsigned long retval, flags;
spin_lock_irqsave(&rtc_lock, flags);
retval = x86_platform.get_wallclock();
spin_unlock_irqrestore(&rtc_lock, flags);
ts->tv_sec = retval;
ts->tv_nsec = 0;
}
unsigned long long native_read_tsc(void)
{
return __native_read_tsc();
}
EXPORT_SYMBOL(native_read_tsc);
static struct resource rtc_resources[] = {
[0] = {
.start = RTC_PORT(0),
.end = RTC_PORT(1),
.flags = IORESOURCE_IO,
},
[1] = {
.start = RTC_IRQ,
.end = RTC_IRQ,
.flags = IORESOURCE_IRQ,
}
};
static struct platform_device rtc_device = {
.name = "rtc_cmos",
.id = -1,
.resource = rtc_resources,
.num_resources = ARRAY_SIZE(rtc_resources),
};
static __init int add_rtc_cmos(void)
{
#ifdef CONFIG_PNP
static const char *ids[] __initconst =
{ "PNP0b00", "PNP0b01", "PNP0b02", };
struct pnp_dev *dev;
struct pnp_id *id;
int i;
pnp_for_each_dev(dev) {
for (id = dev->id; id; id = id->next) {
for (i = 0; i < ARRAY_SIZE(ids); i++) {
if (compare_pnp_id(id, ids[i]) != 0)
return 0;
}
}
}
#endif
if (of_have_populated_dt())
return 0;
platform_device_register(&rtc_device);
dev_info(&rtc_device.dev,
"registered platform RTC device (no PNP device found)\n");
return 0;
}
device_initcall(add_rtc_cmos);