/*
* local apic based NMI watchdog for various CPUs.
*
* This file also handles reservation of performance counters for coordination
* with other users (like oprofile).
*
* Note that these events normally don't tick when the CPU idles. This means
* the frequency varies with CPU load.
*
* Original code for K7/P6 written by Keith Owens
*
*/
#include <linux/percpu.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/smp.h>
#include <linux/nmi.h>
#include <asm/apic.h>
#include <asm/intel_arch_perfmon.h>
struct nmi_watchdog_ctlblk {
unsigned int cccr_msr;
unsigned int perfctr_msr; /* the MSR to reset in NMI handler */
unsigned int evntsel_msr; /* the MSR to select the events to handle */
};
/* Interface defining a CPU specific perfctr watchdog */
struct wd_ops {
int (*reserve)(void);
void (*unreserve)(void);
int (*setup)(unsigned nmi_hz);
void (*rearm)(struct nmi_watchdog_ctlblk *wd, unsigned nmi_hz);
void (*stop)(void);
unsigned perfctr;
unsigned evntsel;
u64 checkbit;
};
static const struct wd_ops *wd_ops;
/*
* this number is calculated from Intel's MSR_P4_CRU_ESCR5 register and it's
* offset from MSR_P4_BSU_ESCR0.
*
* It will be the max for all platforms (for now)
*/
#define NMI_MAX_COUNTER_BITS 66
/*
* perfctr_nmi_owner tracks the ownership of the perfctr registers:
* evtsel_nmi_owner tracks the ownership of the event selection
* - different performance counters/ event selection may be reserved for
* different subsystems this reservation system just tries to coordinate
* things a little
*/
static DECLARE_BITMAP(perfctr_nmi_owner, NMI_MAX_COUNTER_BITS);
static DECLARE_BITMAP(evntsel_nmi_owner, NMI_MAX_COUNTER_BITS);
static DEFINE_PER_CPU(struct nmi_watchdog_ctlblk, nmi_watchdog_ctlblk);
/* converts an msr to an appropriate reservation bit */
static inline unsigned int nmi_perfctr_msr_to_bit(unsigned int msr)
{
/* returns the bit offset of the performance counter register */
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
return (msr - MSR_K7_PERFCTR0);
case X86_VENDOR_INTEL:
if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
return (msr - MSR_ARCH_PERFMON_PERFCTR0);
switch (boot_cpu_data.x86) {
case 6:
return (msr - MSR_P6_PERFCTR0);
case 15:
return (msr - MSR_P4_BPU_PERFCTR0);
}
}
return 0;
}
/*
* converts an msr to an appropriate reservation bit
* returns the bit offset of the event selection register
*/
static inline unsigned int nmi_evntsel_msr_to_bit(unsigned int msr)
{
/* returns the bit offset of the event selection register */
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
return (msr - MSR_K7_EVNTSEL0);
case X86_VENDOR_INTEL:
if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
return (msr - MSR_ARCH_PERFMON_EVENTSEL0);
switch (boot_cpu_data.x86) {
case 6:
return (msr - MSR_P6_EVNTSEL0);
case 15:
return (msr - MSR_P4_BSU_ESCR0);
}
}
return 0;
}
/* checks for a bit availability (hack for oprofile) */
int avail_to_resrv_perfctr_nmi_bit(unsigned int counter)
{
BUG_ON(counter > NMI_MAX_COUNTER_BITS);
return (!test_bit(counter, perfctr_nmi_owner));
}
/* checks the an msr for availability */
int avail_to_resrv_perfctr_nmi(unsigned int msr)
{
unsigned int counter;
counter = nmi_perfctr_msr_to_bit(msr);
BUG_ON(counter > NMI_MAX_COUNTER_BITS);
return (!test_bit(counter, perfctr_nmi_owner));
}
EXPORT_SYMBOL(avail_to_resrv_perfctr_nmi_bit);
int reserve_perfctr_nmi(unsigned int msr)
{
unsigned int counter;
counter = nmi_perfctr_msr_to_bit(msr);
/* register not managed by the allocator? */
if (counter > NMI_MAX_COUNTER_BITS)
return 1;
if (!test_and_set_bit(counter, perfctr_nmi_owner))
return 1;
return 0;
}
EXPORT_SYMBOL(reserve_perfctr_nmi);
void release_perfctr_nmi(unsigned int msr)
{
unsigned int counter;
counter = nmi_perfctr_msr_to_bit(msr);
/* register not managed by the allocator? */
if (counter > NMI_MAX_COUNTER_BITS)
return;
clear_bit(counter, perfctr_nmi_owner);
}
EXPORT_SYMBOL(release_perfctr_nmi);
int reserve_evntsel_nmi(unsigned int msr)
{
unsigned int counter;
counter = nmi_evntsel_msr_to_bit(msr);
/* register not managed by the allocator? */
if (counter > NMI_MAX_COUNTER_BITS)
return 1;
if (!test_and_set_bit(counter, evntsel_nmi_owner))
return 1;
return 0;
}
EXPORT_SYMBOL(reserve_evntsel_nmi);
void release_evntsel_nmi(unsigned int msr)
{
unsigned int counter;
counter = nmi_evntsel_msr_to_bit(msr);
/* register not managed by the allocator? */
if (counter > NMI_MAX_COUNTER_BITS)
return;
clear_bit(counter, evntsel_nmi_owner);
}
EXPORT_SYMBOL(release_evntsel_nmi);
void disable_lapic_nmi_watchdog(void)
{
BUG_ON(nmi_watchdog != NMI_LOCAL_APIC);
if (atomic_read(&nmi_active) <= 0)
return;
on_each_cpu(stop_apic_nmi_watchdog, NULL, 1);
if (wd_ops)
wd_ops->unreserve();
BUG_ON(atomic_read(&nmi_active) != 0);
}
void enable_lapic_nmi_watchdog(void)
{
BUG_ON(nmi_watchdog != NMI_LOCAL_APIC);
/* are we already enabled */
if (atomic_read(&nmi_active) != 0)
return;
/* are we lapic aware */
if (!wd_ops)
return;
if (!wd_ops->reserve()) {
printk(KERN_ERR "NMI watchdog: cannot reserve perfctrs\n");
return;
}
on_each_cpu(setup_apic_nmi_watchdog, NULL, 1);
touch_nmi_watchdog();
}
/*
* Activate the NMI watchdog via the local APIC.
*/
static unsigned int adjust_for_32bit_ctr(unsigned int hz)
{
u64 counter_val;
unsigned int retval = hz;
/*
* On Intel CPUs with P6/ARCH_PERFMON only 32 bits in the counter
* are writable, with higher bits sign extending from bit 31.
* So, we can only program the counter with 31 bit values and
* 32nd bit should be 1, for 33.. to be 1.
* Find the appropriate nmi_hz
*/
counter_val = (u64)cpu_khz * 1000;
do_div(counter_val, retval);
if (counter_val > 0x7fffffffULL) {
u64 count = (u64)cpu_khz * 1000;
do_div(count, 0x7fffffffUL);
retval = count + 1;
}
return retval;
}
static void write_watchdog_counter(unsigned int perfctr_msr,
const char *descr, unsigned nmi_hz)
{
u64 count = (u64)cpu_khz * 1000;
do_div(count, nmi_hz);
if(descr)
Dprintk("setting %s to -0x%08Lx\n", descr, count);
wrmsrl(perfctr_msr, 0 - count);
}
static void write_watchdog_counter32(unsigned int perfctr_msr,
const char *descr, unsigned nmi_hz)
{
u64 count = (u64)cpu_khz * 1000;
do_div(count, nmi_hz);
if(descr)
Dprintk("setting %s to -0x%08Lx\n", descr, count);
wrmsr(perfctr_msr, (u32)(-count), 0);
}
/*
* AMD K7/K8/Family10h/Family11h support.
* AMD keeps this interface nicely stable so there is not much variety
*/
#define K7_EVNTSEL_ENABLE (1 << 22)
#define K7_EVNTSEL_INT (1 << 20)
#define K7_EVNTSEL_OS (1 << 17)
#define K7_EVNTSEL_USR (1 << 16)
#define K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING 0x76
#define K7_NMI_EVENT K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING
static int setup_k7_watchdog(unsigned nmi_hz)
{
unsigned int perfctr_msr, evntsel_msr;
unsigned int evntsel;
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
perfctr_msr = wd_ops->perfctr;
evntsel_msr = wd_ops->evntsel;
wrmsrl(perfctr_msr, 0UL);
evntsel = K7_EVNTSEL_INT
| K7_EVNTSEL_OS
| K7_EVNTSEL_USR
| K7_NMI_EVENT;
/* setup the timer */
wrmsr(evntsel_msr, evntsel, 0);
write_watchdog_counter(perfctr_msr, "K7_PERFCTR0",nmi_hz);
apic_write(APIC_LVTPC, APIC_DM_NMI);
evntsel |= K7_EVNTSEL_ENABLE;
wrmsr(evntsel_msr, evntsel, 0);
wd->perfctr_msr = perfctr_msr;
wd->evntsel_msr = evntsel_msr;
wd->cccr_msr = 0; /* unused */
return 1;
}
static void single_msr_stop_watchdog(void)
{
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
wrmsr(wd->evntsel_msr, 0, 0);
}
static int single_msr_reserve(void)
{
if (!reserve_perfctr_nmi(wd_ops->perfctr))
return 0;
if (!reserve_evntsel_nmi(wd_ops->evntsel)) {
release_perfctr_nmi(wd_ops->perfctr);
return 0;
}
return 1;
}
static void single_msr_unreserve(void)
{
release_evntsel_nmi(wd_ops->evntsel);
release_perfctr_nmi(wd_ops->perfctr);
}
static void single_msr_rearm(struct nmi_watchdog_ctlblk *wd, unsigned nmi_hz)
{
/* start the cycle over again */
write_watchdog_counter(wd->perfctr_msr, NULL, nmi_hz);
}
static const struct wd_ops k7_wd_ops = {
.reserve = single_msr_reserve,
.unreserve = single_msr_unreserve,
.setup = setup_k7_watchdog,
.rearm = single_msr_rearm,
.stop = single_msr_stop_watchdog,
.perfctr = MSR_K7_PERFCTR0,
.evntsel = MSR_K7_EVNTSEL0,
.checkbit = 1ULL << 47,
};
/*
* Intel Model 6 (PPro+,P2,P3,P-M,Core1)
*/
#define P6_EVNTSEL0_ENABLE (1 << 22)
#define P6_EVNTSEL_INT (1 << 20)
#define P6_EVNTSEL_OS (1 << 17)
#define P6_EVNTSEL_USR (1 << 16)
#define P6_EVENT_CPU_CLOCKS_NOT_HALTED 0x79
#define P6_NMI_EVENT P6_EVENT_CPU_CLOCKS_NOT_HALTED
static int setup_p6_watchdog(unsigned nmi_hz)
{
unsigned int perfctr_msr, evntsel_msr;
unsigned int evntsel;
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
perfctr_msr = wd_ops->perfctr;
evntsel_msr = wd_ops->evntsel;
/* KVM doesn't implement this MSR */
if (wrmsr_safe(perfctr_msr, 0, 0) < 0)
return 0;
evntsel = P6_EVNTSEL_INT
| P6_EVNTSEL_OS
| P6_EVNTSEL_USR
| P6_NMI_EVENT;
/* setup the timer */
wrmsr(evntsel_msr, evntsel, 0);
nmi_hz = adjust_for_32bit_ctr(nmi_hz);
write_watchdog_counter32(perfctr_msr, "P6_PERFCTR0",nmi_hz);
apic_write(APIC_LVTPC, APIC_DM_NMI);
evntsel |= P6_EVNTSEL0_ENABLE;
wrmsr(evntsel_msr, evntsel, 0);
wd->perfctr_msr = perfctr_msr;
wd->evntsel_msr = evntsel_msr;
wd->cccr_msr = 0; /* unused */
return 1;
}
static void p6_rearm(struct nmi_watchdog_ctlblk *wd, unsigned nmi_hz)
{
/*
* P6 based Pentium M need to re-unmask
* the apic vector but it doesn't hurt
* other P6 variant.
* ArchPerfom/Core Duo also needs this
*/
apic_write(APIC_LVTPC, APIC_DM_NMI);
/* P6/ARCH_PERFMON has 32 bit counter write */
write_watchdog_counter32(wd->perfctr_msr, NULL,nmi_hz);
}
static const struct wd_ops p6_wd_ops = {
.reserve = single_msr_reserve,
.unreserve = single_msr_unreserve,
.setup = setup_p6_watchdog,
.rearm = p6_rearm,
.stop = single_msr_stop_watchdog,
.perfctr = MSR_P6_PERFCTR0,
.evntsel = MSR_P6_EVNTSEL0,
.checkbit = 1ULL << 39,
};
/*
* Intel P4 performance counters.
* By far the most complicated of all.
*/
#define MSR_P4_MISC_ENABLE_PERF_AVAIL (1 << 7)
#define P4_ESCR_EVENT_SELECT(N) ((N) << 25)
#define P4_ESCR_OS (1 << 3)
#define P4_ESCR_USR (1 << 2)
#define P4_CCCR_OVF_PMI0 (1 << 26)
#define P4_CCCR_OVF_PMI1 (1 << 27)
#define P4_CCCR_THRESHOLD(N) ((N) << 20)
#define P4_CCCR_COMPLEMENT (1 << 19)
#define P4_CCCR_COMPARE (1 << 18)
#define P4_CCCR_REQUIRED (3 << 16)
#define P4_CCCR_ESCR_SELECT(N) ((N) << 13)
#define P4_CCCR_ENABLE (1 << 12)
#define P4_CCCR_OVF (1 << 31)
/*
* Set up IQ_COUNTER0 to behave like a clock, by having IQ_CCCR0 filter
* CRU_ESCR0 (with any non-null event selector) through a complemented
* max threshold. [IA32-Vol3, Section 14.9.9]
*/
static int setup_p4_watchdog(unsigned nmi_hz)
{
unsigned int perfctr_msr, evntsel_msr, cccr_msr;
unsigned int evntsel, cccr_val;
unsigned int misc_enable, dummy;
unsigned int ht_num;
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
rdmsr(MSR_IA32_MISC_ENABLE, misc_enable, dummy);
if (!(misc_enable & MSR_P4_MISC_ENABLE_PERF_AVAIL))
return 0;
#ifdef CONFIG_SMP
/* detect which hyperthread we are on */
if (smp_num_siblings == 2) {
unsigned int ebx, apicid;
ebx = cpuid_ebx(1);
apicid = (ebx >> 24) & 0xff;
ht_num = apicid & 1;
} else
#endif
ht_num = 0;
/*
* performance counters are shared resources
* assign each hyperthread its own set
* (re-use the ESCR0 register, seems safe
* and keeps the cccr_val the same)
*/
if (!ht_num) {
/* logical cpu 0 */
perfctr_msr = MSR_P4_IQ_PERFCTR0;
evntsel_msr = MSR_P4_CRU_ESCR0;
cccr_msr = MSR_P4_IQ_CCCR0;
cccr_val = P4_CCCR_OVF_PMI0 | P4_CCCR_ESCR_SELECT(4);
} else {
/* logical cpu 1 */
perfctr_msr = MSR_P4_IQ_PERFCTR1;
evntsel_msr = MSR_P4_CRU_ESCR0;
cccr_msr = MSR_P4_IQ_CCCR1;
cccr_val = P4_CCCR_OVF_PMI1 | P4_CCCR_ESCR_SELECT(4);
}
evntsel = P4_ESCR_EVENT_SELECT(0x3F)
| P4_ESCR_OS
| P4_ESCR_USR;
cccr_val |= P4_CCCR_THRESHOLD(15)
| P4_CCCR_COMPLEMENT
| P4_CCCR_COMPARE
| P4_CCCR_REQUIRED;
wrmsr(evntsel_msr, evntsel, 0);
wrmsr(cccr_msr, cccr_val, 0);
write_watchdog_counter(perfctr_msr, "P4_IQ_COUNTER0", nmi_hz);
apic_write(APIC_LVTPC, APIC_DM_NMI);
cccr_val |= P4_CCCR_ENABLE;
wrmsr(cccr_msr, cccr_val, 0);
wd->perfctr_msr = perfctr_msr;
wd->evntsel_msr = evntsel_msr;
wd->cccr_msr = cccr_msr;
return 1;
}
static void stop_p4_watchdog(void)
{
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
wrmsr(wd->cccr_msr, 0, 0);
wrmsr(wd->evntsel_msr, 0, 0);
}
static int p4_reserve(void)
{
if (!reserve_perfctr_nmi(MSR_P4_IQ_PERFCTR0))
return 0;
#ifdef CONFIG_SMP
if (smp_num_siblings > 1 && !reserve_perfctr_nmi(MSR_P4_IQ_PERFCTR1))
goto fail1;
#endif
if (!reserve_evntsel_nmi(MSR_P4_CRU_ESCR0))
goto fail2;
/* RED-PEN why is ESCR1 not reserved here? */
return 1;
fail2:
#ifdef CONFIG_SMP
if (smp_num_siblings > 1)
release_perfctr_nmi(MSR_P4_IQ_PERFCTR1);
fail1:
#endif
release_perfctr_nmi(MSR_P4_IQ_PERFCTR0);
return 0;
}
static void p4_unreserve(void)
{
#ifdef CONFIG_SMP
if (smp_num_siblings > 1)
release_perfctr_nmi(MSR_P4_IQ_PERFCTR1);
#endif
release_evntsel_nmi(MSR_P4_CRU_ESCR0);
release_perfctr_nmi(MSR_P4_IQ_PERFCTR0);
}
static void p4_rearm(struct nmi_watchdog_ctlblk *wd, unsigned nmi_hz)
{
unsigned dummy;
/*
* P4 quirks:
* - An overflown perfctr will assert its interrupt
* until the OVF flag in its CCCR is cleared.
* - LVTPC is masked on interrupt and must be
* unmasked by the LVTPC handler.
*/
rdmsrl(wd->cccr_msr, dummy);
dummy &= ~P4_CCCR_OVF;
wrmsrl(wd->cccr_msr, dummy);
apic_write(APIC_LVTPC, APIC_DM_NMI);
/* start the cycle over again */
write_watchdog_counter(wd->perfctr_msr, NULL, nmi_hz);
}
static const struct wd_ops p4_wd_ops = {
.reserve = p4_reserve,
.unreserve = p4_unreserve,
.setup = setup_p4_watchdog,
.rearm = p4_rearm,
.stop = stop_p4_watchdog,
/* RED-PEN this is wrong for the other sibling */
.perfctr = MSR_P4_BPU_PERFCTR0,
.evntsel = MSR_P4_BSU_ESCR0,
.checkbit = 1ULL << 39,
};
/*
* Watchdog using the Intel architected PerfMon.
* Used for Core2 and hopefully all future Intel CPUs.
*/
#define ARCH_PERFMON_NMI_EVENT_SEL ARCH_PERFMON_UNHALTED_CORE_CYCLES_SEL
#define ARCH_PERFMON_NMI_EVENT_UMASK ARCH_PERFMON_UNHALTED_CORE_CYCLES_UMASK
static struct wd_ops intel_arch_wd_ops;
static int setup_intel_arch_watchdog(unsigned nmi_hz)
{
unsigned int ebx;
union cpuid10_eax eax;
unsigned int unused;
unsigned int perfctr_msr, evntsel_msr;
unsigned int evntsel;
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
/*
* Check whether the Architectural PerfMon supports
* Unhalted Core Cycles Event or not.
* NOTE: Corresponding bit = 0 in ebx indicates event present.
*/
cpuid(10, &(eax.full), &ebx, &unused, &unused);
if ((eax.split.mask_length < (ARCH_PERFMON_UNHALTED_CORE_CYCLES_INDEX+1)) ||
(ebx & ARCH_PERFMON_UNHALTED_CORE_CYCLES_PRESENT))
return 0;
perfctr_msr = wd_ops->perfctr;
evntsel_msr = wd_ops->evntsel;
wrmsrl(perfctr_msr, 0UL);
evntsel = ARCH_PERFMON_EVENTSEL_INT
| ARCH_PERFMON_EVENTSEL_OS
| ARCH_PERFMON_EVENTSEL_USR
| ARCH_PERFMON_NMI_EVENT_SEL
| ARCH_PERFMON_NMI_EVENT_UMASK;
/* setup the timer */
wrmsr(evntsel_msr, evntsel, 0);
nmi_hz = adjust_for_32bit_ctr(nmi_hz);
write_watchdog_counter32(perfctr_msr, "INTEL_ARCH_PERFCTR0", nmi_hz);
apic_write(APIC_LVTPC, APIC_DM_NMI);
evntsel |= ARCH_PERFMON_EVENTSEL0_ENABLE;
wrmsr(evntsel_msr, evntsel, 0);
wd->perfctr_msr = perfctr_msr;
wd->evntsel_msr = evntsel_msr;
wd->cccr_msr = 0; /* unused */
intel_arch_wd_ops.checkbit = 1ULL << (eax.split.bit_width - 1);
return 1;
}
static struct wd_ops intel_arch_wd_ops __read_mostly = {
.reserve = single_msr_reserve,
.unreserve = single_msr_unreserve,
.setup = setup_intel_arch_watchdog,
.rearm = p6_rearm,
.stop = single_msr_stop_watchdog,
.perfctr = MSR_ARCH_PERFMON_PERFCTR1,
.evntsel = MSR_ARCH_PERFMON_EVENTSEL1,
};
static void probe_nmi_watchdog(void)
{
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
if (boot_cpu_data.x86 != 6 && boot_cpu_data.x86 != 15 &&
boot_cpu_data.x86 != 16)
return;
wd_ops = &k7_wd_ops;
break;
case X86_VENDOR_INTEL:
/*
* Work around Core Duo (Yonah) errata AE49 where perfctr1
* doesn't have a working enable bit.
*/
if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 14) {
intel_arch_wd_ops.perfctr = MSR_ARCH_PERFMON_PERFCTR0;
intel_arch_wd_ops.evntsel = MSR_ARCH_PERFMON_EVENTSEL0;
}
if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
wd_ops = &intel_arch_wd_ops;
break;
}
switch (boot_cpu_data.x86) {
case 6:
if (boot_cpu_data.x86_model > 13)
return;
wd_ops = &p6_wd_ops;
break;
case 15:
wd_ops = &p4_wd_ops;
break;
default:
return;
}
break;
}
}
/* Interface to nmi.c */
int lapic_watchdog_init(unsigned nmi_hz)
{
if (!wd_ops) {
probe_nmi_watchdog();
if (!wd_ops) {
printk(KERN_INFO "NMI watchdog: CPU not supported\n");
return -1;
}
if (!wd_ops->reserve()) {
printk(KERN_ERR
"NMI watchdog: cannot reserve perfctrs\n");
return -1;
}
}
if (!(wd_ops->setup(nmi_hz))) {
printk(KERN_ERR "Cannot setup NMI watchdog on CPU %d\n",
raw_smp_processor_id());
return -1;
}
return 0;
}
void lapic_watchdog_stop(void)
{
if (wd_ops)
wd_ops->stop();
}
unsigned lapic_adjust_nmi_hz(unsigned hz)
{
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
if (wd->perfctr_msr == MSR_P6_PERFCTR0 ||
wd->perfctr_msr == MSR_ARCH_PERFMON_PERFCTR1)
hz = adjust_for_32bit_ctr(hz);
return hz;
}
int lapic_wd_event(unsigned nmi_hz)
{
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
u64 ctr;
rdmsrl(wd->perfctr_msr, ctr);
if (ctr & wd_ops->checkbit) /* perfctr still running? */
return 0;
wd_ops->rearm(wd, nmi_hz);
return 1;
}
int lapic_watchdog_ok(void)
{
return wd_ops != NULL;
}