/*
* Copyright 2001 MontaVista Software Inc.
* Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
* Copyright (c) 2003, 2004 Maciej W. Rozycki
*
* Common time service routines for MIPS machines. See
* Documentation/mips/time.README.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/clockchips.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/param.h>
#include <linux/profile.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/smp.h>
#include <linux/kernel_stat.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <asm/bootinfo.h>
#include <asm/cache.h>
#include <asm/compiler.h>
#include <asm/cpu.h>
#include <asm/cpu-features.h>
#include <asm/div64.h>
#include <asm/sections.h>
#include <asm/smtc_ipi.h>
#include <asm/time.h>
#include <irq.h>
/*
* The integer part of the number of usecs per jiffy is taken from tick,
* but the fractional part is not recorded, so we calculate it using the
* initial value of HZ. This aids systems where tick isn't really an
* integer (e.g. for HZ = 128).
*/
#define USECS_PER_JIFFY TICK_SIZE
#define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
#define TICK_SIZE (tick_nsec / 1000)
/*
* forward reference
*/
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
int __weak rtc_mips_set_time(unsigned long sec)
{
return 0;
}
EXPORT_SYMBOL(rtc_mips_set_time);
int __weak rtc_mips_set_mmss(unsigned long nowtime)
{
return rtc_mips_set_time(nowtime);
}
int update_persistent_clock(struct timespec now)
{
return rtc_mips_set_mmss(now.tv_sec);
}
/* how many counter cycles in a jiffy */
static unsigned long cycles_per_jiffy __read_mostly;
/*
* Null timer ack for systems not needing one (e.g. i8254).
*/
static void null_timer_ack(void) { /* nothing */ }
/*
* Null high precision timer functions for systems lacking one.
*/
static cycle_t null_hpt_read(void)
{
return 0;
}
/*
* Timer ack for an R4k-compatible timer of a known frequency.
*/
static void c0_timer_ack(void)
{
write_c0_compare(read_c0_compare());
}
/*
* High precision timer functions for a R4k-compatible timer.
*/
static cycle_t c0_hpt_read(void)
{
return read_c0_count();
}
int (*mips_timer_state)(void);
void (*mips_timer_ack)(void);
/*
* local_timer_interrupt() does profiling and process accounting
* on a per-CPU basis.
*
* In UP mode, it is invoked from the (global) timer_interrupt.
*
* In SMP mode, it might invoked by per-CPU timer interrupt, or
* a broadcasted inter-processor interrupt which itself is triggered
* by the global timer interrupt.
*/
void local_timer_interrupt(int irq, void *dev_id)
{
profile_tick(CPU_PROFILING);
update_process_times(user_mode(get_irq_regs()));
}
int null_perf_irq(void)
{
return 0;
}
EXPORT_SYMBOL(null_perf_irq);
int (*perf_irq)(void) = null_perf_irq;
EXPORT_SYMBOL(perf_irq);
/*
* Timer interrupt
*/
int cp0_compare_irq;
/*
* Performance counter IRQ or -1 if shared with timer
*/
int cp0_perfcount_irq;
EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
/*
* Possibly handle a performance counter interrupt.
* Return true if the timer interrupt should not be checked
*/
static inline int handle_perf_irq(int r2)
{
/*
* The performance counter overflow interrupt may be shared with the
* timer interrupt (cp0_perfcount_irq < 0). If it is and a
* performance counter has overflowed (perf_irq() == IRQ_HANDLED)
* and we can't reliably determine if a counter interrupt has also
* happened (!r2) then don't check for a timer interrupt.
*/
return (cp0_perfcount_irq < 0) &&
perf_irq() == IRQ_HANDLED &&
!r2;
}
/*
* time_init() - it does the following things.
*
* 1) plat_time_init() -
* a) (optional) set up RTC routines,
* b) (optional) calibrate and set the mips_hpt_frequency
* (only needed if you intended to use cpu counter as timer interrupt
* source)
* 2) calculate a couple of cached variables for later usage
* 3) plat_timer_setup() -
* a) (optional) over-write any choices made above by time_init().
* b) machine specific code should setup the timer irqaction.
* c) enable the timer interrupt
*/
unsigned int mips_hpt_frequency;
static unsigned int __init calibrate_hpt(void)
{
cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
const int loops = HZ / 10;
int log_2_loops = 0;
int i;
/*
* We want to calibrate for 0.1s, but to avoid a 64-bit
* division we round the number of loops up to the nearest
* power of 2.
*/
while (loops > 1 << log_2_loops)
log_2_loops++;
i = 1 << log_2_loops;
/*
* Wait for a rising edge of the timer interrupt.
*/
while (mips_timer_state());
while (!mips_timer_state());
/*
* Now see how many high precision timer ticks happen
* during the calculated number of periods between timer
* interrupts.
*/
hpt_start = clocksource_mips.read();
do {
while (mips_timer_state());
while (!mips_timer_state());
} while (--i);
hpt_end = clocksource_mips.read();
hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
hz = HZ;
frequency = hpt_count * hz;
return frequency >> log_2_loops;
}
struct clocksource clocksource_mips = {
.name = "MIPS",
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static int mips_next_event(unsigned long delta,
struct clock_event_device *evt)
{
unsigned int cnt;
int res;
#ifdef CONFIG_MIPS_MT_SMTC
{
unsigned long flags, vpflags;
local_irq_save(flags);
vpflags = dvpe();
#endif
cnt = read_c0_count();
cnt += delta;
write_c0_compare(cnt);
res = ((long)(read_c0_count() - cnt ) > 0) ? -ETIME : 0;
#ifdef CONFIG_MIPS_MT_SMTC
evpe(vpflags);
local_irq_restore(flags);
}
#endif
return res;
}
static void mips_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
/* Nothing to do ... */
}
static DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
static int cp0_timer_irq_installed;
static irqreturn_t timer_interrupt(int irq, void *dev_id)
{
const int r2 = cpu_has_mips_r2;
struct clock_event_device *cd;
int cpu = smp_processor_id();
/*
* Suckage alert:
* Before R2 of the architecture there was no way to see if a
* performance counter interrupt was pending, so we have to run
* the performance counter interrupt handler anyway.
*/
if (handle_perf_irq(r2))
goto out;
/*
* The same applies to performance counter interrupts. But with the
* above we now know that the reason we got here must be a timer
* interrupt. Being the paranoiacs we are we check anyway.
*/
if (!r2 || (read_c0_cause() & (1 << 30))) {
c0_timer_ack();
#ifdef CONFIG_MIPS_MT_SMTC
if (cpu_data[cpu].vpe_id)
goto out;
cpu = 0;
#endif
cd = &per_cpu(mips_clockevent_device, cpu);
cd->event_handler(cd);
}
out:
return IRQ_HANDLED;
}
static struct irqaction timer_irqaction = {
.handler = timer_interrupt,
#ifdef CONFIG_MIPS_MT_SMTC
.flags = IRQF_DISABLED,
#else
.flags = IRQF_DISABLED | IRQF_PERCPU,
#endif
.name = "timer",
};
static void __init init_mips_clocksource(void)
{
u64 temp;
u32 shift;
if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
return;
/* Calclate a somewhat reasonable rating value */
clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
/* Find a shift value */
for (shift = 32; shift > 0; shift--) {
temp = (u64) NSEC_PER_SEC << shift;
do_div(temp, mips_hpt_frequency);
if ((temp >> 32) == 0)
break;
}
clocksource_mips.shift = shift;
clocksource_mips.mult = (u32)temp;
clocksource_register(&clocksource_mips);
}
void __init __weak plat_time_init(void)
{
}
void __init __weak plat_timer_setup(struct irqaction *irq)
{
}
#ifdef CONFIG_MIPS_MT_SMTC
DEFINE_PER_CPU(struct clock_event_device, smtc_dummy_clockevent_device);
static void smtc_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
}
int dummycnt[NR_CPUS];
static void mips_broadcast(cpumask_t mask)
{
unsigned int cpu;
for_each_cpu_mask(cpu, mask)
smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
}
static void setup_smtc_dummy_clockevent_device(void)
{
//uint64_t mips_freq = mips_hpt_^frequency;
unsigned int cpu = smp_processor_id();
struct clock_event_device *cd;
cd = &per_cpu(smtc_dummy_clockevent_device, cpu);
cd->name = "SMTC";
cd->features = CLOCK_EVT_FEAT_DUMMY;
/* Calculate the min / max delta */
cd->mult = 0; //div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
cd->shift = 0; //32;
cd->max_delta_ns = 0; //clockevent_delta2ns(0x7fffffff, cd);
cd->min_delta_ns = 0; //clockevent_delta2ns(0x30, cd);
cd->rating = 200;
cd->irq = 17; //-1;
// if (cpu)
// cd->cpumask = CPU_MASK_ALL; // cpumask_of_cpu(cpu);
// else
cd->cpumask = cpumask_of_cpu(cpu);
cd->set_mode = smtc_set_mode;
cd->broadcast = mips_broadcast;
clockevents_register_device(cd);
}
#endif
static void mips_event_handler(struct clock_event_device *dev)
{
}
void __cpuinit mips_clockevent_init(void)
{
uint64_t mips_freq = mips_hpt_frequency;
unsigned int cpu = smp_processor_id();
struct clock_event_device *cd;
unsigned int irq = MIPS_CPU_IRQ_BASE + 7;
if (!cpu_has_counter)
return;
#ifdef CONFIG_MIPS_MT_SMTC
setup_smtc_dummy_clockevent_device();
/*
* On SMTC we only register VPE0's compare interrupt as clockevent
* device.
*/
if (cpu)
return;
#endif
cd = &per_cpu(mips_clockevent_device, cpu);
cd->name = "MIPS";
cd->features = CLOCK_EVT_FEAT_ONESHOT;
/* Calculate the min / max delta */
cd->mult = div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
cd->shift = 32;
cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd);
cd->min_delta_ns = clockevent_delta2ns(0x30, cd);
cd->rating = 300;
cd->irq = irq;
#ifdef CONFIG_MIPS_MT_SMTC
cd->cpumask = CPU_MASK_ALL;
#else
cd->cpumask = cpumask_of_cpu(cpu);
#endif
cd->set_next_event = mips_next_event;
cd->set_mode = mips_set_mode;
cd->event_handler = mips_event_handler;
clockevents_register_device(cd);
if (!cp0_timer_irq_installed) {
#ifdef CONFIG_MIPS_MT_SMTC
#define CPUCTR_IMASKBIT (0x100 << cp0_compare_irq)
setup_irq_smtc(irq, &timer_irqaction, CPUCTR_IMASKBIT);
#else
setup_irq(irq, &timer_irqaction);
#endif /* CONFIG_MIPS_MT_SMTC */
cp0_timer_irq_installed = 1;
}
}
void __init time_init(void)
{
plat_time_init();
/* Choose appropriate high precision timer routines. */
if (!cpu_has_counter && !clocksource_mips.read)
/* No high precision timer -- sorry. */
clocksource_mips.read = null_hpt_read;
else if (!mips_hpt_frequency && !mips_timer_state) {
/* A high precision timer of unknown frequency. */
if (!clocksource_mips.read)
/* No external high precision timer -- use R4k. */
clocksource_mips.read = c0_hpt_read;
} else {
/* We know counter frequency. Or we can get it. */
if (!clocksource_mips.read) {
/* No external high precision timer -- use R4k. */
clocksource_mips.read = c0_hpt_read;
if (!mips_timer_state) {
/* No external timer interrupt -- use R4k. */
mips_timer_ack = c0_timer_ack;
/* Calculate cache parameters. */
cycles_per_jiffy =
(mips_hpt_frequency + HZ / 2) / HZ;
}
}
if (!mips_hpt_frequency)
mips_hpt_frequency = calibrate_hpt();
/* Report the high precision timer rate for a reference. */
printk("Using %u.%03u MHz high precision timer.\n",
((mips_hpt_frequency + 500) / 1000) / 1000,
((mips_hpt_frequency + 500) / 1000) % 1000);
#ifdef CONFIG_IRQ_CPU
setup_irq(MIPS_CPU_IRQ_BASE + 7, &timer_irqaction);
#endif
}
if (!mips_timer_ack)
/* No timer interrupt ack (e.g. i8254). */
mips_timer_ack = null_timer_ack;
/*
* Call board specific timer interrupt setup.
*
* this pointer must be setup in machine setup routine.
*
* Even if a machine chooses to use a low-level timer interrupt,
* it still needs to setup the timer_irqaction.
* In that case, it might be better to set timer_irqaction.handler
* to be NULL function so that we are sure the high-level code
* is not invoked accidentally.
*/
plat_timer_setup(&timer_irqaction);
init_mips_clocksource();
mips_clockevent_init();
}