/*
* linux/arch/arm/mm/ioremap.c
*
* Re-map IO memory to kernel address space so that we can access it.
*
* (C) Copyright 1995 1996 Linus Torvalds
*
* Hacked for ARM by Phil Blundell <philb@gnu.org>
* Hacked to allow all architectures to build, and various cleanups
* by Russell King
*
* This allows a driver to remap an arbitrary region of bus memory into
* virtual space. One should *only* use readl, writel, memcpy_toio and
* so on with such remapped areas.
*
* Because the ARM only has a 32-bit address space we can't address the
* whole of the (physical) PCI space at once. PCI huge-mode addressing
* allows us to circumvent this restriction by splitting PCI space into
* two 2GB chunks and mapping only one at a time into processor memory.
* We use MMU protection domains to trap any attempt to access the bank
* that is not currently mapped. (This isn't fully implemented yet.)
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <asm/cp15.h>
#include <asm/cputype.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include <asm/system_info.h>
#include <asm/mach/map.h>
#include <asm/mach/pci.h>
#include "mm.h"
int ioremap_page(unsigned long virt, unsigned long phys,
const struct mem_type *mtype)
{
return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
__pgprot(mtype->prot_pte));
}
EXPORT_SYMBOL(ioremap_page);
void __check_kvm_seq(struct mm_struct *mm)
{
unsigned int seq;
do {
seq = init_mm.context.kvm_seq;
memcpy(pgd_offset(mm, VMALLOC_START),
pgd_offset_k(VMALLOC_START),
sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
pgd_index(VMALLOC_START)));
mm->context.kvm_seq = seq;
} while (seq != init_mm.context.kvm_seq);
}
#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
/*
* Section support is unsafe on SMP - If you iounmap and ioremap a region,
* the other CPUs will not see this change until their next context switch.
* Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
* which requires the new ioremap'd region to be referenced, the CPU will
* reference the _old_ region.
*
* Note that get_vm_area_caller() allocates a guard 4K page, so we need to
* mask the size back to 1MB aligned or we will overflow in the loop below.
*/
static void unmap_area_sections(unsigned long virt, unsigned long size)
{
unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
pgd_t *pgd;
pud_t *pud;
pmd_t *pmdp;
flush_cache_vunmap(addr, end);
pgd = pgd_offset_k(addr);
pud = pud_offset(pgd, addr);
pmdp = pmd_offset(pud, addr);
do {
pmd_t pmd = *pmdp;
if (!pmd_none(pmd)) {
/*
* Clear the PMD from the page table, and
* increment the kvm sequence so others
* notice this change.
*
* Note: this is still racy on SMP machines.
*/
pmd_clear(pmdp);
init_mm.context.kvm_seq++;
/*
* Free the page table, if there was one.
*/
if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
}
addr += PMD_SIZE;
pmdp += 2;
} while (addr < end);
/*
* Ensure that the active_mm is up to date - we want to
* catch any use-after-iounmap cases.
*/
if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
__check_kvm_seq(current->active_mm);
flush_tlb_kernel_range(virt, end);
}
static int
remap_area_sections(unsigned long virt, unsigned long pfn,
size_t size, const struct mem_type *type)
{
unsigned long addr = virt, end = virt + size;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
/*
* Remove and free any PTE-based mapping, and
* sync the current kernel mapping.
*/
unmap_area_sections(virt, size);
pgd = pgd_offset_k(addr);
pud = pud_offset(pgd, addr);
pmd = pmd_offset(pud, addr);
do {
pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
pfn += SZ_1M >> PAGE_SHIFT;
pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
pfn += SZ_1M >> PAGE_SHIFT;
flush_pmd_entry(pmd);
addr += PMD_SIZE;
pmd += 2;
} while (addr < end);
return 0;
}
static int
remap_area_supersections(unsigned long virt, unsigned long pfn,
size_t size, const struct mem_type *type)
{
unsigned long addr = virt, end = virt + size;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
/*
* Remove and free any PTE-based mapping, and
* sync the current kernel mapping.
*/
unmap_area_sections(virt, size);
pgd = pgd_offset_k(virt);
pud = pud_offset(pgd, addr);
pmd = pmd_offset(pud, addr);
do {
unsigned long super_pmd_val, i;
super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
PMD_SECT_SUPER;
super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
for (i = 0; i < 8; i++) {
pmd[0] = __pmd(super_pmd_val);
pmd[1] = __pmd(super_pmd_val);
flush_pmd_entry(pmd);
addr += PMD_SIZE;
pmd += 2;
}
pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
} while (addr < end);
return 0;
}
#endif
void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
unsigned long offset, size_t size, unsigned int mtype, void *caller)
{
const struct mem_type *type;
int err;
unsigned long addr;
struct vm_struct * area;
#ifndef CONFIG_ARM_LPAE
/*
* High mappings must be supersection aligned
*/
if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
return NULL;
#endif
type = get_mem_type(mtype);
if (!type)
return NULL;
/*
* Page align the mapping size, taking account of any offset.
*/
size = PAGE_ALIGN(offset + size);
/*
* Try to reuse one of the static mapping whenever possible.
*/
read_lock(&vmlist_lock);
for (area = vmlist; area; area = area->next) {
if (!size || (sizeof(phys_addr_t) == 4 && pfn >= 0x100000))
break;
if (!(area->flags & VM_ARM_STATIC_MAPPING))
continue;
if ((area->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
continue;
if (__phys_to_pfn(area->phys_addr) > pfn ||
__pfn_to_phys(pfn) + size-1 > area->phys_addr + area->size-1)
continue;
/* we can drop the lock here as we know *area is static */
read_unlock(&vmlist_lock);
addr = (unsigned long)area->addr;
addr += __pfn_to_phys(pfn) - area->phys_addr;
return (void __iomem *) (offset + addr);
}
read_unlock(&vmlist_lock);
/*
* Don't allow RAM to be mapped - this causes problems with ARMv6+
*/
if (WARN_ON(pfn_valid(pfn)))
return NULL;
area = get_vm_area_caller(size, VM_IOREMAP, caller);
if (!area)
return NULL;
addr = (unsigned long)area->addr;
area->phys_addr = __pfn_to_phys(pfn);
#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
if (DOMAIN_IO == 0 &&
(((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
cpu_is_xsc3()) && pfn >= 0x100000 &&
!((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
area->flags |= VM_ARM_SECTION_MAPPING;
err = remap_area_supersections(addr, pfn, size, type);
} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
area->flags |= VM_ARM_SECTION_MAPPING;
err = remap_area_sections(addr, pfn, size, type);
} else
#endif
err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
__pgprot(type->prot_pte));
if (err) {
vunmap((void *)addr);
return NULL;
}
flush_cache_vmap(addr, addr + size);
return (void __iomem *) (offset + addr);
}
void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
unsigned int mtype, void *caller)
{
unsigned long last_addr;
unsigned long offset = phys_addr & ~PAGE_MASK;
unsigned long pfn = __phys_to_pfn(phys_addr);
/*
* Don't allow wraparound or zero size
*/
last_addr = phys_addr + size - 1;
if (!size || last_addr < phys_addr)
return NULL;
return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
caller);
}
/*
* Remap an arbitrary physical address space into the kernel virtual
* address space. Needed when the kernel wants to access high addresses
* directly.
*
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
* have to convert them into an offset in a page-aligned mapping, but the
* caller shouldn't need to know that small detail.
*/
void __iomem *
__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
unsigned int mtype)
{
return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
__builtin_return_address(0));
}
EXPORT_SYMBOL(__arm_ioremap_pfn);
void __iomem * (*arch_ioremap_caller)(unsigned long, size_t,
unsigned int, void *) =
__arm_ioremap_caller;
void __iomem *
__arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
{
return arch_ioremap_caller(phys_addr, size, mtype,
__builtin_return_address(0));
}
EXPORT_SYMBOL(__arm_ioremap);
/*
* Remap an arbitrary physical address space into the kernel virtual
* address space as memory. Needed when the kernel wants to execute
* code in external memory. This is needed for reprogramming source
* clocks that would affect normal memory for example. Please see
* CONFIG_GENERIC_ALLOCATOR for allocating external memory.
*/
void __iomem *
__arm_ioremap_exec(unsigned long phys_addr, size_t size, bool cached)
{
unsigned int mtype;
if (cached)
mtype = MT_MEMORY;
else
mtype = MT_MEMORY_NONCACHED;
return __arm_ioremap_caller(phys_addr, size, mtype,
__builtin_return_address(0));
}
void __iounmap(volatile void __iomem *io_addr)
{
void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
struct vm_struct *vm;
read_lock(&vmlist_lock);
for (vm = vmlist; vm; vm = vm->next) {
if (vm->addr > addr)
break;
if (!(vm->flags & VM_IOREMAP))
continue;
/* If this is a static mapping we must leave it alone */
if ((vm->flags & VM_ARM_STATIC_MAPPING) &&
(vm->addr <= addr) && (vm->addr + vm->size > addr)) {
read_unlock(&vmlist_lock);
return;
}
#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
/*
* If this is a section based mapping we need to handle it
* specially as the VM subsystem does not know how to handle
* such a beast.
*/
if ((vm->addr == addr) &&
(vm->flags & VM_ARM_SECTION_MAPPING)) {
unmap_area_sections((unsigned long)vm->addr, vm->size);
break;
}
#endif
}
read_unlock(&vmlist_lock);
vunmap(addr);
}
void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
void __arm_iounmap(volatile void __iomem *io_addr)
{
arch_iounmap(io_addr);
}
EXPORT_SYMBOL(__arm_iounmap);
#ifdef CONFIG_PCI
int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
{
BUG_ON(offset + SZ_64K > IO_SPACE_LIMIT);
return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
PCI_IO_VIRT_BASE + offset + SZ_64K,
phys_addr,
__pgprot(get_mem_type(MT_DEVICE)->prot_pte));
}
EXPORT_SYMBOL_GPL(pci_ioremap_io);
#endif