/*
* linux/arch/arm/kernel/ecard.c
*
* Copyright 1995-2001 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Find all installed expansion cards, and handle interrupts from them.
*
* Created from information from Acorns RiscOS3 PRMs
*
* 08-Dec-1996 RMK Added code for the 9'th expansion card - the ether
* podule slot.
* 06-May-1997 RMK Added blacklist for cards whose loader doesn't work.
* 12-Sep-1997 RMK Created new handling of interrupt enables/disables
* - cards can now register their own routine to control
* interrupts (recommended).
* 29-Sep-1997 RMK Expansion card interrupt hardware not being re-enabled
* on reset from Linux. (Caused cards not to respond
* under RiscOS without hard reset).
* 15-Feb-1998 RMK Added DMA support
* 12-Sep-1998 RMK Added EASI support
* 10-Jan-1999 RMK Run loaders in a simulated RISC OS environment.
* 17-Apr-1999 RMK Support for EASI Type C cycles.
*/
#define ECARD_C
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/reboot.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <linux/io.h>
#include <asm/dma.h>
#include <asm/ecard.h>
#include <mach/hardware.h>
#include <asm/irq.h>
#include <asm/mmu_context.h>
#include <asm/mach/irq.h>
#include <asm/tlbflush.h>
#include "ecard.h"
#ifndef CONFIG_ARCH_RPC
#define HAVE_EXPMASK
#endif
struct ecard_request {
void (*fn)(struct ecard_request *);
ecard_t *ec;
unsigned int address;
unsigned int length;
unsigned int use_loader;
void *buffer;
struct completion *complete;
};
struct expcard_blacklist {
unsigned short manufacturer;
unsigned short product;
const char *type;
};
static ecard_t *cards;
static ecard_t *slot_to_expcard[MAX_ECARDS];
static unsigned int ectcr;
#ifdef HAS_EXPMASK
static unsigned int have_expmask;
#endif
/* List of descriptions of cards which don't have an extended
* identification, or chunk directories containing a description.
*/
static struct expcard_blacklist __initdata blacklist[] = {
{ MANU_ACORN, PROD_ACORN_ETHER1, "Acorn Ether1" }
};
asmlinkage extern int
ecard_loader_reset(unsigned long base, loader_t loader);
asmlinkage extern int
ecard_loader_read(int off, unsigned long base, loader_t loader);
static inline unsigned short ecard_getu16(unsigned char *v)
{
return v[0] | v[1] << 8;
}
static inline signed long ecard_gets24(unsigned char *v)
{
return v[0] | v[1] << 8 | v[2] << 16 | ((v[2] & 0x80) ? 0xff000000 : 0);
}
static inline ecard_t *slot_to_ecard(unsigned int slot)
{
return slot < MAX_ECARDS ? slot_to_expcard[slot] : NULL;
}
/* ===================== Expansion card daemon ======================== */
/*
* Since the loader programs on the expansion cards need to be run
* in a specific environment, create a separate task with this
* environment up, and pass requests to this task as and when we
* need to.
*
* This should allow 99% of loaders to be called from Linux.
*
* From a security standpoint, we trust the card vendors. This
* may be a misplaced trust.
*/
static void ecard_task_reset(struct ecard_request *req)
{
struct expansion_card *ec = req->ec;
struct resource *res;
res = ec->slot_no == 8
? &ec->resource[ECARD_RES_MEMC]
: ec->easi
? &ec->resource[ECARD_RES_EASI]
: &ec->resource[ECARD_RES_IOCSYNC];
ecard_loader_reset(res->start, ec->loader);
}
static void ecard_task_readbytes(struct ecard_request *req)
{
struct expansion_card *ec = req->ec;
unsigned char *buf = req->buffer;
unsigned int len = req->length;
unsigned int off = req->address;
if (ec->slot_no == 8) {
void __iomem *base = (void __iomem *)
ec->resource[ECARD_RES_MEMC].start;
/*
* The card maintains an index which increments the address
* into a 4096-byte page on each access. We need to keep
* track of the counter.
*/
static unsigned int index;
unsigned int page;
page = (off >> 12) * 4;
if (page > 256 * 4)
return;
off &= 4095;
/*
* If we are reading offset 0, or our current index is
* greater than the offset, reset the hardware index counter.
*/
if (off == 0 || index > off) {
writeb(0, base);
index = 0;
}
/*
* Increment the hardware index counter until we get to the
* required offset. The read bytes are discarded.
*/
while (index < off) {
readb(base + page);
index += 1;
}
while (len--) {
*buf++ = readb(base + page);
index += 1;
}
} else {
unsigned long base = (ec->easi
? &ec->resource[ECARD_RES_EASI]
: &ec->resource[ECARD_RES_IOCSYNC])->start;
void __iomem *pbase = (void __iomem *)base;
if (!req->use_loader || !ec->loader) {
off *= 4;
while (len--) {
*buf++ = readb(pbase + off);
off += 4;
}
} else {
while(len--) {
/*
* The following is required by some
* expansion card loader programs.
*/
*(unsigned long *)0x108 = 0;
*buf++ = ecard_loader_read(off++, base,
ec->loader);
}
}
}
}
static DECLARE_WAIT_QUEUE_HEAD(ecard_wait);
static struct ecard_request *ecard_req;
static DEFINE_MUTEX(ecard_mutex);
/*
* Set up the expansion card daemon's page tables.
*/
static void ecard_init_pgtables(struct mm_struct *mm)
{
struct vm_area_struct vma;
/* We want to set up the page tables for the following mapping:
* Virtual Physical
* 0x03000000 0x03000000
* 0x03010000 unmapped
* 0x03210000 0x03210000
* 0x03400000 unmapped
* 0x08000000 0x08000000
* 0x10000000 unmapped
*
* FIXME: we don't follow this 100% yet.
*/
pgd_t *src_pgd, *dst_pgd;
src_pgd = pgd_offset(mm, (unsigned long)IO_BASE);
dst_pgd = pgd_offset(mm, IO_START);
memcpy(dst_pgd, src_pgd, sizeof(pgd_t) * (IO_SIZE / PGDIR_SIZE));
src_pgd = pgd_offset(mm, EASI_BASE);
dst_pgd = pgd_offset(mm, EASI_START);
memcpy(dst_pgd, src_pgd, sizeof(pgd_t) * (EASI_SIZE / PGDIR_SIZE));
vma.vm_mm = mm;
flush_tlb_range(&vma, IO_START, IO_START + IO_SIZE);
flush_tlb_range(&vma, EASI_START, EASI_START + EASI_SIZE);
}
static int ecard_init_mm(void)
{
struct mm_struct * mm = mm_alloc();
struct mm_struct *active_mm = current->active_mm;
if (!mm)
return -ENOMEM;
current->mm = mm;
current->active_mm = mm;
activate_mm(active_mm, mm);
mmdrop(active_mm);
ecard_init_pgtables(mm);
return 0;
}
static int
ecard_task(void * unused)
{
/*
* Allocate a mm. We're not a lazy-TLB kernel task since we need
* to set page table entries where the user space would be. Note
* that this also creates the page tables. Failure is not an
* option here.
*/
if (ecard_init_mm())
panic("kecardd: unable to alloc mm\n");
while (1) {
struct ecard_request *req;
wait_event_interruptible(ecard_wait, ecard_req != NULL);
req = xchg(&ecard_req, NULL);
if (req != NULL) {
req->fn(req);
complete(req->complete);
}
}
}
/*
* Wake the expansion card daemon to action our request.
*
* FIXME: The test here is not sufficient to detect if the
* kcardd is running.
*/
static void ecard_call(struct ecard_request *req)
{
DECLARE_COMPLETION_ONSTACK(completion);
req->complete = &completion;
mutex_lock(&ecard_mutex);
ecard_req = req;
wake_up(&ecard_wait);
/*
* Now wait for kecardd to run.
*/
wait_for_completion(&completion);
mutex_unlock(&ecard_mutex);
}
/* ======================= Mid-level card control ===================== */
static void
ecard_readbytes(void *addr, ecard_t *ec, int off, int len, int useld)
{
struct ecard_request req;
req.fn = ecard_task_readbytes;
req.ec = ec;
req.address = off;
req.length = len;
req.use_loader = useld;
req.buffer = addr;
ecard_call(&req);
}
int ecard_readchunk(struct in_chunk_dir *cd, ecard_t *ec, int id, int num)
{
struct ex_chunk_dir excd;
int index = 16;
int useld = 0;
if (!ec->cid.cd)
return 0;
while(1) {
ecard_readbytes(&excd, ec, index, 8, useld);
index += 8;
if (c_id(&excd) == 0) {
if (!useld && ec->loader) {
useld = 1;
index = 0;
continue;
}
return 0;
}
if (c_id(&excd) == 0xf0) { /* link */
index = c_start(&excd);
continue;
}
if (c_id(&excd) == 0x80) { /* loader */
if (!ec->loader) {
ec->loader = kmalloc(c_len(&excd),
GFP_KERNEL);
if (ec->loader)
ecard_readbytes(ec->loader, ec,
(int)c_start(&excd),
c_len(&excd), useld);
else
return 0;
}
continue;
}
if (c_id(&excd) == id && num-- == 0)
break;
}
if (c_id(&excd) & 0x80) {
switch (c_id(&excd) & 0x70) {
case 0x70:
ecard_readbytes((unsigned char *)excd.d.string, ec,
(int)c_start(&excd), c_len(&excd),
useld);
break;
case 0x00:
break;
}
}
cd->start_offset = c_start(&excd);
memcpy(cd->d.string, excd.d.string, 256);
return 1;
}
/* ======================= Interrupt control ============================ */
static void ecard_def_irq_enable(ecard_t *ec, int irqnr)
{
#ifdef HAS_EXPMASK
if (irqnr < 4 && have_expmask) {
have_expmask |= 1 << irqnr;
__raw_writeb(have_expmask, EXPMASK_ENABLE);
}
#endif
}
static void ecard_def_irq_disable(ecard_t *ec, int irqnr)
{
#ifdef HAS_EXPMASK
if (irqnr < 4 && have_expmask) {
have_expmask &= ~(1 << irqnr);
__raw_writeb(have_expmask, EXPMASK_ENABLE);
}
#endif
}
static int ecard_def_irq_pending(ecard_t *ec)
{
return !ec->irqmask || readb(ec->irqaddr) & ec->irqmask;
}
static void ecard_def_fiq_enable(ecard_t *ec, int fiqnr)
{
panic("ecard_def_fiq_enable called - impossible");
}
static void ecard_def_fiq_disable(ecard_t *ec, int fiqnr)
{
panic("ecard_def_fiq_disable called - impossible");
}
static int ecard_def_fiq_pending(ecard_t *ec)
{
return !ec->fiqmask || readb(ec->fiqaddr) & ec->fiqmask;
}
static expansioncard_ops_t ecard_default_ops = {
ecard_def_irq_enable,
ecard_def_irq_disable,
ecard_def_irq_pending,
ecard_def_fiq_enable,
ecard_def_fiq_disable,
ecard_def_fiq_pending
};
/*
* Enable and disable interrupts from expansion cards.
* (interrupts are disabled for these functions).
*
* They are not meant to be called directly, but via enable/disable_irq.
*/
static void ecard_irq_unmask(struct irq_data *d)
{
ecard_t *ec = slot_to_ecard(d->irq - 32);
if (ec) {
if (!ec->ops)
ec->ops = &ecard_default_ops;
if (ec->claimed && ec->ops->irqenable)
ec->ops->irqenable(ec, d->irq);
else
printk(KERN_ERR "ecard: rejecting request to "
"enable IRQs for %d\n", d->irq);
}
}
static void ecard_irq_mask(struct irq_data *d)
{
ecard_t *ec = slot_to_ecard(d->irq - 32);
if (ec) {
if (!ec->ops)
ec->ops = &ecard_default_ops;
if (ec->ops && ec->ops->irqdisable)
ec->ops->irqdisable(ec, d->irq);
}
}
static struct irq_chip ecard_chip = {
.name = "ECARD",
.irq_ack = ecard_irq_mask,
.irq_mask = ecard_irq_mask,
.irq_unmask = ecard_irq_unmask,
};
void ecard_enablefiq(unsigned int fiqnr)
{
ecard_t *ec = slot_to_ecard(fiqnr);
if (ec) {
if (!ec->ops)
ec->ops = &ecard_default_ops;
if (ec->claimed && ec->ops->fiqenable)
ec->ops->fiqenable(ec, fiqnr);
else
printk(KERN_ERR "ecard: rejecting request to "
"enable FIQs for %d\n", fiqnr);
}
}
void ecard_disablefiq(unsigned int fiqnr)
{
ecard_t *ec = slot_to_ecard(fiqnr);
if (ec) {
if (!ec->ops)
ec->ops = &ecard_default_ops;
if (ec->ops->fiqdisable)
ec->ops->fiqdisable(ec, fiqnr);
}
}
static void ecard_dump_irq_state(void)
{
ecard_t *ec;
printk("Expansion card IRQ state:\n");
for (ec = cards; ec; ec = ec->next) {
if (ec->slot_no == 8)
continue;
printk(" %d: %sclaimed, ",
ec->slot_no, ec->claimed ? "" : "not ");
if (ec->ops && ec->ops->irqpending &&
ec->ops != &ecard_default_ops)
printk("irq %spending\n",
ec->ops->irqpending(ec) ? "" : "not ");
else
printk("irqaddr %p, mask = %02X, status = %02X\n",
ec->irqaddr, ec->irqmask, readb(ec->irqaddr));
}
}
static void ecard_check_lockup(struct irq_desc *desc)
{
static unsigned long last;
static int lockup;
/*
* If the timer interrupt has not run since the last million
* unrecognised expansion card interrupts, then there is
* something seriously wrong. Disable the expansion card
* interrupts so at least we can continue.
*
* Maybe we ought to start a timer to re-enable them some time
* later?
*/
if (last == jiffies) {
lockup += 1;
if (lockup > 1000000) {
printk(KERN_ERR "\nInterrupt lockup detected - "
"disabling all expansion card interrupts\n");
desc->irq_data.chip->irq_mask(&desc->irq_data);
ecard_dump_irq_state();
}
} else
lockup = 0;
/*
* If we did not recognise the source of this interrupt,
* warn the user, but don't flood the user with these messages.
*/
if (!last || time_after(jiffies, last + 5*HZ)) {
last = jiffies;
printk(KERN_WARNING "Unrecognised interrupt from backplane\n");
ecard_dump_irq_state();
}
}
static void
ecard_irq_handler(unsigned int irq, struct irq_desc *desc)
{
ecard_t *ec;
int called = 0;
desc->irq_data.chip->irq_mask(&desc->irq_data);
for (ec = cards; ec; ec = ec->next) {
int pending;
if (!ec->claimed || ec->irq == NO_IRQ || ec->slot_no == 8)
continue;
if (ec->ops && ec->ops->irqpending)
pending = ec->ops->irqpending(ec);
else
pending = ecard_default_ops.irqpending(ec);
if (pending) {
generic_handle_irq(ec->irq);
called ++;
}
}
desc->irq_data.chip->irq_unmask(&desc->irq_data);
if (called == 0)
ecard_check_lockup(desc);
}
#ifdef HAS_EXPMASK
static unsigned char priority_masks[] =
{
0xf0, 0xf1, 0xf3, 0xf7, 0xff, 0xff, 0xff, 0xff
};
static unsigned char first_set[] =
{
0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00,
0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00
};
static void
ecard_irqexp_handler(unsigned int irq, struct irq_desc *desc)
{
const unsigned int statusmask = 15;
unsigned int status;
status = __raw_readb(EXPMASK_STATUS) & statusmask;
if (status) {
unsigned int slot = first_set[status];
ecard_t *ec = slot_to_ecard(slot);
if (ec->claimed) {
/*
* this ugly code is so that we can operate a
* prioritorising system:
*
* Card 0 highest priority
* Card 1
* Card 2
* Card 3 lowest priority
*
* Serial cards should go in 0/1, ethernet/scsi in 2/3
* otherwise you will lose serial data at high speeds!
*/
generic_handle_irq(ec->irq);
} else {
printk(KERN_WARNING "card%d: interrupt from unclaimed "
"card???\n", slot);
have_expmask &= ~(1 << slot);
__raw_writeb(have_expmask, EXPMASK_ENABLE);
}
} else
printk(KERN_WARNING "Wild interrupt from backplane (masks)\n");
}
static int __init ecard_probeirqhw(void)
{
ecard_t *ec;
int found;
__raw_writeb(0x00, EXPMASK_ENABLE);
__raw_writeb(0xff, EXPMASK_STATUS);
found = (__raw_readb(EXPMASK_STATUS) & 15) == 0;
__raw_writeb(0xff, EXPMASK_ENABLE);
if (found) {
printk(KERN_DEBUG "Expansion card interrupt "
"management hardware found\n");
/* for each card present, set a bit to '1' */
have_expmask = 0x80000000;
for (ec = cards; ec; ec = ec->next)
have_expmask |= 1 << ec->slot_no;
__raw_writeb(have_expmask, EXPMASK_ENABLE);
}
return found;
}
#else
#define ecard_irqexp_handler NULL
#define ecard_probeirqhw() (0)
#endif
#ifndef IO_EC_MEMC8_BASE
#define IO_EC_MEMC8_BASE 0
#endif
static unsigned int __ecard_address(ecard_t *ec, card_type_t type, card_speed_t speed)
{
unsigned long address = 0;
int slot = ec->slot_no;
if (ec->slot_no == 8)
return IO_EC_MEMC8_BASE;
ectcr &= ~(1 << slot);
switch (type) {
case ECARD_MEMC:
if (slot < 4)
address = IO_EC_MEMC_BASE + (slot << 12);
break;
case ECARD_IOC:
if (slot < 4)
address = IO_EC_IOC_BASE + (slot << 12);
#ifdef IO_EC_IOC4_BASE
else
address = IO_EC_IOC4_BASE + ((slot - 4) << 12);
#endif
if (address)
address += speed << 17;
break;
#ifdef IO_EC_EASI_BASE
case ECARD_EASI:
address = IO_EC_EASI_BASE + (slot << 22);
if (speed == ECARD_FAST)
ectcr |= 1 << slot;
break;
#endif
default:
break;
}
#ifdef IOMD_ECTCR
iomd_writeb(ectcr, IOMD_ECTCR);
#endif
return address;
}
static int ecard_prints(struct seq_file *m, ecard_t *ec)
{
seq_printf(m, " %d: %s ", ec->slot_no, ec->easi ? "EASI" : " ");
if (ec->cid.id == 0) {
struct in_chunk_dir incd;
seq_printf(m, "[%04X:%04X] ",
ec->cid.manufacturer, ec->cid.product);
if (!ec->card_desc && ec->cid.cd &&
ecard_readchunk(&incd, ec, 0xf5, 0)) {
ec->card_desc = kmalloc(strlen(incd.d.string)+1, GFP_KERNEL);
if (ec->card_desc)
strcpy((char *)ec->card_desc, incd.d.string);
}
seq_printf(m, "%s\n", ec->card_desc ? ec->card_desc : "*unknown*");
} else
seq_printf(m, "Simple card %d\n", ec->cid.id);
return 0;
}
static int ecard_devices_proc_show(struct seq_file *m, void *v)
{
ecard_t *ec = cards;
while (ec) {
ecard_prints(m, ec);
ec = ec->next;
}
return 0;
}
static int ecard_devices_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, ecard_devices_proc_show, NULL);
}
static const struct file_operations bus_ecard_proc_fops = {
.owner = THIS_MODULE,
.open = ecard_devices_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static struct proc_dir_entry *proc_bus_ecard_dir = NULL;
static void ecard_proc_init(void)
{
proc_bus_ecard_dir = proc_mkdir("bus/ecard", NULL);
proc_create("devices", 0, proc_bus_ecard_dir, &bus_ecard_proc_fops);
}
#define ec_set_resource(ec,nr,st,sz) \
do { \
(ec)->resource[nr].name = dev_name(&ec->dev); \
(ec)->resource[nr].start = st; \
(ec)->resource[nr].end = (st) + (sz) - 1; \
(ec)->resource[nr].flags = IORESOURCE_MEM; \
} while (0)
static void __init ecard_free_card(struct expansion_card *ec)
{
int i;
for (i = 0; i < ECARD_NUM_RESOURCES; i++)
if (ec->resource[i].flags)
release_resource(&ec->resource[i]);
kfree(ec);
}
static struct expansion_card *__init ecard_alloc_card(int type, int slot)
{
struct expansion_card *ec;
unsigned long base;
int i;
ec = kzalloc(sizeof(ecard_t), GFP_KERNEL);
if (!ec) {
ec = ERR_PTR(-ENOMEM);
goto nomem;
}
ec->slot_no = slot;
ec->easi = type == ECARD_EASI;
ec->irq = NO_IRQ;
ec->fiq = NO_IRQ;
ec->dma = NO_DMA;
ec->ops = &ecard_default_ops;
dev_set_name(&ec->dev, "ecard%d", slot);
ec->dev.parent = NULL;
ec->dev.bus = &ecard_bus_type;
ec->dev.dma_mask = &ec->dma_mask;
ec->dma_mask = (u64)0xffffffff;
ec->dev.coherent_dma_mask = ec->dma_mask;
if (slot < 4) {
ec_set_resource(ec, ECARD_RES_MEMC,
PODSLOT_MEMC_BASE + (slot << 14),
PODSLOT_MEMC_SIZE);
base = PODSLOT_IOC0_BASE + (slot << 14);
} else
base = PODSLOT_IOC4_BASE + ((slot - 4) << 14);
#ifdef CONFIG_ARCH_RPC
if (slot < 8) {
ec_set_resource(ec, ECARD_RES_EASI,
PODSLOT_EASI_BASE + (slot << 24),
PODSLOT_EASI_SIZE);
}
if (slot == 8) {
ec_set_resource(ec, ECARD_RES_MEMC, NETSLOT_BASE, NETSLOT_SIZE);
} else
#endif
for (i = 0; i <= ECARD_RES_IOCSYNC - ECARD_RES_IOCSLOW; i++)
ec_set_resource(ec, i + ECARD_RES_IOCSLOW,
base + (i << 19), PODSLOT_IOC_SIZE);
for (i = 0; i < ECARD_NUM_RESOURCES; i++) {
if (ec->resource[i].flags &&
request_resource(&iomem_resource, &ec->resource[i])) {
dev_err(&ec->dev, "resource(s) not available\n");
ec->resource[i].end -= ec->resource[i].start;
ec->resource[i].start = 0;
ec->resource[i].flags = 0;
}
}
nomem:
return ec;
}
static ssize_t ecard_show_irq(struct device *dev, struct device_attribute *attr, char *buf)
{
struct expansion_card *ec = ECARD_DEV(dev);
return sprintf(buf, "%u\n", ec->irq);
}
static ssize_t ecard_show_dma(struct device *dev, struct device_attribute *attr, char *buf)
{
struct expansion_card *ec = ECARD_DEV(dev);
return sprintf(buf, "%u\n", ec->dma);
}
static ssize_t ecard_show_resources(struct device *dev, struct device_attribute *attr, char *buf)
{
struct expansion_card *ec = ECARD_DEV(dev);
char *str = buf;
int i;
for (i = 0; i < ECARD_NUM_RESOURCES; i++)
str += sprintf(str, "%08x %08x %08lx\n",
ec->resource[i].start,
ec->resource[i].end,
ec->resource[i].flags);
return str - buf;
}
static ssize_t ecard_show_vendor(struct device *dev, struct device_attribute *attr, char *buf)
{
struct expansion_card *ec = ECARD_DEV(dev);
return sprintf(buf, "%u\n", ec->cid.manufacturer);
}
static ssize_t ecard_show_device(struct device *dev, struct device_attribute *attr, char *buf)
{
struct expansion_card *ec = ECARD_DEV(dev);
return sprintf(buf, "%u\n", ec->cid.product);
}
static ssize_t ecard_show_type(struct device *dev, struct device_attribute *attr, char *buf)
{
struct expansion_card *ec = ECARD_DEV(dev);
return sprintf(buf, "%s\n", ec->easi ? "EASI" : "IOC");
}
static struct device_attribute ecard_dev_attrs[] = {
__ATTR(device, S_IRUGO, ecard_show_device, NULL),
__ATTR(dma, S_IRUGO, ecard_show_dma, NULL),
__ATTR(irq, S_IRUGO, ecard_show_irq, NULL),
__ATTR(resource, S_IRUGO, ecard_show_resources, NULL),
__ATTR(type, S_IRUGO, ecard_show_type, NULL),
__ATTR(vendor, S_IRUGO, ecard_show_vendor, NULL),
__ATTR_NULL,
};
int ecard_request_resources(struct expansion_card *ec)
{
int i, err = 0;
for (i = 0; i < ECARD_NUM_RESOURCES; i++) {
if (ecard_resource_end(ec, i) &&
!request_mem_region(ecard_resource_start(ec, i),
ecard_resource_len(ec, i),
ec->dev.driver->name)) {
err = -EBUSY;
break;
}
}
if (err) {
while (i--)
if (ecard_resource_end(ec, i))
release_mem_region(ecard_resource_start(ec, i),
ecard_resource_len(ec, i));
}
return err;
}
EXPORT_SYMBOL(ecard_request_resources);
void ecard_release_resources(struct expansion_card *ec)
{
int i;
for (i = 0; i < ECARD_NUM_RESOURCES; i++)
if (ecard_resource_end(ec, i))
release_mem_region(ecard_resource_start(ec, i),
ecard_resource_len(ec, i));
}
EXPORT_SYMBOL(ecard_release_resources);
void ecard_setirq(struct expansion_card *ec, const struct expansion_card_ops *ops, void *irq_data)
{
ec->irq_data = irq_data;
barrier();
ec->ops = ops;
}
EXPORT_SYMBOL(ecard_setirq);
void __iomem *ecardm_iomap(struct expansion_card *ec, unsigned int res,
unsigned long offset, unsigned long maxsize)
{
unsigned long start = ecard_resource_start(ec, res);
unsigned long end = ecard_resource_end(ec, res);
if (offset > (end - start))
return NULL;
start += offset;
if (maxsize && end - start > maxsize)
end = start + maxsize;
return devm_ioremap(&ec->dev, start, end - start);
}
EXPORT_SYMBOL(ecardm_iomap);
/*
* Probe for an expansion card.
*
* If bit 1 of the first byte of the card is set, then the
* card does not exist.
*/
static int __init
ecard_probe(int slot, card_type_t type)
{
ecard_t **ecp;
ecard_t *ec;
struct ex_ecid cid;
int i, rc;
ec = ecard_alloc_card(type, slot);
if (IS_ERR(ec)) {
rc = PTR_ERR(ec);
goto nomem;
}
rc = -ENODEV;
if ((ec->podaddr = __ecard_address(ec, type, ECARD_SYNC)) == 0)
goto nodev;
cid.r_zero = 1;
ecard_readbytes(&cid, ec, 0, 16, 0);
if (cid.r_zero)
goto nodev;
ec->cid.id = cid.r_id;
ec->cid.cd = cid.r_cd;
ec->cid.is = cid.r_is;
ec->cid.w = cid.r_w;
ec->cid.manufacturer = ecard_getu16(cid.r_manu);
ec->cid.product = ecard_getu16(cid.r_prod);
ec->cid.country = cid.r_country;
ec->cid.irqmask = cid.r_irqmask;
ec->cid.irqoff = ecard_gets24(cid.r_irqoff);
ec->cid.fiqmask = cid.r_fiqmask;
ec->cid.fiqoff = ecard_gets24(cid.r_fiqoff);
ec->fiqaddr =
ec->irqaddr = (void __iomem *)ioaddr(ec->podaddr);
if (ec->cid.is) {
ec->irqmask = ec->cid.irqmask;
ec->irqaddr += ec->cid.irqoff;
ec->fiqmask = ec->cid.fiqmask;
ec->fiqaddr += ec->cid.fiqoff;
} else {
ec->irqmask = 1;
ec->fiqmask = 4;
}
for (i = 0; i < ARRAY_SIZE(blacklist); i++)
if (blacklist[i].manufacturer == ec->cid.manufacturer &&
blacklist[i].product == ec->cid.product) {
ec->card_desc = blacklist[i].type;
break;
}
/*
* hook the interrupt handlers
*/
if (slot < 8) {
ec->irq = 32 + slot;
irq_set_chip_and_handler(ec->irq, &ecard_chip,
handle_level_irq);
set_irq_flags(ec->irq, IRQF_VALID);
}
#ifdef IO_EC_MEMC8_BASE
if (slot == 8)
ec->irq = 11;
#endif
#ifdef CONFIG_ARCH_RPC
/* On RiscPC, only first two slots have DMA capability */
if (slot < 2)
ec->dma = 2 + slot;
#endif
for (ecp = &cards; *ecp; ecp = &(*ecp)->next);
*ecp = ec;
slot_to_expcard[slot] = ec;
device_register(&ec->dev);
return 0;
nodev:
ecard_free_card(ec);
nomem:
return rc;
}
/*
* Initialise the expansion card system.
* Locate all hardware - interrupt management and
* actual cards.
*/
static int __init ecard_init(void)
{
struct task_struct *task;
int slot, irqhw;
task = kthread_run(ecard_task, NULL, "kecardd");
if (IS_ERR(task)) {
printk(KERN_ERR "Ecard: unable to create kernel thread: %ld\n",
PTR_ERR(task));
return PTR_ERR(task);
}
printk("Probing expansion cards\n");
for (slot = 0; slot < 8; slot ++) {
if (ecard_probe(slot, ECARD_EASI) == -ENODEV)
ecard_probe(slot, ECARD_IOC);
}
#ifdef IO_EC_MEMC8_BASE
ecard_probe(8, ECARD_IOC);
#endif
irqhw = ecard_probeirqhw();
irq_set_chained_handler(IRQ_EXPANSIONCARD,
irqhw ? ecard_irqexp_handler : ecard_irq_handler);
ecard_proc_init();
return 0;
}
subsys_initcall(ecard_init);
/*
* ECARD "bus"
*/
static const struct ecard_id *
ecard_match_device(const struct ecard_id *ids, struct expansion_card *ec)
{
int i;
for (i = 0; ids[i].manufacturer != 65535; i++)
if (ec->cid.manufacturer == ids[i].manufacturer &&
ec->cid.product == ids[i].product)
return ids + i;
return NULL;
}
static int ecard_drv_probe(struct device *dev)
{
struct expansion_card *ec = ECARD_DEV(dev);
struct ecard_driver *drv = ECARD_DRV(dev->driver);
const struct ecard_id *id;
int ret;
id = ecard_match_device(drv->id_table, ec);
ec->claimed = 1;
ret = drv->probe(ec, id);
if (ret)
ec->claimed = 0;
return ret;
}
static int ecard_drv_remove(struct device *dev)
{
struct expansion_card *ec = ECARD_DEV(dev);
struct ecard_driver *drv = ECARD_DRV(dev->driver);
drv->remove(ec);
ec->claimed = 0;
/*
* Restore the default operations. We ensure that the
* ops are set before we change the data.
*/
ec->ops = &ecard_default_ops;
barrier();
ec->irq_data = NULL;
return 0;
}
/*
* Before rebooting, we must make sure that the expansion card is in a
* sensible state, so it can be re-detected. This means that the first
* page of the ROM must be visible. We call the expansion cards reset
* handler, if any.
*/
static void ecard_drv_shutdown(struct device *dev)
{
struct expansion_card *ec = ECARD_DEV(dev);
struct ecard_driver *drv = ECARD_DRV(dev->driver);
struct ecard_request req;
if (dev->driver) {
if (drv->shutdown)
drv->shutdown(ec);
ec->claimed = 0;
}
/*
* If this card has a loader, call the reset handler.
*/
if (ec->loader) {
req.fn = ecard_task_reset;
req.ec = ec;
ecard_call(&req);
}
}
int ecard_register_driver(struct ecard_driver *drv)
{
drv->drv.bus = &ecard_bus_type;
return driver_register(&drv->drv);
}
void ecard_remove_driver(struct ecard_driver *drv)
{
driver_unregister(&drv->drv);
}
static int ecard_match(struct device *_dev, struct device_driver *_drv)
{
struct expansion_card *ec = ECARD_DEV(_dev);
struct ecard_driver *drv = ECARD_DRV(_drv);
int ret;
if (drv->id_table) {
ret = ecard_match_device(drv->id_table, ec) != NULL;
} else {
ret = ec->cid.id == drv->id;
}
return ret;
}
struct bus_type ecard_bus_type = {
.name = "ecard",
.dev_attrs = ecard_dev_attrs,
.match = ecard_match,
.probe = ecard_drv_probe,
.remove = ecard_drv_remove,
.shutdown = ecard_drv_shutdown,
};
static int ecard_bus_init(void)
{
return bus_register(&ecard_bus_type);
}
postcore_initcall(ecard_bus_init);
EXPORT_SYMBOL(ecard_readchunk);
EXPORT_SYMBOL(ecard_register_driver);
EXPORT_SYMBOL(ecard_remove_driver);
EXPORT_SYMBOL(ecard_bus_type);