/*
* OMAP4 PRM module functions
*
* Copyright (C) 2011-2012 Texas Instruments, Inc.
* Copyright (C) 2010 Nokia Corporation
* Benoît Cousson
* Paul Walmsley
* Rajendra Nayak <rnayak@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of_irq.h>
#include "soc.h"
#include "iomap.h"
#include "common.h"
#include "vp.h"
#include "prm44xx.h"
#include "prm-regbits-44xx.h"
#include "prcm44xx.h"
#include "prminst44xx.h"
#include "powerdomain.h"
/* Static data */
static const struct omap_prcm_irq omap4_prcm_irqs[] = {
OMAP_PRCM_IRQ("io", 9, 1),
};
static struct omap_prcm_irq_setup omap4_prcm_irq_setup = {
.ack = OMAP4_PRM_IRQSTATUS_MPU_OFFSET,
.mask = OMAP4_PRM_IRQENABLE_MPU_OFFSET,
.nr_regs = 2,
.irqs = omap4_prcm_irqs,
.nr_irqs = ARRAY_SIZE(omap4_prcm_irqs),
.irq = 11 + OMAP44XX_IRQ_GIC_START,
.read_pending_irqs = &omap44xx_prm_read_pending_irqs,
.ocp_barrier = &omap44xx_prm_ocp_barrier,
.save_and_clear_irqen = &omap44xx_prm_save_and_clear_irqen,
.restore_irqen = &omap44xx_prm_restore_irqen,
.reconfigure_io_chain = &omap44xx_prm_reconfigure_io_chain,
};
/*
* omap44xx_prm_reset_src_map - map from bits in the PRM_RSTST
* hardware register (which are specific to OMAP44xx SoCs) to reset
* source ID bit shifts (which is an OMAP SoC-independent
* enumeration)
*/
static struct prm_reset_src_map omap44xx_prm_reset_src_map[] = {
{ OMAP4430_GLOBAL_WARM_SW_RST_SHIFT,
OMAP_GLOBAL_WARM_RST_SRC_ID_SHIFT },
{ OMAP4430_GLOBAL_COLD_RST_SHIFT,
OMAP_GLOBAL_COLD_RST_SRC_ID_SHIFT },
{ OMAP4430_MPU_SECURITY_VIOL_RST_SHIFT,
OMAP_SECU_VIOL_RST_SRC_ID_SHIFT },
{ OMAP4430_MPU_WDT_RST_SHIFT, OMAP_MPU_WD_RST_SRC_ID_SHIFT },
{ OMAP4430_SECURE_WDT_RST_SHIFT, OMAP_SECU_WD_RST_SRC_ID_SHIFT },
{ OMAP4430_EXTERNAL_WARM_RST_SHIFT, OMAP_EXTWARM_RST_SRC_ID_SHIFT },
{ OMAP4430_VDD_MPU_VOLT_MGR_RST_SHIFT,
OMAP_VDD_MPU_VM_RST_SRC_ID_SHIFT },
{ OMAP4430_VDD_IVA_VOLT_MGR_RST_SHIFT,
OMAP_VDD_IVA_VM_RST_SRC_ID_SHIFT },
{ OMAP4430_VDD_CORE_VOLT_MGR_RST_SHIFT,
OMAP_VDD_CORE_VM_RST_SRC_ID_SHIFT },
{ OMAP4430_ICEPICK_RST_SHIFT, OMAP_ICEPICK_RST_SRC_ID_SHIFT },
{ OMAP4430_C2C_RST_SHIFT, OMAP_C2C_RST_SRC_ID_SHIFT },
{ -1, -1 },
};
/* PRM low-level functions */
/* Read a register in a CM/PRM instance in the PRM module */
u32 omap4_prm_read_inst_reg(s16 inst, u16 reg)
{
return readl_relaxed(prm_base + inst + reg);
}
/* Write into a register in a CM/PRM instance in the PRM module */
void omap4_prm_write_inst_reg(u32 val, s16 inst, u16 reg)
{
writel_relaxed(val, prm_base + inst + reg);
}
/* Read-modify-write a register in a PRM module. Caller must lock */
u32 omap4_prm_rmw_inst_reg_bits(u32 mask, u32 bits, s16 inst, s16 reg)
{
u32 v;
v = omap4_prm_read_inst_reg(inst, reg);
v &= ~mask;
v |= bits;
omap4_prm_write_inst_reg(v, inst, reg);
return v;
}
/* PRM VP */
/*
* struct omap4_vp - OMAP4 VP register access description.
* @irqstatus_mpu: offset to IRQSTATUS_MPU register for VP
* @tranxdone_status: VP_TRANXDONE_ST bitmask in PRM_IRQSTATUS_MPU reg
*/
struct omap4_vp {
u32 irqstatus_mpu;
u32 tranxdone_status;
};
static struct omap4_vp omap4_vp[] = {
[OMAP4_VP_VDD_MPU_ID] = {
.irqstatus_mpu = OMAP4_PRM_IRQSTATUS_MPU_2_OFFSET,
.tranxdone_status = OMAP4430_VP_MPU_TRANXDONE_ST_MASK,
},
[OMAP4_VP_VDD_IVA_ID] = {
.irqstatus_mpu = OMAP4_PRM_IRQSTATUS_MPU_OFFSET,
.tranxdone_status = OMAP4430_VP_IVA_TRANXDONE_ST_MASK,
},
[OMAP4_VP_VDD_CORE_ID] = {
.irqstatus_mpu = OMAP4_PRM_IRQSTATUS_MPU_OFFSET,
.tranxdone_status = OMAP4430_VP_CORE_TRANXDONE_ST_MASK,
},
};
u32 omap4_prm_vp_check_txdone(u8 vp_id)
{
struct omap4_vp *vp = &omap4_vp[vp_id];
u32 irqstatus;
irqstatus = omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION,
OMAP4430_PRM_OCP_SOCKET_INST,
vp->irqstatus_mpu);
return irqstatus & vp->tranxdone_status;
}
void omap4_prm_vp_clear_txdone(u8 vp_id)
{
struct omap4_vp *vp = &omap4_vp[vp_id];
omap4_prminst_write_inst_reg(vp->tranxdone_status,
OMAP4430_PRM_PARTITION,
OMAP4430_PRM_OCP_SOCKET_INST,
vp->irqstatus_mpu);
};
u32 omap4_prm_vcvp_read(u8 offset)
{
s32 inst = omap4_prmst_get_prm_dev_inst();
if (inst == PRM_INSTANCE_UNKNOWN)
return 0;
return omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION,
inst, offset);
}
void omap4_prm_vcvp_write(u32 val, u8 offset)
{
s32 inst = omap4_prmst_get_prm_dev_inst();
if (inst == PRM_INSTANCE_UNKNOWN)
return;
omap4_prminst_write_inst_reg(val, OMAP4430_PRM_PARTITION,
inst, offset);
}
u32 omap4_prm_vcvp_rmw(u32 mask, u32 bits, u8 offset)
{
s32 inst = omap4_prmst_get_prm_dev_inst();
if (inst == PRM_INSTANCE_UNKNOWN)
return 0;
return omap4_prminst_rmw_inst_reg_bits(mask, bits,
OMAP4430_PRM_PARTITION,
inst,
offset);
}
static inline u32 _read_pending_irq_reg(u16 irqen_offs, u16 irqst_offs)
{
u32 mask, st;
/* XXX read mask from RAM? */
mask = omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST,
irqen_offs);
st = omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST, irqst_offs);
return mask & st;
}
/**
* omap44xx_prm_read_pending_irqs - read pending PRM MPU IRQs into @events
* @events: ptr to two consecutive u32s, preallocated by caller
*
* Read PRM_IRQSTATUS_MPU* bits, AND'ed with the currently-enabled PRM
* MPU IRQs, and store the result into the two u32s pointed to by @events.
* No return value.
*/
void omap44xx_prm_read_pending_irqs(unsigned long *events)
{
events[0] = _read_pending_irq_reg(OMAP4_PRM_IRQENABLE_MPU_OFFSET,
OMAP4_PRM_IRQSTATUS_MPU_OFFSET);
events[1] = _read_pending_irq_reg(OMAP4_PRM_IRQENABLE_MPU_2_OFFSET,
OMAP4_PRM_IRQSTATUS_MPU_2_OFFSET);
}
/**
* omap44xx_prm_ocp_barrier - force buffered MPU writes to the PRM to complete
*
* Force any buffered writes to the PRM IP block to complete. Needed
* by the PRM IRQ handler, which reads and writes directly to the IP
* block, to avoid race conditions after acknowledging or clearing IRQ
* bits. No return value.
*/
void omap44xx_prm_ocp_barrier(void)
{
omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST,
OMAP4_REVISION_PRM_OFFSET);
}
/**
* omap44xx_prm_save_and_clear_irqen - save/clear PRM_IRQENABLE_MPU* regs
* @saved_mask: ptr to a u32 array to save IRQENABLE bits
*
* Save the PRM_IRQENABLE_MPU and PRM_IRQENABLE_MPU_2 registers to
* @saved_mask. @saved_mask must be allocated by the caller.
* Intended to be used in the PRM interrupt handler suspend callback.
* The OCP barrier is needed to ensure the write to disable PRM
* interrupts reaches the PRM before returning; otherwise, spurious
* interrupts might occur. No return value.
*/
void omap44xx_prm_save_and_clear_irqen(u32 *saved_mask)
{
saved_mask[0] =
omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST,
OMAP4_PRM_IRQSTATUS_MPU_OFFSET);
saved_mask[1] =
omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST,
OMAP4_PRM_IRQSTATUS_MPU_2_OFFSET);
omap4_prm_write_inst_reg(0, OMAP4430_PRM_OCP_SOCKET_INST,
OMAP4_PRM_IRQENABLE_MPU_OFFSET);
omap4_prm_write_inst_reg(0, OMAP4430_PRM_OCP_SOCKET_INST,
OMAP4_PRM_IRQENABLE_MPU_2_OFFSET);
/* OCP barrier */
omap4_prm_read_inst_reg(OMAP4430_PRM_OCP_SOCKET_INST,
OMAP4_REVISION_PRM_OFFSET);
}
/**
* omap44xx_prm_restore_irqen - set PRM_IRQENABLE_MPU* registers from args
* @saved_mask: ptr to a u32 array of IRQENABLE bits saved previously
*
* Restore the PRM_IRQENABLE_MPU and PRM_IRQENABLE_MPU_2 registers from
* @saved_mask. Intended to be used in the PRM interrupt handler resume
* callback to restore values saved by omap44xx_prm_save_and_clear_irqen().
* No OCP barrier should be needed here; any pending PRM interrupts will fire
* once the writes reach the PRM. No return value.
*/
void omap44xx_prm_restore_irqen(u32 *saved_mask)
{
omap4_prm_write_inst_reg(saved_mask[0], OMAP4430_PRM_OCP_SOCKET_INST,
OMAP4_PRM_IRQENABLE_MPU_OFFSET);
omap4_prm_write_inst_reg(saved_mask[1], OMAP4430_PRM_OCP_SOCKET_INST,
OMAP4_PRM_IRQENABLE_MPU_2_OFFSET);
}
/**
* omap44xx_prm_reconfigure_io_chain - clear latches and reconfigure I/O chain
*
* Clear any previously-latched I/O wakeup events and ensure that the
* I/O wakeup gates are aligned with the current mux settings. Works
* by asserting WUCLKIN, waiting for WUCLKOUT to be asserted, and then
* deasserting WUCLKIN and waiting for WUCLKOUT to be deasserted.
* No return value. XXX Are the final two steps necessary?
*/
void omap44xx_prm_reconfigure_io_chain(void)
{
int i = 0;
s32 inst = omap4_prmst_get_prm_dev_inst();
if (inst == PRM_INSTANCE_UNKNOWN)
return;
/* Trigger WUCLKIN enable */
omap4_prm_rmw_inst_reg_bits(OMAP4430_WUCLK_CTRL_MASK,
OMAP4430_WUCLK_CTRL_MASK,
inst,
OMAP4_PRM_IO_PMCTRL_OFFSET);
omap_test_timeout(
(((omap4_prm_read_inst_reg(inst,
OMAP4_PRM_IO_PMCTRL_OFFSET) &
OMAP4430_WUCLK_STATUS_MASK) >>
OMAP4430_WUCLK_STATUS_SHIFT) == 1),
MAX_IOPAD_LATCH_TIME, i);
if (i == MAX_IOPAD_LATCH_TIME)
pr_warn("PRM: I/O chain clock line assertion timed out\n");
/* Trigger WUCLKIN disable */
omap4_prm_rmw_inst_reg_bits(OMAP4430_WUCLK_CTRL_MASK, 0x0,
inst,
OMAP4_PRM_IO_PMCTRL_OFFSET);
omap_test_timeout(
(((omap4_prm_read_inst_reg(inst,
OMAP4_PRM_IO_PMCTRL_OFFSET) &
OMAP4430_WUCLK_STATUS_MASK) >>
OMAP4430_WUCLK_STATUS_SHIFT) == 0),
MAX_IOPAD_LATCH_TIME, i);
if (i == MAX_IOPAD_LATCH_TIME)
pr_warn("PRM: I/O chain clock line deassertion timed out\n");
return;
}
/**
* omap44xx_prm_enable_io_wakeup - enable wakeup events from I/O wakeup latches
*
* Activates the I/O wakeup event latches and allows events logged by
* those latches to signal a wakeup event to the PRCM. For I/O wakeups
* to occur, WAKEUPENABLE bits must be set in the pad mux registers, and
* omap44xx_prm_reconfigure_io_chain() must be called. No return value.
*/
static void __init omap44xx_prm_enable_io_wakeup(void)
{
s32 inst = omap4_prmst_get_prm_dev_inst();
if (inst == PRM_INSTANCE_UNKNOWN)
return;
omap4_prm_rmw_inst_reg_bits(OMAP4430_GLOBAL_WUEN_MASK,
OMAP4430_GLOBAL_WUEN_MASK,
inst,
OMAP4_PRM_IO_PMCTRL_OFFSET);
}
/**
* omap44xx_prm_read_reset_sources - return the last SoC reset source
*
* Return a u32 representing the last reset sources of the SoC. The
* returned reset source bits are standardized across OMAP SoCs.
*/
static u32 omap44xx_prm_read_reset_sources(void)
{
struct prm_reset_src_map *p;
u32 r = 0;
u32 v;
s32 inst = omap4_prmst_get_prm_dev_inst();
if (inst == PRM_INSTANCE_UNKNOWN)
return 0;
v = omap4_prm_read_inst_reg(inst,
OMAP4_RM_RSTST);
p = omap44xx_prm_reset_src_map;
while (p->reg_shift >= 0 && p->std_shift >= 0) {
if (v & (1 << p->reg_shift))
r |= 1 << p->std_shift;
p++;
}
return r;
}
/**
* omap44xx_prm_was_any_context_lost_old - was module hardware context lost?
* @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION)
* @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST)
* @idx: CONTEXT register offset
*
* Return 1 if any bits were set in the *_CONTEXT_* register
* identified by (@part, @inst, @idx), which means that some context
* was lost for that module; otherwise, return 0.
*/
static bool omap44xx_prm_was_any_context_lost_old(u8 part, s16 inst, u16 idx)
{
return (omap4_prminst_read_inst_reg(part, inst, idx)) ? 1 : 0;
}
/**
* omap44xx_prm_clear_context_lost_flags_old - clear context loss flags
* @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION)
* @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST)
* @idx: CONTEXT register offset
*
* Clear hardware context loss bits for the module identified by
* (@part, @inst, @idx). No return value. XXX Writes to reserved bits;
* is there a way to avoid this?
*/
static void omap44xx_prm_clear_context_loss_flags_old(u8 part, s16 inst,
u16 idx)
{
omap4_prminst_write_inst_reg(0xffffffff, part, inst, idx);
}
/* Powerdomain low-level functions */
static int omap4_pwrdm_set_next_pwrst(struct powerdomain *pwrdm, u8 pwrst)
{
omap4_prminst_rmw_inst_reg_bits(OMAP_POWERSTATE_MASK,
(pwrst << OMAP_POWERSTATE_SHIFT),
pwrdm->prcm_partition,
pwrdm->prcm_offs, OMAP4_PM_PWSTCTRL);
return 0;
}
static int omap4_pwrdm_read_next_pwrst(struct powerdomain *pwrdm)
{
u32 v;
v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs,
OMAP4_PM_PWSTCTRL);
v &= OMAP_POWERSTATE_MASK;
v >>= OMAP_POWERSTATE_SHIFT;
return v;
}
static int omap4_pwrdm_read_pwrst(struct powerdomain *pwrdm)
{
u32 v;
v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs,
OMAP4_PM_PWSTST);
v &= OMAP_POWERSTATEST_MASK;
v >>= OMAP_POWERSTATEST_SHIFT;
return v;
}
static int omap4_pwrdm_read_prev_pwrst(struct powerdomain *pwrdm)
{
u32 v;
v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs,
OMAP4_PM_PWSTST);
v &= OMAP4430_LASTPOWERSTATEENTERED_MASK;
v >>= OMAP4430_LASTPOWERSTATEENTERED_SHIFT;
return v;
}
static int omap4_pwrdm_set_lowpwrstchange(struct powerdomain *pwrdm)
{
omap4_prminst_rmw_inst_reg_bits(OMAP4430_LOWPOWERSTATECHANGE_MASK,
(1 << OMAP4430_LOWPOWERSTATECHANGE_SHIFT),
pwrdm->prcm_partition,
pwrdm->prcm_offs, OMAP4_PM_PWSTCTRL);
return 0;
}
static int omap4_pwrdm_clear_all_prev_pwrst(struct powerdomain *pwrdm)
{
omap4_prminst_rmw_inst_reg_bits(OMAP4430_LASTPOWERSTATEENTERED_MASK,
OMAP4430_LASTPOWERSTATEENTERED_MASK,
pwrdm->prcm_partition,
pwrdm->prcm_offs, OMAP4_PM_PWSTST);
return 0;
}
static int omap4_pwrdm_set_logic_retst(struct powerdomain *pwrdm, u8 pwrst)
{
u32 v;
v = pwrst << __ffs(OMAP4430_LOGICRETSTATE_MASK);
omap4_prminst_rmw_inst_reg_bits(OMAP4430_LOGICRETSTATE_MASK, v,
pwrdm->prcm_partition, pwrdm->prcm_offs,
OMAP4_PM_PWSTCTRL);
return 0;
}
static int omap4_pwrdm_set_mem_onst(struct powerdomain *pwrdm, u8 bank,
u8 pwrst)
{
u32 m;
m = omap2_pwrdm_get_mem_bank_onstate_mask(bank);
omap4_prminst_rmw_inst_reg_bits(m, (pwrst << __ffs(m)),
pwrdm->prcm_partition, pwrdm->prcm_offs,
OMAP4_PM_PWSTCTRL);
return 0;
}
static int omap4_pwrdm_set_mem_retst(struct powerdomain *pwrdm, u8 bank,
u8 pwrst)
{
u32 m;
m = omap2_pwrdm_get_mem_bank_retst_mask(bank);
omap4_prminst_rmw_inst_reg_bits(m, (pwrst << __ffs(m)),
pwrdm->prcm_partition, pwrdm->prcm_offs,
OMAP4_PM_PWSTCTRL);
return 0;
}
static int omap4_pwrdm_read_logic_pwrst(struct powerdomain *pwrdm)
{
u32 v;
v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs,
OMAP4_PM_PWSTST);
v &= OMAP4430_LOGICSTATEST_MASK;
v >>= OMAP4430_LOGICSTATEST_SHIFT;
return v;
}
static int omap4_pwrdm_read_logic_retst(struct powerdomain *pwrdm)
{
u32 v;
v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs,
OMAP4_PM_PWSTCTRL);
v &= OMAP4430_LOGICRETSTATE_MASK;
v >>= OMAP4430_LOGICRETSTATE_SHIFT;
return v;
}
/**
* omap4_pwrdm_read_prev_logic_pwrst - read the previous logic powerstate
* @pwrdm: struct powerdomain * to read the state for
*
* Reads the previous logic powerstate for a powerdomain. This
* function must determine the previous logic powerstate by first
* checking the previous powerstate for the domain. If that was OFF,
* then logic has been lost. If previous state was RETENTION, the
* function reads the setting for the next retention logic state to
* see the actual value. In every other case, the logic is
* retained. Returns either PWRDM_POWER_OFF or PWRDM_POWER_RET
* depending whether the logic was retained or not.
*/
static int omap4_pwrdm_read_prev_logic_pwrst(struct powerdomain *pwrdm)
{
int state;
state = omap4_pwrdm_read_prev_pwrst(pwrdm);
if (state == PWRDM_POWER_OFF)
return PWRDM_POWER_OFF;
if (state != PWRDM_POWER_RET)
return PWRDM_POWER_RET;
return omap4_pwrdm_read_logic_retst(pwrdm);
}
static int omap4_pwrdm_read_mem_pwrst(struct powerdomain *pwrdm, u8 bank)
{
u32 m, v;
m = omap2_pwrdm_get_mem_bank_stst_mask(bank);
v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs,
OMAP4_PM_PWSTST);
v &= m;
v >>= __ffs(m);
return v;
}
static int omap4_pwrdm_read_mem_retst(struct powerdomain *pwrdm, u8 bank)
{
u32 m, v;
m = omap2_pwrdm_get_mem_bank_retst_mask(bank);
v = omap4_prminst_read_inst_reg(pwrdm->prcm_partition, pwrdm->prcm_offs,
OMAP4_PM_PWSTCTRL);
v &= m;
v >>= __ffs(m);
return v;
}
/**
* omap4_pwrdm_read_prev_mem_pwrst - reads the previous memory powerstate
* @pwrdm: struct powerdomain * to read mem powerstate for
* @bank: memory bank index
*
* Reads the previous memory powerstate for a powerdomain. This
* function must determine the previous memory powerstate by first
* checking the previous powerstate for the domain. If that was OFF,
* then logic has been lost. If previous state was RETENTION, the
* function reads the setting for the next memory retention state to
* see the actual value. In every other case, the logic is
* retained. Returns either PWRDM_POWER_OFF or PWRDM_POWER_RET
* depending whether logic was retained or not.
*/
static int omap4_pwrdm_read_prev_mem_pwrst(struct powerdomain *pwrdm, u8 bank)
{
int state;
state = omap4_pwrdm_read_prev_pwrst(pwrdm);
if (state == PWRDM_POWER_OFF)
return PWRDM_POWER_OFF;
if (state != PWRDM_POWER_RET)
return PWRDM_POWER_RET;
return omap4_pwrdm_read_mem_retst(pwrdm, bank);
}
static int omap4_pwrdm_wait_transition(struct powerdomain *pwrdm)
{
u32 c = 0;
/*
* REVISIT: pwrdm_wait_transition() may be better implemented
* via a callback and a periodic timer check -- how long do we expect
* powerdomain transitions to take?
*/
/* XXX Is this udelay() value meaningful? */
while ((omap4_prminst_read_inst_reg(pwrdm->prcm_partition,
pwrdm->prcm_offs,
OMAP4_PM_PWSTST) &
OMAP_INTRANSITION_MASK) &&
(c++ < PWRDM_TRANSITION_BAILOUT))
udelay(1);
if (c > PWRDM_TRANSITION_BAILOUT) {
pr_err("powerdomain: %s: waited too long to complete transition\n",
pwrdm->name);
return -EAGAIN;
}
pr_debug("powerdomain: completed transition in %d loops\n", c);
return 0;
}
static int omap4_check_vcvp(void)
{
/* No VC/VP on dra7xx devices */
if (soc_is_dra7xx())
return 0;
return 1;
}
struct pwrdm_ops omap4_pwrdm_operations = {
.pwrdm_set_next_pwrst = omap4_pwrdm_set_next_pwrst,
.pwrdm_read_next_pwrst = omap4_pwrdm_read_next_pwrst,
.pwrdm_read_pwrst = omap4_pwrdm_read_pwrst,
.pwrdm_read_prev_pwrst = omap4_pwrdm_read_prev_pwrst,
.pwrdm_set_lowpwrstchange = omap4_pwrdm_set_lowpwrstchange,
.pwrdm_clear_all_prev_pwrst = omap4_pwrdm_clear_all_prev_pwrst,
.pwrdm_set_logic_retst = omap4_pwrdm_set_logic_retst,
.pwrdm_read_logic_pwrst = omap4_pwrdm_read_logic_pwrst,
.pwrdm_read_prev_logic_pwrst = omap4_pwrdm_read_prev_logic_pwrst,
.pwrdm_read_logic_retst = omap4_pwrdm_read_logic_retst,
.pwrdm_read_mem_pwrst = omap4_pwrdm_read_mem_pwrst,
.pwrdm_read_mem_retst = omap4_pwrdm_read_mem_retst,
.pwrdm_read_prev_mem_pwrst = omap4_pwrdm_read_prev_mem_pwrst,
.pwrdm_set_mem_onst = omap4_pwrdm_set_mem_onst,
.pwrdm_set_mem_retst = omap4_pwrdm_set_mem_retst,
.pwrdm_wait_transition = omap4_pwrdm_wait_transition,
.pwrdm_has_voltdm = omap4_check_vcvp,
};
static int omap44xx_prm_late_init(void);
/*
* XXX document
*/
static struct prm_ll_data omap44xx_prm_ll_data = {
.read_reset_sources = &omap44xx_prm_read_reset_sources,
.was_any_context_lost_old = &omap44xx_prm_was_any_context_lost_old,
.clear_context_loss_flags_old = &omap44xx_prm_clear_context_loss_flags_old,
.late_init = &omap44xx_prm_late_init,
};
int __init omap44xx_prm_init(void)
{
if (cpu_is_omap44xx() || soc_is_omap54xx() || soc_is_dra7xx())
prm_features |= PRM_HAS_IO_WAKEUP;
return prm_register(&omap44xx_prm_ll_data);
}
static struct of_device_id omap_prm_dt_match_table[] = {
{ .compatible = "ti,omap4-prm" },
{ .compatible = "ti,omap5-prm" },
{ .compatible = "ti,dra7-prm" },
{ }
};
static int omap44xx_prm_late_init(void)
{
struct device_node *np;
int irq_num;
if (!(prm_features & PRM_HAS_IO_WAKEUP))
return 0;
/* OMAP4+ is DT only now */
if (!of_have_populated_dt())
return 0;
np = of_find_matching_node(NULL, omap_prm_dt_match_table);
if (!np) {
/* Default loaded up with OMAP4 values */
if (!cpu_is_omap44xx())
return 0;
} else {
irq_num = of_irq_get(np, 0);
/*
* Already have OMAP4 IRQ num. For all other platforms, we need
* IRQ numbers from DT
*/
if (irq_num < 0 && !cpu_is_omap44xx()) {
if (irq_num == -EPROBE_DEFER)
return irq_num;
/* Have nothing to do */
return 0;
}
/* Once OMAP4 DT is filled as well */
if (irq_num >= 0)
omap4_prcm_irq_setup.irq = irq_num;
}
omap44xx_prm_enable_io_wakeup();
return omap_prcm_register_chain_handler(&omap4_prcm_irq_setup);
}
static void __exit omap44xx_prm_exit(void)
{
prm_unregister(&omap44xx_prm_ll_data);
}
__exitcall(omap44xx_prm_exit);