/*
* arch/powerpc/sysdev/qe_lib/qe_io.c
*
* QE Parallel I/O ports configuration routines
*
* Copyright (C) Freescale Semicondutor, Inc. 2006. All rights reserved.
*
* Author: Li Yang <LeoLi@freescale.com>
* Based on code from Shlomi Gridish <gridish@freescale.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <asm/io.h>
#include <asm/qe.h>
#include <asm/prom.h>
#include <sysdev/fsl_soc.h>
#undef DEBUG
static struct qe_pio_regs __iomem *par_io;
static int num_par_io_ports = 0;
int par_io_init(struct device_node *np)
{
struct resource res;
int ret;
const u32 *num_ports;
/* Map Parallel I/O ports registers */
ret = of_address_to_resource(np, 0, &res);
if (ret)
return ret;
par_io = ioremap(res.start, res.end - res.start + 1);
num_ports = of_get_property(np, "num-ports", NULL);
if (num_ports)
num_par_io_ports = *num_ports;
return 0;
}
void __par_io_config_pin(struct qe_pio_regs __iomem *par_io, u8 pin, int dir,
int open_drain, int assignment, int has_irq)
{
u32 pin_mask1bit;
u32 pin_mask2bits;
u32 new_mask2bits;
u32 tmp_val;
/* calculate pin location for single and 2 bits information */
pin_mask1bit = (u32) (1 << (QE_PIO_PINS - (pin + 1)));
/* Set open drain, if required */
tmp_val = in_be32(&par_io->cpodr);
if (open_drain)
out_be32(&par_io->cpodr, pin_mask1bit | tmp_val);
else
out_be32(&par_io->cpodr, ~pin_mask1bit & tmp_val);
/* define direction */
tmp_val = (pin > (QE_PIO_PINS / 2) - 1) ?
in_be32(&par_io->cpdir2) :
in_be32(&par_io->cpdir1);
/* get all bits mask for 2 bit per port */
pin_mask2bits = (u32) (0x3 << (QE_PIO_PINS -
(pin % (QE_PIO_PINS / 2) + 1) * 2));
/* Get the final mask we need for the right definition */
new_mask2bits = (u32) (dir << (QE_PIO_PINS -
(pin % (QE_PIO_PINS / 2) + 1) * 2));
/* clear and set 2 bits mask */
if (pin > (QE_PIO_PINS / 2) - 1) {
out_be32(&par_io->cpdir2,
~pin_mask2bits & tmp_val);
tmp_val &= ~pin_mask2bits;
out_be32(&par_io->cpdir2, new_mask2bits | tmp_val);
} else {
out_be32(&par_io->cpdir1,
~pin_mask2bits & tmp_val);
tmp_val &= ~pin_mask2bits;
out_be32(&par_io->cpdir1, new_mask2bits | tmp_val);
}
/* define pin assignment */
tmp_val = (pin > (QE_PIO_PINS / 2) - 1) ?
in_be32(&par_io->cppar2) :
in_be32(&par_io->cppar1);
new_mask2bits = (u32) (assignment << (QE_PIO_PINS -
(pin % (QE_PIO_PINS / 2) + 1) * 2));
/* clear and set 2 bits mask */
if (pin > (QE_PIO_PINS / 2) - 1) {
out_be32(&par_io->cppar2,
~pin_mask2bits & tmp_val);
tmp_val &= ~pin_mask2bits;
out_be32(&par_io->cppar2, new_mask2bits | tmp_val);
} else {
out_be32(&par_io->cppar1,
~pin_mask2bits & tmp_val);
tmp_val &= ~pin_mask2bits;
out_be32(&par_io->cppar1, new_mask2bits | tmp_val);
}
}
EXPORT_SYMBOL(__par_io_config_pin);
int par_io_config_pin(u8 port, u8 pin, int dir, int open_drain,
int assignment, int has_irq)
{
if (!par_io || port >= num_par_io_ports)
return -EINVAL;
__par_io_config_pin(&par_io[port], pin, dir, open_drain, assignment,
has_irq);
return 0;
}
EXPORT_SYMBOL(par_io_config_pin);
int par_io_data_set(u8 port, u8 pin, u8 val)
{
u32 pin_mask, tmp_val;
if (port >= num_par_io_ports)
return -EINVAL;
if (pin >= QE_PIO_PINS)
return -EINVAL;
/* calculate pin location */
pin_mask = (u32) (1 << (QE_PIO_PINS - 1 - pin));
tmp_val = in_be32(&par_io[port].cpdata);
if (val == 0) /* clear */
out_be32(&par_io[port].cpdata, ~pin_mask & tmp_val);
else /* set */
out_be32(&par_io[port].cpdata, pin_mask | tmp_val);
return 0;
}
EXPORT_SYMBOL(par_io_data_set);
int par_io_of_config(struct device_node *np)
{
struct device_node *pio;
const phandle *ph;
int pio_map_len;
const unsigned int *pio_map;
if (par_io == NULL) {
printk(KERN_ERR "par_io not initialized\n");
return -1;
}
ph = of_get_property(np, "pio-handle", NULL);
if (ph == NULL) {
printk(KERN_ERR "pio-handle not available\n");
return -1;
}
pio = of_find_node_by_phandle(*ph);
pio_map = of_get_property(pio, "pio-map", &pio_map_len);
if (pio_map == NULL) {
printk(KERN_ERR "pio-map is not set!\n");
return -1;
}
pio_map_len /= sizeof(unsigned int);
if ((pio_map_len % 6) != 0) {
printk(KERN_ERR "pio-map format wrong!\n");
return -1;
}
while (pio_map_len > 0) {
par_io_config_pin((u8) pio_map[0], (u8) pio_map[1],
(int) pio_map[2], (int) pio_map[3],
(int) pio_map[4], (int) pio_map[5]);
pio_map += 6;
pio_map_len -= 6;
}
of_node_put(pio);
return 0;
}
EXPORT_SYMBOL(par_io_of_config);
#ifdef DEBUG
static void dump_par_io(void)
{
unsigned int i;
printk(KERN_INFO "%s: par_io=%p\n", __func__, par_io);
for (i = 0; i < num_par_io_ports; i++) {
printk(KERN_INFO " cpodr[%u]=%08x\n", i,
in_be32(&par_io[i].cpodr));
printk(KERN_INFO " cpdata[%u]=%08x\n", i,
in_be32(&par_io[i].cpdata));
printk(KERN_INFO " cpdir1[%u]=%08x\n", i,
in_be32(&par_io[i].cpdir1));
printk(KERN_INFO " cpdir2[%u]=%08x\n", i,
in_be32(&par_io[i].cpdir2));
printk(KERN_INFO " cppar1[%u]=%08x\n", i,
in_be32(&par_io[i].cppar1));
printk(KERN_INFO " cppar2[%u]=%08x\n", i,
in_be32(&par_io[i].cppar2));
}
}
EXPORT_SYMBOL(dump_par_io);
#endif /* DEBUG */