aboutsummaryrefslogblamecommitdiffstats
path: root/arch/mips/math-emu/cp1emu.c
blob: 99c550632d44a541f29a7c70ee7052ae09869fa9 (plain) (tree)
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

































































































































































































































































































































                                                                                       
                                                  



































































































































































































































































































































































































































































































                                                                                   
               















































































































































                                                                          
                                                  













































































































































































                                                                             
                                                  












































































                                                                             
                                                  






























































                                                                           
                                                  



















































                                                                         
/*
 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
 *
 * MIPS floating point support
 * Copyright (C) 1994-2000 Algorithmics Ltd.
 * http://www.algor.co.uk
 *
 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
 * Copyright (C) 2000  MIPS Technologies, Inc.
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License (Version 2) as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 *
 * A complete emulator for MIPS coprocessor 1 instructions.  This is
 * required for #float(switch) or #float(trap), where it catches all
 * COP1 instructions via the "CoProcessor Unusable" exception.
 *
 * More surprisingly it is also required for #float(ieee), to help out
 * the hardware fpu at the boundaries of the IEEE-754 representation
 * (denormalised values, infinities, underflow, etc).  It is made
 * quite nasty because emulation of some non-COP1 instructions is
 * required, e.g. in branch delay slots.
 *
 * Note if you know that you won't have an fpu, then you'll get much
 * better performance by compiling with -msoft-float!
 */
#include <linux/sched.h>

#include <asm/inst.h>
#include <asm/bootinfo.h>
#include <asm/cpu.h>
#include <asm/cpu-features.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/signal.h>
#include <asm/mipsregs.h>
#include <asm/fpu_emulator.h>
#include <asm/uaccess.h>
#include <asm/branch.h>

#include "ieee754.h"
#include "dsemul.h"

/* Strap kernel emulator for full MIPS IV emulation */

#ifdef __mips
#undef __mips
#endif
#define __mips 4

/* Function which emulates a floating point instruction. */

static int fpu_emu(struct pt_regs *, struct mips_fpu_soft_struct *,
	mips_instruction);

#if __mips >= 4 && __mips != 32
static int fpux_emu(struct pt_regs *,
	struct mips_fpu_soft_struct *, mips_instruction);
#endif

/* Further private data for which no space exists in mips_fpu_soft_struct */

struct mips_fpu_emulator_private fpuemuprivate;

/* Control registers */

#define FPCREG_RID	0	/* $0  = revision id */
#define FPCREG_CSR	31	/* $31 = csr */

/* Convert Mips rounding mode (0..3) to IEEE library modes. */
static const unsigned char ieee_rm[4] = {
	IEEE754_RN, IEEE754_RZ, IEEE754_RU, IEEE754_RD
};

#if __mips >= 4
/* convert condition code register number to csr bit */
static const unsigned int fpucondbit[8] = {
	FPU_CSR_COND0,
	FPU_CSR_COND1,
	FPU_CSR_COND2,
	FPU_CSR_COND3,
	FPU_CSR_COND4,
	FPU_CSR_COND5,
	FPU_CSR_COND6,
	FPU_CSR_COND7
};
#endif


/*
 * Redundant with logic already in kernel/branch.c,
 * embedded in compute_return_epc.  At some point,
 * a single subroutine should be used across both
 * modules.
 */
static int isBranchInstr(mips_instruction * i)
{
	switch (MIPSInst_OPCODE(*i)) {
	case spec_op:
		switch (MIPSInst_FUNC(*i)) {
		case jalr_op:
		case jr_op:
			return 1;
		}
		break;

	case bcond_op:
		switch (MIPSInst_RT(*i)) {
		case bltz_op:
		case bgez_op:
		case bltzl_op:
		case bgezl_op:
		case bltzal_op:
		case bgezal_op:
		case bltzall_op:
		case bgezall_op:
			return 1;
		}
		break;

	case j_op:
	case jal_op:
	case jalx_op:
	case beq_op:
	case bne_op:
	case blez_op:
	case bgtz_op:
	case beql_op:
	case bnel_op:
	case blezl_op:
	case bgtzl_op:
		return 1;

	case cop0_op:
	case cop1_op:
	case cop2_op:
	case cop1x_op:
		if (MIPSInst_RS(*i) == bc_op)
			return 1;
		break;
	}

	return 0;
}

/*
 * In the Linux kernel, we support selection of FPR format on the
 * basis of the Status.FR bit.  This does imply that, if a full 32
 * FPRs are desired, there needs to be a flip-flop that can be written
 * to one at that bit position.  In any case, O32 MIPS ABI uses
 * only the even FPRs (Status.FR = 0).
 */

#define CP0_STATUS_FR_SUPPORT

#ifdef CP0_STATUS_FR_SUPPORT
#define FR_BIT ST0_FR
#else
#define FR_BIT 0
#endif

#define SIFROMREG(si,x)	((si) = \
			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
			(int)ctx->fpr[x] : \
			(int)(ctx->fpr[x & ~1] >> 32 ))
#define SITOREG(si,x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)

#define DIFROMREG(di,x)	((di) = \
			ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
#define DITOREG(di,x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
			= (di))

#define SPFROMREG(sp,x)	SIFROMREG((sp).bits,x)
#define SPTOREG(sp,x)	SITOREG((sp).bits,x)
#define DPFROMREG(dp,x)	DIFROMREG((dp).bits,x)
#define DPTOREG(dp,x)	DITOREG((dp).bits,x)

/*
 * Emulate the single floating point instruction pointed at by EPC.
 * Two instructions if the instruction is in a branch delay slot.
 */

static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx)
{
	mips_instruction ir;
	vaddr_t emulpc, contpc;
	unsigned int cond;

	if (get_user(ir, (mips_instruction *) xcp->cp0_epc)) {
		fpuemuprivate.stats.errors++;
		return SIGBUS;
	}

	/* XXX NEC Vr54xx bug workaround */
	if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
		xcp->cp0_cause &= ~CAUSEF_BD;

	if (xcp->cp0_cause & CAUSEF_BD) {
		/*
		 * The instruction to be emulated is in a branch delay slot
		 * which means that we have to  emulate the branch instruction
		 * BEFORE we do the cop1 instruction.
		 *
		 * This branch could be a COP1 branch, but in that case we
		 * would have had a trap for that instruction, and would not
		 * come through this route.
		 *
		 * Linux MIPS branch emulator operates on context, updating the
		 * cp0_epc.
		 */
		emulpc = REG_TO_VA(xcp->cp0_epc + 4);	/* Snapshot emulation target */

		if (__compute_return_epc(xcp)) {
#ifdef CP1DBG
			printk("failed to emulate branch at %p\n",
				REG_TO_VA(xcp->cp0_epc));
#endif
			return SIGILL;
		}
		if (get_user(ir, (mips_instruction *) emulpc)) {
			fpuemuprivate.stats.errors++;
			return SIGBUS;
		}
		/* __compute_return_epc() will have updated cp0_epc */
		contpc = REG_TO_VA xcp->cp0_epc;
		/* In order not to confuse ptrace() et al, tweak context */
		xcp->cp0_epc = VA_TO_REG emulpc - 4;
	}
	else {
		emulpc = REG_TO_VA xcp->cp0_epc;
		contpc = REG_TO_VA(xcp->cp0_epc + 4);
	}

      emul:
	fpuemuprivate.stats.emulated++;
	switch (MIPSInst_OPCODE(ir)) {
#ifndef SINGLE_ONLY_FPU
	case ldc1_op:{
		u64 *va = REG_TO_VA(xcp->regs[MIPSInst_RS(ir)] +
			MIPSInst_SIMM(ir));
		u64 val;

		fpuemuprivate.stats.loads++;
		if (get_user(val, va)) {
			fpuemuprivate.stats.errors++;
			return SIGBUS;
		}
		DITOREG(val, MIPSInst_RT(ir));
		break;
	}

	case sdc1_op:{
		u64 *va = REG_TO_VA(xcp->regs[MIPSInst_RS(ir)] +
			MIPSInst_SIMM(ir));
		u64 val;

		fpuemuprivate.stats.stores++;
		DIFROMREG(val, MIPSInst_RT(ir));
		if (put_user(val, va)) {
			fpuemuprivate.stats.errors++;
			return SIGBUS;
		}
		break;
	}
#endif

	case lwc1_op:{
		u32 *va = REG_TO_VA(xcp->regs[MIPSInst_RS(ir)] +
			MIPSInst_SIMM(ir));
		u32 val;

		fpuemuprivate.stats.loads++;
		if (get_user(val, va)) {
			fpuemuprivate.stats.errors++;
			return SIGBUS;
		}
#ifdef SINGLE_ONLY_FPU
		if (MIPSInst_RT(ir) & 1) {
			/* illegal register in single-float mode */
			return SIGILL;
		}
#endif
		SITOREG(val, MIPSInst_RT(ir));
		break;
	}

	case swc1_op:{
		u32 *va = REG_TO_VA(xcp->regs[MIPSInst_RS(ir)] +
			MIPSInst_SIMM(ir));
		u32 val;

		fpuemuprivate.stats.stores++;
#ifdef SINGLE_ONLY_FPU
		if (MIPSInst_RT(ir) & 1) {
			/* illegal register in single-float mode */
			return SIGILL;
		}
#endif
		SIFROMREG(val, MIPSInst_RT(ir));
		if (put_user(val, va)) {
			fpuemuprivate.stats.errors++;
			return SIGBUS;
		}
		break;
	}

	case cop1_op:
		switch (MIPSInst_RS(ir)) {

#if defined(__mips64) && !defined(SINGLE_ONLY_FPU)
		case dmfc_op:
			/* copregister fs -> gpr[rt] */
			if (MIPSInst_RT(ir) != 0) {
				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
					MIPSInst_RD(ir));
			}
			break;

		case dmtc_op:
			/* copregister fs <- rt */
			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
			break;
#endif

		case mfc_op:
			/* copregister rd -> gpr[rt] */
#ifdef SINGLE_ONLY_FPU
			if (MIPSInst_RD(ir) & 1) {
				/* illegal register in single-float mode */
				return SIGILL;
			}
#endif
			if (MIPSInst_RT(ir) != 0) {
				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
					MIPSInst_RD(ir));
			}
			break;

		case mtc_op:
			/* copregister rd <- rt */
#ifdef SINGLE_ONLY_FPU
			if (MIPSInst_RD(ir) & 1) {
				/* illegal register in single-float mode */
				return SIGILL;
			}
#endif
			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
			break;

		case cfc_op:{
			/* cop control register rd -> gpr[rt] */
			u32 value;

			if (ir == CP1UNDEF) {
				return do_dsemulret(xcp);
			}
			if (MIPSInst_RD(ir) == FPCREG_CSR) {
				value = ctx->fcr31;
#ifdef CSRTRACE
				printk("%p gpr[%d]<-csr=%08x\n",
					REG_TO_VA(xcp->cp0_epc),
					MIPSInst_RT(ir), value);
#endif
			}
			else if (MIPSInst_RD(ir) == FPCREG_RID)
				value = 0;
			else
				value = 0;
			if (MIPSInst_RT(ir))
				xcp->regs[MIPSInst_RT(ir)] = value;
			break;
		}

		case ctc_op:{
			/* copregister rd <- rt */
			u32 value;

			if (MIPSInst_RT(ir) == 0)
				value = 0;
			else
				value = xcp->regs[MIPSInst_RT(ir)];

			/* we only have one writable control reg
			 */
			if (MIPSInst_RD(ir) == FPCREG_CSR) {
#ifdef CSRTRACE
				printk("%p gpr[%d]->csr=%08x\n",
					REG_TO_VA(xcp->cp0_epc),
					MIPSInst_RT(ir), value);
#endif
				ctx->fcr31 = value;
				/* copy new rounding mode and
				   flush bit to ieee library state! */
				ieee754_csr.nod = (ctx->fcr31 & 0x1000000) != 0;
				ieee754_csr.rm = ieee_rm[value & 0x3];
			}
			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
				return SIGFPE;
			}
			break;
		}

		case bc_op:{
			int likely = 0;

			if (xcp->cp0_cause & CAUSEF_BD)
				return SIGILL;

#if __mips >= 4
			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
#else
			cond = ctx->fcr31 & FPU_CSR_COND;
#endif
			switch (MIPSInst_RT(ir) & 3) {
			case bcfl_op:
				likely = 1;
			case bcf_op:
				cond = !cond;
				break;
			case bctl_op:
				likely = 1;
			case bct_op:
				break;
			default:
				/* thats an illegal instruction */
				return SIGILL;
			}

			xcp->cp0_cause |= CAUSEF_BD;
			if (cond) {
				/* branch taken: emulate dslot
				 * instruction
				 */
				xcp->cp0_epc += 4;
				contpc = REG_TO_VA
					(xcp->cp0_epc +
					(MIPSInst_SIMM(ir) << 2));

				if (get_user(ir, (mips_instruction *)
						REG_TO_VA xcp->cp0_epc)) {
					fpuemuprivate.stats.errors++;
					return SIGBUS;
				}

				switch (MIPSInst_OPCODE(ir)) {
				case lwc1_op:
				case swc1_op:
#if (__mips >= 2 || __mips64) && !defined(SINGLE_ONLY_FPU)
				case ldc1_op:
				case sdc1_op:
#endif
				case cop1_op:
#if __mips >= 4 && __mips != 32
				case cop1x_op:
#endif
					/* its one of ours */
					goto emul;
#if __mips >= 4
				case spec_op:
					if (MIPSInst_FUNC(ir) == movc_op)
						goto emul;
					break;
#endif
				}

				/*
				 * Single step the non-cp1
				 * instruction in the dslot
				 */
				return mips_dsemul(xcp, ir, VA_TO_REG contpc);
			}
			else {
				/* branch not taken */
				if (likely) {
					/*
					 * branch likely nullifies
					 * dslot if not taken
					 */
					xcp->cp0_epc += 4;
					contpc += 4;
					/*
					 * else continue & execute
					 * dslot as normal insn
					 */
				}
			}
			break;
		}

		default:
			if (!(MIPSInst_RS(ir) & 0x10))
				return SIGILL;
			{
				int sig;

				/* a real fpu computation instruction */
				if ((sig = fpu_emu(xcp, ctx, ir)))
					return sig;
			}
		}
		break;

#if __mips >= 4 && __mips != 32
	case cop1x_op:{
		int sig;

		if ((sig = fpux_emu(xcp, ctx, ir)))
			return sig;
		break;
	}
#endif

#if __mips >= 4
	case spec_op:
		if (MIPSInst_FUNC(ir) != movc_op)
			return SIGILL;
		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
			xcp->regs[MIPSInst_RD(ir)] =
				xcp->regs[MIPSInst_RS(ir)];
		break;
#endif

	default:
		return SIGILL;
	}

	/* we did it !! */
	xcp->cp0_epc = VA_TO_REG(contpc);
	xcp->cp0_cause &= ~CAUSEF_BD;
	return 0;
}

/*
 * Conversion table from MIPS compare ops 48-63
 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
 */
static const unsigned char cmptab[8] = {
	0,			/* cmp_0 (sig) cmp_sf */
	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
};


#if __mips >= 4 && __mips != 32

/*
 * Additional MIPS4 instructions
 */

#define DEF3OP(name, p, f1, f2, f3) \
static ieee754##p fpemu_##p##_##name (ieee754##p r, ieee754##p s, \
    ieee754##p t) \
{ \
	struct ieee754_csr ieee754_csr_save; \
	s = f1 (s, t); \
	ieee754_csr_save = ieee754_csr; \
	s = f2 (s, r); \
	ieee754_csr_save.cx |= ieee754_csr.cx; \
	ieee754_csr_save.sx |= ieee754_csr.sx; \
	s = f3 (s); \
	ieee754_csr.cx |= ieee754_csr_save.cx; \
	ieee754_csr.sx |= ieee754_csr_save.sx; \
	return s; \
}

static ieee754dp fpemu_dp_recip(ieee754dp d)
{
	return ieee754dp_div(ieee754dp_one(0), d);
}

static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
{
	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
}

static ieee754sp fpemu_sp_recip(ieee754sp s)
{
	return ieee754sp_div(ieee754sp_one(0), s);
}

static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
{
	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
}

DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add,);
DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub,);
DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add,);
DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub,);
DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);

static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx,
	mips_instruction ir)
{
	unsigned rcsr = 0;	/* resulting csr */

	fpuemuprivate.stats.cp1xops++;

	switch (MIPSInst_FMA_FFMT(ir)) {
	case s_fmt:{		/* 0 */

		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
		ieee754sp fd, fr, fs, ft;
		u32 *va;
		u32 val;

		switch (MIPSInst_FUNC(ir)) {
		case lwxc1_op:
			va = REG_TO_VA(xcp->regs[MIPSInst_FR(ir)] +
				xcp->regs[MIPSInst_FT(ir)]);

			fpuemuprivate.stats.loads++;
			if (get_user(val, va)) {
				fpuemuprivate.stats.errors++;
				return SIGBUS;
			}
#ifdef SINGLE_ONLY_FPU
			if (MIPSInst_FD(ir) & 1) {
				/* illegal register in single-float
				 * mode
				 */
				return SIGILL;
			}
#endif
			SITOREG(val, MIPSInst_FD(ir));
			break;

		case swxc1_op:
			va = REG_TO_VA(xcp->regs[MIPSInst_FR(ir)] +
				xcp->regs[MIPSInst_FT(ir)]);

			fpuemuprivate.stats.stores++;
#ifdef SINGLE_ONLY_FPU
			if (MIPSInst_FS(ir) & 1) {
				/* illegal register in single-float
				 * mode
				 */
				return SIGILL;
			}
#endif

			SIFROMREG(val, MIPSInst_FS(ir));
			if (put_user(val, va)) {
				fpuemuprivate.stats.errors++;
				return SIGBUS;
			}
			break;

		case madd_s_op:
			handler = fpemu_sp_madd;
			goto scoptop;
		case msub_s_op:
			handler = fpemu_sp_msub;
			goto scoptop;
		case nmadd_s_op:
			handler = fpemu_sp_nmadd;
			goto scoptop;
		case nmsub_s_op:
			handler = fpemu_sp_nmsub;
			goto scoptop;

		      scoptop:
			SPFROMREG(fr, MIPSInst_FR(ir));
			SPFROMREG(fs, MIPSInst_FS(ir));
			SPFROMREG(ft, MIPSInst_FT(ir));
			fd = (*handler) (fr, fs, ft);
			SPTOREG(fd, MIPSInst_FD(ir));

		      copcsr:
			if (ieee754_cxtest(IEEE754_INEXACT))
				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
			if (ieee754_cxtest(IEEE754_UNDERFLOW))
				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
			if (ieee754_cxtest(IEEE754_OVERFLOW))
				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;

			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
			if (ieee754_csr.nod)
				ctx->fcr31 |= 0x1000000;
			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
				/*printk ("SIGFPE: fpu csr = %08x\n",
				   ctx->fcr31); */
				return SIGFPE;
			}

			break;

		default:
			return SIGILL;
		}
		break;
	}

#ifndef SINGLE_ONLY_FPU
	case d_fmt:{		/* 1 */
		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
		ieee754dp fd, fr, fs, ft;
		u64 *va;
		u64 val;

		switch (MIPSInst_FUNC(ir)) {
		case ldxc1_op:
			va = REG_TO_VA(xcp->regs[MIPSInst_FR(ir)] +
				xcp->regs[MIPSInst_FT(ir)]);

			fpuemuprivate.stats.loads++;
			if (get_user(val, va)) {
				fpuemuprivate.stats.errors++;
				return SIGBUS;
			}
			DITOREG(val, MIPSInst_FD(ir));
			break;

		case sdxc1_op:
			va = REG_TO_VA(xcp->regs[MIPSInst_FR(ir)] +
				xcp->regs[MIPSInst_FT(ir)]);

			fpuemuprivate.stats.stores++;
			DIFROMREG(val, MIPSInst_FS(ir));
			if (put_user(val, va)) {
				fpuemuprivate.stats.errors++;
				return SIGBUS;
			}
			break;

		case madd_d_op:
			handler = fpemu_dp_madd;
			goto dcoptop;
		case msub_d_op:
			handler = fpemu_dp_msub;
			goto dcoptop;
		case nmadd_d_op:
			handler = fpemu_dp_nmadd;
			goto dcoptop;
		case nmsub_d_op:
			handler = fpemu_dp_nmsub;
			goto dcoptop;

		      dcoptop:
			DPFROMREG(fr, MIPSInst_FR(ir));
			DPFROMREG(fs, MIPSInst_FS(ir));
			DPFROMREG(ft, MIPSInst_FT(ir));
			fd = (*handler) (fr, fs, ft);
			DPTOREG(fd, MIPSInst_FD(ir));
			goto copcsr;

		default:
			return SIGILL;
		}
		break;
	}
#endif

	case 0x7:		/* 7 */
		if (MIPSInst_FUNC(ir) != pfetch_op) {
			return SIGILL;
		}
		/* ignore prefx operation */
		break;

	default:
		return SIGILL;
	}

	return 0;
}
#endif



/*
 * Emulate a single COP1 arithmetic instruction.
 */
static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx,
	mips_instruction ir)
{
	int rfmt;		/* resulting format */
	unsigned rcsr = 0;	/* resulting csr */
	unsigned cond;
	union {
		ieee754dp d;
		ieee754sp s;
		int w;
#ifdef __mips64
		s64 l;
#endif
	} rv;			/* resulting value */

	fpuemuprivate.stats.cp1ops++;
	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
	case s_fmt:{		/* 0 */
		union {
			ieee754sp(*b) (ieee754sp, ieee754sp);
			ieee754sp(*u) (ieee754sp);
		} handler;

		switch (MIPSInst_FUNC(ir)) {
			/* binary ops */
		case fadd_op:
			handler.b = ieee754sp_add;
			goto scopbop;
		case fsub_op:
			handler.b = ieee754sp_sub;
			goto scopbop;
		case fmul_op:
			handler.b = ieee754sp_mul;
			goto scopbop;
		case fdiv_op:
			handler.b = ieee754sp_div;
			goto scopbop;

			/* unary  ops */
#if __mips >= 2 || __mips64
		case fsqrt_op:
			handler.u = ieee754sp_sqrt;
			goto scopuop;
#endif
#if __mips >= 4 && __mips != 32
		case frsqrt_op:
			handler.u = fpemu_sp_rsqrt;
			goto scopuop;
		case frecip_op:
			handler.u = fpemu_sp_recip;
			goto scopuop;
#endif
#if __mips >= 4
		case fmovc_op:
			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
			if (((ctx->fcr31 & cond) != 0) !=
				((MIPSInst_FT(ir) & 1) != 0))
				return 0;
			SPFROMREG(rv.s, MIPSInst_FS(ir));
			break;
		case fmovz_op:
			if (xcp->regs[MIPSInst_FT(ir)] != 0)
				return 0;
			SPFROMREG(rv.s, MIPSInst_FS(ir));
			break;
		case fmovn_op:
			if (xcp->regs[MIPSInst_FT(ir)] == 0)
				return 0;
			SPFROMREG(rv.s, MIPSInst_FS(ir));
			break;
#endif
		case fabs_op:
			handler.u = ieee754sp_abs;
			goto scopuop;
		case fneg_op:
			handler.u = ieee754sp_neg;
			goto scopuop;
		case fmov_op:
			/* an easy one */
			SPFROMREG(rv.s, MIPSInst_FS(ir));
			goto copcsr;

			/* binary op on handler */
		      scopbop:
			{
				ieee754sp fs, ft;

				SPFROMREG(fs, MIPSInst_FS(ir));
				SPFROMREG(ft, MIPSInst_FT(ir));

				rv.s = (*handler.b) (fs, ft);
				goto copcsr;
			}
		      scopuop:
			{
				ieee754sp fs;

				SPFROMREG(fs, MIPSInst_FS(ir));
				rv.s = (*handler.u) (fs);
				goto copcsr;
			}
		      copcsr:
			if (ieee754_cxtest(IEEE754_INEXACT))
				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
			if (ieee754_cxtest(IEEE754_UNDERFLOW))
				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
			if (ieee754_cxtest(IEEE754_OVERFLOW))
				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
			break;

			/* unary conv ops */
		case fcvts_op:
			return SIGILL;	/* not defined */
		case fcvtd_op:{
#ifdef SINGLE_ONLY_FPU
			return SIGILL;	/* not defined */
#else
			ieee754sp fs;

			SPFROMREG(fs, MIPSInst_FS(ir));
			rv.d = ieee754dp_fsp(fs);
			rfmt = d_fmt;
			goto copcsr;
		}
#endif
		case fcvtw_op:{
			ieee754sp fs;

			SPFROMREG(fs, MIPSInst_FS(ir));
			rv.w = ieee754sp_tint(fs);
			rfmt = w_fmt;
			goto copcsr;
		}

#if __mips >= 2 || __mips64
		case fround_op:
		case ftrunc_op:
		case fceil_op:
		case ffloor_op:{
			unsigned int oldrm = ieee754_csr.rm;
			ieee754sp fs;

			SPFROMREG(fs, MIPSInst_FS(ir));
			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
			rv.w = ieee754sp_tint(fs);
			ieee754_csr.rm = oldrm;
			rfmt = w_fmt;
			goto copcsr;
		}
#endif /* __mips >= 2 */

#if defined(__mips64) && !defined(SINGLE_ONLY_FPU)
		case fcvtl_op:{
			ieee754sp fs;

			SPFROMREG(fs, MIPSInst_FS(ir));
			rv.l = ieee754sp_tlong(fs);
			rfmt = l_fmt;
			goto copcsr;
		}

		case froundl_op:
		case ftruncl_op:
		case fceill_op:
		case ffloorl_op:{
			unsigned int oldrm = ieee754_csr.rm;
			ieee754sp fs;

			SPFROMREG(fs, MIPSInst_FS(ir));
			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
			rv.l = ieee754sp_tlong(fs);
			ieee754_csr.rm = oldrm;
			rfmt = l_fmt;
			goto copcsr;
		}
#endif /* __mips64 && !fpu(single) */

		default:
			if (MIPSInst_FUNC(ir) >= fcmp_op) {
				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
				ieee754sp fs, ft;

				SPFROMREG(fs, MIPSInst_FS(ir));
				SPFROMREG(ft, MIPSInst_FT(ir));
				rv.w = ieee754sp_cmp(fs, ft,
					cmptab[cmpop & 0x7], cmpop & 0x8);
				rfmt = -1;
				if ((cmpop & 0x8) && ieee754_cxtest
					(IEEE754_INVALID_OPERATION))
					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
				else
					goto copcsr;

			}
			else {
				return SIGILL;
			}
			break;
		}
		break;
	}

#ifndef SINGLE_ONLY_FPU
	case d_fmt:{
		union {
			ieee754dp(*b) (ieee754dp, ieee754dp);
			ieee754dp(*u) (ieee754dp);
		} handler;

		switch (MIPSInst_FUNC(ir)) {
			/* binary ops */
		case fadd_op:
			handler.b = ieee754dp_add;
			goto dcopbop;
		case fsub_op:
			handler.b = ieee754dp_sub;
			goto dcopbop;
		case fmul_op:
			handler.b = ieee754dp_mul;
			goto dcopbop;
		case fdiv_op:
			handler.b = ieee754dp_div;
			goto dcopbop;

			/* unary  ops */
#if __mips >= 2 || __mips64
		case fsqrt_op:
			handler.u = ieee754dp_sqrt;
			goto dcopuop;
#endif
#if __mips >= 4 && __mips != 32
		case frsqrt_op:
			handler.u = fpemu_dp_rsqrt;
			goto dcopuop;
		case frecip_op:
			handler.u = fpemu_dp_recip;
			goto dcopuop;
#endif
#if __mips >= 4
		case fmovc_op:
			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
			if (((ctx->fcr31 & cond) != 0) !=
				((MIPSInst_FT(ir) & 1) != 0))
				return 0;
			DPFROMREG(rv.d, MIPSInst_FS(ir));
			break;
		case fmovz_op:
			if (xcp->regs[MIPSInst_FT(ir)] != 0)
				return 0;
			DPFROMREG(rv.d, MIPSInst_FS(ir));
			break;
		case fmovn_op:
			if (xcp->regs[MIPSInst_FT(ir)] == 0)
				return 0;
			DPFROMREG(rv.d, MIPSInst_FS(ir));
			break;
#endif
		case fabs_op:
			handler.u = ieee754dp_abs;
			goto dcopuop;

		case fneg_op:
			handler.u = ieee754dp_neg;
			goto dcopuop;

		case fmov_op:
			/* an easy one */
			DPFROMREG(rv.d, MIPSInst_FS(ir));
			goto copcsr;

			/* binary op on handler */
		      dcopbop:{
				ieee754dp fs, ft;

				DPFROMREG(fs, MIPSInst_FS(ir));
				DPFROMREG(ft, MIPSInst_FT(ir));

				rv.d = (*handler.b) (fs, ft);
				goto copcsr;
			}
		      dcopuop:{
				ieee754dp fs;

				DPFROMREG(fs, MIPSInst_FS(ir));
				rv.d = (*handler.u) (fs);
				goto copcsr;
			}

			/* unary conv ops */
		case fcvts_op:{
			ieee754dp fs;

			DPFROMREG(fs, MIPSInst_FS(ir));
			rv.s = ieee754sp_fdp(fs);
			rfmt = s_fmt;
			goto copcsr;
		}
		case fcvtd_op:
			return SIGILL;	/* not defined */

		case fcvtw_op:{
			ieee754dp fs;

			DPFROMREG(fs, MIPSInst_FS(ir));
			rv.w = ieee754dp_tint(fs);	/* wrong */
			rfmt = w_fmt;
			goto copcsr;
		}

#if __mips >= 2 || __mips64
		case fround_op:
		case ftrunc_op:
		case fceil_op:
		case ffloor_op:{
			unsigned int oldrm = ieee754_csr.rm;
			ieee754dp fs;

			DPFROMREG(fs, MIPSInst_FS(ir));
			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
			rv.w = ieee754dp_tint(fs);
			ieee754_csr.rm = oldrm;
			rfmt = w_fmt;
			goto copcsr;
		}
#endif

#if defined(__mips64) && !defined(SINGLE_ONLY_FPU)
		case fcvtl_op:{
			ieee754dp fs;

			DPFROMREG(fs, MIPSInst_FS(ir));
			rv.l = ieee754dp_tlong(fs);
			rfmt = l_fmt;
			goto copcsr;
		}

		case froundl_op:
		case ftruncl_op:
		case fceill_op:
		case ffloorl_op:{
			unsigned int oldrm = ieee754_csr.rm;
			ieee754dp fs;

			DPFROMREG(fs, MIPSInst_FS(ir));
			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
			rv.l = ieee754dp_tlong(fs);
			ieee754_csr.rm = oldrm;
			rfmt = l_fmt;
			goto copcsr;
		}
#endif /* __mips >= 3 && !fpu(single) */

		default:
			if (MIPSInst_FUNC(ir) >= fcmp_op) {
				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
				ieee754dp fs, ft;

				DPFROMREG(fs, MIPSInst_FS(ir));
				DPFROMREG(ft, MIPSInst_FT(ir));
				rv.w = ieee754dp_cmp(fs, ft,
					cmptab[cmpop & 0x7], cmpop & 0x8);
				rfmt = -1;
				if ((cmpop & 0x8)
					&&
					ieee754_cxtest
					(IEEE754_INVALID_OPERATION))
					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
				else
					goto copcsr;

			}
			else {
				return SIGILL;
			}
			break;
		}
		break;
	}
#endif /* ifndef SINGLE_ONLY_FPU */

	case w_fmt:{
		ieee754sp fs;

		switch (MIPSInst_FUNC(ir)) {
		case fcvts_op:
			/* convert word to single precision real */
			SPFROMREG(fs, MIPSInst_FS(ir));
			rv.s = ieee754sp_fint(fs.bits);
			rfmt = s_fmt;
			goto copcsr;
#ifndef SINGLE_ONLY_FPU
		case fcvtd_op:
			/* convert word to double precision real */
			SPFROMREG(fs, MIPSInst_FS(ir));
			rv.d = ieee754dp_fint(fs.bits);
			rfmt = d_fmt;
			goto copcsr;
#endif
		default:
			return SIGILL;
		}
		break;
	}

#if defined(__mips64) && !defined(SINGLE_ONLY_FPU)
	case l_fmt:{
		switch (MIPSInst_FUNC(ir)) {
		case fcvts_op:
			/* convert long to single precision real */
			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
			rfmt = s_fmt;
			goto copcsr;
		case fcvtd_op:
			/* convert long to double precision real */
			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
			rfmt = d_fmt;
			goto copcsr;
		default:
			return SIGILL;
		}
		break;
	}
#endif

	default:
		return SIGILL;
	}

	/*
	 * Update the fpu CSR register for this operation.
	 * If an exception is required, generate a tidy SIGFPE exception,
	 * without updating the result register.
	 * Note: cause exception bits do not accumulate, they are rewritten
	 * for each op; only the flag/sticky bits accumulate.
	 */
	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
		return SIGFPE;
	}

	/*
	 * Now we can safely write the result back to the register file.
	 */
	switch (rfmt) {
	case -1:{
#if __mips >= 4
		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
#else
		cond = FPU_CSR_COND;
#endif
		if (rv.w)
			ctx->fcr31 |= cond;
		else
			ctx->fcr31 &= ~cond;
		break;
	}
#ifndef SINGLE_ONLY_FPU
	case d_fmt:
		DPTOREG(rv.d, MIPSInst_FD(ir));
		break;
#endif
	case s_fmt:
		SPTOREG(rv.s, MIPSInst_FD(ir));
		break;
	case w_fmt:
		SITOREG(rv.w, MIPSInst_FD(ir));
		break;
#if defined(__mips64) && !defined(SINGLE_ONLY_FPU)
	case l_fmt:
		DITOREG(rv.l, MIPSInst_FD(ir));
		break;
#endif
	default:
		return SIGILL;
	}

	return 0;
}

int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp,
	struct mips_fpu_soft_struct *ctx)
{
	gpreg_t oldepc, prevepc;
	mips_instruction insn;
	int sig = 0;

	oldepc = xcp->cp0_epc;
	do {
		prevepc = xcp->cp0_epc;

		if (get_user(insn, (mips_instruction *) xcp->cp0_epc)) {
			fpuemuprivate.stats.errors++;
			return SIGBUS;
		}
		if (insn == 0)
			xcp->cp0_epc += 4;	/* skip nops */
		else {
			/* Update ieee754_csr. Only relevant if we have a
			   h/w FPU */
			ieee754_csr.nod = (ctx->fcr31 & 0x1000000) != 0;
			ieee754_csr.rm = ieee_rm[ctx->fcr31 & 0x3];
			ieee754_csr.cx = (ctx->fcr31 >> 12) & 0x1f;
			sig = cop1Emulate(xcp, ctx);
		}

		if (cpu_has_fpu)
			break;
		if (sig)
			break;

		cond_resched();
	} while (xcp->cp0_epc > prevepc);

	/* SIGILL indicates a non-fpu instruction */
	if (sig == SIGILL && xcp->cp0_epc != oldepc)
		/* but if epc has advanced, then ignore it */
		sig = 0;

	return sig;
}