/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Derived from "arch/i386/kernel/signal.c"
* Copyright (C) 1991, 1992 Linus Torvalds
* 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/wait.h>
#include <linux/unistd.h>
#include <linux/stddef.h>
#include <linux/elf.h>
#include <linux/ptrace.h>
#include <linux/module.h>
#include <asm/sigcontext.h>
#include <asm/ucontext.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/unistd.h>
#include <asm/cacheflush.h>
#include <asm/syscalls.h>
#include <asm/vdso.h>
#define DEBUG_SIG 0
#define _BLOCKABLE (~(sigmask(SIGKILL) | sigmask(SIGSTOP)))
#define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
#define FP_REGS_SIZE sizeof(elf_fpregset_t)
#define TRAMP_TRACEBACK 3
#define TRAMP_SIZE 6
/*
* When we have signals to deliver, we set up on the user stack,
* going down from the original stack pointer:
* 1) a rt_sigframe struct which contains the ucontext
* 2) a gap of __SIGNAL_FRAMESIZE bytes which acts as a dummy caller
* frame for the signal handler.
*/
struct rt_sigframe {
/* sys_rt_sigreturn requires the ucontext be the first field */
struct ucontext uc;
unsigned long _unused[2];
unsigned int tramp[TRAMP_SIZE];
struct siginfo __user *pinfo;
void __user *puc;
struct siginfo info;
/* 64 bit ABI allows for 288 bytes below sp before decrementing it. */
char abigap[288];
} __attribute__ ((aligned (16)));
long sys_sigaltstack(const stack_t __user *uss, stack_t __user *uoss, unsigned long r5,
unsigned long r6, unsigned long r7, unsigned long r8,
struct pt_regs *regs)
{
return do_sigaltstack(uss, uoss, regs->gpr[1]);
}
/*
* Set up the sigcontext for the signal frame.
*/
static long setup_sigcontext(struct sigcontext __user *sc, struct pt_regs *regs,
int signr, sigset_t *set, unsigned long handler)
{
/* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the
* process never used altivec yet (MSR_VEC is zero in pt_regs of
* the context). This is very important because we must ensure we
* don't lose the VRSAVE content that may have been set prior to
* the process doing its first vector operation
* Userland shall check AT_HWCAP to know wether it can rely on the
* v_regs pointer or not
*/
#ifdef CONFIG_ALTIVEC
elf_vrreg_t __user *v_regs = (elf_vrreg_t __user *)(((unsigned long)sc->vmx_reserve + 15) & ~0xful);
#endif
long err = 0;
flush_fp_to_thread(current);
#ifdef CONFIG_ALTIVEC
err |= __put_user(v_regs, &sc->v_regs);
/* save altivec registers */
if (current->thread.used_vr) {
flush_altivec_to_thread(current);
/* Copy 33 vec registers (vr0..31 and vscr) to the stack */
err |= __copy_to_user(v_regs, current->thread.vr, 33 * sizeof(vector128));
/* set MSR_VEC in the MSR value in the frame to indicate that sc->v_reg)
* contains valid data.
*/
regs->msr |= MSR_VEC;
}
/* We always copy to/from vrsave, it's 0 if we don't have or don't
* use altivec.
*/
err |= __put_user(current->thread.vrsave, (u32 __user *)&v_regs[33]);
#else /* CONFIG_ALTIVEC */
err |= __put_user(0, &sc->v_regs);
#endif /* CONFIG_ALTIVEC */
err |= __put_user(&sc->gp_regs, &sc->regs);
WARN_ON(!FULL_REGS(regs));
err |= __copy_to_user(&sc->gp_regs, regs, GP_REGS_SIZE);
err |= __copy_to_user(&sc->fp_regs, ¤t->thread.fpr, FP_REGS_SIZE);
err |= __put_user(signr, &sc->signal);
err |= __put_user(handler, &sc->handler);
if (set != NULL)
err |= __put_user(set->sig[0], &sc->oldmask);
return err;
}
/*
* Restore the sigcontext from the signal frame.
*/
static long restore_sigcontext(struct pt_regs *regs, sigset_t *set, int sig,
struct sigcontext __user *sc)
{
#ifdef CONFIG_ALTIVEC
elf_vrreg_t __user *v_regs;
#endif
unsigned long err = 0;
unsigned long save_r13 = 0;
elf_greg_t *gregs = (elf_greg_t *)regs;
unsigned long msr;
int i;
/* If this is not a signal return, we preserve the TLS in r13 */
if (!sig)
save_r13 = regs->gpr[13];
/* copy everything before MSR */
err |= __copy_from_user(regs, &sc->gp_regs,
PT_MSR*sizeof(unsigned long));
/* get MSR separately, transfer the LE bit if doing signal return */
err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
if (sig)
regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
/* skip SOFTE */
for (i = PT_MSR+1; i <= PT_RESULT; i++) {
if (i == PT_SOFTE)
continue;
err |= __get_user(gregs[i], &sc->gp_regs[i]);
}
if (!sig)
regs->gpr[13] = save_r13;
if (set != NULL)
err |= __get_user(set->sig[0], &sc->oldmask);
/*
* Do this before updating the thread state in
* current->thread.fpr/vr. That way, if we get preempted
* and another task grabs the FPU/Altivec, it won't be
* tempted to save the current CPU state into the thread_struct
* and corrupt what we are writing there.
*/
discard_lazy_cpu_state();
err |= __copy_from_user(¤t->thread.fpr, &sc->fp_regs, FP_REGS_SIZE);
#ifdef CONFIG_ALTIVEC
err |= __get_user(v_regs, &sc->v_regs);
if (err)
return err;
if (v_regs && !access_ok(VERIFY_READ, v_regs, 34 * sizeof(vector128)))
return -EFAULT;
/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
if (v_regs != 0 && (msr & MSR_VEC) != 0)
err |= __copy_from_user(current->thread.vr, v_regs,
33 * sizeof(vector128));
else if (current->thread.used_vr)
memset(current->thread.vr, 0, 33 * sizeof(vector128));
/* Always get VRSAVE back */
if (v_regs != 0)
err |= __get_user(current->thread.vrsave, (u32 __user *)&v_regs[33]);
else
current->thread.vrsave = 0;
#endif /* CONFIG_ALTIVEC */
/* Force reload of FP/VEC */
regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC);
return err;
}
/*
* Allocate space for the signal frame
*/
static inline void __user * get_sigframe(struct k_sigaction *ka, struct pt_regs *regs,
size_t frame_size)
{
unsigned long newsp;
/* Default to using normal stack */
newsp = regs->gpr[1];
if ((ka->sa.sa_flags & SA_ONSTACK) && current->sas_ss_size) {
if (! on_sig_stack(regs->gpr[1]))
newsp = (current->sas_ss_sp + current->sas_ss_size);
}
return (void __user *)((newsp - frame_size) & -16ul);
}
/*
* Setup the trampoline code on the stack
*/
static long setup_trampoline(unsigned int syscall, unsigned int __user *tramp)
{
int i;
long err = 0;
/* addi r1, r1, __SIGNAL_FRAMESIZE # Pop the dummy stackframe */
err |= __put_user(0x38210000UL | (__SIGNAL_FRAMESIZE & 0xffff), &tramp[0]);
/* li r0, __NR_[rt_]sigreturn| */
err |= __put_user(0x38000000UL | (syscall & 0xffff), &tramp[1]);
/* sc */
err |= __put_user(0x44000002UL, &tramp[2]);
/* Minimal traceback info */
for (i=TRAMP_TRACEBACK; i < TRAMP_SIZE ;i++)
err |= __put_user(0, &tramp[i]);
if (!err)
flush_icache_range((unsigned long) &tramp[0],
(unsigned long) &tramp[TRAMP_SIZE]);
return err;
}
/*
* Restore the user process's signal mask (also used by signal32.c)
*/
void restore_sigmask(sigset_t *set)
{
sigdelsetmask(set, ~_BLOCKABLE);
spin_lock_irq(¤t->sighand->siglock);
current->blocked = *set;
recalc_sigpending();
spin_unlock_irq(¤t->sighand->siglock);
}
/*
* Handle {get,set,swap}_context operations
*/
int sys_swapcontext(struct ucontext __user *old_ctx,
struct ucontext __user *new_ctx,
long ctx_size, long r6, long r7, long r8, struct pt_regs *regs)
{
unsigned char tmp;
sigset_t set;
/* Context size is for future use. Right now, we only make sure
* we are passed something we understand
*/
if (ctx_size < sizeof(struct ucontext))
return -EINVAL;
if (old_ctx != NULL) {
if (!access_ok(VERIFY_WRITE, old_ctx, sizeof(*old_ctx))
|| setup_sigcontext(&old_ctx->uc_mcontext, regs, 0, NULL, 0)
|| __copy_to_user(&old_ctx->uc_sigmask,
¤t->blocked, sizeof(sigset_t)))
return -EFAULT;
}
if (new_ctx == NULL)
return 0;
if (!access_ok(VERIFY_READ, new_ctx, sizeof(*new_ctx))
|| __get_user(tmp, (u8 __user *) new_ctx)
|| __get_user(tmp, (u8 __user *) (new_ctx + 1) - 1))
return -EFAULT;
/*
* If we get a fault copying the context into the kernel's
* image of the user's registers, we can't just return -EFAULT
* because the user's registers will be corrupted. For instance
* the NIP value may have been updated but not some of the
* other registers. Given that we have done the access_ok
* and successfully read the first and last bytes of the region
* above, this should only happen in an out-of-memory situation
* or if another thread unmaps the region containing the context.
* We kill the task with a SIGSEGV in this situation.
*/
if (__copy_from_user(&set, &new_ctx->uc_sigmask, sizeof(set)))
do_exit(SIGSEGV);
restore_sigmask(&set);
if (restore_sigcontext(regs, NULL, 0, &new_ctx->uc_mcontext))
do_exit(SIGSEGV);
/* This returns like rt_sigreturn */
set_thread_flag(TIF_RESTOREALL);
return 0;
}
/*
* Do a signal return; undo the signal stack.
*/
int sys_rt_sigreturn(unsigned long r3, unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7, unsigned long r8,
struct pt_regs *regs)
{
struct ucontext __user *uc = (struct ucontext __user *)regs->gpr[1];
sigset_t set;
/* Always make any pending restarted system calls return -EINTR */
current_thread_info()->restart_block.fn = do_no_restart_syscall;
if (!access_ok(VERIFY_READ, uc, sizeof(*uc)))
goto badframe;
if (__copy_from_user(&set, &uc->uc_sigmask, sizeof(set)))
goto badframe;
restore_sigmask(&set);
if (restore_sigcontext(regs, NULL, 1, &uc->uc_mcontext))
goto badframe;
/* do_sigaltstack expects a __user pointer and won't modify
* what's in there anyway
*/
do_sigaltstack(&uc->uc_stack, NULL, regs->gpr[1]);
set_thread_flag(TIF_RESTOREALL);
return 0;
badframe:
#if DEBUG_SIG
printk("badframe in sys_rt_sigreturn, regs=%p uc=%p &uc->uc_mcontext=%p\n",
regs, uc, &uc->uc_mcontext);
#endif
force_sig(SIGSEGV, current);
return 0;
}
static int setup_rt_frame(int signr, struct k_sigaction *ka, siginfo_t *info,
sigset_t *set, struct pt_regs *regs)
{
/* Handler is *really* a pointer to the function descriptor for
* the signal routine. The first entry in the function
* descriptor is the entry address of signal and the second
* entry is the TOC value we need to use.
*/
func_descr_t __user *funct_desc_ptr;
struct rt_sigframe __user *frame;
unsigned long newsp = 0;
long err = 0;
frame = get_sigframe(ka, regs, sizeof(*frame));
if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
goto badframe;
err |= __put_user(&frame->info, &frame->pinfo);
err |= __put_user(&frame->uc, &frame->puc);
err |= copy_siginfo_to_user(&frame->info, info);
if (err)
goto badframe;
/* Create the ucontext. */
err |= __put_user(0, &frame->uc.uc_flags);
err |= __put_user(0, &frame->uc.uc_link);
err |= __put_user(current->sas_ss_sp, &frame->uc.uc_stack.ss_sp);
err |= __put_user(sas_ss_flags(regs->gpr[1]),
&frame->uc.uc_stack.ss_flags);
err |= __put_user(current->sas_ss_size, &frame->uc.uc_stack.ss_size);
err |= setup_sigcontext(&frame->uc.uc_mcontext, regs, signr, NULL,
(unsigned long)ka->sa.sa_handler);
err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));
if (err)
goto badframe;
/* Make sure signal handler doesn't get spurious FP exceptions */
current->thread.fpscr.val = 0;
/* Set up to return from userspace. */
if (vdso64_rt_sigtramp && current->mm->context.vdso_base) {
regs->link = current->mm->context.vdso_base + vdso64_rt_sigtramp;
} else {
err |= setup_trampoline(__NR_rt_sigreturn, &frame->tramp[0]);
if (err)
goto badframe;
regs->link = (unsigned long) &frame->tramp[0];
}
funct_desc_ptr = (func_descr_t __user *) ka->sa.sa_handler;
/* Allocate a dummy caller frame for the signal handler. */
newsp = (unsigned long)frame - __SIGNAL_FRAMESIZE;
err |= put_user(regs->gpr[1], (unsigned long __user *)newsp);
/* Set up "regs" so we "return" to the signal handler. */
err |= get_user(regs->nip, &funct_desc_ptr->entry);
/* enter the signal handler in big-endian mode */
regs->msr &= ~MSR_LE;
regs->gpr[1] = newsp;
err |= get_user(regs->gpr[2], &funct_desc_ptr->toc);
regs->gpr[3] = signr;
regs->result = 0;
if (ka->sa.sa_flags & SA_SIGINFO) {
err |= get_user(regs->gpr[4], (unsigned long __user *)&frame->pinfo);
err |= get_user(regs->gpr[5], (unsigned long __user *)&frame->puc);
regs->gpr[6] = (unsigned long) frame;
} else {
regs->gpr[4] = (unsigned long)&frame->uc.uc_mcontext;
}
if (err)
goto badframe;
return 1;
badframe:
#if DEBUG_SIG
printk("badframe in setup_rt_frame, regs=%p frame=%p newsp=%lx\n",
regs, frame, newsp);
#endif
force_sigsegv(signr, current);
return 0;
}
/*
* OK, we're invoking a handler
*/
static int handle_signal(unsigned long sig, struct k_sigaction *ka,
siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
{
int ret;
/* Set up Signal Frame */
ret = setup_rt_frame(sig, ka, info, oldset, regs);
if (ret) {
spin_lock_irq(¤t->sighand->siglock);
sigorsets(¤t->blocked, ¤t->blocked, &ka->sa.sa_mask);
if (!(ka->sa.sa_flags & SA_NODEFER))
sigaddset(¤t->blocked,sig);
recalc_sigpending();
spin_unlock_irq(¤t->sighand->siglock);
}
return ret;
}
static inline void syscall_restart(struct pt_regs *regs, struct k_sigaction *ka)
{
switch ((int)regs->result) {
case -ERESTART_RESTARTBLOCK:
case -ERESTARTNOHAND:
/* ERESTARTNOHAND means that the syscall should only be
* restarted if there was no handler for the signal, and since
* we only get here if there is a handler, we dont restart.
*/
regs->result = -EINTR;
regs->gpr[3] = EINTR;
regs->ccr |= 0x10000000;
break;
case -ERESTARTSYS:
/* ERESTARTSYS means to restart the syscall if there is no
* handler or the handler was registered with SA_RESTART
*/
if (!(ka->sa.sa_flags & SA_RESTART)) {
regs->result = -EINTR;
regs->gpr[3] = EINTR;
regs->ccr |= 0x10000000;
break;
}
/* fallthrough */
case -ERESTARTNOINTR:
/* ERESTARTNOINTR means that the syscall should be
* called again after the signal handler returns.
*/
regs->gpr[3] = regs->orig_gpr3;
regs->nip -= 4;
regs->result = 0;
break;
}
}
/*
* Note that 'init' is a special process: it doesn't get signals it doesn't
* want to handle. Thus you cannot kill init even with a SIGKILL even by
* mistake.
*/
int do_signal(sigset_t *oldset, struct pt_regs *regs)
{
siginfo_t info;
int signr;
struct k_sigaction ka;
/*
* If the current thread is 32 bit - invoke the
* 32 bit signal handling code
*/
if (test_thread_flag(TIF_32BIT))
return do_signal32(oldset, regs);
if (test_thread_flag(TIF_RESTORE_SIGMASK))
oldset = ¤t->saved_sigmask;
else if (!oldset)
oldset = ¤t->blocked;
signr = get_signal_to_deliver(&info, &ka, regs, NULL);
if (signr > 0) {
int ret;
/* Whee! Actually deliver the signal. */
if (TRAP(regs) == 0x0C00)
syscall_restart(regs, &ka);
/*
* Reenable the DABR before delivering the signal to
* user space. The DABR will have been cleared if it
* triggered inside the kernel.
*/
if (current->thread.dabr)
set_dabr(current->thread.dabr);
ret = handle_signal(signr, &ka, &info, oldset, regs);
/* If a signal was successfully delivered, the saved sigmask is in
its frame, and we can clear the TIF_RESTORE_SIGMASK flag */
if (ret && test_thread_flag(TIF_RESTORE_SIGMASK))
clear_thread_flag(TIF_RESTORE_SIGMASK);
return ret;
}
if (TRAP(regs) == 0x0C00) { /* System Call! */
if ((int)regs->result == -ERESTARTNOHAND ||
(int)regs->result == -ERESTARTSYS ||
(int)regs->result == -ERESTARTNOINTR) {
regs->gpr[3] = regs->orig_gpr3;
regs->nip -= 4; /* Back up & retry system call */
regs->result = 0;
} else if ((int)regs->result == -ERESTART_RESTARTBLOCK) {
regs->gpr[0] = __NR_restart_syscall;
regs->nip -= 4;
regs->result = 0;
}
}
/* No signal to deliver -- put the saved sigmask back */
if (test_thread_flag(TIF_RESTORE_SIGMASK)) {
clear_thread_flag(TIF_RESTORE_SIGMASK);
sigprocmask(SIG_SETMASK, ¤t->saved_sigmask, NULL);
}
return 0;
}
EXPORT_SYMBOL(do_signal);