#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/kconfig-language.txt.
#
mainmenu "IA-64 Linux Kernel Configuration"
source "init/Kconfig"
menu "Processor type and features"
config IA64
bool
default y
help
The Itanium Processor Family is Intel's 64-bit successor to
the 32-bit X86 line. The IA-64 Linux project has a home
page at <http://www.linuxia64.org/> and a mailing list at
<linux-ia64@vger.kernel.org>.
config 64BIT
bool
default y
config MMU
bool
default y
config RWSEM_XCHGADD_ALGORITHM
bool
default y
config GENERIC_CALIBRATE_DELAY
bool
default y
config TIME_INTERPOLATION
bool
default y
config EFI
bool
default y
config GENERIC_IOMAP
bool
default y
config SCHED_NO_NO_OMIT_FRAME_POINTER
bool
default y
config IA64_UNCACHED_ALLOCATOR
bool
select GENERIC_ALLOCATOR
choice
prompt "System type"
default IA64_GENERIC
config IA64_GENERIC
bool "generic"
select ACPI
select NUMA
select ACPI_NUMA
select VIRTUAL_MEM_MAP
select DISCONTIGMEM
help
This selects the system type of your hardware. A "generic" kernel
will run on any supported IA-64 system. However, if you configure
a kernel for your specific system, it will be faster and smaller.
generic For any supported IA-64 system
DIG-compliant For DIG ("Developer's Interface Guide") compliant systems
HP-zx1/sx1000 For HP systems
HP-zx1/sx1000+swiotlb For HP systems with (broken) DMA-constrained devices.
SGI-SN2 For SGI Altix systems
Ski-simulator For the HP simulator <http://www.hpl.hp.com/research/linux/ski/>
If you don't know what to do, choose "generic".
config IA64_DIG
bool "DIG-compliant"
config IA64_HP_ZX1
bool "HP-zx1/sx1000"
help
Build a kernel that runs on HP zx1 and sx1000 systems. This adds
support for the HP I/O MMU.
config IA64_HP_ZX1_SWIOTLB
bool "HP-zx1/sx1000 with software I/O TLB"
help
Build a kernel that runs on HP zx1 and sx1000 systems even when they
have broken PCI devices which cannot DMA to full 32 bits. Apart
from support for the HP I/O MMU, this includes support for the software
I/O TLB, which allows supporting the broken devices at the expense of
wasting some kernel memory (about 2MB by default).
config IA64_SGI_SN2
bool "SGI-SN2"
help
Selecting this option will optimize the kernel for use on sn2 based
systems, but the resulting kernel binary will not run on other
types of ia64 systems. If you have an SGI Altix system, it's safe
to select this option. If in doubt, select ia64 generic support
instead.
config IA64_HP_SIM
bool "Ski-simulator"
endchoice
choice
prompt "Processor type"
default ITANIUM
config ITANIUM
bool "Itanium"
help
Select your IA-64 processor type. The default is Itanium.
This choice is safe for all IA-64 systems, but may not perform
optimally on systems with, say, Itanium 2 or newer processors.
config MCKINLEY
bool "Itanium 2"
help
Select this to configure for an Itanium 2 (McKinley) processor.
endchoice
choice
prompt "Kernel page size"
default IA64_PAGE_SIZE_16KB
config IA64_PAGE_SIZE_4KB
bool "4KB"
help
This lets you select the page size of the kernel. For best IA-64
performance, a page size of 8KB or 16KB is recommended. For best
IA-32 compatibility, a page size of 4KB should be selected (the vast
majority of IA-32 binaries work perfectly fine with a larger page
size). For Itanium 2 or newer systems, a page size of 64KB can also
be selected.
4KB For best IA-32 compatibility
8KB For best IA-64 performance
16KB For best IA-64 performance
64KB Requires Itanium 2 or newer processor.
If you don't know what to do, choose 16KB.
config IA64_PAGE_SIZE_8KB
bool "8KB"
config IA64_PAGE_SIZE_16KB
bool "16KB"
config IA64_PAGE_SIZE_64KB
depends on !ITANIUM
bool "64KB"
endchoice
source kernel/Kconfig.hz
config IA64_BRL_EMU
bool
depends on ITANIUM
default y
# align cache-sensitive data to 128 bytes
config IA64_L1_CACHE_SHIFT
int
default "7" if MCKINLEY
default "6" if ITANIUM
# align cache-sensitive data to 64 bytes
config NUMA
bool "NUMA support"
depends on !IA64_HP_SIM
default y if IA64_SGI_SN2
select ACPI_NUMA
help
Say Y to compile the kernel to support NUMA (Non-Uniform Memory
Access). This option is for configuring high-end multiprocessor
server systems. If in doubt, say N.
config VIRTUAL_MEM_MAP
bool "Virtual mem map"
default y if !IA64_HP_SIM
help
Say Y to compile the kernel with support for a virtual mem map.
This code also only takes effect if a memory hole of greater than
1 Gb is found during boot. You must turn this option on if you
require the DISCONTIGMEM option for your machine. If you are
unsure, say Y.
config HOLES_IN_ZONE
bool
default y if VIRTUAL_MEM_MAP
config ARCH_DISCONTIGMEM_ENABLE
bool "Discontiguous memory support"
depends on (IA64_DIG || IA64_SGI_SN2 || IA64_GENERIC || IA64_HP_ZX1 || IA64_HP_ZX1_SWIOTLB) && NUMA && VIRTUAL_MEM_MAP
default y if (IA64_SGI_SN2 || IA64_GENERIC) && NUMA
help
Say Y to support efficient handling of discontiguous physical memory,
for architectures which are either NUMA (Non-Uniform Memory Access)
or have huge holes in the physical address space for other reasons.
See <file:Documentation/vm/numa> for more.
config IA64_CYCLONE
bool "Cyclone (EXA) Time Source support"
help
Say Y here to enable support for IBM EXA Cyclone time source.
If you're unsure, answer N.
config IOSAPIC
bool
depends on !IA64_HP_SIM
default y
config IA64_SGI_SN_XP
tristate "Support communication between SGI SSIs"
select IA64_UNCACHED_ALLOCATOR
help
An SGI machine can be divided into multiple Single System
Images which act independently of each other and have
hardware based memory protection from the others. Enabling
this feature will allow for direct communication between SSIs
based on a network adapter and DMA messaging.
config FORCE_MAX_ZONEORDER
int
default "18"
config SMP
bool "Symmetric multi-processing support"
help
This enables support for systems with more than one CPU. If you have
a system with only one CPU, say N. If you have a system with more
than one CPU, say Y.
If you say N here, the kernel will run on single and multiprocessor
systems, but will use only one CPU of a multiprocessor system. If
you say Y here, the kernel will run on many, but not all,
single processor systems. On a single processor system, the kernel
will run faster if you say N here.
See also the <file:Documentation/smp.txt> and the SMP-HOWTO
available at <http://www.tldp.org/docs.html#howto>.
If you don't know what to do here, say N.
config NR_CPUS
int "Maximum number of CPUs (2-1024)"
range 2 1024
depends on SMP
default "64"
help
You should set this to the number of CPUs in your system, but
keep in mind that a kernel compiled for, e.g., 2 CPUs will boot but
only use 2 CPUs on a >2 CPU system. Setting this to a value larger
than 64 will cause the use of a CPU mask array, causing a small
performance hit.
config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs (EXPERIMENTAL)"
depends on SMP && EXPERIMENTAL
select HOTPLUG
default n
---help---
Say Y here to experiment with turning CPUs off and on. CPUs
can be controlled through /sys/devices/system/cpu/cpu#.
Say N if you want to disable CPU hotplug.
config SCHED_SMT
bool "SMT scheduler support"
depends on SMP
default off
help
Improves the CPU scheduler's decision making when dealing with
Intel IA64 chips with MultiThreading at a cost of slightly increased
overhead in some places. If unsure say N here.
config PREEMPT
bool "Preemptible Kernel"
help
This option reduces the latency of the kernel when reacting to
real-time or interactive events by allowing a low priority process to
be preempted even if it is in kernel mode executing a system call.
This allows applications to run more reliably even when the system is
under load.
Say Y here if you are building a kernel for a desktop, embedded
or real-time system. Say N if you are unsure.
source "mm/Kconfig"
config IA32_SUPPORT
bool "Support for Linux/x86 binaries"
help
IA-64 processors can execute IA-32 (X86) instructions. By
saying Y here, the kernel will include IA-32 system call
emulation support which makes it possible to transparently
run IA-32 Linux binaries on an IA-64 Linux system.
If in doubt, say Y.
config COMPAT
bool
depends on IA32_SUPPORT
default y
config IA64_MCA_RECOVERY
tristate "MCA recovery from errors other than TLB."
config PERFMON
bool "Performance monitor support"
help
Selects whether support for the IA-64 performance monitor hardware
is included in the kernel. This makes some kernel data-structures a
little bigger and slows down execution a bit, but it is generally
a good idea to turn this on. If you're unsure, say Y.
config IA64_PALINFO
tristate "/proc/pal support"
help
If you say Y here, you are able to get PAL (Processor Abstraction
Layer) information in /proc/pal. This contains useful information
about the processors in your systems, such as cache and TLB sizes
and the PAL firmware version in use.
To use this option, you have to ensure that the "/proc file system
support" (CONFIG_PROC_FS) is enabled, too.
source "drivers/firmware/Kconfig"
source "fs/Kconfig.binfmt"
endmenu
menu "Power management and ACPI"
source "kernel/power/Kconfig"
source "drivers/acpi/Kconfig"
if PM
source "arch/ia64/kernel/cpufreq/Kconfig"
endif
endmenu
if !IA64_HP_SIM
menu "Bus options (PCI, PCMCIA)"
config PCI
bool "PCI support"
help
Real IA-64 machines all have PCI/PCI-X/PCI Express busses. Say Y
here unless you are using a simulator without PCI support.
config PCI_DOMAINS
bool
default PCI
source "drivers/pci/Kconfig"
source "drivers/pci/hotplug/Kconfig"
source "drivers/pcmcia/Kconfig"
endmenu
endif
source "net/Kconfig"
source "drivers/Kconfig"
source "fs/Kconfig"
source "lib/Kconfig"
#
# Use the generic interrupt handling code in kernel/irq/:
#
config GENERIC_HARDIRQS
bool
default y
config GENERIC_IRQ_PROBE
bool
default y
config GENERIC_PENDING_IRQ
bool
depends on GENERIC_HARDIRQS && SMP
default y
source "arch/ia64/hp/sim/Kconfig"
source "arch/ia64/oprofile/Kconfig"
source "arch/ia64/Kconfig.debug"
source "security/Kconfig"
source "crypto/Kconfig"