/*
* linux/arch/arm/mach-aaec2000/core.c
*
* Code common to all AAEC-2000 machines
*
* Copyright (c) 2005 Nicolas Bellido Y Ortega
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/signal.h>
#include <linux/amba/bus.h>
#include <asm/hardware.h>
#include <asm/irq.h>
#include <asm/sizes.h>
#include <asm/mach/flash.h>
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
#include <asm/mach/map.h>
#include "core.h"
#include "clock.h"
/*
* Common I/O mapping:
*
* Static virtual address mappings are as follow:
*
* 0xf8000000-0xf8001ffff: Devices connected to APB bus
* 0xf8002000-0xf8003ffff: Devices connected to AHB bus
*
* Below 0xe8000000 is reserved for vm allocation.
*
* The machine specific code must provide the extra mapping beside the
* default mapping provided here.
*/
static struct map_desc standard_io_desc[] __initdata = {
{
.virtual = VIO_APB_BASE,
.physical = __phys_to_pfn(PIO_APB_BASE),
.length = IO_APB_LENGTH,
.type = MT_DEVICE
}, {
.virtual = VIO_AHB_BASE,
.physical = __phys_to_pfn(PIO_AHB_BASE),
.length = IO_AHB_LENGTH,
.type = MT_DEVICE
}
};
void __init aaec2000_map_io(void)
{
iotable_init(standard_io_desc, ARRAY_SIZE(standard_io_desc));
}
/*
* Interrupt handling routines
*/
static void aaec2000_int_ack(unsigned int irq)
{
IRQ_INTSR = 1 << irq;
}
static void aaec2000_int_mask(unsigned int irq)
{
IRQ_INTENC |= (1 << irq);
}
static void aaec2000_int_unmask(unsigned int irq)
{
IRQ_INTENS |= (1 << irq);
}
static struct irqchip aaec2000_irq_chip = {
.ack = aaec2000_int_ack,
.mask = aaec2000_int_mask,
.unmask = aaec2000_int_unmask,
};
void __init aaec2000_init_irq(void)
{
unsigned int i;
for (i = 0; i < NR_IRQS; i++) {
set_irq_handler(i, do_level_IRQ);
set_irq_chip(i, &aaec2000_irq_chip);
set_irq_flags(i, IRQF_VALID);
}
/* Disable all interrupts */
IRQ_INTENC = 0xffffffff;
/* Clear any pending interrupts */
IRQ_INTSR = IRQ_INTSR;
}
/*
* Time keeping
*/
/* IRQs are disabled before entering here from do_gettimeofday() */
static unsigned long aaec2000_gettimeoffset(void)
{
unsigned long ticks_to_match, elapsed, usec;
/* Get ticks before next timer match */
ticks_to_match = TIMER1_LOAD - TIMER1_VAL;
/* We need elapsed ticks since last match */
elapsed = LATCH - ticks_to_match;
/* Now, convert them to usec */
usec = (unsigned long)(elapsed * (tick_nsec / 1000))/LATCH;
return usec;
}
/* We enter here with IRQs enabled */
static irqreturn_t
aaec2000_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
/* TODO: Check timer accuracy */
write_seqlock(&xtime_lock);
timer_tick(regs);
TIMER1_CLEAR = 1;
write_sequnlock(&xtime_lock);
return IRQ_HANDLED;
}
static struct irqaction aaec2000_timer_irq = {
.name = "AAEC-2000 Timer Tick",
.flags = SA_INTERRUPT | SA_TIMER,
.handler = aaec2000_timer_interrupt,
};
static void __init aaec2000_timer_init(void)
{
/* Disable timer 1 */
TIMER1_CTRL = 0;
/* We have somehow to generate a 100Hz clock.
* We then use the 508KHz timer in periodic mode.
*/
TIMER1_LOAD = LATCH;
TIMER1_CLEAR = 1; /* Clear interrupt */
setup_irq(INT_TMR1_OFL, &aaec2000_timer_irq);
TIMER1_CTRL = TIMER_CTRL_ENABLE |
TIMER_CTRL_PERIODIC |
TIMER_CTRL_CLKSEL_508K;
}
struct sys_timer aaec2000_timer = {
.init = aaec2000_timer_init,
.offset = aaec2000_gettimeoffset,
};
static struct clcd_panel mach_clcd_panel;
static int aaec2000_clcd_setup(struct clcd_fb *fb)
{
dma_addr_t dma;
fb->panel = &mach_clcd_panel;
fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, SZ_1M,
&dma, GFP_KERNEL);
if (!fb->fb.screen_base) {
printk(KERN_ERR "CLCD: unable to map framebuffer\n");
return -ENOMEM;
}
fb->fb.fix.smem_start = dma;
fb->fb.fix.smem_len = SZ_1M;
return 0;
}
static int aaec2000_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
{
return dma_mmap_writecombine(&fb->dev->dev, vma,
fb->fb.screen_base,
fb->fb.fix.smem_start,
fb->fb.fix.smem_len);
}
static void aaec2000_clcd_remove(struct clcd_fb *fb)
{
dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
fb->fb.screen_base, fb->fb.fix.smem_start);
}
static struct clcd_board clcd_plat_data = {
.name = "AAEC-2000",
.check = clcdfb_check,
.decode = clcdfb_decode,
.setup = aaec2000_clcd_setup,
.mmap = aaec2000_clcd_mmap,
.remove = aaec2000_clcd_remove,
};
static struct amba_device clcd_device = {
.dev = {
.bus_id = "mb:16",
.coherent_dma_mask = ~0,
.platform_data = &clcd_plat_data,
},
.res = {
.start = AAEC_CLCD_PHYS,
.end = AAEC_CLCD_PHYS + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { INT_LCD, NO_IRQ },
.periphid = 0x41110,
};
static struct amba_device *amba_devs[] __initdata = {
&clcd_device,
};
static struct clk aaec2000_clcd_clk = {
.name = "CLCDCLK",
};
void __init aaec2000_set_clcd_plat_data(struct aaec2000_clcd_info *clcd)
{
clcd_plat_data.enable = clcd->enable;
clcd_plat_data.disable = clcd->disable;
memcpy(&mach_clcd_panel, &clcd->panel, sizeof(struct clcd_panel));
}
static struct flash_platform_data aaec2000_flash_data = {
.map_name = "cfi_probe",
.width = 4,
};
static struct resource aaec2000_flash_resource = {
.start = AAEC_FLASH_BASE,
.end = AAEC_FLASH_BASE + AAEC_FLASH_SIZE,
.flags = IORESOURCE_MEM,
};
static struct platform_device aaec2000_flash_device = {
.name = "armflash",
.id = 0,
.dev = {
.platform_data = &aaec2000_flash_data,
},
.num_resources = 1,
.resource = &aaec2000_flash_resource,
};
static int __init aaec2000_init(void)
{
int i;
clk_register(&aaec2000_clcd_clk);
for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
struct amba_device *d = amba_devs[i];
amba_device_register(d, &iomem_resource);
}
platform_device_register(&aaec2000_flash_device);
return 0;
};
arch_initcall(aaec2000_init);