aboutsummaryrefslogblamecommitdiffstats
path: root/arch/ppc/8xx_io/fec.c
blob: 1d4b49ad0d7f1fbc0ce032941aacfb94c1983d07 (plain) (tree)
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265





























                                                                            
























                              
                     





















































































































                                                                               
                                    
                               
























                                                                            
                                                              














































































































































































































































































                                                                               
                   
                                          














































                                                                           
                                                                                   



                             
                                       





































































































































































































                                                                              
                                                       
                                                              
























































































































































































































































































































































































































































































































































                                                                                          
                                                        
 


                                                                      



























                                                           
                                                
 


                                                                      

























                                                                  

                                              
                                      





                                                                  

                                                      
                                      



































































                                                                               
      
                        
                                     
     
                                                      




























                                                                          
                                                                               

                             


                                       






































































































































                                                                                                         
                                 































































                                                                            

                                                                             















                                                     



                                                                            
















































































































































































































                                                                               
                                        






































































































                                                                                
/*
 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
 * This version of the driver is specific to the FADS implementation,
 * since the board contains control registers external to the processor
 * for the control of the LevelOne LXT970 transceiver.  The MPC860T manual
 * describes connections using the internal parallel port I/O, which
 * is basically all of Port D.
 *
 * Includes support for the following PHYs: QS6612, LXT970, LXT971/2.
 *
 * Right now, I am very wasteful with the buffers.  I allocate memory
 * pages and then divide them into 2K frame buffers.  This way I know I
 * have buffers large enough to hold one frame within one buffer descriptor.
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 * will be much more memory efficient and will easily handle lots of
 * small packets.
 *
 * Much better multiple PHY support by Magnus Damm.
 * Copyright (c) 2000 Ericsson Radio Systems AB.
 *
 * Make use of MII for PHY control configurable.
 * Some fixes.
 * Copyright (c) 2000-2002 Wolfgang Denk, DENX Software Engineering.
 *
 * Support for AMD AM79C874 added.
 * Thomas Lange, thomas@corelatus.com
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#ifdef CONFIG_FEC_PACKETHOOK
#include <linux/pkthook.h>
#endif

#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/cpm1.h>

#ifdef	CONFIG_USE_MDIO
/* Forward declarations of some structures to support different PHYs
*/

typedef struct {
	uint mii_data;
	void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;

typedef struct {
	uint id;
	char *name;

	const phy_cmd_t *config;
	const phy_cmd_t *startup;
	const phy_cmd_t *ack_int;
	const phy_cmd_t *shutdown;
} phy_info_t;
#endif	/* CONFIG_USE_MDIO */

/* The number of Tx and Rx buffers.  These are allocated from the page
 * pool.  The code may assume these are power of two, so it is best
 * to keep them that size.
 * We don't need to allocate pages for the transmitter.  We just use
 * the skbuffer directly.
 */
#ifdef CONFIG_ENET_BIG_BUFFERS
#define FEC_ENET_RX_PAGES	16
#define FEC_ENET_RX_FRSIZE	2048
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define TX_RING_SIZE		16	/* Must be power of two */
#define TX_RING_MOD_MASK	15	/*   for this to work */
#else
#define FEC_ENET_RX_PAGES	4
#define FEC_ENET_RX_FRSIZE	2048
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define TX_RING_SIZE		8	/* Must be power of two */
#define TX_RING_MOD_MASK	7	/*   for this to work */
#endif

/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */

/*
*/
#define FEC_ECNTRL_PINMUX	0x00000004
#define FEC_ECNTRL_ETHER_EN	0x00000002
#define FEC_ECNTRL_RESET	0x00000001

#define FEC_RCNTRL_BC_REJ	0x00000010
#define FEC_RCNTRL_PROM		0x00000008
#define FEC_RCNTRL_MII_MODE	0x00000004
#define FEC_RCNTRL_DRT		0x00000002
#define FEC_RCNTRL_LOOP		0x00000001

#define FEC_TCNTRL_FDEN		0x00000004
#define FEC_TCNTRL_HBC		0x00000002
#define FEC_TCNTRL_GTS		0x00000001

/* Delay to wait for FEC reset command to complete (in us)
*/
#define FEC_RESET_DELAY		50

/* The FEC stores dest/src/type, data, and checksum for receive packets.
 */
#define PKT_MAXBUF_SIZE		1518
#define PKT_MINBUF_SIZE		64
#define PKT_MAXBLR_SIZE		1520

/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 * tx_bd_base always point to the base of the buffer descriptors.  The
 * cur_rx and cur_tx point to the currently available buffer.
 * The dirty_tx tracks the current buffer that is being sent by the
 * controller.  The cur_tx and dirty_tx are equal under both completely
 * empty and completely full conditions.  The empty/ready indicator in
 * the buffer descriptor determines the actual condition.
 */
struct fec_enet_private {
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
	ushort	skb_cur;
	ushort	skb_dirty;

	/* CPM dual port RAM relative addresses.
	*/
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
	cbd_t	*tx_bd_base;
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */

	/* Virtual addresses for the receive buffers because we can't
	 * do a __va() on them anymore.
	 */
	unsigned char *rx_vaddr[RX_RING_SIZE];

	struct	net_device_stats stats;
	uint	tx_full;
	spinlock_t lock;

#ifdef	CONFIG_USE_MDIO
	uint	phy_id;
	uint	phy_id_done;
	uint	phy_status;
	uint	phy_speed;
	phy_info_t	*phy;
	struct work_struct phy_task;
	struct net_device *dev;

	uint	sequence_done;

	uint	phy_addr;
#endif	/* CONFIG_USE_MDIO */

	int	link;
	int	old_link;
	int	full_duplex;

#ifdef CONFIG_FEC_PACKETHOOK
	unsigned long	ph_lock;
	fec_ph_func	*ph_rxhandler;
	fec_ph_func	*ph_txhandler;
	__u16		ph_proto;
	volatile __u32	*ph_regaddr;
	void 		*ph_priv;
#endif
};

static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
#ifdef	CONFIG_USE_MDIO
static void fec_enet_mii(struct net_device *dev);
#endif	/* CONFIG_USE_MDIO */
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
#ifdef CONFIG_FEC_PACKETHOOK
static void  fec_enet_tx(struct net_device *dev, __u32 regval);
static void  fec_enet_rx(struct net_device *dev, __u32 regval);
#else
static void  fec_enet_tx(struct net_device *dev);
static void  fec_enet_rx(struct net_device *dev);
#endif
static int fec_enet_close(struct net_device *dev);
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
static	ushort	my_enet_addr[3];

#ifdef	CONFIG_USE_MDIO
/* MII processing.  We keep this as simple as possible.  Requests are
 * placed on the list (if there is room).  When the request is finished
 * by the MII, an optional function may be called.
 */
typedef struct mii_list {
	uint	mii_regval;
	void	(*mii_func)(uint val, struct net_device *dev);
	struct	mii_list *mii_next;
} mii_list_t;

#define		NMII	20
mii_list_t	mii_cmds[NMII];
mii_list_t	*mii_free;
mii_list_t	*mii_head;
mii_list_t	*mii_tail;

static int	mii_queue(struct net_device *dev, int request,
				void (*func)(uint, struct net_device *));

/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
						(VAL & 0xffff))
#define mk_mii_end	0
#endif	/* CONFIG_USE_MDIO */

/* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)

#ifdef	CONFIG_USE_MDIO
/* Register definitions for the PHY.
*/

#define MII_REG_CR          0  /* Control Register                         */
#define MII_REG_SR          1  /* Status Register                          */
#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
#define MII_REG_ANER        6  /* A-N Expansion Register                   */
#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */

/* values for phy_status */

#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */

#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
#endif	/* CONFIG_USE_MDIO */

#ifdef CONFIG_FEC_PACKETHOOK
int
fec_register_ph(struct net_device *dev, fec_ph_func *rxfun, fec_ph_func *txfun,
		__u16 proto, volatile __u32 *regaddr, void *priv)
{
	struct fec_enet_private *fep;
	int retval = 0;

	fep = dev->priv;

	if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) {
		/* Someone is messing with the packet hook */
		return -EAGAIN;
	}
	if (fep->ph_rxhandler != NULL || fep->ph_txhandler != NULL) {
		retval = -EBUSY;
		goto out;
	}
	fep->ph_rxhandler = rxfun;
	fep->ph_txhandler = txfun;
	fep->ph_proto = proto;
	fep->ph_regaddr = regaddr;
	fep->ph_priv = priv;

	out:
	fep->ph_lock = 0;

	return retval;
}


int
fec_unregister_ph(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int retval = 0;

	fep = dev->priv;

	if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) {
		/* Someone is messing with the packet hook */
		return -EAGAIN;
	}

	fep->ph_rxhandler = fep->ph_txhandler = NULL;
	fep->ph_proto = 0;
	fep->ph_regaddr = NULL;
	fep->ph_priv = NULL;

	fep->ph_lock = 0;

	return retval;
}

EXPORT_SYMBOL(fec_register_ph);
EXPORT_SYMBOL(fec_unregister_ph);

#endif /* CONFIG_FEC_PACKETHOOK */

static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t	*bdp;

	fep = dev->priv;
	fecp = (volatile fec_t*)dev->base_addr;

	if (!fep->link) {
		/* Link is down or autonegotiation is in progress. */
		return 1;
	}

	/* Fill in a Tx ring entry */
	bdp = fep->cur_tx;

#ifndef final_version
	if (bdp->cbd_sc & BD_ENET_TX_READY) {
		/* Ooops.  All transmit buffers are full.  Bail out.
		 * This should not happen, since dev->tbusy should be set.
		 */
		printk("%s: tx queue full!.\n", dev->name);
		return 1;
	}
#endif

	/* Clear all of the status flags.
	 */
	bdp->cbd_sc &= ~BD_ENET_TX_STATS;

	/* Set buffer length and buffer pointer.
	*/
	bdp->cbd_bufaddr = __pa(skb->data);
	bdp->cbd_datlen = skb->len;

	/* Save skb pointer.
	*/
	fep->tx_skbuff[fep->skb_cur] = skb;

	fep->stats.tx_bytes += skb->len;
	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;

	/* Push the data cache so the CPM does not get stale memory
	 * data.
	 */
	flush_dcache_range((unsigned long)skb->data,
			   (unsigned long)skb->data + skb->len);

	/* disable interrupts while triggering transmit */
	spin_lock_irq(&fep->lock);

	/* Send it on its way.  Tell FEC its ready, interrupt when done,
	 * its the last BD of the frame, and to put the CRC on the end.
	 */

	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
			| BD_ENET_TX_LAST | BD_ENET_TX_TC);

	dev->trans_start = jiffies;

	/* Trigger transmission start */
	fecp->fec_x_des_active = 0x01000000;

	/* If this was the last BD in the ring, start at the beginning again.
	*/
	if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
		bdp = fep->tx_bd_base;
	} else {
		bdp++;
	}

	if (bdp->cbd_sc & BD_ENET_TX_READY) {
		netif_stop_queue(dev);
		fep->tx_full = 1;
	}

	fep->cur_tx = (cbd_t *)bdp;

	spin_unlock_irq(&fep->lock);

	return 0;
}

static void
fec_timeout(struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;

	printk("%s: transmit timed out.\n", dev->name);
	fep->stats.tx_errors++;
#ifndef final_version
	{
	int	i;
	cbd_t	*bdp;

	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
	       (unsigned long)fep->dirty_tx,
	       (unsigned long)fep->cur_rx);

	bdp = fep->tx_bd_base;
	printk(" tx: %u buffers\n",  TX_RING_SIZE);
	for (i = 0 ; i < TX_RING_SIZE; i++) {
		printk("  %08x: %04x %04x %08x\n",
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       bdp->cbd_bufaddr);
		bdp++;
	}

	bdp = fep->rx_bd_base;
	printk(" rx: %lu buffers\n",  RX_RING_SIZE);
	for (i = 0 ; i < RX_RING_SIZE; i++) {
		printk("  %08x: %04x %04x %08x\n",
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       bdp->cbd_bufaddr);
		bdp++;
	}
	}
#endif
	if (!fep->tx_full)
		netif_wake_queue(dev);
}

/* The interrupt handler.
 * This is called from the MPC core interrupt.
 */
static	irqreturn_t
fec_enet_interrupt(int irq, void * dev_id)
{
	struct	net_device *dev = dev_id;
	volatile fec_t	*fecp;
	uint	int_events;
#ifdef CONFIG_FEC_PACKETHOOK
	struct	fec_enet_private *fep = dev->priv;
	__u32 regval;

	if (fep->ph_regaddr) regval = *fep->ph_regaddr;
#endif
	fecp = (volatile fec_t*)dev->base_addr;

	/* Get the interrupt events that caused us to be here.
	*/
	while ((int_events = fecp->fec_ievent) != 0) {
		fecp->fec_ievent = int_events;
		if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
				   FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) {
			printk("FEC ERROR %x\n", int_events);
		}

		/* Handle receive event in its own function.
		 */
		if (int_events & FEC_ENET_RXF) {
#ifdef CONFIG_FEC_PACKETHOOK
			fec_enet_rx(dev, regval);
#else
			fec_enet_rx(dev);
#endif
		}

		/* Transmit OK, or non-fatal error. Update the buffer
		   descriptors. FEC handles all errors, we just discover
		   them as part of the transmit process.
		*/
		if (int_events & FEC_ENET_TXF) {
#ifdef CONFIG_FEC_PACKETHOOK
			fec_enet_tx(dev, regval);
#else
			fec_enet_tx(dev);
#endif
		}

		if (int_events & FEC_ENET_MII) {
#ifdef	CONFIG_USE_MDIO
			fec_enet_mii(dev);
#else
printk("%s[%d] %s: unexpected FEC_ENET_MII event\n", __FILE__, __LINE__, __func__);
#endif	/* CONFIG_USE_MDIO */
		}

	}
	return IRQ_RETVAL(IRQ_HANDLED);
}


static void
#ifdef CONFIG_FEC_PACKETHOOK
fec_enet_tx(struct net_device *dev, __u32 regval)
#else
fec_enet_tx(struct net_device *dev)
#endif
{
	struct	fec_enet_private *fep;
	volatile cbd_t	*bdp;
	struct	sk_buff	*skb;

	fep = dev->priv;
	/* lock while transmitting */
	spin_lock(&fep->lock);
	bdp = fep->dirty_tx;

	while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
		if (bdp == fep->cur_tx && fep->tx_full == 0) break;

		skb = fep->tx_skbuff[fep->skb_dirty];
		/* Check for errors. */
		if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
				   BD_ENET_TX_RL | BD_ENET_TX_UN |
				   BD_ENET_TX_CSL)) {
			fep->stats.tx_errors++;
			if (bdp->cbd_sc & BD_ENET_TX_HB)  /* No heartbeat */
				fep->stats.tx_heartbeat_errors++;
			if (bdp->cbd_sc & BD_ENET_TX_LC)  /* Late collision */
				fep->stats.tx_window_errors++;
			if (bdp->cbd_sc & BD_ENET_TX_RL)  /* Retrans limit */
				fep->stats.tx_aborted_errors++;
			if (bdp->cbd_sc & BD_ENET_TX_UN)  /* Underrun */
				fep->stats.tx_fifo_errors++;
			if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
				fep->stats.tx_carrier_errors++;
		} else {
#ifdef CONFIG_FEC_PACKETHOOK
			/* Packet hook ... */
			if (fep->ph_txhandler &&
			    ((struct ethhdr *)skb->data)->h_proto
			    == fep->ph_proto) {
				fep->ph_txhandler((__u8*)skb->data, skb->len,
						  regval, fep->ph_priv);
			}
#endif
			fep->stats.tx_packets++;
		}

#ifndef final_version
		if (bdp->cbd_sc & BD_ENET_TX_READY)
			printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
		/* Deferred means some collisions occurred during transmit,
		 * but we eventually sent the packet OK.
		 */
		if (bdp->cbd_sc & BD_ENET_TX_DEF)
			fep->stats.collisions++;

		/* Free the sk buffer associated with this last transmit.
		 */
#if 0
printk("TXI: %x %x %x\n", bdp, skb, fep->skb_dirty);
#endif
		dev_kfree_skb_irq (skb/*, FREE_WRITE*/);
		fep->tx_skbuff[fep->skb_dirty] = NULL;
		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;

		/* Update pointer to next buffer descriptor to be transmitted.
		 */
		if (bdp->cbd_sc & BD_ENET_TX_WRAP)
			bdp = fep->tx_bd_base;
		else
			bdp++;

		/* Since we have freed up a buffer, the ring is no longer
		 * full.
		 */
		if (fep->tx_full) {
			fep->tx_full = 0;
			if (netif_queue_stopped(dev))
				netif_wake_queue(dev);
		}
#ifdef CONFIG_FEC_PACKETHOOK
		/* Re-read register. Not exactly guaranteed to be correct,
		   but... */
		if (fep->ph_regaddr) regval = *fep->ph_regaddr;
#endif
	}
	fep->dirty_tx = (cbd_t *)bdp;
	spin_unlock(&fep->lock);
}


/* During a receive, the cur_rx points to the current incoming buffer.
 * When we update through the ring, if the next incoming buffer has
 * not been given to the system, we just set the empty indicator,
 * effectively tossing the packet.
 */
static void
#ifdef CONFIG_FEC_PACKETHOOK
fec_enet_rx(struct net_device *dev, __u32 regval)
#else
fec_enet_rx(struct net_device *dev)
#endif
{
	struct	fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t *bdp;
	struct	sk_buff	*skb;
	ushort	pkt_len;
	__u8 *data;

	fep = dev->priv;
	fecp = (volatile fec_t*)dev->base_addr;

	/* First, grab all of the stats for the incoming packet.
	 * These get messed up if we get called due to a busy condition.
	 */
	bdp = fep->cur_rx;

while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {

#ifndef final_version
	/* Since we have allocated space to hold a complete frame,
	 * the last indicator should be set.
	 */
	if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
		printk("FEC ENET: rcv is not +last\n");
#endif

	/* Check for errors. */
	if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
		fep->stats.rx_errors++;
		if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
		/* Frame too long or too short. */
			fep->stats.rx_length_errors++;
		}
		if (bdp->cbd_sc & BD_ENET_RX_NO)	/* Frame alignment */
			fep->stats.rx_frame_errors++;
		if (bdp->cbd_sc & BD_ENET_RX_CR)	/* CRC Error */
			fep->stats.rx_crc_errors++;
		if (bdp->cbd_sc & BD_ENET_RX_OV)	/* FIFO overrun */
			fep->stats.rx_crc_errors++;
	}

	/* Report late collisions as a frame error.
	 * On this error, the BD is closed, but we don't know what we
	 * have in the buffer.  So, just drop this frame on the floor.
	 */
	if (bdp->cbd_sc & BD_ENET_RX_CL) {
		fep->stats.rx_errors++;
		fep->stats.rx_frame_errors++;
		goto rx_processing_done;
	}

	/* Process the incoming frame.
	 */
	fep->stats.rx_packets++;
	pkt_len = bdp->cbd_datlen;
	fep->stats.rx_bytes += pkt_len;
	data = fep->rx_vaddr[bdp - fep->rx_bd_base];

#ifdef CONFIG_FEC_PACKETHOOK
	/* Packet hook ... */
	if (fep->ph_rxhandler) {
		if (((struct ethhdr *)data)->h_proto == fep->ph_proto) {
			switch (fep->ph_rxhandler(data, pkt_len, regval,
						  fep->ph_priv)) {
			case 1:
				goto rx_processing_done;
				break;
			case 0:
				break;
			default:
				fep->stats.rx_errors++;
				goto rx_processing_done;
			}
		}
	}

	/* If it wasn't filtered - copy it to an sk buffer. */
#endif

	/* This does 16 byte alignment, exactly what we need.
	 * The packet length includes FCS, but we don't want to
	 * include that when passing upstream as it messes up
	 * bridging applications.
	 */
	skb = dev_alloc_skb(pkt_len-4);

	if (skb == NULL) {
		printk("%s: Memory squeeze, dropping packet.\n", dev->name);
		fep->stats.rx_dropped++;
	} else {
		skb_put(skb,pkt_len-4);	/* Make room */
		skb_copy_to_linear_data(skb, data, pkt_len-4);
		skb->protocol=eth_type_trans(skb,dev);
		netif_rx(skb);
	}
  rx_processing_done:

	/* Clear the status flags for this buffer.
	*/
	bdp->cbd_sc &= ~BD_ENET_RX_STATS;

	/* Mark the buffer empty.
	*/
	bdp->cbd_sc |= BD_ENET_RX_EMPTY;

	/* Update BD pointer to next entry.
	*/
	if (bdp->cbd_sc & BD_ENET_RX_WRAP)
		bdp = fep->rx_bd_base;
	else
		bdp++;

#if 1
	/* Doing this here will keep the FEC running while we process
	 * incoming frames.  On a heavily loaded network, we should be
	 * able to keep up at the expense of system resources.
	 */
	fecp->fec_r_des_active = 0x01000000;
#endif
#ifdef CONFIG_FEC_PACKETHOOK
	/* Re-read register. Not exactly guaranteed to be correct,
	   but... */
	if (fep->ph_regaddr) regval = *fep->ph_regaddr;
#endif
   } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
	fep->cur_rx = (cbd_t *)bdp;

#if 0
	/* Doing this here will allow us to process all frames in the
	 * ring before the FEC is allowed to put more there.  On a heavily
	 * loaded network, some frames may be lost.  Unfortunately, this
	 * increases the interrupt overhead since we can potentially work
	 * our way back to the interrupt return only to come right back
	 * here.
	 */
	fecp->fec_r_des_active = 0x01000000;
#endif
}


#ifdef	CONFIG_USE_MDIO
static void
fec_enet_mii(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*ep;
	mii_list_t	*mip;
	uint		mii_reg;

	fep = (struct fec_enet_private *)dev->priv;
	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
	mii_reg = ep->fec_mii_data;

	if ((mip = mii_head) == NULL) {
		printk("MII and no head!\n");
		return;
	}

	if (mip->mii_func != NULL)
		(*(mip->mii_func))(mii_reg, dev);

	mii_head = mip->mii_next;
	mip->mii_next = mii_free;
	mii_free = mip;

	if ((mip = mii_head) != NULL) {
		ep->fec_mii_data = mip->mii_regval;

	}
}

static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
	struct fec_enet_private *fep;
	unsigned long	flags;
	mii_list_t	*mip;
	int		retval;

	/* Add PHY address to register command.
	*/
	fep = dev->priv;
	regval |= fep->phy_addr << 23;

	retval = 0;

	/* lock while modifying mii_list */
	spin_lock_irqsave(&fep->lock, flags);

	if ((mip = mii_free) != NULL) {
		mii_free = mip->mii_next;
		mip->mii_regval = regval;
		mip->mii_func = func;
		mip->mii_next = NULL;
		if (mii_head) {
			mii_tail->mii_next = mip;
			mii_tail = mip;
		} else {
			mii_head = mii_tail = mip;
			(&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
		}
	} else {
		retval = 1;
	}

	spin_unlock_irqrestore(&fep->lock, flags);

	return(retval);
}

static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
	int k;

	if(!c)
		return;

	for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
		mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
}

static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);

	if (mii_reg & 0x0004)
		*s |= PHY_STAT_LINK;
	if (mii_reg & 0x0010)
		*s |= PHY_STAT_FAULT;
	if (mii_reg & 0x0020)
		*s |= PHY_STAT_ANC;

	fep->link = (*s & PHY_STAT_LINK) ? 1 : 0;
}

static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);

	if (mii_reg & 0x1000)
		*s |= PHY_CONF_ANE;
	if (mii_reg & 0x4000)
		*s |= PHY_CONF_LOOP;
}

static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_CONF_SPMASK);

	if (mii_reg & 0x0020)
		*s |= PHY_CONF_10HDX;
	if (mii_reg & 0x0040)
		*s |= PHY_CONF_10FDX;
	if (mii_reg & 0x0080)
		*s |= PHY_CONF_100HDX;
	if (mii_reg & 0x00100)
		*s |= PHY_CONF_100FDX;
}
#if 0
static void mii_disp_reg(uint mii_reg, struct net_device *dev)
{
	printk("reg %u = 0x%04x\n", (mii_reg >> 18) & 0x1f, mii_reg & 0xffff);
}
#endif

/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards				     */

#ifdef CONFIG_FEC_LXT970

#define MII_LXT970_MIRROR    16  /* Mirror register           */
#define MII_LXT970_IER       17  /* Interrupt Enable Register */
#define MII_LXT970_ISR       18  /* Interrupt Status Register */
#define MII_LXT970_CONFIG    19  /* Configuration Register    */
#define MII_LXT970_CSR       20  /* Chip Status Register      */

static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_STAT_SPMASK);

	if (mii_reg & 0x0800) {
		if (mii_reg & 0x1000)
			*s |= PHY_STAT_100FDX;
		else
			*s |= PHY_STAT_100HDX;
	}
	else {
		if (mii_reg & 0x1000)
			*s |= PHY_STAT_10FDX;
		else
			*s |= PHY_STAT_10HDX;
	}
}

static phy_info_t phy_info_lxt970 = {
	0x07810000,
	"LXT970",

	(const phy_cmd_t []) {  /* config */
#if 0
//		{ mk_mii_write(MII_REG_ANAR, 0x0021), NULL },

		/* Set default operation of 100-TX....for some reason
		 * some of these bits are set on power up, which is wrong.
		 */
		{ mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
#endif
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int */
		/* read SR and ISR to acknowledge */

		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT970_ISR), NULL },

		/* find out the current status */

		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
		{ mk_mii_end, }
	},
};

#endif /* CONFIG_FEC_LXT970 */

/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards                  */

#ifdef CONFIG_FEC_LXT971

/* register definitions for the 971 */

#define MII_LXT971_PCR       16  /* Port Control Register     */
#define MII_LXT971_SR2       17  /* Status Register 2         */
#define MII_LXT971_IER       18  /* Interrupt Enable Register */
#define MII_LXT971_ISR       19  /* Interrupt Status Register */
#define MII_LXT971_LCR       20  /* LED Control Register      */
#define MII_LXT971_TCR       30  /* Transmit Control Register */

/*
 * I had some nice ideas of running the MDIO faster...
 * The 971 should support 8MHz and I tried it, but things acted really
 * weird, so 2.5 MHz ought to be enough for anyone...
 */

static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_STAT_SPMASK);

	if (mii_reg & 0x4000) {
		if (mii_reg & 0x0200)
			*s |= PHY_STAT_100FDX;
		else
			*s |= PHY_STAT_100HDX;
	}
	else {
		if (mii_reg & 0x0200)
			*s |= PHY_STAT_10FDX;
		else
			*s |= PHY_STAT_10HDX;
	}
	if (mii_reg & 0x0008)
		*s |= PHY_STAT_FAULT;
}

static phy_info_t phy_info_lxt971 = {
	0x0001378e,
	"LXT971",

	(const phy_cmd_t []) {  /* config */
//		{ mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10  Mbps, HD */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */

		/* Somehow does the 971 tell me that the link is down
		 * the first read after power-up.
		 * read here to get a valid value in ack_int */

		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int */
		/* find out the current status */

		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },

		/* we only need to read ISR to acknowledge */

		{ mk_mii_read(MII_LXT971_ISR), NULL },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
		{ mk_mii_end, }
	},
};

#endif /* CONFIG_FEC_LXT970 */


/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */

#ifdef CONFIG_FEC_QS6612

/* register definitions */

#define MII_QS6612_MCR       17  /* Mode Control Register      */
#define MII_QS6612_FTR       27  /* Factory Test Register      */
#define MII_QS6612_MCO       28  /* Misc. Control Register     */
#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */

static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_STAT_SPMASK);

	switch((mii_reg >> 2) & 7) {
	case 1: *s |= PHY_STAT_10HDX; break;
	case 2: *s |= PHY_STAT_100HDX; break;
	case 5: *s |= PHY_STAT_10FDX; break;
	case 6: *s |= PHY_STAT_100FDX; break;
	}
}

static phy_info_t phy_info_qs6612 = {
	0x00181440,
	"QS6612",

	(const phy_cmd_t []) {  /* config */
//	{ mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10  Mbps */

		/* The PHY powers up isolated on the RPX,
		 * so send a command to allow operation.
		 */

		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },

		/* parse cr and anar to get some info */

		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int */

		/* we need to read ISR, SR and ANER to acknowledge */

		{ mk_mii_read(MII_QS6612_ISR), NULL },
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_REG_ANER), NULL },

		/* read pcr to get info */

		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
		{ mk_mii_end, }
	},
};

#endif /* CONFIG_FEC_QS6612 */

/* ------------------------------------------------------------------------- */
/* The Advanced Micro Devices AM79C874 is used on the ICU862		     */

#ifdef CONFIG_FEC_AM79C874

/* register definitions for the 79C874 */

#define MII_AM79C874_MFR	16  /* Miscellaneous Features Register      */
#define MII_AM79C874_ICSR	17  /* Interrupt Control/Status Register    */
#define MII_AM79C874_DR		18  /* Diagnostic Register		    */
#define MII_AM79C874_PMLR	19  /* Power Management & Loopback Register */
#define MII_AM79C874_MCR	21  /* Mode Control Register		    */
#define MII_AM79C874_DC		23  /* Disconnect Counter		    */
#define MII_AM79C874_REC	24  /* Receiver Error Counter		    */

static void mii_parse_amd79c874_dr(uint mii_reg, struct net_device *dev, uint data)
{
	volatile struct fec_enet_private *fep = dev->priv;
	uint s = fep->phy_status;

	s &= ~(PHY_STAT_SPMASK);

	/* Register 18: Bit 10 is data rate, 11 is Duplex */
	switch ((mii_reg >> 10) & 3) {
	case 0:	s |= PHY_STAT_10HDX;	break;
	case 1:	s |= PHY_STAT_100HDX;	break;
	case 2:	s |= PHY_STAT_10FDX;	break;
	case 3:	s |= PHY_STAT_100FDX;	break;
	}

	fep->phy_status = s;
}

static phy_info_t phy_info_amd79c874 = {
	0x00022561,
	"AM79C874",

	(const phy_cmd_t []) {  /* config */
//		{ mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10  Mbps, HD */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int */
		/* find out the current status */

		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_amd79c874_dr },

		/* we only need to read ICSR to acknowledge */

		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
	},
};

#endif /* CONFIG_FEC_AM79C874 */

static phy_info_t *phy_info[] = {

#ifdef CONFIG_FEC_LXT970
	&phy_info_lxt970,
#endif /* CONFIG_FEC_LXT970 */

#ifdef CONFIG_FEC_LXT971
	&phy_info_lxt971,
#endif /* CONFIG_FEC_LXT971 */

#ifdef CONFIG_FEC_QS6612
	&phy_info_qs6612,
#endif /* CONFIG_FEC_QS6612 */

#ifdef CONFIG_FEC_AM79C874
	&phy_info_amd79c874,
#endif /* CONFIG_FEC_AM79C874 */

	NULL
};

static void mii_display_status(struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;
	volatile uint *s = &(fep->phy_status);

	if (!fep->link && !fep->old_link) {
		/* Link is still down - don't print anything */
		return;
	}

	printk("%s: status: ", dev->name);

	if (!fep->link) {
		printk("link down");
	} else {
		printk("link up");

		switch(*s & PHY_STAT_SPMASK) {
		case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
		case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
		case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
		case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
		default:
			printk(", Unknown speed/duplex");
		}

		if (*s & PHY_STAT_ANC)
			printk(", auto-negotiation complete");
	}

	if (*s & PHY_STAT_FAULT)
		printk(", remote fault");

	printk(".\n");
}

static void mii_display_config(struct work_struct *work)
{
	struct fec_enet_private *fep =
		container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->dev;
	volatile uint *s = &(fep->phy_status);

	printk("%s: config: auto-negotiation ", dev->name);

	if (*s & PHY_CONF_ANE)
		printk("on");
	else
		printk("off");

	if (*s & PHY_CONF_100FDX)
		printk(", 100FDX");
	if (*s & PHY_CONF_100HDX)
		printk(", 100HDX");
	if (*s & PHY_CONF_10FDX)
		printk(", 10FDX");
	if (*s & PHY_CONF_10HDX)
		printk(", 10HDX");
	if (!(*s & PHY_CONF_SPMASK))
		printk(", No speed/duplex selected?");

	if (*s & PHY_CONF_LOOP)
		printk(", loopback enabled");

	printk(".\n");

	fep->sequence_done = 1;
}

static void mii_relink(struct work_struct *work)
{
	struct fec_enet_private *fep =
		container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->dev;
	int duplex;

	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
	mii_display_status(dev);
	fep->old_link = fep->link;

	if (fep->link) {
		duplex = 0;
		if (fep->phy_status
		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
			duplex = 1;
		fec_restart(dev, duplex);
	}
	else
		fec_stop(dev);

#if 0
	enable_irq(fep->mii_irq);
#endif

}

static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;

	fep->dev = dev;
	INIT_WORK(&fep->phy_task, mii_relink);
	schedule_work(&fep->phy_task);
}

static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;

	fep->dev = dev;
	INIT_WORK(&fep->phy_task, mii_display_config);
	schedule_work(&fep->phy_task);
}



phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
			       { mk_mii_end, } };
phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
			       { mk_mii_end, } };



/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	int	i;

	fep = dev->priv;
	fep->phy_id |= (mii_reg & 0xffff);

	for(i = 0; phy_info[i]; i++)
		if(phy_info[i]->id == (fep->phy_id >> 4))
			break;

	if(!phy_info[i])
		panic("%s: PHY id 0x%08x is not supported!\n",
		      dev->name, fep->phy_id);

	fep->phy = phy_info[i];
	fep->phy_id_done = 1;

	printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
		dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
}

/* Scan all of the MII PHY addresses looking for someone to respond
 * with a valid ID.  This usually happens quickly.
 */
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	uint	phytype;

	fep = dev->priv;

	if ((phytype = (mii_reg & 0xffff)) != 0xffff) {

		/* Got first part of ID, now get remainder.
		*/
		fep->phy_id = phytype << 16;
		mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3);
	} else {
		fep->phy_addr++;
		if (fep->phy_addr < 32) {
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
							mii_discover_phy);
		} else {
			printk("fec: No PHY device found.\n");
		}
	}
}
#endif	/* CONFIG_USE_MDIO */

/* This interrupt occurs when the PHY detects a link change.
*/
static
#ifdef CONFIG_RPXCLASSIC
void mii_link_interrupt(void *dev_id)
#else
irqreturn_t mii_link_interrupt(int irq, void * dev_id)
#endif
{
#ifdef	CONFIG_USE_MDIO
	struct	net_device *dev = dev_id;
	struct fec_enet_private *fep = dev->priv;
	volatile immap_t *immap = (immap_t *)IMAP_ADDR;
	volatile fec_t *fecp = &(immap->im_cpm.cp_fec);
	unsigned int ecntrl = fecp->fec_ecntrl;

	/* We need the FEC enabled to access the MII
	*/
	if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
		fecp->fec_ecntrl |= FEC_ECNTRL_ETHER_EN;
	}
#endif	/* CONFIG_USE_MDIO */

#if 0
	disable_irq(fep->mii_irq);  /* disable now, enable later */
#endif


#ifdef	CONFIG_USE_MDIO
	mii_do_cmd(dev, fep->phy->ack_int);
	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */

	if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
		fecp->fec_ecntrl = ecntrl;	/* restore old settings */
	}
#else
printk("%s[%d] %s: unexpected Link interrupt\n", __FILE__, __LINE__, __func__);
#endif	/* CONFIG_USE_MDIO */

#ifndef CONFIG_RPXCLASSIC
	return IRQ_RETVAL(IRQ_HANDLED);
#endif	/* CONFIG_RPXCLASSIC */
}

static int
fec_enet_open(struct net_device *dev)
{
	struct fec_enet_private *fep = dev->priv;

	/* I should reset the ring buffers here, but I don't yet know
	 * a simple way to do that.
	 */

#ifdef	CONFIG_USE_MDIO
	fep->sequence_done = 0;
	fep->link = 0;

	if (fep->phy) {
		mii_do_cmd(dev, fep->phy->ack_int);
		mii_do_cmd(dev, fep->phy->config);
		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */
		while(!fep->sequence_done)
			schedule();

		mii_do_cmd(dev, fep->phy->startup);
		netif_start_queue(dev);
		return 0;		/* Success */
	}
	return -ENODEV;		/* No PHY we understand */
#else
	fep->link = 1;
	netif_start_queue(dev);
	return 0;	/* Success */
#endif	/* CONFIG_USE_MDIO */

}

static int
fec_enet_close(struct net_device *dev)
{
	/* Don't know what to do yet.
	*/
	netif_stop_queue(dev);
	fec_stop(dev);

	return 0;
}

static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
{
	struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;

	return &fep->stats;
}

/* Set or clear the multicast filter for this adaptor.
 * Skeleton taken from sunlance driver.
 * The CPM Ethernet implementation allows Multicast as well as individual
 * MAC address filtering.  Some of the drivers check to make sure it is
 * a group multicast address, and discard those that are not.  I guess I
 * will do the same for now, but just remove the test if you want
 * individual filtering as well (do the upper net layers want or support
 * this kind of feature?).
 */

static void set_multicast_list(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t *ep;

	fep = (struct fec_enet_private *)dev->priv;
	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);

	if (dev->flags&IFF_PROMISC) {

		/* Log any net taps. */
		printk("%s: Promiscuous mode enabled.\n", dev->name);
		ep->fec_r_cntrl |= FEC_RCNTRL_PROM;
	} else {

		ep->fec_r_cntrl &= ~FEC_RCNTRL_PROM;

		if (dev->flags & IFF_ALLMULTI) {
			/* Catch all multicast addresses, so set the
			 * filter to all 1's.
			 */
			ep->fec_hash_table_high = 0xffffffff;
			ep->fec_hash_table_low = 0xffffffff;
		}
#if 0
		else {
			/* Clear filter and add the addresses in the list.
			*/
			ep->sen_gaddr1 = 0;
			ep->sen_gaddr2 = 0;
			ep->sen_gaddr3 = 0;
			ep->sen_gaddr4 = 0;

			dmi = dev->mc_list;

			for (i=0; i<dev->mc_count; i++) {

				/* Only support group multicast for now.
				*/
				if (!(dmi->dmi_addr[0] & 1))
					continue;

				/* The address in dmi_addr is LSB first,
				 * and taddr is MSB first.  We have to
				 * copy bytes MSB first from dmi_addr.
				 */
				mcptr = (u_char *)dmi->dmi_addr + 5;
				tdptr = (u_char *)&ep->sen_taddrh;
				for (j=0; j<6; j++)
					*tdptr++ = *mcptr--;

				/* Ask CPM to run CRC and set bit in
				 * filter mask.
				 */
				cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG;
				/* this delay is necessary here -- Cort */
				udelay(10);
				while (cpmp->cp_cpcr & CPM_CR_FLG);
			}
		}
#endif
	}
}

/* Initialize the FEC Ethernet on 860T.
 */
static int __init fec_enet_init(void)
{
	struct net_device *dev;
	struct fec_enet_private *fep;
	int i, j, k, err;
	unsigned char	*eap, *iap, *ba;
	dma_addr_t	mem_addr;
	volatile	cbd_t	*bdp;
	cbd_t		*cbd_base;
	volatile	immap_t	*immap;
	volatile	fec_t	*fecp;
	bd_t		*bd;
#ifdef CONFIG_SCC_ENET
	unsigned char	tmpaddr[6];
#endif

	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */

	bd = (bd_t *)__res;

	dev = alloc_etherdev(sizeof(*fep));
	if (!dev)
		return -ENOMEM;

	fep = dev->priv;

	fecp = &(immap->im_cpm.cp_fec);

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
	for (i = 0;
	     (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
	     ++i) {
		udelay(1);
	}
	if (i == FEC_RESET_DELAY) {
		printk ("FEC Reset timeout!\n");
	}

	/* Set the Ethernet address.  If using multiple Enets on the 8xx,
	 * this needs some work to get unique addresses.
	 */
	eap = (unsigned char *)my_enet_addr;
	iap = bd->bi_enetaddr;

#ifdef CONFIG_SCC_ENET
	/*
         * If a board has Ethernet configured both on a SCC and the
         * FEC, it needs (at least) 2 MAC addresses (we know that Sun
         * disagrees, but anyway). For the FEC port, we create
         * another address by setting one of the address bits above
         * something that would have (up to now) been allocated.
	 */
	for (i=0; i<6; i++)
		tmpaddr[i] = *iap++;
	tmpaddr[3] |= 0x80;
	iap = tmpaddr;
#endif

	for (i=0; i<6; i++) {
		dev->dev_addr[i] = *eap++ = *iap++;
	}

	/* Allocate memory for buffer descriptors.
	*/
	if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
		printk("FEC init error.  Need more space.\n");
		printk("FEC initialization failed.\n");
		return 1;
	}
	cbd_base = (cbd_t *)dma_alloc_coherent(dev->class_dev.dev, PAGE_SIZE,
					       &mem_addr, GFP_KERNEL);

	/* Set receive and transmit descriptor base.
	*/
	fep->rx_bd_base = cbd_base;
	fep->tx_bd_base = cbd_base + RX_RING_SIZE;

	fep->skb_cur = fep->skb_dirty = 0;

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	k = 0;
	for (i=0; i<FEC_ENET_RX_PAGES; i++) {

		/* Allocate a page.
		*/
		ba = (unsigned char *)dma_alloc_coherent(dev->class_dev.dev,
							 PAGE_SIZE,
							 &mem_addr,
							 GFP_KERNEL);
		/* BUG: no check for failure */

		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY;
			bdp->cbd_bufaddr = mem_addr;
			fep->rx_vaddr[k++] = ba;
			mem_addr += FEC_ENET_RX_FRSIZE;
			ba += FEC_ENET_RX_FRSIZE;
			bdp++;
		}
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

#ifdef CONFIG_FEC_PACKETHOOK
	fep->ph_lock = 0;
	fep->ph_rxhandler = fep->ph_txhandler = NULL;
	fep->ph_proto = 0;
	fep->ph_regaddr = NULL;
	fep->ph_priv = NULL;
#endif

	/* Install our interrupt handler.
	*/
	if (request_irq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
		panic("Could not allocate FEC IRQ!");

#ifdef CONFIG_RPXCLASSIC
	/* Make Port C, bit 15 an input that causes interrupts.
	*/
	immap->im_ioport.iop_pcpar &= ~0x0001;
	immap->im_ioport.iop_pcdir &= ~0x0001;
	immap->im_ioport.iop_pcso  &= ~0x0001;
	immap->im_ioport.iop_pcint |=  0x0001;
	cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);

	/* Make LEDS reflect Link status.
	*/
	*((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
#endif

#ifdef PHY_INTERRUPT
	((immap_t *)IMAP_ADDR)->im_siu_conf.sc_siel |=
		(0x80000000 >> PHY_INTERRUPT);

	if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) != 0)
		panic("Could not allocate MII IRQ!");
#endif

	dev->base_addr = (unsigned long)fecp;

	/* The FEC Ethernet specific entries in the device structure. */
	dev->open = fec_enet_open;
	dev->hard_start_xmit = fec_enet_start_xmit;
	dev->tx_timeout = fec_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->stop = fec_enet_close;
	dev->get_stats = fec_enet_get_stats;
	dev->set_multicast_list = set_multicast_list;

#ifdef	CONFIG_USE_MDIO
	for (i=0; i<NMII-1; i++)
		mii_cmds[i].mii_next = &mii_cmds[i+1];
	mii_free = mii_cmds;
#endif	/* CONFIG_USE_MDIO */

	/* Configure all of port D for MII.
	*/
	immap->im_ioport.iop_pdpar = 0x1fff;

	/* Bits moved from Rev. D onward.
	*/
	if ((mfspr(SPRN_IMMR) & 0xffff) < 0x0501)
		immap->im_ioport.iop_pddir = 0x1c58;	/* Pre rev. D */
	else
		immap->im_ioport.iop_pddir = 0x1fff;	/* Rev. D and later */

#ifdef	CONFIG_USE_MDIO
	/* Set MII speed to 2.5 MHz
	*/
	fecp->fec_mii_speed = fep->phy_speed =
		(( (bd->bi_intfreq + 500000) / 2500000 / 2 ) & 0x3F ) << 1;
#else
	fecp->fec_mii_speed = 0;	/* turn off MDIO */
#endif	/* CONFIG_USE_MDIO */

	err = register_netdev(dev);
	if (err) {
		free_netdev(dev);
		return err;
	}

	printk ("%s: FEC ENET Version 0.2, FEC irq %d"
#ifdef PHY_INTERRUPT
		", MII irq %d"
#endif
		", addr ",
		dev->name, FEC_INTERRUPT
#ifdef PHY_INTERRUPT
		, PHY_INTERRUPT
#endif
	);
	for (i=0; i<6; i++)
		printk("%02x%c", dev->dev_addr[i], (i==5) ? '\n' : ':');

#ifdef	CONFIG_USE_MDIO	/* start in full duplex mode, and negotiate speed */
	fec_restart (dev, 1);
#else			/* always use half duplex mode only */
	fec_restart (dev, 0);
#endif

#ifdef	CONFIG_USE_MDIO
	/* Queue up command to detect the PHY and initialize the
	 * remainder of the interface.
	 */
	fep->phy_id_done = 0;
	fep->phy_addr = 0;
	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
#endif	/* CONFIG_USE_MDIO */

	return 0;
}
module_init(fec_enet_init);

/* This function is called to start or restart the FEC during a link
 * change.  This only happens when switching between half and full
 * duplex.
 */
static void
fec_restart(struct net_device *dev, int duplex)
{
	struct fec_enet_private *fep;
	int i;
	volatile	cbd_t	*bdp;
	volatile	immap_t	*immap;
	volatile	fec_t	*fecp;

	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */

	fecp = &(immap->im_cpm.cp_fec);

	fep = dev->priv;

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
	for (i = 0;
	     (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
	     ++i) {
		udelay(1);
	}
	if (i == FEC_RESET_DELAY) {
		printk ("FEC Reset timeout!\n");
	}

	/* Set station address.
	*/
	fecp->fec_addr_low  = (my_enet_addr[0] << 16) | my_enet_addr[1];
	fecp->fec_addr_high =  my_enet_addr[2];

	/* Reset all multicast.
	*/
	fecp->fec_hash_table_high = 0;
	fecp->fec_hash_table_low  = 0;

	/* Set maximum receive buffer size.
	*/
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
	fecp->fec_r_hash = PKT_MAXBUF_SIZE;

	/* Set receive and transmit descriptor base.
	*/
	fecp->fec_r_des_start = iopa((uint)(fep->rx_bd_base));
	fecp->fec_x_des_start = iopa((uint)(fep->tx_bd_base));

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	/* Reset SKB transmit buffers.
	*/
	fep->skb_cur = fep->skb_dirty = 0;
	for (i=0; i<=TX_RING_MOD_MASK; i++) {
		if (fep->tx_skbuff[i] != NULL) {
			dev_kfree_skb(fep->tx_skbuff[i]);
			fep->tx_skbuff[i] = NULL;
		}
	}

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<RX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = BD_ENET_RX_EMPTY;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Enable MII mode.
	*/
	if (duplex) {
		fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE;	/* MII enable */
		fecp->fec_x_cntrl = FEC_TCNTRL_FDEN;		/* FD enable */
	}
	else {
		fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT;
		fecp->fec_x_cntrl = 0;
	}
	fep->full_duplex = duplex;

	/* Enable big endian and don't care about SDMA FC.
	*/
	fecp->fec_fun_code = 0x78000000;

#ifdef	CONFIG_USE_MDIO
	/* Set MII speed.
	*/
	fecp->fec_mii_speed = fep->phy_speed;
#endif	/* CONFIG_USE_MDIO */

	/* Clear any outstanding interrupt.
	*/
	fecp->fec_ievent = 0xffc0;

	fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;

	/* Enable interrupts we wish to service.
	*/
	fecp->fec_imask = ( FEC_ENET_TXF | FEC_ENET_TXB |
			    FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII );

	/* And last, enable the transmit and receive processing.
	*/
	fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN;
	fecp->fec_r_des_active = 0x01000000;
}

static void
fec_stop(struct net_device *dev)
{
	volatile	immap_t	*immap;
	volatile	fec_t	*fecp;
	struct fec_enet_private *fep;
	int i;

	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */

	fecp = &(immap->im_cpm.cp_fec);

	if ((fecp->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0)
		return;	/* already down */

	fep = dev->priv;


	fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */

	for (i = 0;
	     ((fecp->fec_ievent & 0x10000000) == 0) && (i < FEC_RESET_DELAY);
	     ++i) {
		udelay(1);
	}
	if (i == FEC_RESET_DELAY) {
		printk ("FEC timeout on graceful transmit stop\n");
	}

	/* Clear outstanding MII command interrupts.
	*/
	fecp->fec_ievent = FEC_ENET_MII;

	/* Enable MII command finished interrupt
	*/
	fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
	fecp->fec_imask = FEC_ENET_MII;

#ifdef	CONFIG_USE_MDIO
	/* Set MII speed.
	*/
	fecp->fec_mii_speed = fep->phy_speed;
#endif	/* CONFIG_USE_MDIO */

	/* Disable FEC
	*/
	fecp->fec_ecntrl &= ~(FEC_ECNTRL_ETHER_EN);
}