aboutsummaryrefslogblamecommitdiffstats
path: root/arch/tile/kernel/pci.c
blob: a1ee25be9ad97084192b2853900d7aba3dab94ef (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621












































































































































































































































































































































































































































































































































































































































                                                                               
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/capability.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/uaccess.h>

#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/byteorder.h>
#include <asm/hv_driver.h>
#include <hv/drv_pcie_rc_intf.h>


/*
 * Initialization flow and process
 * -------------------------------
 *
 * This files containes the routines to search for PCI buses,
 * enumerate the buses, and configure any attached devices.
 *
 * There are two entry points here:
 * 1) tile_pci_init
 *    This sets up the pci_controller structs, and opens the
 *    FDs to the hypervisor.  This is called from setup_arch() early
 *    in the boot process.
 * 2) pcibios_init
 *    This probes the PCI bus(es) for any attached hardware.  It's
 *    called by subsys_initcall.  All of the real work is done by the
 *    generic Linux PCI layer.
 *
 */

/*
 * This flag tells if the platform is TILEmpower that needs
 * special configuration for the PLX switch chip.
 */
int __write_once tile_plx_gen1;

static struct pci_controller controllers[TILE_NUM_PCIE];
static int num_controllers;

static struct pci_ops tile_cfg_ops;


/*
 * We don't need to worry about the alignment of resources.
 */
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
			    resource_size_t size, resource_size_t align)
{
	return res->start;
}
EXPORT_SYMBOL(pcibios_align_resource);

/*
 * Open a FD to the hypervisor PCI device.
 *
 * controller_id is the controller number, config type is 0 or 1 for
 * config0 or config1 operations.
 */
static int __init tile_pcie_open(int controller_id, int config_type)
{
	char filename[32];
	int fd;

	sprintf(filename, "pcie/%d/config%d", controller_id, config_type);

	fd = hv_dev_open((HV_VirtAddr)filename, 0);

	return fd;
}


/*
 * Get the IRQ numbers from the HV and set up the handlers for them.
 */
static int __init tile_init_irqs(int controller_id,
				 struct pci_controller *controller)
{
	char filename[32];
	int fd;
	int ret;
	int x;
	struct pcie_rc_config rc_config;

	sprintf(filename, "pcie/%d/ctl", controller_id);
	fd = hv_dev_open((HV_VirtAddr)filename, 0);
	if (fd < 0) {
		pr_err("PCI: hv_dev_open(%s) failed\n", filename);
		return -1;
	}
	ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
			   sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
	hv_dev_close(fd);
	if (ret != sizeof(rc_config)) {
		pr_err("PCI: wanted %zd bytes, got %d\n",
		       sizeof(rc_config), ret);
		return -1;
	}
	/* Record irq_base so that we can map INTx to IRQ # later. */
	controller->irq_base = rc_config.intr;

	for (x = 0; x < 4; x++)
		tile_irq_activate(rc_config.intr + x,
				  TILE_IRQ_HW_CLEAR);

	if (rc_config.plx_gen1)
		controller->plx_gen1 = 1;

	return 0;
}

/*
 * First initialization entry point, called from setup_arch().
 *
 * Find valid controllers and fill in pci_controller structs for each
 * of them.
 *
 * Returns the number of controllers discovered.
 */
int __init tile_pci_init(void)
{
	int i;

	pr_info("PCI: Searching for controllers...\n");

	/* Do any configuration we need before using the PCIe */

	for (i = 0; i < TILE_NUM_PCIE; i++) {
		int hv_cfg_fd0 = -1;
		int hv_cfg_fd1 = -1;
		int hv_mem_fd = -1;
		char name[32];
		struct pci_controller *controller;

		/*
		 * Open the fd to the HV.  If it fails then this
		 * device doesn't exist.
		 */
		hv_cfg_fd0 = tile_pcie_open(i, 0);
		if (hv_cfg_fd0 < 0)
			continue;
		hv_cfg_fd1 = tile_pcie_open(i, 1);
		if (hv_cfg_fd1 < 0) {
			pr_err("PCI: Couldn't open config fd to HV "
			    "for controller %d\n", i);
			goto err_cont;
		}

		sprintf(name, "pcie/%d/mem", i);
		hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
		if (hv_mem_fd < 0) {
			pr_err("PCI: Could not open mem fd to HV!\n");
			goto err_cont;
		}

		pr_info("PCI: Found PCI controller #%d\n", i);

		controller = &controllers[num_controllers];

		if (tile_init_irqs(i, controller)) {
			pr_err("PCI: Could not initialize "
			       "IRQs, aborting.\n");
			goto err_cont;
		}

		controller->index = num_controllers;
		controller->hv_cfg_fd[0] = hv_cfg_fd0;
		controller->hv_cfg_fd[1] = hv_cfg_fd1;
		controller->hv_mem_fd = hv_mem_fd;
		controller->first_busno = 0;
		controller->last_busno = 0xff;
		controller->ops = &tile_cfg_ops;

		num_controllers++;
		continue;

err_cont:
		if (hv_cfg_fd0 >= 0)
			hv_dev_close(hv_cfg_fd0);
		if (hv_cfg_fd1 >= 0)
			hv_dev_close(hv_cfg_fd1);
		if (hv_mem_fd >= 0)
			hv_dev_close(hv_mem_fd);
		continue;
	}

	/*
	 * Before using the PCIe, see if we need to do any platform-specific
	 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
	 */
	for (i = 0; i < num_controllers; i++) {
		struct pci_controller *controller = &controllers[i];

		if (controller->plx_gen1)
			tile_plx_gen1 = 1;
	}

	return num_controllers;
}

/*
 * (pin - 1) converts from the PCI standard's [1:4] convention to
 * a normal [0:3] range.
 */
static int tile_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
	struct pci_controller *controller =
		(struct pci_controller *)dev->sysdata;
	return (pin - 1) + controller->irq_base;
}


static void __init fixup_read_and_payload_sizes(void)
{
	struct pci_dev *dev = NULL;
	int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
	int max_read_size = 0x2; /* Limit to 512 byte reads. */
	u16 new_values;

	/* Scan for the smallest maximum payload size. */
	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		int pcie_caps_offset;
		u32 devcap;
		int max_payload;

		pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
		if (pcie_caps_offset == 0)
			continue;

		pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP,
				      &devcap);
		max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
		if (max_payload < smallest_max_payload)
			smallest_max_payload = max_payload;
	}

	/* Now, set the max_payload_size for all devices to that value. */
	new_values = (max_read_size << 12) | (smallest_max_payload << 5);
	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		int pcie_caps_offset;
		u16 devctl;

		pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
		if (pcie_caps_offset == 0)
			continue;

		pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
				     &devctl);
		devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ);
		devctl |= new_values;
		pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
				      devctl);
	}
}


/*
 * Second PCI initialization entry point, called by subsys_initcall.
 *
 * The controllers have been set up by the time we get here, by a call to
 * tile_pci_init.
 */
static int __init pcibios_init(void)
{
	int i;

	pr_info("PCI: Probing PCI hardware\n");

	/*
	 * Delay a bit in case devices aren't ready.  Some devices are
	 * known to require at least 20ms here, but we use a more
	 * conservative value.
	 */
	mdelay(250);

	/* Scan all of the recorded PCI controllers.  */
	for (i = 0; i < num_controllers; i++) {
		struct pci_controller *controller = &controllers[i];
		struct pci_bus *bus;

		pr_info("PCI: initializing controller #%d\n", i);

		/*
		 * This comes from the generic Linux PCI driver.
		 *
		 * It reads the PCI tree for this bus into the Linux
		 * data structures.
		 *
		 * This is inlined in linux/pci.h and calls into
		 * pci_scan_bus_parented() in probe.c.
		 */
		bus = pci_scan_bus(0, controller->ops, controller);
		controller->root_bus = bus;
		controller->last_busno = bus->subordinate;

	}

	/* Do machine dependent PCI interrupt routing */
	pci_fixup_irqs(pci_common_swizzle, tile_map_irq);

	/*
	 * This comes from the generic Linux PCI driver.
	 *
	 * It allocates all of the resources (I/O memory, etc)
	 * associated with the devices read in above.
	 */

	pci_assign_unassigned_resources();

	/* Configure the max_read_size and max_payload_size values. */
	fixup_read_and_payload_sizes();

	/* Record the I/O resources in the PCI controller structure. */
	for (i = 0; i < num_controllers; i++) {
		struct pci_bus *root_bus = controllers[i].root_bus;
		struct pci_bus *next_bus;
		struct pci_dev *dev;

		list_for_each_entry(dev, &root_bus->devices, bus_list) {
			/* Find the PCI host controller, ie. the 1st bridge. */
			if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
				(PCI_SLOT(dev->devfn) == 0)) {
				next_bus = dev->subordinate;
				controllers[i].mem_resources[0] =
					*next_bus->resource[0];
				controllers[i].mem_resources[1] =
					 *next_bus->resource[1];
				controllers[i].mem_resources[2] =
					 *next_bus->resource[2];

				break;
			}
		}

	}

	return 0;
}
subsys_initcall(pcibios_init);

/*
 * No bus fixups needed.
 */
void __devinit pcibios_fixup_bus(struct pci_bus *bus)
{
	/* Nothing needs to be done. */
}

/*
 * This can be called from the generic PCI layer, but doesn't need to
 * do anything.
 */
char __devinit *pcibios_setup(char *str)
{
	/* Nothing needs to be done. */
	return str;
}

/*
 * This is called from the generic Linux layer.
 */
void __init pcibios_update_irq(struct pci_dev *dev, int irq)
{
	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
}

/*
 * Enable memory and/or address decoding, as appropriate, for the
 * device described by the 'dev' struct.
 *
 * This is called from the generic PCI layer, and can be called
 * for bridges or endpoints.
 */
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
	u16 cmd, old_cmd;
	u8 header_type;
	int i;
	struct resource *r;

	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);

	pci_read_config_word(dev, PCI_COMMAND, &cmd);
	old_cmd = cmd;
	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
		/*
		 * For bridges, we enable both memory and I/O decoding
		 * in call cases.
		 */
		cmd |= PCI_COMMAND_IO;
		cmd |= PCI_COMMAND_MEMORY;
	} else {
		/*
		 * For endpoints, we enable memory and/or I/O decoding
		 * only if they have a memory resource of that type.
		 */
		for (i = 0; i < 6; i++) {
			r = &dev->resource[i];
			if (r->flags & IORESOURCE_UNSET) {
				pr_err("PCI: Device %s not available "
				       "because of resource collisions\n",
				       pci_name(dev));
				return -EINVAL;
			}
			if (r->flags & IORESOURCE_IO)
				cmd |= PCI_COMMAND_IO;
			if (r->flags & IORESOURCE_MEM)
				cmd |= PCI_COMMAND_MEMORY;
		}
	}

	/*
	 * We only write the command if it changed.
	 */
	if (cmd != old_cmd)
		pci_write_config_word(dev, PCI_COMMAND, cmd);
	return 0;
}

void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max)
{
	unsigned long start = pci_resource_start(dev, bar);
	unsigned long len = pci_resource_len(dev, bar);
	unsigned long flags = pci_resource_flags(dev, bar);

	if (!len)
		return NULL;
	if (max && len > max)
		len = max;

	if (!(flags & IORESOURCE_MEM)) {
		pr_info("PCI: Trying to map invalid resource %#lx\n", flags);
		start = 0;
	}

	return (void __iomem *)start;
}
EXPORT_SYMBOL(pci_iomap);


/****************************************************************
 *
 * Tile PCI config space read/write routines
 *
 ****************************************************************/

/*
 * These are the normal read and write ops
 * These are expanded with macros from  pci_bus_read_config_byte() etc.
 *
 * devfn is the combined PCI slot & function.
 *
 * offset is in bytes, from the start of config space for the
 * specified bus & slot.
 */

static int __devinit tile_cfg_read(struct pci_bus *bus,
				   unsigned int devfn,
				   int offset,
				   int size,
				   u32 *val)
{
	struct pci_controller *controller = bus->sysdata;
	int busnum = bus->number & 0xff;
	int slot = (devfn >> 3) & 0x1f;
	int function = devfn & 0x7;
	u32 addr;
	int config_mode = 1;

	/*
	 * There is no bridge between the Tile and bus 0, so we
	 * use config0 to talk to bus 0.
	 *
	 * If we're talking to a bus other than zero then we
	 * must have found a bridge.
	 */
	if (busnum == 0) {
		/*
		 * We fake an empty slot for (busnum == 0) && (slot > 0),
		 * since there is only one slot on bus 0.
		 */
		if (slot) {
			*val = 0xFFFFFFFF;
			return 0;
		}
		config_mode = 0;
	}

	addr = busnum << 20;		/* Bus in 27:20 */
	addr |= slot << 15;		/* Slot (device) in 19:15 */
	addr |= function << 12;		/* Function is in 14:12 */
	addr |= (offset & 0xFFF);	/* byte address in 0:11 */

	return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
			    (HV_VirtAddr)(val), size, addr);
}


/*
 * See tile_cfg_read() for relevent comments.
 * Note that "val" is the value to write, not a pointer to that value.
 */
static int __devinit tile_cfg_write(struct pci_bus *bus,
				    unsigned int devfn,
				    int offset,
				    int size,
				    u32 val)
{
	struct pci_controller *controller = bus->sysdata;
	int busnum = bus->number & 0xff;
	int slot = (devfn >> 3) & 0x1f;
	int function = devfn & 0x7;
	u32 addr;
	int config_mode = 1;
	HV_VirtAddr valp = (HV_VirtAddr)&val;

	/*
	 * For bus 0 slot 0 we use config 0 accesses.
	 */
	if (busnum == 0) {
		/*
		 * We fake an empty slot for (busnum == 0) && (slot > 0),
		 * since there is only one slot on bus 0.
		 */
		if (slot)
			return 0;
		config_mode = 0;
	}

	addr = busnum << 20;		/* Bus in 27:20 */
	addr |= slot << 15;		/* Slot (device) in 19:15 */
	addr |= function << 12;		/* Function is in 14:12 */
	addr |= (offset & 0xFFF);	/* byte address in 0:11 */

#ifdef __BIG_ENDIAN
	/* Point to the correct part of the 32-bit "val". */
	valp += 4 - size;
#endif

	return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
			     valp, size, addr);
}


static struct pci_ops tile_cfg_ops = {
	.read =         tile_cfg_read,
	.write =        tile_cfg_write,
};


/*
 * In the following, each PCI controller's mem_resources[1]
 * represents its (non-prefetchable) PCI memory resource.
 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
 * prefetchable PCI memory resources, respectively.
 * For more details, see pci_setup_bridge() in setup-bus.c.
 * By comparing the target PCI memory address against the
 * end address of controller 0, we can determine the controller
 * that should accept the PCI memory access.
 */
#define TILE_READ(size, type)						\
type _tile_read##size(unsigned long addr)				\
{									\
	type val;							\
	int idx = 0;							\
	if (addr > controllers[0].mem_resources[1].end &&		\
	    addr > controllers[0].mem_resources[2].end)			\
		idx = 1;                                                \
	if (hv_dev_pread(controllers[idx].hv_mem_fd, 0,			\
			 (HV_VirtAddr)(&val), sizeof(type), addr))	\
		pr_err("PCI: read %zd bytes at 0x%lX failed\n",		\
		       sizeof(type), addr);				\
	return val;							\
}									\
EXPORT_SYMBOL(_tile_read##size)

TILE_READ(b, u8);
TILE_READ(w, u16);
TILE_READ(l, u32);
TILE_READ(q, u64);

#define TILE_WRITE(size, type)						\
void _tile_write##size(type val, unsigned long addr)			\
{									\
	int idx = 0;							\
	if (addr > controllers[0].mem_resources[1].end &&		\
	    addr > controllers[0].mem_resources[2].end)			\
		idx = 1;                                                \
	if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0,		\
			  (HV_VirtAddr)(&val), sizeof(type), addr))	\
		pr_err("PCI: write %zd bytes at 0x%lX failed\n",	\
		       sizeof(type), addr);				\
}									\
EXPORT_SYMBOL(_tile_write##size)

TILE_WRITE(b, u8);
TILE_WRITE(w, u16);
TILE_WRITE(l, u32);
TILE_WRITE(q, u64);