blob: e7ce923913037713feca02eb61c5f166adfd0a2d (
plain) (
tree)
|
|
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2004, 2005 by Ralf Baechle
* Copyright (C) 2005 by MIPS Technologies, Inc.
*/
#include <linux/oprofile.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include "op_impl.h"
#define M_PERFCTL_EXL (1UL << 0)
#define M_PERFCTL_KERNEL (1UL << 1)
#define M_PERFCTL_SUPERVISOR (1UL << 2)
#define M_PERFCTL_USER (1UL << 3)
#define M_PERFCTL_INTERRUPT_ENABLE (1UL << 4)
#define M_PERFCTL_EVENT(event) ((event) << 5)
#define M_PERFCTL_WIDE (1UL << 30)
#define M_PERFCTL_MORE (1UL << 31)
#define M_COUNTER_OVERFLOW (1UL << 31)
struct op_mips_model op_model_mipsxx;
static struct mipsxx_register_config {
unsigned int control[4];
unsigned int counter[4];
} reg;
/* Compute all of the registers in preparation for enabling profiling. */
static void mipsxx_reg_setup(struct op_counter_config *ctr)
{
unsigned int counters = op_model_mipsxx.num_counters;
int i;
/* Compute the performance counter control word. */
/* For now count kernel and user mode */
for (i = 0; i < counters; i++) {
reg.control[i] = 0;
reg.counter[i] = 0;
if (!ctr[i].enabled)
continue;
reg.control[i] = M_PERFCTL_EVENT(ctr[i].event) |
M_PERFCTL_INTERRUPT_ENABLE;
if (ctr[i].kernel)
reg.control[i] |= M_PERFCTL_KERNEL;
if (ctr[i].user)
reg.control[i] |= M_PERFCTL_USER;
if (ctr[i].exl)
reg.control[i] |= M_PERFCTL_EXL;
reg.counter[i] = 0x80000000 - ctr[i].count;
}
}
/* Program all of the registers in preparation for enabling profiling. */
static void mipsxx_cpu_setup (void *args)
{
unsigned int counters = op_model_mipsxx.num_counters;
switch (counters) {
case 4:
write_c0_perfctrl3(0);
write_c0_perfcntr3(reg.counter[3]);
case 3:
write_c0_perfctrl2(0);
write_c0_perfcntr2(reg.counter[2]);
case 2:
write_c0_perfctrl1(0);
write_c0_perfcntr1(reg.counter[1]);
case 1:
write_c0_perfctrl0(0);
write_c0_perfcntr0(reg.counter[0]);
}
}
/* Start all counters on current CPU */
static void mipsxx_cpu_start(void *args)
{
unsigned int counters = op_model_mipsxx.num_counters;
switch (counters) {
case 4:
write_c0_perfctrl3(reg.control[3]);
case 3:
write_c0_perfctrl2(reg.control[2]);
case 2:
write_c0_perfctrl1(reg.control[1]);
case 1:
write_c0_perfctrl0(reg.control[0]);
}
}
/* Stop all counters on current CPU */
static void mipsxx_cpu_stop(void *args)
{
unsigned int counters = op_model_mipsxx.num_counters;
switch (counters) {
case 4:
write_c0_perfctrl3(0);
case 3:
write_c0_perfctrl2(0);
case 2:
write_c0_perfctrl1(0);
case 1:
write_c0_perfctrl0(0);
}
}
static int mipsxx_perfcount_handler(struct pt_regs *regs)
{
unsigned int counters = op_model_mipsxx.num_counters;
unsigned int control;
unsigned int counter;
int handled = 0;
switch (counters) {
#define HANDLE_COUNTER(n) \
case n + 1: \
control = read_c0_perfctrl ## n(); \
counter = read_c0_perfcntr ## n(); \
if ((control & M_PERFCTL_INTERRUPT_ENABLE) && \
(counter & M_COUNTER_OVERFLOW)) { \
oprofile_add_sample(regs, n); \
write_c0_perfcntr ## n(reg.counter[n]); \
handled = 1; \
}
HANDLE_COUNTER(3)
HANDLE_COUNTER(2)
HANDLE_COUNTER(1)
HANDLE_COUNTER(0)
}
return handled;
}
#define M_CONFIG1_PC (1 << 4)
static inline int n_counters(void)
{
if (!(read_c0_config1() & M_CONFIG1_PC))
return 0;
if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
return 1;
if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
return 2;
if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
return 3;
return 4;
}
static inline void reset_counters(int counters)
{
switch (counters) {
case 4:
write_c0_perfctrl3(0);
write_c0_perfcntr3(0);
case 3:
write_c0_perfctrl2(0);
write_c0_perfcntr2(0);
case 2:
write_c0_perfctrl1(0);
write_c0_perfcntr1(0);
case 1:
write_c0_perfctrl0(0);
write_c0_perfcntr0(0);
}
}
static int __init mipsxx_init(void)
{
int counters;
counters = n_counters();
if (counters == 0) {
printk(KERN_ERR "Oprofile: CPU has no performance counters\n");
return -ENODEV;
}
reset_counters(counters);
op_model_mipsxx.num_counters = counters;
switch (current_cpu_data.cputype) {
case CPU_20KC:
op_model_mipsxx.cpu_type = "mips/20K";
break;
case CPU_24K:
op_model_mipsxx.cpu_type = "mips/24K";
break;
case CPU_25KF:
op_model_mipsxx.cpu_type = "mips/25K";
break;
#ifndef CONFIG_SMP
case CPU_34K:
op_model_mipsxx.cpu_type = "mips/34K";
break;
case CPU_74K:
op_model_mipsxx.cpu_type = "mips/74K";
break;
#endif
case CPU_5KC:
op_model_mipsxx.cpu_type = "mips/5K";
break;
case CPU_SB1:
case CPU_SB1A:
op_model_mipsxx.cpu_type = "mips/sb1";
break;
default:
printk(KERN_ERR "Profiling unsupported for this CPU\n");
return -ENODEV;
}
perf_irq = mipsxx_perfcount_handler;
return 0;
}
static void mipsxx_exit(void)
{
reset_counters(op_model_mipsxx.num_counters);
perf_irq = null_perf_irq;
}
struct op_mips_model op_model_mipsxx = {
.reg_setup = mipsxx_reg_setup,
.cpu_setup = mipsxx_cpu_setup,
.init = mipsxx_init,
.exit = mipsxx_exit,
.cpu_start = mipsxx_cpu_start,
.cpu_stop = mipsxx_cpu_stop,
};
|