/*
* linux/arch/arm/mach-pxa/cpufreq-pxa2xx.c
*
* Copyright (C) 2002,2003 Intrinsyc Software
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* History:
* 31-Jul-2002 : Initial version [FB]
* 29-Jan-2003 : added PXA255 support [FB]
* 20-Apr-2003 : ported to v2.5 (Dustin McIntire, Sensoria Corp.)
*
* Note:
* This driver may change the memory bus clock rate, but will not do any
* platform specific access timing changes... for example if you have flash
* memory connected to CS0, you will need to register a platform specific
* notifier which will adjust the memory access strobes to maintain a
* minimum strobe width.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/err.h>
#include <linux/regulator/consumer.h>
#include <mach/pxa2xx-regs.h>
#ifdef DEBUG
static unsigned int freq_debug;
module_param(freq_debug, uint, 0);
MODULE_PARM_DESC(freq_debug, "Set the debug messages to on=1/off=0");
#else
#define freq_debug 0
#endif
static struct regulator *vcc_core;
static unsigned int pxa27x_maxfreq;
module_param(pxa27x_maxfreq, uint, 0);
MODULE_PARM_DESC(pxa27x_maxfreq, "Set the pxa27x maxfreq in MHz"
"(typically 624=>pxa270, 416=>pxa271, 520=>pxa272)");
typedef struct {
unsigned int khz;
unsigned int membus;
unsigned int cccr;
unsigned int div2;
unsigned int cclkcfg;
int vmin;
int vmax;
} pxa_freqs_t;
/* Define the refresh period in mSec for the SDRAM and the number of rows */
#define SDRAM_TREF 64 /* standard 64ms SDRAM */
static unsigned int sdram_rows;
#define CCLKCFG_TURBO 0x1
#define CCLKCFG_FCS 0x2
#define CCLKCFG_HALFTURBO 0x4
#define CCLKCFG_FASTBUS 0x8
#define MDREFR_DB2_MASK (MDREFR_K2DB2 | MDREFR_K1DB2)
#define MDREFR_DRI_MASK 0xFFF
#define MDCNFG_DRAC2(mdcnfg) (((mdcnfg) >> 21) & 0x3)
#define MDCNFG_DRAC0(mdcnfg) (((mdcnfg) >> 5) & 0x3)
/*
* PXA255 definitions
*/
/* Use the run mode frequencies for the CPUFREQ_POLICY_PERFORMANCE policy */
#define CCLKCFG CCLKCFG_TURBO | CCLKCFG_FCS
static pxa_freqs_t pxa255_run_freqs[] =
{
/* CPU MEMBUS CCCR DIV2 CCLKCFG run turbo PXbus SDRAM */
{ 99500, 99500, 0x121, 1, CCLKCFG, -1, -1}, /* 99, 99, 50, 50 */
{132700, 132700, 0x123, 1, CCLKCFG, -1, -1}, /* 133, 133, 66, 66 */
{199100, 99500, 0x141, 0, CCLKCFG, -1, -1}, /* 199, 199, 99, 99 */
{265400, 132700, 0x143, 1, CCLKCFG, -1, -1}, /* 265, 265, 133, 66 */
{331800, 165900, 0x145, 1, CCLKCFG, -1, -1}, /* 331, 331, 166, 83 */
{398100, 99500, 0x161, 0, CCLKCFG, -1, -1}, /* 398, 398, 196, 99 */
};
/* Use the turbo mode frequencies for the CPUFREQ_POLICY_POWERSAVE policy */
static pxa_freqs_t pxa255_turbo_freqs[] =
{
/* CPU MEMBUS CCCR DIV2 CCLKCFG run turbo PXbus SDRAM */
{ 99500, 99500, 0x121, 1, CCLKCFG, -1, -1}, /* 99, 99, 50, 50 */
{199100, 99500, 0x221, 0, CCLKCFG, -1, -1}, /* 99, 199, 50, 99 */
{298500, 99500, 0x321, 0, CCLKCFG, -1, -1}, /* 99, 287, 50, 99 */
{298600, 99500, 0x1c1, 0, CCLKCFG, -1, -1}, /* 199, 287, 99, 99 */
{398100, 99500, 0x241, 0, CCLKCFG, -1, -1}, /* 199, 398, 99, 99 */
};
#define NUM_PXA25x_RUN_FREQS ARRAY_SIZE(pxa255_run_freqs)
#define NUM_PXA25x_TURBO_FREQS ARRAY_SIZE(pxa255_turbo_freqs)
static struct cpufreq_frequency_table
pxa255_run_freq_table[NUM_PXA25x_RUN_FREQS+1];
static struct cpufreq_frequency_table
pxa255_turbo_freq_table[NUM_PXA25x_TURBO_FREQS+1];
static unsigned int pxa255_turbo_table;
module_param(pxa255_turbo_table, uint, 0);
MODULE_PARM_DESC(pxa255_turbo_table, "Selects the frequency table (0 = run table, !0 = turbo table)");
/*
* PXA270 definitions
*
* For the PXA27x:
* Control variables are A, L, 2N for CCCR; B, HT, T for CLKCFG.
*
* A = 0 => memory controller clock from table 3-7,
* A = 1 => memory controller clock = system bus clock
* Run mode frequency = 13 MHz * L
* Turbo mode frequency = 13 MHz * L * N
* System bus frequency = 13 MHz * L / (B + 1)
*
* In CCCR:
* A = 1
* L = 16 oscillator to run mode ratio
* 2N = 6 2 * (turbo mode to run mode ratio)
*
* In CCLKCFG:
* B = 1 Fast bus mode
* HT = 0 Half-Turbo mode
* T = 1 Turbo mode
*
* For now, just support some of the combinations in table 3-7 of
* PXA27x Processor Family Developer's Manual to simplify frequency
* change sequences.
*/
#define PXA27x_CCCR(A, L, N2) (A << 25 | N2 << 7 | L)
#define CCLKCFG2(B, HT, T) \
(CCLKCFG_FCS | \
((B) ? CCLKCFG_FASTBUS : 0) | \
((HT) ? CCLKCFG_HALFTURBO : 0) | \
((T) ? CCLKCFG_TURBO : 0))
static pxa_freqs_t pxa27x_freqs[] = {
{104000, 104000, PXA27x_CCCR(1, 8, 2), 0, CCLKCFG2(1, 0, 1), 900000, 1705000 },
{156000, 104000, PXA27x_CCCR(1, 8, 3), 0, CCLKCFG2(1, 0, 1), 1000000, 1705000 },
{208000, 208000, PXA27x_CCCR(0, 16, 2), 1, CCLKCFG2(0, 0, 1), 1180000, 1705000 },
{312000, 208000, PXA27x_CCCR(1, 16, 3), 1, CCLKCFG2(1, 0, 1), 1250000, 1705000 },
{416000, 208000, PXA27x_CCCR(1, 16, 4), 1, CCLKCFG2(1, 0, 1), 1350000, 1705000 },
{520000, 208000, PXA27x_CCCR(1, 16, 5), 1, CCLKCFG2(1, 0, 1), 1450000, 1705000 },
{624000, 208000, PXA27x_CCCR(1, 16, 6), 1, CCLKCFG2(1, 0, 1), 1550000, 1705000 }
};
#define NUM_PXA27x_FREQS ARRAY_SIZE(pxa27x_freqs)
static struct cpufreq_frequency_table
pxa27x_freq_table[NUM_PXA27x_FREQS+1];
extern unsigned get_clk_frequency_khz(int info);
#ifdef CONFIG_REGULATOR
static int pxa_cpufreq_change_voltage(pxa_freqs_t *pxa_freq)
{
int ret = 0;
int vmin, vmax;
if (!cpu_is_pxa27x())
return 0;
vmin = pxa_freq->vmin;
vmax = pxa_freq->vmax;
if ((vmin == -1) || (vmax == -1))
return 0;
ret = regulator_set_voltage(vcc_core, vmin, vmax);
if (ret)
pr_err("cpufreq: Failed to set vcc_core in [%dmV..%dmV]\n",
vmin, vmax);
return ret;
}
static __init void pxa_cpufreq_init_voltages(void)
{
vcc_core = regulator_get(NULL, "vcc_core");
if (IS_ERR(vcc_core)) {
pr_info("cpufreq: Didn't find vcc_core regulator\n");
vcc_core = NULL;
} else {
pr_info("cpufreq: Found vcc_core regulator\n");
}
}
#else
static int pxa_cpufreq_change_voltage(pxa_freqs_t *pxa_freq)
{
return 0;
}
static __init void pxa_cpufreq_init_voltages(void) { }
#endif
static void find_freq_tables(struct cpufreq_frequency_table **freq_table,
pxa_freqs_t **pxa_freqs)
{
if (cpu_is_pxa25x()) {
if (!pxa255_turbo_table) {
*pxa_freqs = pxa255_run_freqs;
*freq_table = pxa255_run_freq_table;
} else {
*pxa_freqs = pxa255_turbo_freqs;
*freq_table = pxa255_turbo_freq_table;
}
}
if (cpu_is_pxa27x()) {
*pxa_freqs = pxa27x_freqs;
*freq_table = pxa27x_freq_table;
}
}
static void pxa27x_guess_max_freq(void)
{
if (!pxa27x_maxfreq) {
pxa27x_maxfreq = 416000;
printk(KERN_INFO "PXA CPU 27x max frequency not defined "
"(pxa27x_maxfreq), assuming pxa271 with %dkHz maxfreq\n",
pxa27x_maxfreq);
} else {
pxa27x_maxfreq *= 1000;
}
}
static void init_sdram_rows(void)
{
uint32_t mdcnfg = MDCNFG;
unsigned int drac2 = 0, drac0 = 0;
if (mdcnfg & (MDCNFG_DE2 | MDCNFG_DE3))
drac2 = MDCNFG_DRAC2(mdcnfg);
if (mdcnfg & (MDCNFG_DE0 | MDCNFG_DE1))
drac0 = MDCNFG_DRAC0(mdcnfg);
sdram_rows = 1 << (11 + max(drac0, drac2));
}
static u32 mdrefr_dri(unsigned int freq)
{
u32 interval = freq * SDRAM_TREF / sdram_rows;
return (interval - (cpu_is_pxa27x() ? 31 : 0)) / 32;
}
/* find a valid frequency point */
static int pxa_verify_policy(struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *pxa_freqs_table;
pxa_freqs_t *pxa_freqs;
int ret;
find_freq_tables(&pxa_freqs_table, &pxa_freqs);
ret = cpufreq_frequency_table_verify(policy, pxa_freqs_table);
if (freq_debug)
pr_debug("Verified CPU policy: %dKhz min to %dKhz max\n",
policy->min, policy->max);
return ret;
}
static unsigned int pxa_cpufreq_get(unsigned int cpu)
{
return get_clk_frequency_khz(0);
}
static int pxa_set_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
struct cpufreq_frequency_table *pxa_freqs_table;
pxa_freqs_t *pxa_freq_settings;
struct cpufreq_freqs freqs;
unsigned int idx;
unsigned long flags;
unsigned int new_freq_cpu, new_freq_mem;
unsigned int unused, preset_mdrefr, postset_mdrefr, cclkcfg;
int ret = 0;
/* Get the current policy */
find_freq_tables(&pxa_freqs_table, &pxa_freq_settings);
/* Lookup the next frequency */
if (cpufreq_frequency_table_target(policy, pxa_freqs_table,
target_freq, relation, &idx)) {
return -EINVAL;
}
new_freq_cpu = pxa_freq_settings[idx].khz;
new_freq_mem = pxa_freq_settings[idx].membus;
freqs.old = policy->cur;
freqs.new = new_freq_cpu;
freqs.cpu = policy->cpu;
if (freq_debug)
pr_debug("Changing CPU frequency to %d Mhz, (SDRAM %d Mhz)\n",
freqs.new / 1000, (pxa_freq_settings[idx].div2) ?
(new_freq_mem / 2000) : (new_freq_mem / 1000));
if (vcc_core && freqs.new > freqs.old)
ret = pxa_cpufreq_change_voltage(&pxa_freq_settings[idx]);
if (ret)
return ret;
/*
* Tell everyone what we're about to do...
* you should add a notify client with any platform specific
* Vcc changing capability
*/
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
/* Calculate the next MDREFR. If we're slowing down the SDRAM clock
* we need to preset the smaller DRI before the change. If we're
* speeding up we need to set the larger DRI value after the change.
*/
preset_mdrefr = postset_mdrefr = MDREFR;
if ((MDREFR & MDREFR_DRI_MASK) > mdrefr_dri(new_freq_mem)) {
preset_mdrefr = (preset_mdrefr & ~MDREFR_DRI_MASK);
preset_mdrefr |= mdrefr_dri(new_freq_mem);
}
postset_mdrefr =
(postset_mdrefr & ~MDREFR_DRI_MASK) | mdrefr_dri(new_freq_mem);
/* If we're dividing the memory clock by two for the SDRAM clock, this
* must be set prior to the change. Clearing the divide must be done
* after the change.
*/
if (pxa_freq_settings[idx].div2) {
preset_mdrefr |= MDREFR_DB2_MASK;
postset_mdrefr |= MDREFR_DB2_MASK;
} else {
postset_mdrefr &= ~MDREFR_DB2_MASK;
}
local_irq_save(flags);
/* Set new the CCCR and prepare CCLKCFG */
CCCR = pxa_freq_settings[idx].cccr;
cclkcfg = pxa_freq_settings[idx].cclkcfg;
asm volatile(" \n\
ldr r4, [%1] /* load MDREFR */ \n\
b 2f \n\
.align 5 \n\
1: \n\
str %3, [%1] /* preset the MDREFR */ \n\
mcr p14, 0, %2, c6, c0, 0 /* set CCLKCFG[FCS] */ \n\
str %4, [%1] /* postset the MDREFR */ \n\
\n\
b 3f \n\
2: b 1b \n\
3: nop \n\
"
: "=&r" (unused)
: "r" (&MDREFR), "r" (cclkcfg),
"r" (preset_mdrefr), "r" (postset_mdrefr)
: "r4", "r5");
local_irq_restore(flags);
/*
* Tell everyone what we've just done...
* you should add a notify client with any platform specific
* SDRAM refresh timer adjustments
*/
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
/*
* Even if voltage setting fails, we don't report it, as the frequency
* change succeeded. The voltage reduction is not a critical failure,
* only power savings will suffer from this.
*
* Note: if the voltage change fails, and a return value is returned, a
* bug is triggered (seems a deadlock). Should anybody find out where,
* the "return 0" should become a "return ret".
*/
if (vcc_core && freqs.new < freqs.old)
ret = pxa_cpufreq_change_voltage(&pxa_freq_settings[idx]);
return 0;
}
static int pxa_cpufreq_init(struct cpufreq_policy *policy)
{
int i;
unsigned int freq;
struct cpufreq_frequency_table *pxa255_freq_table;
pxa_freqs_t *pxa255_freqs;
/* try to guess pxa27x cpu */
if (cpu_is_pxa27x())
pxa27x_guess_max_freq();
pxa_cpufreq_init_voltages();
init_sdram_rows();
/* set default policy and cpuinfo */
policy->cpuinfo.transition_latency = 1000; /* FIXME: 1 ms, assumed */
policy->cur = get_clk_frequency_khz(0); /* current freq */
policy->min = policy->max = policy->cur;
/* Generate pxa25x the run cpufreq_frequency_table struct */
for (i = 0; i < NUM_PXA25x_RUN_FREQS; i++) {
pxa255_run_freq_table[i].frequency = pxa255_run_freqs[i].khz;
pxa255_run_freq_table[i].index = i;
}
pxa255_run_freq_table[i].frequency = CPUFREQ_TABLE_END;
/* Generate pxa25x the turbo cpufreq_frequency_table struct */
for (i = 0; i < NUM_PXA25x_TURBO_FREQS; i++) {
pxa255_turbo_freq_table[i].frequency =
pxa255_turbo_freqs[i].khz;
pxa255_turbo_freq_table[i].index = i;
}
pxa255_turbo_freq_table[i].frequency = CPUFREQ_TABLE_END;
pxa255_turbo_table = !!pxa255_turbo_table;
/* Generate the pxa27x cpufreq_frequency_table struct */
for (i = 0; i < NUM_PXA27x_FREQS; i++) {
freq = pxa27x_freqs[i].khz;
if (freq > pxa27x_maxfreq)
break;
pxa27x_freq_table[i].frequency = freq;
pxa27x_freq_table[i].index = i;
}
pxa27x_freq_table[i].index = i;
pxa27x_freq_table[i].frequency = CPUFREQ_TABLE_END;
/*
* Set the policy's minimum and maximum frequencies from the tables
* just constructed. This sets cpuinfo.mxx_freq, min and max.
*/
if (cpu_is_pxa25x()) {
find_freq_tables(&pxa255_freq_table, &pxa255_freqs);
pr_info("PXA255 cpufreq using %s frequency table\n",
pxa255_turbo_table ? "turbo" : "run");
cpufreq_frequency_table_cpuinfo(policy, pxa255_freq_table);
}
else if (cpu_is_pxa27x())
cpufreq_frequency_table_cpuinfo(policy, pxa27x_freq_table);
printk(KERN_INFO "PXA CPU frequency change support initialized\n");
return 0;
}
static struct cpufreq_driver pxa_cpufreq_driver = {
.verify = pxa_verify_policy,
.target = pxa_set_target,
.init = pxa_cpufreq_init,
.get = pxa_cpufreq_get,
.name = "PXA2xx",
};
static int __init pxa_cpu_init(void)
{
int ret = -ENODEV;
if (cpu_is_pxa25x() || cpu_is_pxa27x())
ret = cpufreq_register_driver(&pxa_cpufreq_driver);
return ret;
}
static void __exit pxa_cpu_exit(void)
{
cpufreq_unregister_driver(&pxa_cpufreq_driver);
}
MODULE_AUTHOR("Intrinsyc Software Inc.");
MODULE_DESCRIPTION("CPU frequency changing driver for the PXA architecture");
MODULE_LICENSE("GPL");
module_init(pxa_cpu_init);
module_exit(pxa_cpu_exit);