diff options
Diffstat (limited to 'mm/memory.c')
-rw-r--r-- | mm/memory.c | 2165 |
1 files changed, 2165 insertions, 0 deletions
diff --git a/mm/memory.c b/mm/memory.c new file mode 100644 index 00000000000..fb6e5deb873 --- /dev/null +++ b/mm/memory.c | |||
@@ -0,0 +1,2165 @@ | |||
1 | /* | ||
2 | * linux/mm/memory.c | ||
3 | * | ||
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | ||
5 | */ | ||
6 | |||
7 | /* | ||
8 | * demand-loading started 01.12.91 - seems it is high on the list of | ||
9 | * things wanted, and it should be easy to implement. - Linus | ||
10 | */ | ||
11 | |||
12 | /* | ||
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | ||
14 | * pages started 02.12.91, seems to work. - Linus. | ||
15 | * | ||
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | ||
17 | * would have taken more than the 6M I have free, but it worked well as | ||
18 | * far as I could see. | ||
19 | * | ||
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | ||
21 | */ | ||
22 | |||
23 | /* | ||
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | ||
25 | * thought has to go into this. Oh, well.. | ||
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | ||
27 | * Found it. Everything seems to work now. | ||
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | ||
29 | */ | ||
30 | |||
31 | /* | ||
32 | * 05.04.94 - Multi-page memory management added for v1.1. | ||
33 | * Idea by Alex Bligh (alex@cconcepts.co.uk) | ||
34 | * | ||
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | ||
36 | * (Gerhard.Wichert@pdb.siemens.de) | ||
37 | * | ||
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | ||
39 | */ | ||
40 | |||
41 | #include <linux/kernel_stat.h> | ||
42 | #include <linux/mm.h> | ||
43 | #include <linux/hugetlb.h> | ||
44 | #include <linux/mman.h> | ||
45 | #include <linux/swap.h> | ||
46 | #include <linux/highmem.h> | ||
47 | #include <linux/pagemap.h> | ||
48 | #include <linux/rmap.h> | ||
49 | #include <linux/module.h> | ||
50 | #include <linux/init.h> | ||
51 | |||
52 | #include <asm/pgalloc.h> | ||
53 | #include <asm/uaccess.h> | ||
54 | #include <asm/tlb.h> | ||
55 | #include <asm/tlbflush.h> | ||
56 | #include <asm/pgtable.h> | ||
57 | |||
58 | #include <linux/swapops.h> | ||
59 | #include <linux/elf.h> | ||
60 | |||
61 | #ifndef CONFIG_DISCONTIGMEM | ||
62 | /* use the per-pgdat data instead for discontigmem - mbligh */ | ||
63 | unsigned long max_mapnr; | ||
64 | struct page *mem_map; | ||
65 | |||
66 | EXPORT_SYMBOL(max_mapnr); | ||
67 | EXPORT_SYMBOL(mem_map); | ||
68 | #endif | ||
69 | |||
70 | unsigned long num_physpages; | ||
71 | /* | ||
72 | * A number of key systems in x86 including ioremap() rely on the assumption | ||
73 | * that high_memory defines the upper bound on direct map memory, then end | ||
74 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | ||
75 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | ||
76 | * and ZONE_HIGHMEM. | ||
77 | */ | ||
78 | void * high_memory; | ||
79 | unsigned long vmalloc_earlyreserve; | ||
80 | |||
81 | EXPORT_SYMBOL(num_physpages); | ||
82 | EXPORT_SYMBOL(high_memory); | ||
83 | EXPORT_SYMBOL(vmalloc_earlyreserve); | ||
84 | |||
85 | /* | ||
86 | * If a p?d_bad entry is found while walking page tables, report | ||
87 | * the error, before resetting entry to p?d_none. Usually (but | ||
88 | * very seldom) called out from the p?d_none_or_clear_bad macros. | ||
89 | */ | ||
90 | |||
91 | void pgd_clear_bad(pgd_t *pgd) | ||
92 | { | ||
93 | pgd_ERROR(*pgd); | ||
94 | pgd_clear(pgd); | ||
95 | } | ||
96 | |||
97 | void pud_clear_bad(pud_t *pud) | ||
98 | { | ||
99 | pud_ERROR(*pud); | ||
100 | pud_clear(pud); | ||
101 | } | ||
102 | |||
103 | void pmd_clear_bad(pmd_t *pmd) | ||
104 | { | ||
105 | pmd_ERROR(*pmd); | ||
106 | pmd_clear(pmd); | ||
107 | } | ||
108 | |||
109 | /* | ||
110 | * Note: this doesn't free the actual pages themselves. That | ||
111 | * has been handled earlier when unmapping all the memory regions. | ||
112 | */ | ||
113 | static inline void clear_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | ||
114 | unsigned long addr, unsigned long end) | ||
115 | { | ||
116 | if (!((addr | end) & ~PMD_MASK)) { | ||
117 | /* Only free fully aligned ranges */ | ||
118 | struct page *page = pmd_page(*pmd); | ||
119 | pmd_clear(pmd); | ||
120 | dec_page_state(nr_page_table_pages); | ||
121 | tlb->mm->nr_ptes--; | ||
122 | pte_free_tlb(tlb, page); | ||
123 | } | ||
124 | } | ||
125 | |||
126 | static inline void clear_pmd_range(struct mmu_gather *tlb, pud_t *pud, | ||
127 | unsigned long addr, unsigned long end) | ||
128 | { | ||
129 | pmd_t *pmd; | ||
130 | unsigned long next; | ||
131 | pmd_t *empty_pmd = NULL; | ||
132 | |||
133 | pmd = pmd_offset(pud, addr); | ||
134 | |||
135 | /* Only free fully aligned ranges */ | ||
136 | if (!((addr | end) & ~PUD_MASK)) | ||
137 | empty_pmd = pmd; | ||
138 | do { | ||
139 | next = pmd_addr_end(addr, end); | ||
140 | if (pmd_none_or_clear_bad(pmd)) | ||
141 | continue; | ||
142 | clear_pte_range(tlb, pmd, addr, next); | ||
143 | } while (pmd++, addr = next, addr != end); | ||
144 | |||
145 | if (empty_pmd) { | ||
146 | pud_clear(pud); | ||
147 | pmd_free_tlb(tlb, empty_pmd); | ||
148 | } | ||
149 | } | ||
150 | |||
151 | static inline void clear_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | ||
152 | unsigned long addr, unsigned long end) | ||
153 | { | ||
154 | pud_t *pud; | ||
155 | unsigned long next; | ||
156 | pud_t *empty_pud = NULL; | ||
157 | |||
158 | pud = pud_offset(pgd, addr); | ||
159 | |||
160 | /* Only free fully aligned ranges */ | ||
161 | if (!((addr | end) & ~PGDIR_MASK)) | ||
162 | empty_pud = pud; | ||
163 | do { | ||
164 | next = pud_addr_end(addr, end); | ||
165 | if (pud_none_or_clear_bad(pud)) | ||
166 | continue; | ||
167 | clear_pmd_range(tlb, pud, addr, next); | ||
168 | } while (pud++, addr = next, addr != end); | ||
169 | |||
170 | if (empty_pud) { | ||
171 | pgd_clear(pgd); | ||
172 | pud_free_tlb(tlb, empty_pud); | ||
173 | } | ||
174 | } | ||
175 | |||
176 | /* | ||
177 | * This function clears user-level page tables of a process. | ||
178 | * Unlike other pagetable walks, some memory layouts might give end 0. | ||
179 | * Must be called with pagetable lock held. | ||
180 | */ | ||
181 | void clear_page_range(struct mmu_gather *tlb, | ||
182 | unsigned long addr, unsigned long end) | ||
183 | { | ||
184 | pgd_t *pgd; | ||
185 | unsigned long next; | ||
186 | |||
187 | pgd = pgd_offset(tlb->mm, addr); | ||
188 | do { | ||
189 | next = pgd_addr_end(addr, end); | ||
190 | if (pgd_none_or_clear_bad(pgd)) | ||
191 | continue; | ||
192 | clear_pud_range(tlb, pgd, addr, next); | ||
193 | } while (pgd++, addr = next, addr != end); | ||
194 | } | ||
195 | |||
196 | pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | ||
197 | { | ||
198 | if (!pmd_present(*pmd)) { | ||
199 | struct page *new; | ||
200 | |||
201 | spin_unlock(&mm->page_table_lock); | ||
202 | new = pte_alloc_one(mm, address); | ||
203 | spin_lock(&mm->page_table_lock); | ||
204 | if (!new) | ||
205 | return NULL; | ||
206 | /* | ||
207 | * Because we dropped the lock, we should re-check the | ||
208 | * entry, as somebody else could have populated it.. | ||
209 | */ | ||
210 | if (pmd_present(*pmd)) { | ||
211 | pte_free(new); | ||
212 | goto out; | ||
213 | } | ||
214 | mm->nr_ptes++; | ||
215 | inc_page_state(nr_page_table_pages); | ||
216 | pmd_populate(mm, pmd, new); | ||
217 | } | ||
218 | out: | ||
219 | return pte_offset_map(pmd, address); | ||
220 | } | ||
221 | |||
222 | pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | ||
223 | { | ||
224 | if (!pmd_present(*pmd)) { | ||
225 | pte_t *new; | ||
226 | |||
227 | spin_unlock(&mm->page_table_lock); | ||
228 | new = pte_alloc_one_kernel(mm, address); | ||
229 | spin_lock(&mm->page_table_lock); | ||
230 | if (!new) | ||
231 | return NULL; | ||
232 | |||
233 | /* | ||
234 | * Because we dropped the lock, we should re-check the | ||
235 | * entry, as somebody else could have populated it.. | ||
236 | */ | ||
237 | if (pmd_present(*pmd)) { | ||
238 | pte_free_kernel(new); | ||
239 | goto out; | ||
240 | } | ||
241 | pmd_populate_kernel(mm, pmd, new); | ||
242 | } | ||
243 | out: | ||
244 | return pte_offset_kernel(pmd, address); | ||
245 | } | ||
246 | |||
247 | /* | ||
248 | * copy one vm_area from one task to the other. Assumes the page tables | ||
249 | * already present in the new task to be cleared in the whole range | ||
250 | * covered by this vma. | ||
251 | * | ||
252 | * dst->page_table_lock is held on entry and exit, | ||
253 | * but may be dropped within p[mg]d_alloc() and pte_alloc_map(). | ||
254 | */ | ||
255 | |||
256 | static inline void | ||
257 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | ||
258 | pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags, | ||
259 | unsigned long addr) | ||
260 | { | ||
261 | pte_t pte = *src_pte; | ||
262 | struct page *page; | ||
263 | unsigned long pfn; | ||
264 | |||
265 | /* pte contains position in swap or file, so copy. */ | ||
266 | if (unlikely(!pte_present(pte))) { | ||
267 | if (!pte_file(pte)) { | ||
268 | swap_duplicate(pte_to_swp_entry(pte)); | ||
269 | /* make sure dst_mm is on swapoff's mmlist. */ | ||
270 | if (unlikely(list_empty(&dst_mm->mmlist))) { | ||
271 | spin_lock(&mmlist_lock); | ||
272 | list_add(&dst_mm->mmlist, &src_mm->mmlist); | ||
273 | spin_unlock(&mmlist_lock); | ||
274 | } | ||
275 | } | ||
276 | set_pte_at(dst_mm, addr, dst_pte, pte); | ||
277 | return; | ||
278 | } | ||
279 | |||
280 | pfn = pte_pfn(pte); | ||
281 | /* the pte points outside of valid memory, the | ||
282 | * mapping is assumed to be good, meaningful | ||
283 | * and not mapped via rmap - duplicate the | ||
284 | * mapping as is. | ||
285 | */ | ||
286 | page = NULL; | ||
287 | if (pfn_valid(pfn)) | ||
288 | page = pfn_to_page(pfn); | ||
289 | |||
290 | if (!page || PageReserved(page)) { | ||
291 | set_pte_at(dst_mm, addr, dst_pte, pte); | ||
292 | return; | ||
293 | } | ||
294 | |||
295 | /* | ||
296 | * If it's a COW mapping, write protect it both | ||
297 | * in the parent and the child | ||
298 | */ | ||
299 | if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) { | ||
300 | ptep_set_wrprotect(src_mm, addr, src_pte); | ||
301 | pte = *src_pte; | ||
302 | } | ||
303 | |||
304 | /* | ||
305 | * If it's a shared mapping, mark it clean in | ||
306 | * the child | ||
307 | */ | ||
308 | if (vm_flags & VM_SHARED) | ||
309 | pte = pte_mkclean(pte); | ||
310 | pte = pte_mkold(pte); | ||
311 | get_page(page); | ||
312 | inc_mm_counter(dst_mm, rss); | ||
313 | if (PageAnon(page)) | ||
314 | inc_mm_counter(dst_mm, anon_rss); | ||
315 | set_pte_at(dst_mm, addr, dst_pte, pte); | ||
316 | page_dup_rmap(page); | ||
317 | } | ||
318 | |||
319 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | ||
320 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | ||
321 | unsigned long addr, unsigned long end) | ||
322 | { | ||
323 | pte_t *src_pte, *dst_pte; | ||
324 | unsigned long vm_flags = vma->vm_flags; | ||
325 | int progress; | ||
326 | |||
327 | again: | ||
328 | dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr); | ||
329 | if (!dst_pte) | ||
330 | return -ENOMEM; | ||
331 | src_pte = pte_offset_map_nested(src_pmd, addr); | ||
332 | |||
333 | progress = 0; | ||
334 | spin_lock(&src_mm->page_table_lock); | ||
335 | do { | ||
336 | /* | ||
337 | * We are holding two locks at this point - either of them | ||
338 | * could generate latencies in another task on another CPU. | ||
339 | */ | ||
340 | if (progress >= 32 && (need_resched() || | ||
341 | need_lockbreak(&src_mm->page_table_lock) || | ||
342 | need_lockbreak(&dst_mm->page_table_lock))) | ||
343 | break; | ||
344 | if (pte_none(*src_pte)) { | ||
345 | progress++; | ||
346 | continue; | ||
347 | } | ||
348 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr); | ||
349 | progress += 8; | ||
350 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | ||
351 | spin_unlock(&src_mm->page_table_lock); | ||
352 | |||
353 | pte_unmap_nested(src_pte - 1); | ||
354 | pte_unmap(dst_pte - 1); | ||
355 | cond_resched_lock(&dst_mm->page_table_lock); | ||
356 | if (addr != end) | ||
357 | goto again; | ||
358 | return 0; | ||
359 | } | ||
360 | |||
361 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | ||
362 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | ||
363 | unsigned long addr, unsigned long end) | ||
364 | { | ||
365 | pmd_t *src_pmd, *dst_pmd; | ||
366 | unsigned long next; | ||
367 | |||
368 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | ||
369 | if (!dst_pmd) | ||
370 | return -ENOMEM; | ||
371 | src_pmd = pmd_offset(src_pud, addr); | ||
372 | do { | ||
373 | next = pmd_addr_end(addr, end); | ||
374 | if (pmd_none_or_clear_bad(src_pmd)) | ||
375 | continue; | ||
376 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | ||
377 | vma, addr, next)) | ||
378 | return -ENOMEM; | ||
379 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | ||
380 | return 0; | ||
381 | } | ||
382 | |||
383 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | ||
384 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | ||
385 | unsigned long addr, unsigned long end) | ||
386 | { | ||
387 | pud_t *src_pud, *dst_pud; | ||
388 | unsigned long next; | ||
389 | |||
390 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | ||
391 | if (!dst_pud) | ||
392 | return -ENOMEM; | ||
393 | src_pud = pud_offset(src_pgd, addr); | ||
394 | do { | ||
395 | next = pud_addr_end(addr, end); | ||
396 | if (pud_none_or_clear_bad(src_pud)) | ||
397 | continue; | ||
398 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | ||
399 | vma, addr, next)) | ||
400 | return -ENOMEM; | ||
401 | } while (dst_pud++, src_pud++, addr = next, addr != end); | ||
402 | return 0; | ||
403 | } | ||
404 | |||
405 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | ||
406 | struct vm_area_struct *vma) | ||
407 | { | ||
408 | pgd_t *src_pgd, *dst_pgd; | ||
409 | unsigned long next; | ||
410 | unsigned long addr = vma->vm_start; | ||
411 | unsigned long end = vma->vm_end; | ||
412 | |||
413 | if (is_vm_hugetlb_page(vma)) | ||
414 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | ||
415 | |||
416 | dst_pgd = pgd_offset(dst_mm, addr); | ||
417 | src_pgd = pgd_offset(src_mm, addr); | ||
418 | do { | ||
419 | next = pgd_addr_end(addr, end); | ||
420 | if (pgd_none_or_clear_bad(src_pgd)) | ||
421 | continue; | ||
422 | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | ||
423 | vma, addr, next)) | ||
424 | return -ENOMEM; | ||
425 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | ||
426 | return 0; | ||
427 | } | ||
428 | |||
429 | static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | ||
430 | unsigned long addr, unsigned long end, | ||
431 | struct zap_details *details) | ||
432 | { | ||
433 | pte_t *pte; | ||
434 | |||
435 | pte = pte_offset_map(pmd, addr); | ||
436 | do { | ||
437 | pte_t ptent = *pte; | ||
438 | if (pte_none(ptent)) | ||
439 | continue; | ||
440 | if (pte_present(ptent)) { | ||
441 | struct page *page = NULL; | ||
442 | unsigned long pfn = pte_pfn(ptent); | ||
443 | if (pfn_valid(pfn)) { | ||
444 | page = pfn_to_page(pfn); | ||
445 | if (PageReserved(page)) | ||
446 | page = NULL; | ||
447 | } | ||
448 | if (unlikely(details) && page) { | ||
449 | /* | ||
450 | * unmap_shared_mapping_pages() wants to | ||
451 | * invalidate cache without truncating: | ||
452 | * unmap shared but keep private pages. | ||
453 | */ | ||
454 | if (details->check_mapping && | ||
455 | details->check_mapping != page->mapping) | ||
456 | continue; | ||
457 | /* | ||
458 | * Each page->index must be checked when | ||
459 | * invalidating or truncating nonlinear. | ||
460 | */ | ||
461 | if (details->nonlinear_vma && | ||
462 | (page->index < details->first_index || | ||
463 | page->index > details->last_index)) | ||
464 | continue; | ||
465 | } | ||
466 | ptent = ptep_get_and_clear(tlb->mm, addr, pte); | ||
467 | tlb_remove_tlb_entry(tlb, pte, addr); | ||
468 | if (unlikely(!page)) | ||
469 | continue; | ||
470 | if (unlikely(details) && details->nonlinear_vma | ||
471 | && linear_page_index(details->nonlinear_vma, | ||
472 | addr) != page->index) | ||
473 | set_pte_at(tlb->mm, addr, pte, | ||
474 | pgoff_to_pte(page->index)); | ||
475 | if (pte_dirty(ptent)) | ||
476 | set_page_dirty(page); | ||
477 | if (PageAnon(page)) | ||
478 | dec_mm_counter(tlb->mm, anon_rss); | ||
479 | else if (pte_young(ptent)) | ||
480 | mark_page_accessed(page); | ||
481 | tlb->freed++; | ||
482 | page_remove_rmap(page); | ||
483 | tlb_remove_page(tlb, page); | ||
484 | continue; | ||
485 | } | ||
486 | /* | ||
487 | * If details->check_mapping, we leave swap entries; | ||
488 | * if details->nonlinear_vma, we leave file entries. | ||
489 | */ | ||
490 | if (unlikely(details)) | ||
491 | continue; | ||
492 | if (!pte_file(ptent)) | ||
493 | free_swap_and_cache(pte_to_swp_entry(ptent)); | ||
494 | pte_clear(tlb->mm, addr, pte); | ||
495 | } while (pte++, addr += PAGE_SIZE, addr != end); | ||
496 | pte_unmap(pte - 1); | ||
497 | } | ||
498 | |||
499 | static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud, | ||
500 | unsigned long addr, unsigned long end, | ||
501 | struct zap_details *details) | ||
502 | { | ||
503 | pmd_t *pmd; | ||
504 | unsigned long next; | ||
505 | |||
506 | pmd = pmd_offset(pud, addr); | ||
507 | do { | ||
508 | next = pmd_addr_end(addr, end); | ||
509 | if (pmd_none_or_clear_bad(pmd)) | ||
510 | continue; | ||
511 | zap_pte_range(tlb, pmd, addr, next, details); | ||
512 | } while (pmd++, addr = next, addr != end); | ||
513 | } | ||
514 | |||
515 | static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | ||
516 | unsigned long addr, unsigned long end, | ||
517 | struct zap_details *details) | ||
518 | { | ||
519 | pud_t *pud; | ||
520 | unsigned long next; | ||
521 | |||
522 | pud = pud_offset(pgd, addr); | ||
523 | do { | ||
524 | next = pud_addr_end(addr, end); | ||
525 | if (pud_none_or_clear_bad(pud)) | ||
526 | continue; | ||
527 | zap_pmd_range(tlb, pud, addr, next, details); | ||
528 | } while (pud++, addr = next, addr != end); | ||
529 | } | ||
530 | |||
531 | static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | ||
532 | unsigned long addr, unsigned long end, | ||
533 | struct zap_details *details) | ||
534 | { | ||
535 | pgd_t *pgd; | ||
536 | unsigned long next; | ||
537 | |||
538 | if (details && !details->check_mapping && !details->nonlinear_vma) | ||
539 | details = NULL; | ||
540 | |||
541 | BUG_ON(addr >= end); | ||
542 | tlb_start_vma(tlb, vma); | ||
543 | pgd = pgd_offset(vma->vm_mm, addr); | ||
544 | do { | ||
545 | next = pgd_addr_end(addr, end); | ||
546 | if (pgd_none_or_clear_bad(pgd)) | ||
547 | continue; | ||
548 | zap_pud_range(tlb, pgd, addr, next, details); | ||
549 | } while (pgd++, addr = next, addr != end); | ||
550 | tlb_end_vma(tlb, vma); | ||
551 | } | ||
552 | |||
553 | #ifdef CONFIG_PREEMPT | ||
554 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | ||
555 | #else | ||
556 | /* No preempt: go for improved straight-line efficiency */ | ||
557 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | ||
558 | #endif | ||
559 | |||
560 | /** | ||
561 | * unmap_vmas - unmap a range of memory covered by a list of vma's | ||
562 | * @tlbp: address of the caller's struct mmu_gather | ||
563 | * @mm: the controlling mm_struct | ||
564 | * @vma: the starting vma | ||
565 | * @start_addr: virtual address at which to start unmapping | ||
566 | * @end_addr: virtual address at which to end unmapping | ||
567 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | ||
568 | * @details: details of nonlinear truncation or shared cache invalidation | ||
569 | * | ||
570 | * Returns the number of vma's which were covered by the unmapping. | ||
571 | * | ||
572 | * Unmap all pages in the vma list. Called under page_table_lock. | ||
573 | * | ||
574 | * We aim to not hold page_table_lock for too long (for scheduling latency | ||
575 | * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | ||
576 | * return the ending mmu_gather to the caller. | ||
577 | * | ||
578 | * Only addresses between `start' and `end' will be unmapped. | ||
579 | * | ||
580 | * The VMA list must be sorted in ascending virtual address order. | ||
581 | * | ||
582 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | ||
583 | * range after unmap_vmas() returns. So the only responsibility here is to | ||
584 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | ||
585 | * drops the lock and schedules. | ||
586 | */ | ||
587 | int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, | ||
588 | struct vm_area_struct *vma, unsigned long start_addr, | ||
589 | unsigned long end_addr, unsigned long *nr_accounted, | ||
590 | struct zap_details *details) | ||
591 | { | ||
592 | unsigned long zap_bytes = ZAP_BLOCK_SIZE; | ||
593 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ | ||
594 | int tlb_start_valid = 0; | ||
595 | int ret = 0; | ||
596 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; | ||
597 | int fullmm = tlb_is_full_mm(*tlbp); | ||
598 | |||
599 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | ||
600 | unsigned long start; | ||
601 | unsigned long end; | ||
602 | |||
603 | start = max(vma->vm_start, start_addr); | ||
604 | if (start >= vma->vm_end) | ||
605 | continue; | ||
606 | end = min(vma->vm_end, end_addr); | ||
607 | if (end <= vma->vm_start) | ||
608 | continue; | ||
609 | |||
610 | if (vma->vm_flags & VM_ACCOUNT) | ||
611 | *nr_accounted += (end - start) >> PAGE_SHIFT; | ||
612 | |||
613 | ret++; | ||
614 | while (start != end) { | ||
615 | unsigned long block; | ||
616 | |||
617 | if (!tlb_start_valid) { | ||
618 | tlb_start = start; | ||
619 | tlb_start_valid = 1; | ||
620 | } | ||
621 | |||
622 | if (is_vm_hugetlb_page(vma)) { | ||
623 | block = end - start; | ||
624 | unmap_hugepage_range(vma, start, end); | ||
625 | } else { | ||
626 | block = min(zap_bytes, end - start); | ||
627 | unmap_page_range(*tlbp, vma, start, | ||
628 | start + block, details); | ||
629 | } | ||
630 | |||
631 | start += block; | ||
632 | zap_bytes -= block; | ||
633 | if ((long)zap_bytes > 0) | ||
634 | continue; | ||
635 | |||
636 | tlb_finish_mmu(*tlbp, tlb_start, start); | ||
637 | |||
638 | if (need_resched() || | ||
639 | need_lockbreak(&mm->page_table_lock) || | ||
640 | (i_mmap_lock && need_lockbreak(i_mmap_lock))) { | ||
641 | if (i_mmap_lock) { | ||
642 | /* must reset count of rss freed */ | ||
643 | *tlbp = tlb_gather_mmu(mm, fullmm); | ||
644 | details->break_addr = start; | ||
645 | goto out; | ||
646 | } | ||
647 | spin_unlock(&mm->page_table_lock); | ||
648 | cond_resched(); | ||
649 | spin_lock(&mm->page_table_lock); | ||
650 | } | ||
651 | |||
652 | *tlbp = tlb_gather_mmu(mm, fullmm); | ||
653 | tlb_start_valid = 0; | ||
654 | zap_bytes = ZAP_BLOCK_SIZE; | ||
655 | } | ||
656 | } | ||
657 | out: | ||
658 | return ret; | ||
659 | } | ||
660 | |||
661 | /** | ||
662 | * zap_page_range - remove user pages in a given range | ||
663 | * @vma: vm_area_struct holding the applicable pages | ||
664 | * @address: starting address of pages to zap | ||
665 | * @size: number of bytes to zap | ||
666 | * @details: details of nonlinear truncation or shared cache invalidation | ||
667 | */ | ||
668 | void zap_page_range(struct vm_area_struct *vma, unsigned long address, | ||
669 | unsigned long size, struct zap_details *details) | ||
670 | { | ||
671 | struct mm_struct *mm = vma->vm_mm; | ||
672 | struct mmu_gather *tlb; | ||
673 | unsigned long end = address + size; | ||
674 | unsigned long nr_accounted = 0; | ||
675 | |||
676 | if (is_vm_hugetlb_page(vma)) { | ||
677 | zap_hugepage_range(vma, address, size); | ||
678 | return; | ||
679 | } | ||
680 | |||
681 | lru_add_drain(); | ||
682 | spin_lock(&mm->page_table_lock); | ||
683 | tlb = tlb_gather_mmu(mm, 0); | ||
684 | unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details); | ||
685 | tlb_finish_mmu(tlb, address, end); | ||
686 | spin_unlock(&mm->page_table_lock); | ||
687 | } | ||
688 | |||
689 | /* | ||
690 | * Do a quick page-table lookup for a single page. | ||
691 | * mm->page_table_lock must be held. | ||
692 | */ | ||
693 | static struct page * | ||
694 | __follow_page(struct mm_struct *mm, unsigned long address, int read, int write) | ||
695 | { | ||
696 | pgd_t *pgd; | ||
697 | pud_t *pud; | ||
698 | pmd_t *pmd; | ||
699 | pte_t *ptep, pte; | ||
700 | unsigned long pfn; | ||
701 | struct page *page; | ||
702 | |||
703 | page = follow_huge_addr(mm, address, write); | ||
704 | if (! IS_ERR(page)) | ||
705 | return page; | ||
706 | |||
707 | pgd = pgd_offset(mm, address); | ||
708 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | ||
709 | goto out; | ||
710 | |||
711 | pud = pud_offset(pgd, address); | ||
712 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | ||
713 | goto out; | ||
714 | |||
715 | pmd = pmd_offset(pud, address); | ||
716 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | ||
717 | goto out; | ||
718 | if (pmd_huge(*pmd)) | ||
719 | return follow_huge_pmd(mm, address, pmd, write); | ||
720 | |||
721 | ptep = pte_offset_map(pmd, address); | ||
722 | if (!ptep) | ||
723 | goto out; | ||
724 | |||
725 | pte = *ptep; | ||
726 | pte_unmap(ptep); | ||
727 | if (pte_present(pte)) { | ||
728 | if (write && !pte_write(pte)) | ||
729 | goto out; | ||
730 | if (read && !pte_read(pte)) | ||
731 | goto out; | ||
732 | pfn = pte_pfn(pte); | ||
733 | if (pfn_valid(pfn)) { | ||
734 | page = pfn_to_page(pfn); | ||
735 | if (write && !pte_dirty(pte) && !PageDirty(page)) | ||
736 | set_page_dirty(page); | ||
737 | mark_page_accessed(page); | ||
738 | return page; | ||
739 | } | ||
740 | } | ||
741 | |||
742 | out: | ||
743 | return NULL; | ||
744 | } | ||
745 | |||
746 | struct page * | ||
747 | follow_page(struct mm_struct *mm, unsigned long address, int write) | ||
748 | { | ||
749 | return __follow_page(mm, address, /*read*/0, write); | ||
750 | } | ||
751 | |||
752 | int | ||
753 | check_user_page_readable(struct mm_struct *mm, unsigned long address) | ||
754 | { | ||
755 | return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL; | ||
756 | } | ||
757 | |||
758 | EXPORT_SYMBOL(check_user_page_readable); | ||
759 | |||
760 | /* | ||
761 | * Given a physical address, is there a useful struct page pointing to | ||
762 | * it? This may become more complex in the future if we start dealing | ||
763 | * with IO-aperture pages for direct-IO. | ||
764 | */ | ||
765 | |||
766 | static inline struct page *get_page_map(struct page *page) | ||
767 | { | ||
768 | if (!pfn_valid(page_to_pfn(page))) | ||
769 | return NULL; | ||
770 | return page; | ||
771 | } | ||
772 | |||
773 | |||
774 | static inline int | ||
775 | untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma, | ||
776 | unsigned long address) | ||
777 | { | ||
778 | pgd_t *pgd; | ||
779 | pud_t *pud; | ||
780 | pmd_t *pmd; | ||
781 | |||
782 | /* Check if the vma is for an anonymous mapping. */ | ||
783 | if (vma->vm_ops && vma->vm_ops->nopage) | ||
784 | return 0; | ||
785 | |||
786 | /* Check if page directory entry exists. */ | ||
787 | pgd = pgd_offset(mm, address); | ||
788 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | ||
789 | return 1; | ||
790 | |||
791 | pud = pud_offset(pgd, address); | ||
792 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | ||
793 | return 1; | ||
794 | |||
795 | /* Check if page middle directory entry exists. */ | ||
796 | pmd = pmd_offset(pud, address); | ||
797 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | ||
798 | return 1; | ||
799 | |||
800 | /* There is a pte slot for 'address' in 'mm'. */ | ||
801 | return 0; | ||
802 | } | ||
803 | |||
804 | |||
805 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | ||
806 | unsigned long start, int len, int write, int force, | ||
807 | struct page **pages, struct vm_area_struct **vmas) | ||
808 | { | ||
809 | int i; | ||
810 | unsigned int flags; | ||
811 | |||
812 | /* | ||
813 | * Require read or write permissions. | ||
814 | * If 'force' is set, we only require the "MAY" flags. | ||
815 | */ | ||
816 | flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | ||
817 | flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | ||
818 | i = 0; | ||
819 | |||
820 | do { | ||
821 | struct vm_area_struct * vma; | ||
822 | |||
823 | vma = find_extend_vma(mm, start); | ||
824 | if (!vma && in_gate_area(tsk, start)) { | ||
825 | unsigned long pg = start & PAGE_MASK; | ||
826 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | ||
827 | pgd_t *pgd; | ||
828 | pud_t *pud; | ||
829 | pmd_t *pmd; | ||
830 | pte_t *pte; | ||
831 | if (write) /* user gate pages are read-only */ | ||
832 | return i ? : -EFAULT; | ||
833 | if (pg > TASK_SIZE) | ||
834 | pgd = pgd_offset_k(pg); | ||
835 | else | ||
836 | pgd = pgd_offset_gate(mm, pg); | ||
837 | BUG_ON(pgd_none(*pgd)); | ||
838 | pud = pud_offset(pgd, pg); | ||
839 | BUG_ON(pud_none(*pud)); | ||
840 | pmd = pmd_offset(pud, pg); | ||
841 | BUG_ON(pmd_none(*pmd)); | ||
842 | pte = pte_offset_map(pmd, pg); | ||
843 | BUG_ON(pte_none(*pte)); | ||
844 | if (pages) { | ||
845 | pages[i] = pte_page(*pte); | ||
846 | get_page(pages[i]); | ||
847 | } | ||
848 | pte_unmap(pte); | ||
849 | if (vmas) | ||
850 | vmas[i] = gate_vma; | ||
851 | i++; | ||
852 | start += PAGE_SIZE; | ||
853 | len--; | ||
854 | continue; | ||
855 | } | ||
856 | |||
857 | if (!vma || (vma->vm_flags & VM_IO) | ||
858 | || !(flags & vma->vm_flags)) | ||
859 | return i ? : -EFAULT; | ||
860 | |||
861 | if (is_vm_hugetlb_page(vma)) { | ||
862 | i = follow_hugetlb_page(mm, vma, pages, vmas, | ||
863 | &start, &len, i); | ||
864 | continue; | ||
865 | } | ||
866 | spin_lock(&mm->page_table_lock); | ||
867 | do { | ||
868 | struct page *map; | ||
869 | int lookup_write = write; | ||
870 | |||
871 | cond_resched_lock(&mm->page_table_lock); | ||
872 | while (!(map = follow_page(mm, start, lookup_write))) { | ||
873 | /* | ||
874 | * Shortcut for anonymous pages. We don't want | ||
875 | * to force the creation of pages tables for | ||
876 | * insanly big anonymously mapped areas that | ||
877 | * nobody touched so far. This is important | ||
878 | * for doing a core dump for these mappings. | ||
879 | */ | ||
880 | if (!lookup_write && | ||
881 | untouched_anonymous_page(mm,vma,start)) { | ||
882 | map = ZERO_PAGE(start); | ||
883 | break; | ||
884 | } | ||
885 | spin_unlock(&mm->page_table_lock); | ||
886 | switch (handle_mm_fault(mm,vma,start,write)) { | ||
887 | case VM_FAULT_MINOR: | ||
888 | tsk->min_flt++; | ||
889 | break; | ||
890 | case VM_FAULT_MAJOR: | ||
891 | tsk->maj_flt++; | ||
892 | break; | ||
893 | case VM_FAULT_SIGBUS: | ||
894 | return i ? i : -EFAULT; | ||
895 | case VM_FAULT_OOM: | ||
896 | return i ? i : -ENOMEM; | ||
897 | default: | ||
898 | BUG(); | ||
899 | } | ||
900 | /* | ||
901 | * Now that we have performed a write fault | ||
902 | * and surely no longer have a shared page we | ||
903 | * shouldn't write, we shouldn't ignore an | ||
904 | * unwritable page in the page table if | ||
905 | * we are forcing write access. | ||
906 | */ | ||
907 | lookup_write = write && !force; | ||
908 | spin_lock(&mm->page_table_lock); | ||
909 | } | ||
910 | if (pages) { | ||
911 | pages[i] = get_page_map(map); | ||
912 | if (!pages[i]) { | ||
913 | spin_unlock(&mm->page_table_lock); | ||
914 | while (i--) | ||
915 | page_cache_release(pages[i]); | ||
916 | i = -EFAULT; | ||
917 | goto out; | ||
918 | } | ||
919 | flush_dcache_page(pages[i]); | ||
920 | if (!PageReserved(pages[i])) | ||
921 | page_cache_get(pages[i]); | ||
922 | } | ||
923 | if (vmas) | ||
924 | vmas[i] = vma; | ||
925 | i++; | ||
926 | start += PAGE_SIZE; | ||
927 | len--; | ||
928 | } while(len && start < vma->vm_end); | ||
929 | spin_unlock(&mm->page_table_lock); | ||
930 | } while(len); | ||
931 | out: | ||
932 | return i; | ||
933 | } | ||
934 | |||
935 | EXPORT_SYMBOL(get_user_pages); | ||
936 | |||
937 | static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, | ||
938 | unsigned long addr, unsigned long end, pgprot_t prot) | ||
939 | { | ||
940 | pte_t *pte; | ||
941 | |||
942 | pte = pte_alloc_map(mm, pmd, addr); | ||
943 | if (!pte) | ||
944 | return -ENOMEM; | ||
945 | do { | ||
946 | pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot)); | ||
947 | BUG_ON(!pte_none(*pte)); | ||
948 | set_pte_at(mm, addr, pte, zero_pte); | ||
949 | } while (pte++, addr += PAGE_SIZE, addr != end); | ||
950 | pte_unmap(pte - 1); | ||
951 | return 0; | ||
952 | } | ||
953 | |||
954 | static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, | ||
955 | unsigned long addr, unsigned long end, pgprot_t prot) | ||
956 | { | ||
957 | pmd_t *pmd; | ||
958 | unsigned long next; | ||
959 | |||
960 | pmd = pmd_alloc(mm, pud, addr); | ||
961 | if (!pmd) | ||
962 | return -ENOMEM; | ||
963 | do { | ||
964 | next = pmd_addr_end(addr, end); | ||
965 | if (zeromap_pte_range(mm, pmd, addr, next, prot)) | ||
966 | return -ENOMEM; | ||
967 | } while (pmd++, addr = next, addr != end); | ||
968 | return 0; | ||
969 | } | ||
970 | |||
971 | static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, | ||
972 | unsigned long addr, unsigned long end, pgprot_t prot) | ||
973 | { | ||
974 | pud_t *pud; | ||
975 | unsigned long next; | ||
976 | |||
977 | pud = pud_alloc(mm, pgd, addr); | ||
978 | if (!pud) | ||
979 | return -ENOMEM; | ||
980 | do { | ||
981 | next = pud_addr_end(addr, end); | ||
982 | if (zeromap_pmd_range(mm, pud, addr, next, prot)) | ||
983 | return -ENOMEM; | ||
984 | } while (pud++, addr = next, addr != end); | ||
985 | return 0; | ||
986 | } | ||
987 | |||
988 | int zeromap_page_range(struct vm_area_struct *vma, | ||
989 | unsigned long addr, unsigned long size, pgprot_t prot) | ||
990 | { | ||
991 | pgd_t *pgd; | ||
992 | unsigned long next; | ||
993 | unsigned long end = addr + size; | ||
994 | struct mm_struct *mm = vma->vm_mm; | ||
995 | int err; | ||
996 | |||
997 | BUG_ON(addr >= end); | ||
998 | pgd = pgd_offset(mm, addr); | ||
999 | flush_cache_range(vma, addr, end); | ||
1000 | spin_lock(&mm->page_table_lock); | ||
1001 | do { | ||
1002 | next = pgd_addr_end(addr, end); | ||
1003 | err = zeromap_pud_range(mm, pgd, addr, next, prot); | ||
1004 | if (err) | ||
1005 | break; | ||
1006 | } while (pgd++, addr = next, addr != end); | ||
1007 | spin_unlock(&mm->page_table_lock); | ||
1008 | return err; | ||
1009 | } | ||
1010 | |||
1011 | /* | ||
1012 | * maps a range of physical memory into the requested pages. the old | ||
1013 | * mappings are removed. any references to nonexistent pages results | ||
1014 | * in null mappings (currently treated as "copy-on-access") | ||
1015 | */ | ||
1016 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | ||
1017 | unsigned long addr, unsigned long end, | ||
1018 | unsigned long pfn, pgprot_t prot) | ||
1019 | { | ||
1020 | pte_t *pte; | ||
1021 | |||
1022 | pte = pte_alloc_map(mm, pmd, addr); | ||
1023 | if (!pte) | ||
1024 | return -ENOMEM; | ||
1025 | do { | ||
1026 | BUG_ON(!pte_none(*pte)); | ||
1027 | if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) | ||
1028 | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); | ||
1029 | pfn++; | ||
1030 | } while (pte++, addr += PAGE_SIZE, addr != end); | ||
1031 | pte_unmap(pte - 1); | ||
1032 | return 0; | ||
1033 | } | ||
1034 | |||
1035 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | ||
1036 | unsigned long addr, unsigned long end, | ||
1037 | unsigned long pfn, pgprot_t prot) | ||
1038 | { | ||
1039 | pmd_t *pmd; | ||
1040 | unsigned long next; | ||
1041 | |||
1042 | pfn -= addr >> PAGE_SHIFT; | ||
1043 | pmd = pmd_alloc(mm, pud, addr); | ||
1044 | if (!pmd) | ||
1045 | return -ENOMEM; | ||
1046 | do { | ||
1047 | next = pmd_addr_end(addr, end); | ||
1048 | if (remap_pte_range(mm, pmd, addr, next, | ||
1049 | pfn + (addr >> PAGE_SHIFT), prot)) | ||
1050 | return -ENOMEM; | ||
1051 | } while (pmd++, addr = next, addr != end); | ||
1052 | return 0; | ||
1053 | } | ||
1054 | |||
1055 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | ||
1056 | unsigned long addr, unsigned long end, | ||
1057 | unsigned long pfn, pgprot_t prot) | ||
1058 | { | ||
1059 | pud_t *pud; | ||
1060 | unsigned long next; | ||
1061 | |||
1062 | pfn -= addr >> PAGE_SHIFT; | ||
1063 | pud = pud_alloc(mm, pgd, addr); | ||
1064 | if (!pud) | ||
1065 | return -ENOMEM; | ||
1066 | do { | ||
1067 | next = pud_addr_end(addr, end); | ||
1068 | if (remap_pmd_range(mm, pud, addr, next, | ||
1069 | pfn + (addr >> PAGE_SHIFT), prot)) | ||
1070 | return -ENOMEM; | ||
1071 | } while (pud++, addr = next, addr != end); | ||
1072 | return 0; | ||
1073 | } | ||
1074 | |||
1075 | /* Note: this is only safe if the mm semaphore is held when called. */ | ||
1076 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | ||
1077 | unsigned long pfn, unsigned long size, pgprot_t prot) | ||
1078 | { | ||
1079 | pgd_t *pgd; | ||
1080 | unsigned long next; | ||
1081 | unsigned long end = addr + size; | ||
1082 | struct mm_struct *mm = vma->vm_mm; | ||
1083 | int err; | ||
1084 | |||
1085 | /* | ||
1086 | * Physically remapped pages are special. Tell the | ||
1087 | * rest of the world about it: | ||
1088 | * VM_IO tells people not to look at these pages | ||
1089 | * (accesses can have side effects). | ||
1090 | * VM_RESERVED tells swapout not to try to touch | ||
1091 | * this region. | ||
1092 | */ | ||
1093 | vma->vm_flags |= VM_IO | VM_RESERVED; | ||
1094 | |||
1095 | BUG_ON(addr >= end); | ||
1096 | pfn -= addr >> PAGE_SHIFT; | ||
1097 | pgd = pgd_offset(mm, addr); | ||
1098 | flush_cache_range(vma, addr, end); | ||
1099 | spin_lock(&mm->page_table_lock); | ||
1100 | do { | ||
1101 | next = pgd_addr_end(addr, end); | ||
1102 | err = remap_pud_range(mm, pgd, addr, next, | ||
1103 | pfn + (addr >> PAGE_SHIFT), prot); | ||
1104 | if (err) | ||
1105 | break; | ||
1106 | } while (pgd++, addr = next, addr != end); | ||
1107 | spin_unlock(&mm->page_table_lock); | ||
1108 | return err; | ||
1109 | } | ||
1110 | EXPORT_SYMBOL(remap_pfn_range); | ||
1111 | |||
1112 | /* | ||
1113 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | ||
1114 | * servicing faults for write access. In the normal case, do always want | ||
1115 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | ||
1116 | * that do not have writing enabled, when used by access_process_vm. | ||
1117 | */ | ||
1118 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | ||
1119 | { | ||
1120 | if (likely(vma->vm_flags & VM_WRITE)) | ||
1121 | pte = pte_mkwrite(pte); | ||
1122 | return pte; | ||
1123 | } | ||
1124 | |||
1125 | /* | ||
1126 | * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock | ||
1127 | */ | ||
1128 | static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, | ||
1129 | pte_t *page_table) | ||
1130 | { | ||
1131 | pte_t entry; | ||
1132 | |||
1133 | entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)), | ||
1134 | vma); | ||
1135 | ptep_establish(vma, address, page_table, entry); | ||
1136 | update_mmu_cache(vma, address, entry); | ||
1137 | lazy_mmu_prot_update(entry); | ||
1138 | } | ||
1139 | |||
1140 | /* | ||
1141 | * This routine handles present pages, when users try to write | ||
1142 | * to a shared page. It is done by copying the page to a new address | ||
1143 | * and decrementing the shared-page counter for the old page. | ||
1144 | * | ||
1145 | * Goto-purists beware: the only reason for goto's here is that it results | ||
1146 | * in better assembly code.. The "default" path will see no jumps at all. | ||
1147 | * | ||
1148 | * Note that this routine assumes that the protection checks have been | ||
1149 | * done by the caller (the low-level page fault routine in most cases). | ||
1150 | * Thus we can safely just mark it writable once we've done any necessary | ||
1151 | * COW. | ||
1152 | * | ||
1153 | * We also mark the page dirty at this point even though the page will | ||
1154 | * change only once the write actually happens. This avoids a few races, | ||
1155 | * and potentially makes it more efficient. | ||
1156 | * | ||
1157 | * We hold the mm semaphore and the page_table_lock on entry and exit | ||
1158 | * with the page_table_lock released. | ||
1159 | */ | ||
1160 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, | ||
1161 | unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) | ||
1162 | { | ||
1163 | struct page *old_page, *new_page; | ||
1164 | unsigned long pfn = pte_pfn(pte); | ||
1165 | pte_t entry; | ||
1166 | |||
1167 | if (unlikely(!pfn_valid(pfn))) { | ||
1168 | /* | ||
1169 | * This should really halt the system so it can be debugged or | ||
1170 | * at least the kernel stops what it's doing before it corrupts | ||
1171 | * data, but for the moment just pretend this is OOM. | ||
1172 | */ | ||
1173 | pte_unmap(page_table); | ||
1174 | printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", | ||
1175 | address); | ||
1176 | spin_unlock(&mm->page_table_lock); | ||
1177 | return VM_FAULT_OOM; | ||
1178 | } | ||
1179 | old_page = pfn_to_page(pfn); | ||
1180 | |||
1181 | if (!TestSetPageLocked(old_page)) { | ||
1182 | int reuse = can_share_swap_page(old_page); | ||
1183 | unlock_page(old_page); | ||
1184 | if (reuse) { | ||
1185 | flush_cache_page(vma, address, pfn); | ||
1186 | entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)), | ||
1187 | vma); | ||
1188 | ptep_set_access_flags(vma, address, page_table, entry, 1); | ||
1189 | update_mmu_cache(vma, address, entry); | ||
1190 | lazy_mmu_prot_update(entry); | ||
1191 | pte_unmap(page_table); | ||
1192 | spin_unlock(&mm->page_table_lock); | ||
1193 | return VM_FAULT_MINOR; | ||
1194 | } | ||
1195 | } | ||
1196 | pte_unmap(page_table); | ||
1197 | |||
1198 | /* | ||
1199 | * Ok, we need to copy. Oh, well.. | ||
1200 | */ | ||
1201 | if (!PageReserved(old_page)) | ||
1202 | page_cache_get(old_page); | ||
1203 | spin_unlock(&mm->page_table_lock); | ||
1204 | |||
1205 | if (unlikely(anon_vma_prepare(vma))) | ||
1206 | goto no_new_page; | ||
1207 | if (old_page == ZERO_PAGE(address)) { | ||
1208 | new_page = alloc_zeroed_user_highpage(vma, address); | ||
1209 | if (!new_page) | ||
1210 | goto no_new_page; | ||
1211 | } else { | ||
1212 | new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); | ||
1213 | if (!new_page) | ||
1214 | goto no_new_page; | ||
1215 | copy_user_highpage(new_page, old_page, address); | ||
1216 | } | ||
1217 | /* | ||
1218 | * Re-check the pte - we dropped the lock | ||
1219 | */ | ||
1220 | spin_lock(&mm->page_table_lock); | ||
1221 | page_table = pte_offset_map(pmd, address); | ||
1222 | if (likely(pte_same(*page_table, pte))) { | ||
1223 | if (PageAnon(old_page)) | ||
1224 | dec_mm_counter(mm, anon_rss); | ||
1225 | if (PageReserved(old_page)) | ||
1226 | inc_mm_counter(mm, rss); | ||
1227 | else | ||
1228 | page_remove_rmap(old_page); | ||
1229 | flush_cache_page(vma, address, pfn); | ||
1230 | break_cow(vma, new_page, address, page_table); | ||
1231 | lru_cache_add_active(new_page); | ||
1232 | page_add_anon_rmap(new_page, vma, address); | ||
1233 | |||
1234 | /* Free the old page.. */ | ||
1235 | new_page = old_page; | ||
1236 | } | ||
1237 | pte_unmap(page_table); | ||
1238 | page_cache_release(new_page); | ||
1239 | page_cache_release(old_page); | ||
1240 | spin_unlock(&mm->page_table_lock); | ||
1241 | return VM_FAULT_MINOR; | ||
1242 | |||
1243 | no_new_page: | ||
1244 | page_cache_release(old_page); | ||
1245 | return VM_FAULT_OOM; | ||
1246 | } | ||
1247 | |||
1248 | /* | ||
1249 | * Helper functions for unmap_mapping_range(). | ||
1250 | * | ||
1251 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | ||
1252 | * | ||
1253 | * We have to restart searching the prio_tree whenever we drop the lock, | ||
1254 | * since the iterator is only valid while the lock is held, and anyway | ||
1255 | * a later vma might be split and reinserted earlier while lock dropped. | ||
1256 | * | ||
1257 | * The list of nonlinear vmas could be handled more efficiently, using | ||
1258 | * a placeholder, but handle it in the same way until a need is shown. | ||
1259 | * It is important to search the prio_tree before nonlinear list: a vma | ||
1260 | * may become nonlinear and be shifted from prio_tree to nonlinear list | ||
1261 | * while the lock is dropped; but never shifted from list to prio_tree. | ||
1262 | * | ||
1263 | * In order to make forward progress despite restarting the search, | ||
1264 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | ||
1265 | * quickly skip it next time around. Since the prio_tree search only | ||
1266 | * shows us those vmas affected by unmapping the range in question, we | ||
1267 | * can't efficiently keep all vmas in step with mapping->truncate_count: | ||
1268 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | ||
1269 | * mapping->truncate_count and vma->vm_truncate_count are protected by | ||
1270 | * i_mmap_lock. | ||
1271 | * | ||
1272 | * In order to make forward progress despite repeatedly restarting some | ||
1273 | * large vma, note the break_addr set by unmap_vmas when it breaks out: | ||
1274 | * and restart from that address when we reach that vma again. It might | ||
1275 | * have been split or merged, shrunk or extended, but never shifted: so | ||
1276 | * restart_addr remains valid so long as it remains in the vma's range. | ||
1277 | * unmap_mapping_range forces truncate_count to leap over page-aligned | ||
1278 | * values so we can save vma's restart_addr in its truncate_count field. | ||
1279 | */ | ||
1280 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | ||
1281 | |||
1282 | static void reset_vma_truncate_counts(struct address_space *mapping) | ||
1283 | { | ||
1284 | struct vm_area_struct *vma; | ||
1285 | struct prio_tree_iter iter; | ||
1286 | |||
1287 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | ||
1288 | vma->vm_truncate_count = 0; | ||
1289 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | ||
1290 | vma->vm_truncate_count = 0; | ||
1291 | } | ||
1292 | |||
1293 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | ||
1294 | unsigned long start_addr, unsigned long end_addr, | ||
1295 | struct zap_details *details) | ||
1296 | { | ||
1297 | unsigned long restart_addr; | ||
1298 | int need_break; | ||
1299 | |||
1300 | again: | ||
1301 | restart_addr = vma->vm_truncate_count; | ||
1302 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | ||
1303 | start_addr = restart_addr; | ||
1304 | if (start_addr >= end_addr) { | ||
1305 | /* Top of vma has been split off since last time */ | ||
1306 | vma->vm_truncate_count = details->truncate_count; | ||
1307 | return 0; | ||
1308 | } | ||
1309 | } | ||
1310 | |||
1311 | details->break_addr = end_addr; | ||
1312 | zap_page_range(vma, start_addr, end_addr - start_addr, details); | ||
1313 | |||
1314 | /* | ||
1315 | * We cannot rely on the break test in unmap_vmas: | ||
1316 | * on the one hand, we don't want to restart our loop | ||
1317 | * just because that broke out for the page_table_lock; | ||
1318 | * on the other hand, it does no test when vma is small. | ||
1319 | */ | ||
1320 | need_break = need_resched() || | ||
1321 | need_lockbreak(details->i_mmap_lock); | ||
1322 | |||
1323 | if (details->break_addr >= end_addr) { | ||
1324 | /* We have now completed this vma: mark it so */ | ||
1325 | vma->vm_truncate_count = details->truncate_count; | ||
1326 | if (!need_break) | ||
1327 | return 0; | ||
1328 | } else { | ||
1329 | /* Note restart_addr in vma's truncate_count field */ | ||
1330 | vma->vm_truncate_count = details->break_addr; | ||
1331 | if (!need_break) | ||
1332 | goto again; | ||
1333 | } | ||
1334 | |||
1335 | spin_unlock(details->i_mmap_lock); | ||
1336 | cond_resched(); | ||
1337 | spin_lock(details->i_mmap_lock); | ||
1338 | return -EINTR; | ||
1339 | } | ||
1340 | |||
1341 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | ||
1342 | struct zap_details *details) | ||
1343 | { | ||
1344 | struct vm_area_struct *vma; | ||
1345 | struct prio_tree_iter iter; | ||
1346 | pgoff_t vba, vea, zba, zea; | ||
1347 | |||
1348 | restart: | ||
1349 | vma_prio_tree_foreach(vma, &iter, root, | ||
1350 | details->first_index, details->last_index) { | ||
1351 | /* Skip quickly over those we have already dealt with */ | ||
1352 | if (vma->vm_truncate_count == details->truncate_count) | ||
1353 | continue; | ||
1354 | |||
1355 | vba = vma->vm_pgoff; | ||
1356 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | ||
1357 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | ||
1358 | zba = details->first_index; | ||
1359 | if (zba < vba) | ||
1360 | zba = vba; | ||
1361 | zea = details->last_index; | ||
1362 | if (zea > vea) | ||
1363 | zea = vea; | ||
1364 | |||
1365 | if (unmap_mapping_range_vma(vma, | ||
1366 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | ||
1367 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | ||
1368 | details) < 0) | ||
1369 | goto restart; | ||
1370 | } | ||
1371 | } | ||
1372 | |||
1373 | static inline void unmap_mapping_range_list(struct list_head *head, | ||
1374 | struct zap_details *details) | ||
1375 | { | ||
1376 | struct vm_area_struct *vma; | ||
1377 | |||
1378 | /* | ||
1379 | * In nonlinear VMAs there is no correspondence between virtual address | ||
1380 | * offset and file offset. So we must perform an exhaustive search | ||
1381 | * across *all* the pages in each nonlinear VMA, not just the pages | ||
1382 | * whose virtual address lies outside the file truncation point. | ||
1383 | */ | ||
1384 | restart: | ||
1385 | list_for_each_entry(vma, head, shared.vm_set.list) { | ||
1386 | /* Skip quickly over those we have already dealt with */ | ||
1387 | if (vma->vm_truncate_count == details->truncate_count) | ||
1388 | continue; | ||
1389 | details->nonlinear_vma = vma; | ||
1390 | if (unmap_mapping_range_vma(vma, vma->vm_start, | ||
1391 | vma->vm_end, details) < 0) | ||
1392 | goto restart; | ||
1393 | } | ||
1394 | } | ||
1395 | |||
1396 | /** | ||
1397 | * unmap_mapping_range - unmap the portion of all mmaps | ||
1398 | * in the specified address_space corresponding to the specified | ||
1399 | * page range in the underlying file. | ||
1400 | * @address_space: the address space containing mmaps to be unmapped. | ||
1401 | * @holebegin: byte in first page to unmap, relative to the start of | ||
1402 | * the underlying file. This will be rounded down to a PAGE_SIZE | ||
1403 | * boundary. Note that this is different from vmtruncate(), which | ||
1404 | * must keep the partial page. In contrast, we must get rid of | ||
1405 | * partial pages. | ||
1406 | * @holelen: size of prospective hole in bytes. This will be rounded | ||
1407 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | ||
1408 | * end of the file. | ||
1409 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | ||
1410 | * but 0 when invalidating pagecache, don't throw away private data. | ||
1411 | */ | ||
1412 | void unmap_mapping_range(struct address_space *mapping, | ||
1413 | loff_t const holebegin, loff_t const holelen, int even_cows) | ||
1414 | { | ||
1415 | struct zap_details details; | ||
1416 | pgoff_t hba = holebegin >> PAGE_SHIFT; | ||
1417 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
1418 | |||
1419 | /* Check for overflow. */ | ||
1420 | if (sizeof(holelen) > sizeof(hlen)) { | ||
1421 | long long holeend = | ||
1422 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
1423 | if (holeend & ~(long long)ULONG_MAX) | ||
1424 | hlen = ULONG_MAX - hba + 1; | ||
1425 | } | ||
1426 | |||
1427 | details.check_mapping = even_cows? NULL: mapping; | ||
1428 | details.nonlinear_vma = NULL; | ||
1429 | details.first_index = hba; | ||
1430 | details.last_index = hba + hlen - 1; | ||
1431 | if (details.last_index < details.first_index) | ||
1432 | details.last_index = ULONG_MAX; | ||
1433 | details.i_mmap_lock = &mapping->i_mmap_lock; | ||
1434 | |||
1435 | spin_lock(&mapping->i_mmap_lock); | ||
1436 | |||
1437 | /* serialize i_size write against truncate_count write */ | ||
1438 | smp_wmb(); | ||
1439 | /* Protect against page faults, and endless unmapping loops */ | ||
1440 | mapping->truncate_count++; | ||
1441 | /* | ||
1442 | * For archs where spin_lock has inclusive semantics like ia64 | ||
1443 | * this smp_mb() will prevent to read pagetable contents | ||
1444 | * before the truncate_count increment is visible to | ||
1445 | * other cpus. | ||
1446 | */ | ||
1447 | smp_mb(); | ||
1448 | if (unlikely(is_restart_addr(mapping->truncate_count))) { | ||
1449 | if (mapping->truncate_count == 0) | ||
1450 | reset_vma_truncate_counts(mapping); | ||
1451 | mapping->truncate_count++; | ||
1452 | } | ||
1453 | details.truncate_count = mapping->truncate_count; | ||
1454 | |||
1455 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | ||
1456 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | ||
1457 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | ||
1458 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | ||
1459 | spin_unlock(&mapping->i_mmap_lock); | ||
1460 | } | ||
1461 | EXPORT_SYMBOL(unmap_mapping_range); | ||
1462 | |||
1463 | /* | ||
1464 | * Handle all mappings that got truncated by a "truncate()" | ||
1465 | * system call. | ||
1466 | * | ||
1467 | * NOTE! We have to be ready to update the memory sharing | ||
1468 | * between the file and the memory map for a potential last | ||
1469 | * incomplete page. Ugly, but necessary. | ||
1470 | */ | ||
1471 | int vmtruncate(struct inode * inode, loff_t offset) | ||
1472 | { | ||
1473 | struct address_space *mapping = inode->i_mapping; | ||
1474 | unsigned long limit; | ||
1475 | |||
1476 | if (inode->i_size < offset) | ||
1477 | goto do_expand; | ||
1478 | /* | ||
1479 | * truncation of in-use swapfiles is disallowed - it would cause | ||
1480 | * subsequent swapout to scribble on the now-freed blocks. | ||
1481 | */ | ||
1482 | if (IS_SWAPFILE(inode)) | ||
1483 | goto out_busy; | ||
1484 | i_size_write(inode, offset); | ||
1485 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | ||
1486 | truncate_inode_pages(mapping, offset); | ||
1487 | goto out_truncate; | ||
1488 | |||
1489 | do_expand: | ||
1490 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | ||
1491 | if (limit != RLIM_INFINITY && offset > limit) | ||
1492 | goto out_sig; | ||
1493 | if (offset > inode->i_sb->s_maxbytes) | ||
1494 | goto out_big; | ||
1495 | i_size_write(inode, offset); | ||
1496 | |||
1497 | out_truncate: | ||
1498 | if (inode->i_op && inode->i_op->truncate) | ||
1499 | inode->i_op->truncate(inode); | ||
1500 | return 0; | ||
1501 | out_sig: | ||
1502 | send_sig(SIGXFSZ, current, 0); | ||
1503 | out_big: | ||
1504 | return -EFBIG; | ||
1505 | out_busy: | ||
1506 | return -ETXTBSY; | ||
1507 | } | ||
1508 | |||
1509 | EXPORT_SYMBOL(vmtruncate); | ||
1510 | |||
1511 | /* | ||
1512 | * Primitive swap readahead code. We simply read an aligned block of | ||
1513 | * (1 << page_cluster) entries in the swap area. This method is chosen | ||
1514 | * because it doesn't cost us any seek time. We also make sure to queue | ||
1515 | * the 'original' request together with the readahead ones... | ||
1516 | * | ||
1517 | * This has been extended to use the NUMA policies from the mm triggering | ||
1518 | * the readahead. | ||
1519 | * | ||
1520 | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | ||
1521 | */ | ||
1522 | void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) | ||
1523 | { | ||
1524 | #ifdef CONFIG_NUMA | ||
1525 | struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; | ||
1526 | #endif | ||
1527 | int i, num; | ||
1528 | struct page *new_page; | ||
1529 | unsigned long offset; | ||
1530 | |||
1531 | /* | ||
1532 | * Get the number of handles we should do readahead io to. | ||
1533 | */ | ||
1534 | num = valid_swaphandles(entry, &offset); | ||
1535 | for (i = 0; i < num; offset++, i++) { | ||
1536 | /* Ok, do the async read-ahead now */ | ||
1537 | new_page = read_swap_cache_async(swp_entry(swp_type(entry), | ||
1538 | offset), vma, addr); | ||
1539 | if (!new_page) | ||
1540 | break; | ||
1541 | page_cache_release(new_page); | ||
1542 | #ifdef CONFIG_NUMA | ||
1543 | /* | ||
1544 | * Find the next applicable VMA for the NUMA policy. | ||
1545 | */ | ||
1546 | addr += PAGE_SIZE; | ||
1547 | if (addr == 0) | ||
1548 | vma = NULL; | ||
1549 | if (vma) { | ||
1550 | if (addr >= vma->vm_end) { | ||
1551 | vma = next_vma; | ||
1552 | next_vma = vma ? vma->vm_next : NULL; | ||
1553 | } | ||
1554 | if (vma && addr < vma->vm_start) | ||
1555 | vma = NULL; | ||
1556 | } else { | ||
1557 | if (next_vma && addr >= next_vma->vm_start) { | ||
1558 | vma = next_vma; | ||
1559 | next_vma = vma->vm_next; | ||
1560 | } | ||
1561 | } | ||
1562 | #endif | ||
1563 | } | ||
1564 | lru_add_drain(); /* Push any new pages onto the LRU now */ | ||
1565 | } | ||
1566 | |||
1567 | /* | ||
1568 | * We hold the mm semaphore and the page_table_lock on entry and | ||
1569 | * should release the pagetable lock on exit.. | ||
1570 | */ | ||
1571 | static int do_swap_page(struct mm_struct * mm, | ||
1572 | struct vm_area_struct * vma, unsigned long address, | ||
1573 | pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) | ||
1574 | { | ||
1575 | struct page *page; | ||
1576 | swp_entry_t entry = pte_to_swp_entry(orig_pte); | ||
1577 | pte_t pte; | ||
1578 | int ret = VM_FAULT_MINOR; | ||
1579 | |||
1580 | pte_unmap(page_table); | ||
1581 | spin_unlock(&mm->page_table_lock); | ||
1582 | page = lookup_swap_cache(entry); | ||
1583 | if (!page) { | ||
1584 | swapin_readahead(entry, address, vma); | ||
1585 | page = read_swap_cache_async(entry, vma, address); | ||
1586 | if (!page) { | ||
1587 | /* | ||
1588 | * Back out if somebody else faulted in this pte while | ||
1589 | * we released the page table lock. | ||
1590 | */ | ||
1591 | spin_lock(&mm->page_table_lock); | ||
1592 | page_table = pte_offset_map(pmd, address); | ||
1593 | if (likely(pte_same(*page_table, orig_pte))) | ||
1594 | ret = VM_FAULT_OOM; | ||
1595 | else | ||
1596 | ret = VM_FAULT_MINOR; | ||
1597 | pte_unmap(page_table); | ||
1598 | spin_unlock(&mm->page_table_lock); | ||
1599 | goto out; | ||
1600 | } | ||
1601 | |||
1602 | /* Had to read the page from swap area: Major fault */ | ||
1603 | ret = VM_FAULT_MAJOR; | ||
1604 | inc_page_state(pgmajfault); | ||
1605 | grab_swap_token(); | ||
1606 | } | ||
1607 | |||
1608 | mark_page_accessed(page); | ||
1609 | lock_page(page); | ||
1610 | |||
1611 | /* | ||
1612 | * Back out if somebody else faulted in this pte while we | ||
1613 | * released the page table lock. | ||
1614 | */ | ||
1615 | spin_lock(&mm->page_table_lock); | ||
1616 | page_table = pte_offset_map(pmd, address); | ||
1617 | if (unlikely(!pte_same(*page_table, orig_pte))) { | ||
1618 | pte_unmap(page_table); | ||
1619 | spin_unlock(&mm->page_table_lock); | ||
1620 | unlock_page(page); | ||
1621 | page_cache_release(page); | ||
1622 | ret = VM_FAULT_MINOR; | ||
1623 | goto out; | ||
1624 | } | ||
1625 | |||
1626 | /* The page isn't present yet, go ahead with the fault. */ | ||
1627 | |||
1628 | swap_free(entry); | ||
1629 | if (vm_swap_full()) | ||
1630 | remove_exclusive_swap_page(page); | ||
1631 | |||
1632 | inc_mm_counter(mm, rss); | ||
1633 | pte = mk_pte(page, vma->vm_page_prot); | ||
1634 | if (write_access && can_share_swap_page(page)) { | ||
1635 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | ||
1636 | write_access = 0; | ||
1637 | } | ||
1638 | unlock_page(page); | ||
1639 | |||
1640 | flush_icache_page(vma, page); | ||
1641 | set_pte_at(mm, address, page_table, pte); | ||
1642 | page_add_anon_rmap(page, vma, address); | ||
1643 | |||
1644 | if (write_access) { | ||
1645 | if (do_wp_page(mm, vma, address, | ||
1646 | page_table, pmd, pte) == VM_FAULT_OOM) | ||
1647 | ret = VM_FAULT_OOM; | ||
1648 | goto out; | ||
1649 | } | ||
1650 | |||
1651 | /* No need to invalidate - it was non-present before */ | ||
1652 | update_mmu_cache(vma, address, pte); | ||
1653 | lazy_mmu_prot_update(pte); | ||
1654 | pte_unmap(page_table); | ||
1655 | spin_unlock(&mm->page_table_lock); | ||
1656 | out: | ||
1657 | return ret; | ||
1658 | } | ||
1659 | |||
1660 | /* | ||
1661 | * We are called with the MM semaphore and page_table_lock | ||
1662 | * spinlock held to protect against concurrent faults in | ||
1663 | * multithreaded programs. | ||
1664 | */ | ||
1665 | static int | ||
1666 | do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | ||
1667 | pte_t *page_table, pmd_t *pmd, int write_access, | ||
1668 | unsigned long addr) | ||
1669 | { | ||
1670 | pte_t entry; | ||
1671 | struct page * page = ZERO_PAGE(addr); | ||
1672 | |||
1673 | /* Read-only mapping of ZERO_PAGE. */ | ||
1674 | entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); | ||
1675 | |||
1676 | /* ..except if it's a write access */ | ||
1677 | if (write_access) { | ||
1678 | /* Allocate our own private page. */ | ||
1679 | pte_unmap(page_table); | ||
1680 | spin_unlock(&mm->page_table_lock); | ||
1681 | |||
1682 | if (unlikely(anon_vma_prepare(vma))) | ||
1683 | goto no_mem; | ||
1684 | page = alloc_zeroed_user_highpage(vma, addr); | ||
1685 | if (!page) | ||
1686 | goto no_mem; | ||
1687 | |||
1688 | spin_lock(&mm->page_table_lock); | ||
1689 | page_table = pte_offset_map(pmd, addr); | ||
1690 | |||
1691 | if (!pte_none(*page_table)) { | ||
1692 | pte_unmap(page_table); | ||
1693 | page_cache_release(page); | ||
1694 | spin_unlock(&mm->page_table_lock); | ||
1695 | goto out; | ||
1696 | } | ||
1697 | inc_mm_counter(mm, rss); | ||
1698 | entry = maybe_mkwrite(pte_mkdirty(mk_pte(page, | ||
1699 | vma->vm_page_prot)), | ||
1700 | vma); | ||
1701 | lru_cache_add_active(page); | ||
1702 | SetPageReferenced(page); | ||
1703 | page_add_anon_rmap(page, vma, addr); | ||
1704 | } | ||
1705 | |||
1706 | set_pte_at(mm, addr, page_table, entry); | ||
1707 | pte_unmap(page_table); | ||
1708 | |||
1709 | /* No need to invalidate - it was non-present before */ | ||
1710 | update_mmu_cache(vma, addr, entry); | ||
1711 | lazy_mmu_prot_update(entry); | ||
1712 | spin_unlock(&mm->page_table_lock); | ||
1713 | out: | ||
1714 | return VM_FAULT_MINOR; | ||
1715 | no_mem: | ||
1716 | return VM_FAULT_OOM; | ||
1717 | } | ||
1718 | |||
1719 | /* | ||
1720 | * do_no_page() tries to create a new page mapping. It aggressively | ||
1721 | * tries to share with existing pages, but makes a separate copy if | ||
1722 | * the "write_access" parameter is true in order to avoid the next | ||
1723 | * page fault. | ||
1724 | * | ||
1725 | * As this is called only for pages that do not currently exist, we | ||
1726 | * do not need to flush old virtual caches or the TLB. | ||
1727 | * | ||
1728 | * This is called with the MM semaphore held and the page table | ||
1729 | * spinlock held. Exit with the spinlock released. | ||
1730 | */ | ||
1731 | static int | ||
1732 | do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | ||
1733 | unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) | ||
1734 | { | ||
1735 | struct page * new_page; | ||
1736 | struct address_space *mapping = NULL; | ||
1737 | pte_t entry; | ||
1738 | unsigned int sequence = 0; | ||
1739 | int ret = VM_FAULT_MINOR; | ||
1740 | int anon = 0; | ||
1741 | |||
1742 | if (!vma->vm_ops || !vma->vm_ops->nopage) | ||
1743 | return do_anonymous_page(mm, vma, page_table, | ||
1744 | pmd, write_access, address); | ||
1745 | pte_unmap(page_table); | ||
1746 | spin_unlock(&mm->page_table_lock); | ||
1747 | |||
1748 | if (vma->vm_file) { | ||
1749 | mapping = vma->vm_file->f_mapping; | ||
1750 | sequence = mapping->truncate_count; | ||
1751 | smp_rmb(); /* serializes i_size against truncate_count */ | ||
1752 | } | ||
1753 | retry: | ||
1754 | cond_resched(); | ||
1755 | new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); | ||
1756 | /* | ||
1757 | * No smp_rmb is needed here as long as there's a full | ||
1758 | * spin_lock/unlock sequence inside the ->nopage callback | ||
1759 | * (for the pagecache lookup) that acts as an implicit | ||
1760 | * smp_mb() and prevents the i_size read to happen | ||
1761 | * after the next truncate_count read. | ||
1762 | */ | ||
1763 | |||
1764 | /* no page was available -- either SIGBUS or OOM */ | ||
1765 | if (new_page == NOPAGE_SIGBUS) | ||
1766 | return VM_FAULT_SIGBUS; | ||
1767 | if (new_page == NOPAGE_OOM) | ||
1768 | return VM_FAULT_OOM; | ||
1769 | |||
1770 | /* | ||
1771 | * Should we do an early C-O-W break? | ||
1772 | */ | ||
1773 | if (write_access && !(vma->vm_flags & VM_SHARED)) { | ||
1774 | struct page *page; | ||
1775 | |||
1776 | if (unlikely(anon_vma_prepare(vma))) | ||
1777 | goto oom; | ||
1778 | page = alloc_page_vma(GFP_HIGHUSER, vma, address); | ||
1779 | if (!page) | ||
1780 | goto oom; | ||
1781 | copy_user_highpage(page, new_page, address); | ||
1782 | page_cache_release(new_page); | ||
1783 | new_page = page; | ||
1784 | anon = 1; | ||
1785 | } | ||
1786 | |||
1787 | spin_lock(&mm->page_table_lock); | ||
1788 | /* | ||
1789 | * For a file-backed vma, someone could have truncated or otherwise | ||
1790 | * invalidated this page. If unmap_mapping_range got called, | ||
1791 | * retry getting the page. | ||
1792 | */ | ||
1793 | if (mapping && unlikely(sequence != mapping->truncate_count)) { | ||
1794 | sequence = mapping->truncate_count; | ||
1795 | spin_unlock(&mm->page_table_lock); | ||
1796 | page_cache_release(new_page); | ||
1797 | goto retry; | ||
1798 | } | ||
1799 | page_table = pte_offset_map(pmd, address); | ||
1800 | |||
1801 | /* | ||
1802 | * This silly early PAGE_DIRTY setting removes a race | ||
1803 | * due to the bad i386 page protection. But it's valid | ||
1804 | * for other architectures too. | ||
1805 | * | ||
1806 | * Note that if write_access is true, we either now have | ||
1807 | * an exclusive copy of the page, or this is a shared mapping, | ||
1808 | * so we can make it writable and dirty to avoid having to | ||
1809 | * handle that later. | ||
1810 | */ | ||
1811 | /* Only go through if we didn't race with anybody else... */ | ||
1812 | if (pte_none(*page_table)) { | ||
1813 | if (!PageReserved(new_page)) | ||
1814 | inc_mm_counter(mm, rss); | ||
1815 | |||
1816 | flush_icache_page(vma, new_page); | ||
1817 | entry = mk_pte(new_page, vma->vm_page_prot); | ||
1818 | if (write_access) | ||
1819 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | ||
1820 | set_pte_at(mm, address, page_table, entry); | ||
1821 | if (anon) { | ||
1822 | lru_cache_add_active(new_page); | ||
1823 | page_add_anon_rmap(new_page, vma, address); | ||
1824 | } else | ||
1825 | page_add_file_rmap(new_page); | ||
1826 | pte_unmap(page_table); | ||
1827 | } else { | ||
1828 | /* One of our sibling threads was faster, back out. */ | ||
1829 | pte_unmap(page_table); | ||
1830 | page_cache_release(new_page); | ||
1831 | spin_unlock(&mm->page_table_lock); | ||
1832 | goto out; | ||
1833 | } | ||
1834 | |||
1835 | /* no need to invalidate: a not-present page shouldn't be cached */ | ||
1836 | update_mmu_cache(vma, address, entry); | ||
1837 | lazy_mmu_prot_update(entry); | ||
1838 | spin_unlock(&mm->page_table_lock); | ||
1839 | out: | ||
1840 | return ret; | ||
1841 | oom: | ||
1842 | page_cache_release(new_page); | ||
1843 | ret = VM_FAULT_OOM; | ||
1844 | goto out; | ||
1845 | } | ||
1846 | |||
1847 | /* | ||
1848 | * Fault of a previously existing named mapping. Repopulate the pte | ||
1849 | * from the encoded file_pte if possible. This enables swappable | ||
1850 | * nonlinear vmas. | ||
1851 | */ | ||
1852 | static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, | ||
1853 | unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) | ||
1854 | { | ||
1855 | unsigned long pgoff; | ||
1856 | int err; | ||
1857 | |||
1858 | BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); | ||
1859 | /* | ||
1860 | * Fall back to the linear mapping if the fs does not support | ||
1861 | * ->populate: | ||
1862 | */ | ||
1863 | if (!vma->vm_ops || !vma->vm_ops->populate || | ||
1864 | (write_access && !(vma->vm_flags & VM_SHARED))) { | ||
1865 | pte_clear(mm, address, pte); | ||
1866 | return do_no_page(mm, vma, address, write_access, pte, pmd); | ||
1867 | } | ||
1868 | |||
1869 | pgoff = pte_to_pgoff(*pte); | ||
1870 | |||
1871 | pte_unmap(pte); | ||
1872 | spin_unlock(&mm->page_table_lock); | ||
1873 | |||
1874 | err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); | ||
1875 | if (err == -ENOMEM) | ||
1876 | return VM_FAULT_OOM; | ||
1877 | if (err) | ||
1878 | return VM_FAULT_SIGBUS; | ||
1879 | return VM_FAULT_MAJOR; | ||
1880 | } | ||
1881 | |||
1882 | /* | ||
1883 | * These routines also need to handle stuff like marking pages dirty | ||
1884 | * and/or accessed for architectures that don't do it in hardware (most | ||
1885 | * RISC architectures). The early dirtying is also good on the i386. | ||
1886 | * | ||
1887 | * There is also a hook called "update_mmu_cache()" that architectures | ||
1888 | * with external mmu caches can use to update those (ie the Sparc or | ||
1889 | * PowerPC hashed page tables that act as extended TLBs). | ||
1890 | * | ||
1891 | * Note the "page_table_lock". It is to protect against kswapd removing | ||
1892 | * pages from under us. Note that kswapd only ever _removes_ pages, never | ||
1893 | * adds them. As such, once we have noticed that the page is not present, | ||
1894 | * we can drop the lock early. | ||
1895 | * | ||
1896 | * The adding of pages is protected by the MM semaphore (which we hold), | ||
1897 | * so we don't need to worry about a page being suddenly been added into | ||
1898 | * our VM. | ||
1899 | * | ||
1900 | * We enter with the pagetable spinlock held, we are supposed to | ||
1901 | * release it when done. | ||
1902 | */ | ||
1903 | static inline int handle_pte_fault(struct mm_struct *mm, | ||
1904 | struct vm_area_struct * vma, unsigned long address, | ||
1905 | int write_access, pte_t *pte, pmd_t *pmd) | ||
1906 | { | ||
1907 | pte_t entry; | ||
1908 | |||
1909 | entry = *pte; | ||
1910 | if (!pte_present(entry)) { | ||
1911 | /* | ||
1912 | * If it truly wasn't present, we know that kswapd | ||
1913 | * and the PTE updates will not touch it later. So | ||
1914 | * drop the lock. | ||
1915 | */ | ||
1916 | if (pte_none(entry)) | ||
1917 | return do_no_page(mm, vma, address, write_access, pte, pmd); | ||
1918 | if (pte_file(entry)) | ||
1919 | return do_file_page(mm, vma, address, write_access, pte, pmd); | ||
1920 | return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); | ||
1921 | } | ||
1922 | |||
1923 | if (write_access) { | ||
1924 | if (!pte_write(entry)) | ||
1925 | return do_wp_page(mm, vma, address, pte, pmd, entry); | ||
1926 | |||
1927 | entry = pte_mkdirty(entry); | ||
1928 | } | ||
1929 | entry = pte_mkyoung(entry); | ||
1930 | ptep_set_access_flags(vma, address, pte, entry, write_access); | ||
1931 | update_mmu_cache(vma, address, entry); | ||
1932 | lazy_mmu_prot_update(entry); | ||
1933 | pte_unmap(pte); | ||
1934 | spin_unlock(&mm->page_table_lock); | ||
1935 | return VM_FAULT_MINOR; | ||
1936 | } | ||
1937 | |||
1938 | /* | ||
1939 | * By the time we get here, we already hold the mm semaphore | ||
1940 | */ | ||
1941 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, | ||
1942 | unsigned long address, int write_access) | ||
1943 | { | ||
1944 | pgd_t *pgd; | ||
1945 | pud_t *pud; | ||
1946 | pmd_t *pmd; | ||
1947 | pte_t *pte; | ||
1948 | |||
1949 | __set_current_state(TASK_RUNNING); | ||
1950 | |||
1951 | inc_page_state(pgfault); | ||
1952 | |||
1953 | if (is_vm_hugetlb_page(vma)) | ||
1954 | return VM_FAULT_SIGBUS; /* mapping truncation does this. */ | ||
1955 | |||
1956 | /* | ||
1957 | * We need the page table lock to synchronize with kswapd | ||
1958 | * and the SMP-safe atomic PTE updates. | ||
1959 | */ | ||
1960 | pgd = pgd_offset(mm, address); | ||
1961 | spin_lock(&mm->page_table_lock); | ||
1962 | |||
1963 | pud = pud_alloc(mm, pgd, address); | ||
1964 | if (!pud) | ||
1965 | goto oom; | ||
1966 | |||
1967 | pmd = pmd_alloc(mm, pud, address); | ||
1968 | if (!pmd) | ||
1969 | goto oom; | ||
1970 | |||
1971 | pte = pte_alloc_map(mm, pmd, address); | ||
1972 | if (!pte) | ||
1973 | goto oom; | ||
1974 | |||
1975 | return handle_pte_fault(mm, vma, address, write_access, pte, pmd); | ||
1976 | |||
1977 | oom: | ||
1978 | spin_unlock(&mm->page_table_lock); | ||
1979 | return VM_FAULT_OOM; | ||
1980 | } | ||
1981 | |||
1982 | #ifndef __PAGETABLE_PUD_FOLDED | ||
1983 | /* | ||
1984 | * Allocate page upper directory. | ||
1985 | * | ||
1986 | * We've already handled the fast-path in-line, and we own the | ||
1987 | * page table lock. | ||
1988 | */ | ||
1989 | pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | ||
1990 | { | ||
1991 | pud_t *new; | ||
1992 | |||
1993 | spin_unlock(&mm->page_table_lock); | ||
1994 | new = pud_alloc_one(mm, address); | ||
1995 | spin_lock(&mm->page_table_lock); | ||
1996 | if (!new) | ||
1997 | return NULL; | ||
1998 | |||
1999 | /* | ||
2000 | * Because we dropped the lock, we should re-check the | ||
2001 | * entry, as somebody else could have populated it.. | ||
2002 | */ | ||
2003 | if (pgd_present(*pgd)) { | ||
2004 | pud_free(new); | ||
2005 | goto out; | ||
2006 | } | ||
2007 | pgd_populate(mm, pgd, new); | ||
2008 | out: | ||
2009 | return pud_offset(pgd, address); | ||
2010 | } | ||
2011 | #endif /* __PAGETABLE_PUD_FOLDED */ | ||
2012 | |||
2013 | #ifndef __PAGETABLE_PMD_FOLDED | ||
2014 | /* | ||
2015 | * Allocate page middle directory. | ||
2016 | * | ||
2017 | * We've already handled the fast-path in-line, and we own the | ||
2018 | * page table lock. | ||
2019 | */ | ||
2020 | pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | ||
2021 | { | ||
2022 | pmd_t *new; | ||
2023 | |||
2024 | spin_unlock(&mm->page_table_lock); | ||
2025 | new = pmd_alloc_one(mm, address); | ||
2026 | spin_lock(&mm->page_table_lock); | ||
2027 | if (!new) | ||
2028 | return NULL; | ||
2029 | |||
2030 | /* | ||
2031 | * Because we dropped the lock, we should re-check the | ||
2032 | * entry, as somebody else could have populated it.. | ||
2033 | */ | ||
2034 | #ifndef __ARCH_HAS_4LEVEL_HACK | ||
2035 | if (pud_present(*pud)) { | ||
2036 | pmd_free(new); | ||
2037 | goto out; | ||
2038 | } | ||
2039 | pud_populate(mm, pud, new); | ||
2040 | #else | ||
2041 | if (pgd_present(*pud)) { | ||
2042 | pmd_free(new); | ||
2043 | goto out; | ||
2044 | } | ||
2045 | pgd_populate(mm, pud, new); | ||
2046 | #endif /* __ARCH_HAS_4LEVEL_HACK */ | ||
2047 | |||
2048 | out: | ||
2049 | return pmd_offset(pud, address); | ||
2050 | } | ||
2051 | #endif /* __PAGETABLE_PMD_FOLDED */ | ||
2052 | |||
2053 | int make_pages_present(unsigned long addr, unsigned long end) | ||
2054 | { | ||
2055 | int ret, len, write; | ||
2056 | struct vm_area_struct * vma; | ||
2057 | |||
2058 | vma = find_vma(current->mm, addr); | ||
2059 | if (!vma) | ||
2060 | return -1; | ||
2061 | write = (vma->vm_flags & VM_WRITE) != 0; | ||
2062 | if (addr >= end) | ||
2063 | BUG(); | ||
2064 | if (end > vma->vm_end) | ||
2065 | BUG(); | ||
2066 | len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; | ||
2067 | ret = get_user_pages(current, current->mm, addr, | ||
2068 | len, write, 0, NULL, NULL); | ||
2069 | if (ret < 0) | ||
2070 | return ret; | ||
2071 | return ret == len ? 0 : -1; | ||
2072 | } | ||
2073 | |||
2074 | /* | ||
2075 | * Map a vmalloc()-space virtual address to the physical page. | ||
2076 | */ | ||
2077 | struct page * vmalloc_to_page(void * vmalloc_addr) | ||
2078 | { | ||
2079 | unsigned long addr = (unsigned long) vmalloc_addr; | ||
2080 | struct page *page = NULL; | ||
2081 | pgd_t *pgd = pgd_offset_k(addr); | ||
2082 | pud_t *pud; | ||
2083 | pmd_t *pmd; | ||
2084 | pte_t *ptep, pte; | ||
2085 | |||
2086 | if (!pgd_none(*pgd)) { | ||
2087 | pud = pud_offset(pgd, addr); | ||
2088 | if (!pud_none(*pud)) { | ||
2089 | pmd = pmd_offset(pud, addr); | ||
2090 | if (!pmd_none(*pmd)) { | ||
2091 | ptep = pte_offset_map(pmd, addr); | ||
2092 | pte = *ptep; | ||
2093 | if (pte_present(pte)) | ||
2094 | page = pte_page(pte); | ||
2095 | pte_unmap(ptep); | ||
2096 | } | ||
2097 | } | ||
2098 | } | ||
2099 | return page; | ||
2100 | } | ||
2101 | |||
2102 | EXPORT_SYMBOL(vmalloc_to_page); | ||
2103 | |||
2104 | /* | ||
2105 | * Map a vmalloc()-space virtual address to the physical page frame number. | ||
2106 | */ | ||
2107 | unsigned long vmalloc_to_pfn(void * vmalloc_addr) | ||
2108 | { | ||
2109 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | ||
2110 | } | ||
2111 | |||
2112 | EXPORT_SYMBOL(vmalloc_to_pfn); | ||
2113 | |||
2114 | /* | ||
2115 | * update_mem_hiwater | ||
2116 | * - update per process rss and vm high water data | ||
2117 | */ | ||
2118 | void update_mem_hiwater(struct task_struct *tsk) | ||
2119 | { | ||
2120 | if (tsk->mm) { | ||
2121 | unsigned long rss = get_mm_counter(tsk->mm, rss); | ||
2122 | |||
2123 | if (tsk->mm->hiwater_rss < rss) | ||
2124 | tsk->mm->hiwater_rss = rss; | ||
2125 | if (tsk->mm->hiwater_vm < tsk->mm->total_vm) | ||
2126 | tsk->mm->hiwater_vm = tsk->mm->total_vm; | ||
2127 | } | ||
2128 | } | ||
2129 | |||
2130 | #if !defined(__HAVE_ARCH_GATE_AREA) | ||
2131 | |||
2132 | #if defined(AT_SYSINFO_EHDR) | ||
2133 | struct vm_area_struct gate_vma; | ||
2134 | |||
2135 | static int __init gate_vma_init(void) | ||
2136 | { | ||
2137 | gate_vma.vm_mm = NULL; | ||
2138 | gate_vma.vm_start = FIXADDR_USER_START; | ||
2139 | gate_vma.vm_end = FIXADDR_USER_END; | ||
2140 | gate_vma.vm_page_prot = PAGE_READONLY; | ||
2141 | gate_vma.vm_flags = 0; | ||
2142 | return 0; | ||
2143 | } | ||
2144 | __initcall(gate_vma_init); | ||
2145 | #endif | ||
2146 | |||
2147 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | ||
2148 | { | ||
2149 | #ifdef AT_SYSINFO_EHDR | ||
2150 | return &gate_vma; | ||
2151 | #else | ||
2152 | return NULL; | ||
2153 | #endif | ||
2154 | } | ||
2155 | |||
2156 | int in_gate_area_no_task(unsigned long addr) | ||
2157 | { | ||
2158 | #ifdef AT_SYSINFO_EHDR | ||
2159 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | ||
2160 | return 1; | ||
2161 | #endif | ||
2162 | return 0; | ||
2163 | } | ||
2164 | |||
2165 | #endif /* __HAVE_ARCH_GATE_AREA */ | ||