diff options
Diffstat (limited to 'kernel/sched_rt.c')
-rw-r--r-- | kernel/sched_rt.c | 1866 |
1 files changed, 1866 insertions, 0 deletions
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c new file mode 100644 index 00000000000..af1177858be --- /dev/null +++ b/kernel/sched_rt.c | |||
@@ -0,0 +1,1866 @@ | |||
1 | /* | ||
2 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | ||
3 | * policies) | ||
4 | */ | ||
5 | |||
6 | #ifdef CONFIG_RT_GROUP_SCHED | ||
7 | |||
8 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | ||
9 | |||
10 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
11 | { | ||
12 | #ifdef CONFIG_SCHED_DEBUG | ||
13 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | ||
14 | #endif | ||
15 | return container_of(rt_se, struct task_struct, rt); | ||
16 | } | ||
17 | |||
18 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
19 | { | ||
20 | return rt_rq->rq; | ||
21 | } | ||
22 | |||
23 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
24 | { | ||
25 | return rt_se->rt_rq; | ||
26 | } | ||
27 | |||
28 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
29 | |||
30 | #define rt_entity_is_task(rt_se) (1) | ||
31 | |||
32 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
33 | { | ||
34 | return container_of(rt_se, struct task_struct, rt); | ||
35 | } | ||
36 | |||
37 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
38 | { | ||
39 | return container_of(rt_rq, struct rq, rt); | ||
40 | } | ||
41 | |||
42 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
43 | { | ||
44 | struct task_struct *p = rt_task_of(rt_se); | ||
45 | struct rq *rq = task_rq(p); | ||
46 | |||
47 | return &rq->rt; | ||
48 | } | ||
49 | |||
50 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
51 | |||
52 | #ifdef CONFIG_SMP | ||
53 | |||
54 | static inline int rt_overloaded(struct rq *rq) | ||
55 | { | ||
56 | return atomic_read(&rq->rd->rto_count); | ||
57 | } | ||
58 | |||
59 | static inline void rt_set_overload(struct rq *rq) | ||
60 | { | ||
61 | if (!rq->online) | ||
62 | return; | ||
63 | |||
64 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); | ||
65 | /* | ||
66 | * Make sure the mask is visible before we set | ||
67 | * the overload count. That is checked to determine | ||
68 | * if we should look at the mask. It would be a shame | ||
69 | * if we looked at the mask, but the mask was not | ||
70 | * updated yet. | ||
71 | */ | ||
72 | wmb(); | ||
73 | atomic_inc(&rq->rd->rto_count); | ||
74 | } | ||
75 | |||
76 | static inline void rt_clear_overload(struct rq *rq) | ||
77 | { | ||
78 | if (!rq->online) | ||
79 | return; | ||
80 | |||
81 | /* the order here really doesn't matter */ | ||
82 | atomic_dec(&rq->rd->rto_count); | ||
83 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | ||
84 | } | ||
85 | |||
86 | static void update_rt_migration(struct rt_rq *rt_rq) | ||
87 | { | ||
88 | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { | ||
89 | if (!rt_rq->overloaded) { | ||
90 | rt_set_overload(rq_of_rt_rq(rt_rq)); | ||
91 | rt_rq->overloaded = 1; | ||
92 | } | ||
93 | } else if (rt_rq->overloaded) { | ||
94 | rt_clear_overload(rq_of_rt_rq(rt_rq)); | ||
95 | rt_rq->overloaded = 0; | ||
96 | } | ||
97 | } | ||
98 | |||
99 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
100 | { | ||
101 | if (!rt_entity_is_task(rt_se)) | ||
102 | return; | ||
103 | |||
104 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | ||
105 | |||
106 | rt_rq->rt_nr_total++; | ||
107 | if (rt_se->nr_cpus_allowed > 1) | ||
108 | rt_rq->rt_nr_migratory++; | ||
109 | |||
110 | update_rt_migration(rt_rq); | ||
111 | } | ||
112 | |||
113 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
114 | { | ||
115 | if (!rt_entity_is_task(rt_se)) | ||
116 | return; | ||
117 | |||
118 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | ||
119 | |||
120 | rt_rq->rt_nr_total--; | ||
121 | if (rt_se->nr_cpus_allowed > 1) | ||
122 | rt_rq->rt_nr_migratory--; | ||
123 | |||
124 | update_rt_migration(rt_rq); | ||
125 | } | ||
126 | |||
127 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
128 | { | ||
129 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
130 | plist_node_init(&p->pushable_tasks, p->prio); | ||
131 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
132 | } | ||
133 | |||
134 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
135 | { | ||
136 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
137 | } | ||
138 | |||
139 | static inline int has_pushable_tasks(struct rq *rq) | ||
140 | { | ||
141 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
142 | } | ||
143 | |||
144 | #else | ||
145 | |||
146 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
147 | { | ||
148 | } | ||
149 | |||
150 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
151 | { | ||
152 | } | ||
153 | |||
154 | static inline | ||
155 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
156 | { | ||
157 | } | ||
158 | |||
159 | static inline | ||
160 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
161 | { | ||
162 | } | ||
163 | |||
164 | #endif /* CONFIG_SMP */ | ||
165 | |||
166 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | ||
167 | { | ||
168 | return !list_empty(&rt_se->run_list); | ||
169 | } | ||
170 | |||
171 | #ifdef CONFIG_RT_GROUP_SCHED | ||
172 | |||
173 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | ||
174 | { | ||
175 | if (!rt_rq->tg) | ||
176 | return RUNTIME_INF; | ||
177 | |||
178 | return rt_rq->rt_runtime; | ||
179 | } | ||
180 | |||
181 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | ||
182 | { | ||
183 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | ||
184 | } | ||
185 | |||
186 | typedef struct task_group *rt_rq_iter_t; | ||
187 | |||
188 | static inline struct task_group *next_task_group(struct task_group *tg) | ||
189 | { | ||
190 | do { | ||
191 | tg = list_entry_rcu(tg->list.next, | ||
192 | typeof(struct task_group), list); | ||
193 | } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); | ||
194 | |||
195 | if (&tg->list == &task_groups) | ||
196 | tg = NULL; | ||
197 | |||
198 | return tg; | ||
199 | } | ||
200 | |||
201 | #define for_each_rt_rq(rt_rq, iter, rq) \ | ||
202 | for (iter = container_of(&task_groups, typeof(*iter), list); \ | ||
203 | (iter = next_task_group(iter)) && \ | ||
204 | (rt_rq = iter->rt_rq[cpu_of(rq)]);) | ||
205 | |||
206 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) | ||
207 | { | ||
208 | list_add_rcu(&rt_rq->leaf_rt_rq_list, | ||
209 | &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); | ||
210 | } | ||
211 | |||
212 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | ||
213 | { | ||
214 | list_del_rcu(&rt_rq->leaf_rt_rq_list); | ||
215 | } | ||
216 | |||
217 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | ||
218 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | ||
219 | |||
220 | #define for_each_sched_rt_entity(rt_se) \ | ||
221 | for (; rt_se; rt_se = rt_se->parent) | ||
222 | |||
223 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | ||
224 | { | ||
225 | return rt_se->my_q; | ||
226 | } | ||
227 | |||
228 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); | ||
229 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); | ||
230 | |||
231 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | ||
232 | { | ||
233 | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; | ||
234 | struct sched_rt_entity *rt_se; | ||
235 | |||
236 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | ||
237 | |||
238 | rt_se = rt_rq->tg->rt_se[cpu]; | ||
239 | |||
240 | if (rt_rq->rt_nr_running) { | ||
241 | if (rt_se && !on_rt_rq(rt_se)) | ||
242 | enqueue_rt_entity(rt_se, false); | ||
243 | if (rt_rq->highest_prio.curr < curr->prio) | ||
244 | resched_task(curr); | ||
245 | } | ||
246 | } | ||
247 | |||
248 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | ||
249 | { | ||
250 | struct sched_rt_entity *rt_se; | ||
251 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | ||
252 | |||
253 | rt_se = rt_rq->tg->rt_se[cpu]; | ||
254 | |||
255 | if (rt_se && on_rt_rq(rt_se)) | ||
256 | dequeue_rt_entity(rt_se); | ||
257 | } | ||
258 | |||
259 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | ||
260 | { | ||
261 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | ||
262 | } | ||
263 | |||
264 | static int rt_se_boosted(struct sched_rt_entity *rt_se) | ||
265 | { | ||
266 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | ||
267 | struct task_struct *p; | ||
268 | |||
269 | if (rt_rq) | ||
270 | return !!rt_rq->rt_nr_boosted; | ||
271 | |||
272 | p = rt_task_of(rt_se); | ||
273 | return p->prio != p->normal_prio; | ||
274 | } | ||
275 | |||
276 | #ifdef CONFIG_SMP | ||
277 | static inline const struct cpumask *sched_rt_period_mask(void) | ||
278 | { | ||
279 | return cpu_rq(smp_processor_id())->rd->span; | ||
280 | } | ||
281 | #else | ||
282 | static inline const struct cpumask *sched_rt_period_mask(void) | ||
283 | { | ||
284 | return cpu_online_mask; | ||
285 | } | ||
286 | #endif | ||
287 | |||
288 | static inline | ||
289 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | ||
290 | { | ||
291 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; | ||
292 | } | ||
293 | |||
294 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | ||
295 | { | ||
296 | return &rt_rq->tg->rt_bandwidth; | ||
297 | } | ||
298 | |||
299 | #else /* !CONFIG_RT_GROUP_SCHED */ | ||
300 | |||
301 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | ||
302 | { | ||
303 | return rt_rq->rt_runtime; | ||
304 | } | ||
305 | |||
306 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | ||
307 | { | ||
308 | return ktime_to_ns(def_rt_bandwidth.rt_period); | ||
309 | } | ||
310 | |||
311 | typedef struct rt_rq *rt_rq_iter_t; | ||
312 | |||
313 | #define for_each_rt_rq(rt_rq, iter, rq) \ | ||
314 | for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | ||
315 | |||
316 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) | ||
317 | { | ||
318 | } | ||
319 | |||
320 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | ||
321 | { | ||
322 | } | ||
323 | |||
324 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | ||
325 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | ||
326 | |||
327 | #define for_each_sched_rt_entity(rt_se) \ | ||
328 | for (; rt_se; rt_se = NULL) | ||
329 | |||
330 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | ||
331 | { | ||
332 | return NULL; | ||
333 | } | ||
334 | |||
335 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | ||
336 | { | ||
337 | if (rt_rq->rt_nr_running) | ||
338 | resched_task(rq_of_rt_rq(rt_rq)->curr); | ||
339 | } | ||
340 | |||
341 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | ||
342 | { | ||
343 | } | ||
344 | |||
345 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | ||
346 | { | ||
347 | return rt_rq->rt_throttled; | ||
348 | } | ||
349 | |||
350 | static inline const struct cpumask *sched_rt_period_mask(void) | ||
351 | { | ||
352 | return cpu_online_mask; | ||
353 | } | ||
354 | |||
355 | static inline | ||
356 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | ||
357 | { | ||
358 | return &cpu_rq(cpu)->rt; | ||
359 | } | ||
360 | |||
361 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | ||
362 | { | ||
363 | return &def_rt_bandwidth; | ||
364 | } | ||
365 | |||
366 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
367 | |||
368 | #ifdef CONFIG_SMP | ||
369 | /* | ||
370 | * We ran out of runtime, see if we can borrow some from our neighbours. | ||
371 | */ | ||
372 | static int do_balance_runtime(struct rt_rq *rt_rq) | ||
373 | { | ||
374 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | ||
375 | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; | ||
376 | int i, weight, more = 0; | ||
377 | u64 rt_period; | ||
378 | |||
379 | weight = cpumask_weight(rd->span); | ||
380 | |||
381 | raw_spin_lock(&rt_b->rt_runtime_lock); | ||
382 | rt_period = ktime_to_ns(rt_b->rt_period); | ||
383 | for_each_cpu(i, rd->span) { | ||
384 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | ||
385 | s64 diff; | ||
386 | |||
387 | if (iter == rt_rq) | ||
388 | continue; | ||
389 | |||
390 | raw_spin_lock(&iter->rt_runtime_lock); | ||
391 | /* | ||
392 | * Either all rqs have inf runtime and there's nothing to steal | ||
393 | * or __disable_runtime() below sets a specific rq to inf to | ||
394 | * indicate its been disabled and disalow stealing. | ||
395 | */ | ||
396 | if (iter->rt_runtime == RUNTIME_INF) | ||
397 | goto next; | ||
398 | |||
399 | /* | ||
400 | * From runqueues with spare time, take 1/n part of their | ||
401 | * spare time, but no more than our period. | ||
402 | */ | ||
403 | diff = iter->rt_runtime - iter->rt_time; | ||
404 | if (diff > 0) { | ||
405 | diff = div_u64((u64)diff, weight); | ||
406 | if (rt_rq->rt_runtime + diff > rt_period) | ||
407 | diff = rt_period - rt_rq->rt_runtime; | ||
408 | iter->rt_runtime -= diff; | ||
409 | rt_rq->rt_runtime += diff; | ||
410 | more = 1; | ||
411 | if (rt_rq->rt_runtime == rt_period) { | ||
412 | raw_spin_unlock(&iter->rt_runtime_lock); | ||
413 | break; | ||
414 | } | ||
415 | } | ||
416 | next: | ||
417 | raw_spin_unlock(&iter->rt_runtime_lock); | ||
418 | } | ||
419 | raw_spin_unlock(&rt_b->rt_runtime_lock); | ||
420 | |||
421 | return more; | ||
422 | } | ||
423 | |||
424 | /* | ||
425 | * Ensure this RQ takes back all the runtime it lend to its neighbours. | ||
426 | */ | ||
427 | static void __disable_runtime(struct rq *rq) | ||
428 | { | ||
429 | struct root_domain *rd = rq->rd; | ||
430 | rt_rq_iter_t iter; | ||
431 | struct rt_rq *rt_rq; | ||
432 | |||
433 | if (unlikely(!scheduler_running)) | ||
434 | return; | ||
435 | |||
436 | for_each_rt_rq(rt_rq, iter, rq) { | ||
437 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | ||
438 | s64 want; | ||
439 | int i; | ||
440 | |||
441 | raw_spin_lock(&rt_b->rt_runtime_lock); | ||
442 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
443 | /* | ||
444 | * Either we're all inf and nobody needs to borrow, or we're | ||
445 | * already disabled and thus have nothing to do, or we have | ||
446 | * exactly the right amount of runtime to take out. | ||
447 | */ | ||
448 | if (rt_rq->rt_runtime == RUNTIME_INF || | ||
449 | rt_rq->rt_runtime == rt_b->rt_runtime) | ||
450 | goto balanced; | ||
451 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
452 | |||
453 | /* | ||
454 | * Calculate the difference between what we started out with | ||
455 | * and what we current have, that's the amount of runtime | ||
456 | * we lend and now have to reclaim. | ||
457 | */ | ||
458 | want = rt_b->rt_runtime - rt_rq->rt_runtime; | ||
459 | |||
460 | /* | ||
461 | * Greedy reclaim, take back as much as we can. | ||
462 | */ | ||
463 | for_each_cpu(i, rd->span) { | ||
464 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | ||
465 | s64 diff; | ||
466 | |||
467 | /* | ||
468 | * Can't reclaim from ourselves or disabled runqueues. | ||
469 | */ | ||
470 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) | ||
471 | continue; | ||
472 | |||
473 | raw_spin_lock(&iter->rt_runtime_lock); | ||
474 | if (want > 0) { | ||
475 | diff = min_t(s64, iter->rt_runtime, want); | ||
476 | iter->rt_runtime -= diff; | ||
477 | want -= diff; | ||
478 | } else { | ||
479 | iter->rt_runtime -= want; | ||
480 | want -= want; | ||
481 | } | ||
482 | raw_spin_unlock(&iter->rt_runtime_lock); | ||
483 | |||
484 | if (!want) | ||
485 | break; | ||
486 | } | ||
487 | |||
488 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
489 | /* | ||
490 | * We cannot be left wanting - that would mean some runtime | ||
491 | * leaked out of the system. | ||
492 | */ | ||
493 | BUG_ON(want); | ||
494 | balanced: | ||
495 | /* | ||
496 | * Disable all the borrow logic by pretending we have inf | ||
497 | * runtime - in which case borrowing doesn't make sense. | ||
498 | */ | ||
499 | rt_rq->rt_runtime = RUNTIME_INF; | ||
500 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
501 | raw_spin_unlock(&rt_b->rt_runtime_lock); | ||
502 | } | ||
503 | } | ||
504 | |||
505 | static void disable_runtime(struct rq *rq) | ||
506 | { | ||
507 | unsigned long flags; | ||
508 | |||
509 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
510 | __disable_runtime(rq); | ||
511 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
512 | } | ||
513 | |||
514 | static void __enable_runtime(struct rq *rq) | ||
515 | { | ||
516 | rt_rq_iter_t iter; | ||
517 | struct rt_rq *rt_rq; | ||
518 | |||
519 | if (unlikely(!scheduler_running)) | ||
520 | return; | ||
521 | |||
522 | /* | ||
523 | * Reset each runqueue's bandwidth settings | ||
524 | */ | ||
525 | for_each_rt_rq(rt_rq, iter, rq) { | ||
526 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | ||
527 | |||
528 | raw_spin_lock(&rt_b->rt_runtime_lock); | ||
529 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
530 | rt_rq->rt_runtime = rt_b->rt_runtime; | ||
531 | rt_rq->rt_time = 0; | ||
532 | rt_rq->rt_throttled = 0; | ||
533 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
534 | raw_spin_unlock(&rt_b->rt_runtime_lock); | ||
535 | } | ||
536 | } | ||
537 | |||
538 | static void enable_runtime(struct rq *rq) | ||
539 | { | ||
540 | unsigned long flags; | ||
541 | |||
542 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
543 | __enable_runtime(rq); | ||
544 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
545 | } | ||
546 | |||
547 | static int balance_runtime(struct rt_rq *rt_rq) | ||
548 | { | ||
549 | int more = 0; | ||
550 | |||
551 | if (rt_rq->rt_time > rt_rq->rt_runtime) { | ||
552 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
553 | more = do_balance_runtime(rt_rq); | ||
554 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
555 | } | ||
556 | |||
557 | return more; | ||
558 | } | ||
559 | #else /* !CONFIG_SMP */ | ||
560 | static inline int balance_runtime(struct rt_rq *rt_rq) | ||
561 | { | ||
562 | return 0; | ||
563 | } | ||
564 | #endif /* CONFIG_SMP */ | ||
565 | |||
566 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) | ||
567 | { | ||
568 | int i, idle = 1; | ||
569 | const struct cpumask *span; | ||
570 | |||
571 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | ||
572 | return 1; | ||
573 | |||
574 | span = sched_rt_period_mask(); | ||
575 | for_each_cpu(i, span) { | ||
576 | int enqueue = 0; | ||
577 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | ||
578 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
579 | |||
580 | raw_spin_lock(&rq->lock); | ||
581 | if (rt_rq->rt_time) { | ||
582 | u64 runtime; | ||
583 | |||
584 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
585 | if (rt_rq->rt_throttled) | ||
586 | balance_runtime(rt_rq); | ||
587 | runtime = rt_rq->rt_runtime; | ||
588 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | ||
589 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | ||
590 | rt_rq->rt_throttled = 0; | ||
591 | enqueue = 1; | ||
592 | |||
593 | /* | ||
594 | * Force a clock update if the CPU was idle, | ||
595 | * lest wakeup -> unthrottle time accumulate. | ||
596 | */ | ||
597 | if (rt_rq->rt_nr_running && rq->curr == rq->idle) | ||
598 | rq->skip_clock_update = -1; | ||
599 | } | ||
600 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | ||
601 | idle = 0; | ||
602 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
603 | } else if (rt_rq->rt_nr_running) { | ||
604 | idle = 0; | ||
605 | if (!rt_rq_throttled(rt_rq)) | ||
606 | enqueue = 1; | ||
607 | } | ||
608 | |||
609 | if (enqueue) | ||
610 | sched_rt_rq_enqueue(rt_rq); | ||
611 | raw_spin_unlock(&rq->lock); | ||
612 | } | ||
613 | |||
614 | return idle; | ||
615 | } | ||
616 | |||
617 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | ||
618 | { | ||
619 | #ifdef CONFIG_RT_GROUP_SCHED | ||
620 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | ||
621 | |||
622 | if (rt_rq) | ||
623 | return rt_rq->highest_prio.curr; | ||
624 | #endif | ||
625 | |||
626 | return rt_task_of(rt_se)->prio; | ||
627 | } | ||
628 | |||
629 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) | ||
630 | { | ||
631 | u64 runtime = sched_rt_runtime(rt_rq); | ||
632 | |||
633 | if (rt_rq->rt_throttled) | ||
634 | return rt_rq_throttled(rt_rq); | ||
635 | |||
636 | if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) | ||
637 | return 0; | ||
638 | |||
639 | balance_runtime(rt_rq); | ||
640 | runtime = sched_rt_runtime(rt_rq); | ||
641 | if (runtime == RUNTIME_INF) | ||
642 | return 0; | ||
643 | |||
644 | if (rt_rq->rt_time > runtime) { | ||
645 | rt_rq->rt_throttled = 1; | ||
646 | if (rt_rq_throttled(rt_rq)) { | ||
647 | sched_rt_rq_dequeue(rt_rq); | ||
648 | return 1; | ||
649 | } | ||
650 | } | ||
651 | |||
652 | return 0; | ||
653 | } | ||
654 | |||
655 | /* | ||
656 | * Update the current task's runtime statistics. Skip current tasks that | ||
657 | * are not in our scheduling class. | ||
658 | */ | ||
659 | static void update_curr_rt(struct rq *rq) | ||
660 | { | ||
661 | struct task_struct *curr = rq->curr; | ||
662 | struct sched_rt_entity *rt_se = &curr->rt; | ||
663 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | ||
664 | u64 delta_exec; | ||
665 | |||
666 | if (curr->sched_class != &rt_sched_class) | ||
667 | return; | ||
668 | |||
669 | delta_exec = rq->clock_task - curr->se.exec_start; | ||
670 | if (unlikely((s64)delta_exec < 0)) | ||
671 | delta_exec = 0; | ||
672 | |||
673 | schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); | ||
674 | |||
675 | curr->se.sum_exec_runtime += delta_exec; | ||
676 | account_group_exec_runtime(curr, delta_exec); | ||
677 | |||
678 | curr->se.exec_start = rq->clock_task; | ||
679 | cpuacct_charge(curr, delta_exec); | ||
680 | |||
681 | sched_rt_avg_update(rq, delta_exec); | ||
682 | |||
683 | if (!rt_bandwidth_enabled()) | ||
684 | return; | ||
685 | |||
686 | for_each_sched_rt_entity(rt_se) { | ||
687 | rt_rq = rt_rq_of_se(rt_se); | ||
688 | |||
689 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { | ||
690 | raw_spin_lock(&rt_rq->rt_runtime_lock); | ||
691 | rt_rq->rt_time += delta_exec; | ||
692 | if (sched_rt_runtime_exceeded(rt_rq)) | ||
693 | resched_task(curr); | ||
694 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | ||
695 | } | ||
696 | } | ||
697 | } | ||
698 | |||
699 | #if defined CONFIG_SMP | ||
700 | |||
701 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | ||
702 | |||
703 | static inline int next_prio(struct rq *rq) | ||
704 | { | ||
705 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); | ||
706 | |||
707 | if (next && rt_prio(next->prio)) | ||
708 | return next->prio; | ||
709 | else | ||
710 | return MAX_RT_PRIO; | ||
711 | } | ||
712 | |||
713 | static void | ||
714 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | ||
715 | { | ||
716 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
717 | |||
718 | if (prio < prev_prio) { | ||
719 | |||
720 | /* | ||
721 | * If the new task is higher in priority than anything on the | ||
722 | * run-queue, we know that the previous high becomes our | ||
723 | * next-highest. | ||
724 | */ | ||
725 | rt_rq->highest_prio.next = prev_prio; | ||
726 | |||
727 | if (rq->online) | ||
728 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); | ||
729 | |||
730 | } else if (prio == rt_rq->highest_prio.curr) | ||
731 | /* | ||
732 | * If the next task is equal in priority to the highest on | ||
733 | * the run-queue, then we implicitly know that the next highest | ||
734 | * task cannot be any lower than current | ||
735 | */ | ||
736 | rt_rq->highest_prio.next = prio; | ||
737 | else if (prio < rt_rq->highest_prio.next) | ||
738 | /* | ||
739 | * Otherwise, we need to recompute next-highest | ||
740 | */ | ||
741 | rt_rq->highest_prio.next = next_prio(rq); | ||
742 | } | ||
743 | |||
744 | static void | ||
745 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | ||
746 | { | ||
747 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
748 | |||
749 | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) | ||
750 | rt_rq->highest_prio.next = next_prio(rq); | ||
751 | |||
752 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) | ||
753 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | ||
754 | } | ||
755 | |||
756 | #else /* CONFIG_SMP */ | ||
757 | |||
758 | static inline | ||
759 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | ||
760 | static inline | ||
761 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | ||
762 | |||
763 | #endif /* CONFIG_SMP */ | ||
764 | |||
765 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | ||
766 | static void | ||
767 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | ||
768 | { | ||
769 | int prev_prio = rt_rq->highest_prio.curr; | ||
770 | |||
771 | if (prio < prev_prio) | ||
772 | rt_rq->highest_prio.curr = prio; | ||
773 | |||
774 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | ||
775 | } | ||
776 | |||
777 | static void | ||
778 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | ||
779 | { | ||
780 | int prev_prio = rt_rq->highest_prio.curr; | ||
781 | |||
782 | if (rt_rq->rt_nr_running) { | ||
783 | |||
784 | WARN_ON(prio < prev_prio); | ||
785 | |||
786 | /* | ||
787 | * This may have been our highest task, and therefore | ||
788 | * we may have some recomputation to do | ||
789 | */ | ||
790 | if (prio == prev_prio) { | ||
791 | struct rt_prio_array *array = &rt_rq->active; | ||
792 | |||
793 | rt_rq->highest_prio.curr = | ||
794 | sched_find_first_bit(array->bitmap); | ||
795 | } | ||
796 | |||
797 | } else | ||
798 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | ||
799 | |||
800 | dec_rt_prio_smp(rt_rq, prio, prev_prio); | ||
801 | } | ||
802 | |||
803 | #else | ||
804 | |||
805 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | ||
806 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | ||
807 | |||
808 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | ||
809 | |||
810 | #ifdef CONFIG_RT_GROUP_SCHED | ||
811 | |||
812 | static void | ||
813 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
814 | { | ||
815 | if (rt_se_boosted(rt_se)) | ||
816 | rt_rq->rt_nr_boosted++; | ||
817 | |||
818 | if (rt_rq->tg) | ||
819 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | ||
820 | } | ||
821 | |||
822 | static void | ||
823 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
824 | { | ||
825 | if (rt_se_boosted(rt_se)) | ||
826 | rt_rq->rt_nr_boosted--; | ||
827 | |||
828 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | ||
829 | } | ||
830 | |||
831 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
832 | |||
833 | static void | ||
834 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
835 | { | ||
836 | start_rt_bandwidth(&def_rt_bandwidth); | ||
837 | } | ||
838 | |||
839 | static inline | ||
840 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | ||
841 | |||
842 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
843 | |||
844 | static inline | ||
845 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
846 | { | ||
847 | int prio = rt_se_prio(rt_se); | ||
848 | |||
849 | WARN_ON(!rt_prio(prio)); | ||
850 | rt_rq->rt_nr_running++; | ||
851 | |||
852 | inc_rt_prio(rt_rq, prio); | ||
853 | inc_rt_migration(rt_se, rt_rq); | ||
854 | inc_rt_group(rt_se, rt_rq); | ||
855 | } | ||
856 | |||
857 | static inline | ||
858 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
859 | { | ||
860 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
861 | WARN_ON(!rt_rq->rt_nr_running); | ||
862 | rt_rq->rt_nr_running--; | ||
863 | |||
864 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | ||
865 | dec_rt_migration(rt_se, rt_rq); | ||
866 | dec_rt_group(rt_se, rt_rq); | ||
867 | } | ||
868 | |||
869 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | ||
870 | { | ||
871 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | ||
872 | struct rt_prio_array *array = &rt_rq->active; | ||
873 | struct rt_rq *group_rq = group_rt_rq(rt_se); | ||
874 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | ||
875 | |||
876 | /* | ||
877 | * Don't enqueue the group if its throttled, or when empty. | ||
878 | * The latter is a consequence of the former when a child group | ||
879 | * get throttled and the current group doesn't have any other | ||
880 | * active members. | ||
881 | */ | ||
882 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) | ||
883 | return; | ||
884 | |||
885 | if (!rt_rq->rt_nr_running) | ||
886 | list_add_leaf_rt_rq(rt_rq); | ||
887 | |||
888 | if (head) | ||
889 | list_add(&rt_se->run_list, queue); | ||
890 | else | ||
891 | list_add_tail(&rt_se->run_list, queue); | ||
892 | __set_bit(rt_se_prio(rt_se), array->bitmap); | ||
893 | |||
894 | inc_rt_tasks(rt_se, rt_rq); | ||
895 | } | ||
896 | |||
897 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) | ||
898 | { | ||
899 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | ||
900 | struct rt_prio_array *array = &rt_rq->active; | ||
901 | |||
902 | list_del_init(&rt_se->run_list); | ||
903 | if (list_empty(array->queue + rt_se_prio(rt_se))) | ||
904 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | ||
905 | |||
906 | dec_rt_tasks(rt_se, rt_rq); | ||
907 | if (!rt_rq->rt_nr_running) | ||
908 | list_del_leaf_rt_rq(rt_rq); | ||
909 | } | ||
910 | |||
911 | /* | ||
912 | * Because the prio of an upper entry depends on the lower | ||
913 | * entries, we must remove entries top - down. | ||
914 | */ | ||
915 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) | ||
916 | { | ||
917 | struct sched_rt_entity *back = NULL; | ||
918 | |||
919 | for_each_sched_rt_entity(rt_se) { | ||
920 | rt_se->back = back; | ||
921 | back = rt_se; | ||
922 | } | ||
923 | |||
924 | for (rt_se = back; rt_se; rt_se = rt_se->back) { | ||
925 | if (on_rt_rq(rt_se)) | ||
926 | __dequeue_rt_entity(rt_se); | ||
927 | } | ||
928 | } | ||
929 | |||
930 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | ||
931 | { | ||
932 | dequeue_rt_stack(rt_se); | ||
933 | for_each_sched_rt_entity(rt_se) | ||
934 | __enqueue_rt_entity(rt_se, head); | ||
935 | } | ||
936 | |||
937 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | ||
938 | { | ||
939 | dequeue_rt_stack(rt_se); | ||
940 | |||
941 | for_each_sched_rt_entity(rt_se) { | ||
942 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | ||
943 | |||
944 | if (rt_rq && rt_rq->rt_nr_running) | ||
945 | __enqueue_rt_entity(rt_se, false); | ||
946 | } | ||
947 | } | ||
948 | |||
949 | /* | ||
950 | * Adding/removing a task to/from a priority array: | ||
951 | */ | ||
952 | static void | ||
953 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) | ||
954 | { | ||
955 | struct sched_rt_entity *rt_se = &p->rt; | ||
956 | |||
957 | if (flags & ENQUEUE_WAKEUP) | ||
958 | rt_se->timeout = 0; | ||
959 | |||
960 | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); | ||
961 | |||
962 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | ||
963 | enqueue_pushable_task(rq, p); | ||
964 | } | ||
965 | |||
966 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) | ||
967 | { | ||
968 | struct sched_rt_entity *rt_se = &p->rt; | ||
969 | |||
970 | update_curr_rt(rq); | ||
971 | dequeue_rt_entity(rt_se); | ||
972 | |||
973 | dequeue_pushable_task(rq, p); | ||
974 | } | ||
975 | |||
976 | /* | ||
977 | * Put task to the end of the run list without the overhead of dequeue | ||
978 | * followed by enqueue. | ||
979 | */ | ||
980 | static void | ||
981 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | ||
982 | { | ||
983 | if (on_rt_rq(rt_se)) { | ||
984 | struct rt_prio_array *array = &rt_rq->active; | ||
985 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | ||
986 | |||
987 | if (head) | ||
988 | list_move(&rt_se->run_list, queue); | ||
989 | else | ||
990 | list_move_tail(&rt_se->run_list, queue); | ||
991 | } | ||
992 | } | ||
993 | |||
994 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) | ||
995 | { | ||
996 | struct sched_rt_entity *rt_se = &p->rt; | ||
997 | struct rt_rq *rt_rq; | ||
998 | |||
999 | for_each_sched_rt_entity(rt_se) { | ||
1000 | rt_rq = rt_rq_of_se(rt_se); | ||
1001 | requeue_rt_entity(rt_rq, rt_se, head); | ||
1002 | } | ||
1003 | } | ||
1004 | |||
1005 | static void yield_task_rt(struct rq *rq) | ||
1006 | { | ||
1007 | requeue_task_rt(rq, rq->curr, 0); | ||
1008 | } | ||
1009 | |||
1010 | #ifdef CONFIG_SMP | ||
1011 | static int find_lowest_rq(struct task_struct *task); | ||
1012 | |||
1013 | static int | ||
1014 | select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) | ||
1015 | { | ||
1016 | struct task_struct *curr; | ||
1017 | struct rq *rq; | ||
1018 | int cpu; | ||
1019 | |||
1020 | if (sd_flag != SD_BALANCE_WAKE) | ||
1021 | return smp_processor_id(); | ||
1022 | |||
1023 | cpu = task_cpu(p); | ||
1024 | rq = cpu_rq(cpu); | ||
1025 | |||
1026 | rcu_read_lock(); | ||
1027 | curr = ACCESS_ONCE(rq->curr); /* unlocked access */ | ||
1028 | |||
1029 | /* | ||
1030 | * If the current task on @p's runqueue is an RT task, then | ||
1031 | * try to see if we can wake this RT task up on another | ||
1032 | * runqueue. Otherwise simply start this RT task | ||
1033 | * on its current runqueue. | ||
1034 | * | ||
1035 | * We want to avoid overloading runqueues. If the woken | ||
1036 | * task is a higher priority, then it will stay on this CPU | ||
1037 | * and the lower prio task should be moved to another CPU. | ||
1038 | * Even though this will probably make the lower prio task | ||
1039 | * lose its cache, we do not want to bounce a higher task | ||
1040 | * around just because it gave up its CPU, perhaps for a | ||
1041 | * lock? | ||
1042 | * | ||
1043 | * For equal prio tasks, we just let the scheduler sort it out. | ||
1044 | * | ||
1045 | * Otherwise, just let it ride on the affined RQ and the | ||
1046 | * post-schedule router will push the preempted task away | ||
1047 | * | ||
1048 | * This test is optimistic, if we get it wrong the load-balancer | ||
1049 | * will have to sort it out. | ||
1050 | */ | ||
1051 | if (curr && unlikely(rt_task(curr)) && | ||
1052 | (curr->rt.nr_cpus_allowed < 2 || | ||
1053 | curr->prio <= p->prio) && | ||
1054 | (p->rt.nr_cpus_allowed > 1)) { | ||
1055 | int target = find_lowest_rq(p); | ||
1056 | |||
1057 | if (target != -1) | ||
1058 | cpu = target; | ||
1059 | } | ||
1060 | rcu_read_unlock(); | ||
1061 | |||
1062 | return cpu; | ||
1063 | } | ||
1064 | |||
1065 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | ||
1066 | { | ||
1067 | if (rq->curr->rt.nr_cpus_allowed == 1) | ||
1068 | return; | ||
1069 | |||
1070 | if (p->rt.nr_cpus_allowed != 1 | ||
1071 | && cpupri_find(&rq->rd->cpupri, p, NULL)) | ||
1072 | return; | ||
1073 | |||
1074 | if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) | ||
1075 | return; | ||
1076 | |||
1077 | /* | ||
1078 | * There appears to be other cpus that can accept | ||
1079 | * current and none to run 'p', so lets reschedule | ||
1080 | * to try and push current away: | ||
1081 | */ | ||
1082 | requeue_task_rt(rq, p, 1); | ||
1083 | resched_task(rq->curr); | ||
1084 | } | ||
1085 | |||
1086 | #endif /* CONFIG_SMP */ | ||
1087 | |||
1088 | /* | ||
1089 | * Preempt the current task with a newly woken task if needed: | ||
1090 | */ | ||
1091 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) | ||
1092 | { | ||
1093 | if (p->prio < rq->curr->prio) { | ||
1094 | resched_task(rq->curr); | ||
1095 | return; | ||
1096 | } | ||
1097 | |||
1098 | #ifdef CONFIG_SMP | ||
1099 | /* | ||
1100 | * If: | ||
1101 | * | ||
1102 | * - the newly woken task is of equal priority to the current task | ||
1103 | * - the newly woken task is non-migratable while current is migratable | ||
1104 | * - current will be preempted on the next reschedule | ||
1105 | * | ||
1106 | * we should check to see if current can readily move to a different | ||
1107 | * cpu. If so, we will reschedule to allow the push logic to try | ||
1108 | * to move current somewhere else, making room for our non-migratable | ||
1109 | * task. | ||
1110 | */ | ||
1111 | if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) | ||
1112 | check_preempt_equal_prio(rq, p); | ||
1113 | #endif | ||
1114 | } | ||
1115 | |||
1116 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | ||
1117 | struct rt_rq *rt_rq) | ||
1118 | { | ||
1119 | struct rt_prio_array *array = &rt_rq->active; | ||
1120 | struct sched_rt_entity *next = NULL; | ||
1121 | struct list_head *queue; | ||
1122 | int idx; | ||
1123 | |||
1124 | idx = sched_find_first_bit(array->bitmap); | ||
1125 | BUG_ON(idx >= MAX_RT_PRIO); | ||
1126 | |||
1127 | queue = array->queue + idx; | ||
1128 | next = list_entry(queue->next, struct sched_rt_entity, run_list); | ||
1129 | |||
1130 | return next; | ||
1131 | } | ||
1132 | |||
1133 | static struct task_struct *_pick_next_task_rt(struct rq *rq) | ||
1134 | { | ||
1135 | struct sched_rt_entity *rt_se; | ||
1136 | struct task_struct *p; | ||
1137 | struct rt_rq *rt_rq; | ||
1138 | |||
1139 | rt_rq = &rq->rt; | ||
1140 | |||
1141 | if (!rt_rq->rt_nr_running) | ||
1142 | return NULL; | ||
1143 | |||
1144 | if (rt_rq_throttled(rt_rq)) | ||
1145 | return NULL; | ||
1146 | |||
1147 | do { | ||
1148 | rt_se = pick_next_rt_entity(rq, rt_rq); | ||
1149 | BUG_ON(!rt_se); | ||
1150 | rt_rq = group_rt_rq(rt_se); | ||
1151 | } while (rt_rq); | ||
1152 | |||
1153 | p = rt_task_of(rt_se); | ||
1154 | p->se.exec_start = rq->clock_task; | ||
1155 | |||
1156 | return p; | ||
1157 | } | ||
1158 | |||
1159 | static struct task_struct *pick_next_task_rt(struct rq *rq) | ||
1160 | { | ||
1161 | struct task_struct *p = _pick_next_task_rt(rq); | ||
1162 | |||
1163 | /* The running task is never eligible for pushing */ | ||
1164 | if (p) | ||
1165 | dequeue_pushable_task(rq, p); | ||
1166 | |||
1167 | #ifdef CONFIG_SMP | ||
1168 | /* | ||
1169 | * We detect this state here so that we can avoid taking the RQ | ||
1170 | * lock again later if there is no need to push | ||
1171 | */ | ||
1172 | rq->post_schedule = has_pushable_tasks(rq); | ||
1173 | #endif | ||
1174 | |||
1175 | return p; | ||
1176 | } | ||
1177 | |||
1178 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | ||
1179 | { | ||
1180 | update_curr_rt(rq); | ||
1181 | p->se.exec_start = 0; | ||
1182 | |||
1183 | /* | ||
1184 | * The previous task needs to be made eligible for pushing | ||
1185 | * if it is still active | ||
1186 | */ | ||
1187 | if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1) | ||
1188 | enqueue_pushable_task(rq, p); | ||
1189 | } | ||
1190 | |||
1191 | #ifdef CONFIG_SMP | ||
1192 | |||
1193 | /* Only try algorithms three times */ | ||
1194 | #define RT_MAX_TRIES 3 | ||
1195 | |||
1196 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); | ||
1197 | |||
1198 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | ||
1199 | { | ||
1200 | if (!task_running(rq, p) && | ||
1201 | (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && | ||
1202 | (p->rt.nr_cpus_allowed > 1)) | ||
1203 | return 1; | ||
1204 | return 0; | ||
1205 | } | ||
1206 | |||
1207 | /* Return the second highest RT task, NULL otherwise */ | ||
1208 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | ||
1209 | { | ||
1210 | struct task_struct *next = NULL; | ||
1211 | struct sched_rt_entity *rt_se; | ||
1212 | struct rt_prio_array *array; | ||
1213 | struct rt_rq *rt_rq; | ||
1214 | int idx; | ||
1215 | |||
1216 | for_each_leaf_rt_rq(rt_rq, rq) { | ||
1217 | array = &rt_rq->active; | ||
1218 | idx = sched_find_first_bit(array->bitmap); | ||
1219 | next_idx: | ||
1220 | if (idx >= MAX_RT_PRIO) | ||
1221 | continue; | ||
1222 | if (next && next->prio < idx) | ||
1223 | continue; | ||
1224 | list_for_each_entry(rt_se, array->queue + idx, run_list) { | ||
1225 | struct task_struct *p; | ||
1226 | |||
1227 | if (!rt_entity_is_task(rt_se)) | ||
1228 | continue; | ||
1229 | |||
1230 | p = rt_task_of(rt_se); | ||
1231 | if (pick_rt_task(rq, p, cpu)) { | ||
1232 | next = p; | ||
1233 | break; | ||
1234 | } | ||
1235 | } | ||
1236 | if (!next) { | ||
1237 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | ||
1238 | goto next_idx; | ||
1239 | } | ||
1240 | } | ||
1241 | |||
1242 | return next; | ||
1243 | } | ||
1244 | |||
1245 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | ||
1246 | |||
1247 | static int find_lowest_rq(struct task_struct *task) | ||
1248 | { | ||
1249 | struct sched_domain *sd; | ||
1250 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); | ||
1251 | int this_cpu = smp_processor_id(); | ||
1252 | int cpu = task_cpu(task); | ||
1253 | |||
1254 | /* Make sure the mask is initialized first */ | ||
1255 | if (unlikely(!lowest_mask)) | ||
1256 | return -1; | ||
1257 | |||
1258 | if (task->rt.nr_cpus_allowed == 1) | ||
1259 | return -1; /* No other targets possible */ | ||
1260 | |||
1261 | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) | ||
1262 | return -1; /* No targets found */ | ||
1263 | |||
1264 | /* | ||
1265 | * At this point we have built a mask of cpus representing the | ||
1266 | * lowest priority tasks in the system. Now we want to elect | ||
1267 | * the best one based on our affinity and topology. | ||
1268 | * | ||
1269 | * We prioritize the last cpu that the task executed on since | ||
1270 | * it is most likely cache-hot in that location. | ||
1271 | */ | ||
1272 | if (cpumask_test_cpu(cpu, lowest_mask)) | ||
1273 | return cpu; | ||
1274 | |||
1275 | /* | ||
1276 | * Otherwise, we consult the sched_domains span maps to figure | ||
1277 | * out which cpu is logically closest to our hot cache data. | ||
1278 | */ | ||
1279 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) | ||
1280 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | ||
1281 | |||
1282 | rcu_read_lock(); | ||
1283 | for_each_domain(cpu, sd) { | ||
1284 | if (sd->flags & SD_WAKE_AFFINE) { | ||
1285 | int best_cpu; | ||
1286 | |||
1287 | /* | ||
1288 | * "this_cpu" is cheaper to preempt than a | ||
1289 | * remote processor. | ||
1290 | */ | ||
1291 | if (this_cpu != -1 && | ||
1292 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { | ||
1293 | rcu_read_unlock(); | ||
1294 | return this_cpu; | ||
1295 | } | ||
1296 | |||
1297 | best_cpu = cpumask_first_and(lowest_mask, | ||
1298 | sched_domain_span(sd)); | ||
1299 | if (best_cpu < nr_cpu_ids) { | ||
1300 | rcu_read_unlock(); | ||
1301 | return best_cpu; | ||
1302 | } | ||
1303 | } | ||
1304 | } | ||
1305 | rcu_read_unlock(); | ||
1306 | |||
1307 | /* | ||
1308 | * And finally, if there were no matches within the domains | ||
1309 | * just give the caller *something* to work with from the compatible | ||
1310 | * locations. | ||
1311 | */ | ||
1312 | if (this_cpu != -1) | ||
1313 | return this_cpu; | ||
1314 | |||
1315 | cpu = cpumask_any(lowest_mask); | ||
1316 | if (cpu < nr_cpu_ids) | ||
1317 | return cpu; | ||
1318 | return -1; | ||
1319 | } | ||
1320 | |||
1321 | /* Will lock the rq it finds */ | ||
1322 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | ||
1323 | { | ||
1324 | struct rq *lowest_rq = NULL; | ||
1325 | int tries; | ||
1326 | int cpu; | ||
1327 | |||
1328 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { | ||
1329 | cpu = find_lowest_rq(task); | ||
1330 | |||
1331 | if ((cpu == -1) || (cpu == rq->cpu)) | ||
1332 | break; | ||
1333 | |||
1334 | lowest_rq = cpu_rq(cpu); | ||
1335 | |||
1336 | /* if the prio of this runqueue changed, try again */ | ||
1337 | if (double_lock_balance(rq, lowest_rq)) { | ||
1338 | /* | ||
1339 | * We had to unlock the run queue. In | ||
1340 | * the mean time, task could have | ||
1341 | * migrated already or had its affinity changed. | ||
1342 | * Also make sure that it wasn't scheduled on its rq. | ||
1343 | */ | ||
1344 | if (unlikely(task_rq(task) != rq || | ||
1345 | !cpumask_test_cpu(lowest_rq->cpu, | ||
1346 | &task->cpus_allowed) || | ||
1347 | task_running(rq, task) || | ||
1348 | !task->on_rq)) { | ||
1349 | |||
1350 | raw_spin_unlock(&lowest_rq->lock); | ||
1351 | lowest_rq = NULL; | ||
1352 | break; | ||
1353 | } | ||
1354 | } | ||
1355 | |||
1356 | /* If this rq is still suitable use it. */ | ||
1357 | if (lowest_rq->rt.highest_prio.curr > task->prio) | ||
1358 | break; | ||
1359 | |||
1360 | /* try again */ | ||
1361 | double_unlock_balance(rq, lowest_rq); | ||
1362 | lowest_rq = NULL; | ||
1363 | } | ||
1364 | |||
1365 | return lowest_rq; | ||
1366 | } | ||
1367 | |||
1368 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | ||
1369 | { | ||
1370 | struct task_struct *p; | ||
1371 | |||
1372 | if (!has_pushable_tasks(rq)) | ||
1373 | return NULL; | ||
1374 | |||
1375 | p = plist_first_entry(&rq->rt.pushable_tasks, | ||
1376 | struct task_struct, pushable_tasks); | ||
1377 | |||
1378 | BUG_ON(rq->cpu != task_cpu(p)); | ||
1379 | BUG_ON(task_current(rq, p)); | ||
1380 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | ||
1381 | |||
1382 | BUG_ON(!p->on_rq); | ||
1383 | BUG_ON(!rt_task(p)); | ||
1384 | |||
1385 | return p; | ||
1386 | } | ||
1387 | |||
1388 | /* | ||
1389 | * If the current CPU has more than one RT task, see if the non | ||
1390 | * running task can migrate over to a CPU that is running a task | ||
1391 | * of lesser priority. | ||
1392 | */ | ||
1393 | static int push_rt_task(struct rq *rq) | ||
1394 | { | ||
1395 | struct task_struct *next_task; | ||
1396 | struct rq *lowest_rq; | ||
1397 | |||
1398 | if (!rq->rt.overloaded) | ||
1399 | return 0; | ||
1400 | |||
1401 | next_task = pick_next_pushable_task(rq); | ||
1402 | if (!next_task) | ||
1403 | return 0; | ||
1404 | |||
1405 | retry: | ||
1406 | if (unlikely(next_task == rq->curr)) { | ||
1407 | WARN_ON(1); | ||
1408 | return 0; | ||
1409 | } | ||
1410 | |||
1411 | /* | ||
1412 | * It's possible that the next_task slipped in of | ||
1413 | * higher priority than current. If that's the case | ||
1414 | * just reschedule current. | ||
1415 | */ | ||
1416 | if (unlikely(next_task->prio < rq->curr->prio)) { | ||
1417 | resched_task(rq->curr); | ||
1418 | return 0; | ||
1419 | } | ||
1420 | |||
1421 | /* We might release rq lock */ | ||
1422 | get_task_struct(next_task); | ||
1423 | |||
1424 | /* find_lock_lowest_rq locks the rq if found */ | ||
1425 | lowest_rq = find_lock_lowest_rq(next_task, rq); | ||
1426 | if (!lowest_rq) { | ||
1427 | struct task_struct *task; | ||
1428 | /* | ||
1429 | * find lock_lowest_rq releases rq->lock | ||
1430 | * so it is possible that next_task has migrated. | ||
1431 | * | ||
1432 | * We need to make sure that the task is still on the same | ||
1433 | * run-queue and is also still the next task eligible for | ||
1434 | * pushing. | ||
1435 | */ | ||
1436 | task = pick_next_pushable_task(rq); | ||
1437 | if (task_cpu(next_task) == rq->cpu && task == next_task) { | ||
1438 | /* | ||
1439 | * If we get here, the task hasn't moved at all, but | ||
1440 | * it has failed to push. We will not try again, | ||
1441 | * since the other cpus will pull from us when they | ||
1442 | * are ready. | ||
1443 | */ | ||
1444 | dequeue_pushable_task(rq, next_task); | ||
1445 | goto out; | ||
1446 | } | ||
1447 | |||
1448 | if (!task) | ||
1449 | /* No more tasks, just exit */ | ||
1450 | goto out; | ||
1451 | |||
1452 | /* | ||
1453 | * Something has shifted, try again. | ||
1454 | */ | ||
1455 | put_task_struct(next_task); | ||
1456 | next_task = task; | ||
1457 | goto retry; | ||
1458 | } | ||
1459 | |||
1460 | deactivate_task(rq, next_task, 0); | ||
1461 | set_task_cpu(next_task, lowest_rq->cpu); | ||
1462 | activate_task(lowest_rq, next_task, 0); | ||
1463 | |||
1464 | resched_task(lowest_rq->curr); | ||
1465 | |||
1466 | double_unlock_balance(rq, lowest_rq); | ||
1467 | |||
1468 | out: | ||
1469 | put_task_struct(next_task); | ||
1470 | |||
1471 | return 1; | ||
1472 | } | ||
1473 | |||
1474 | static void push_rt_tasks(struct rq *rq) | ||
1475 | { | ||
1476 | /* push_rt_task will return true if it moved an RT */ | ||
1477 | while (push_rt_task(rq)) | ||
1478 | ; | ||
1479 | } | ||
1480 | |||
1481 | static int pull_rt_task(struct rq *this_rq) | ||
1482 | { | ||
1483 | int this_cpu = this_rq->cpu, ret = 0, cpu; | ||
1484 | struct task_struct *p; | ||
1485 | struct rq *src_rq; | ||
1486 | |||
1487 | if (likely(!rt_overloaded(this_rq))) | ||
1488 | return 0; | ||
1489 | |||
1490 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | ||
1491 | if (this_cpu == cpu) | ||
1492 | continue; | ||
1493 | |||
1494 | src_rq = cpu_rq(cpu); | ||
1495 | |||
1496 | /* | ||
1497 | * Don't bother taking the src_rq->lock if the next highest | ||
1498 | * task is known to be lower-priority than our current task. | ||
1499 | * This may look racy, but if this value is about to go | ||
1500 | * logically higher, the src_rq will push this task away. | ||
1501 | * And if its going logically lower, we do not care | ||
1502 | */ | ||
1503 | if (src_rq->rt.highest_prio.next >= | ||
1504 | this_rq->rt.highest_prio.curr) | ||
1505 | continue; | ||
1506 | |||
1507 | /* | ||
1508 | * We can potentially drop this_rq's lock in | ||
1509 | * double_lock_balance, and another CPU could | ||
1510 | * alter this_rq | ||
1511 | */ | ||
1512 | double_lock_balance(this_rq, src_rq); | ||
1513 | |||
1514 | /* | ||
1515 | * Are there still pullable RT tasks? | ||
1516 | */ | ||
1517 | if (src_rq->rt.rt_nr_running <= 1) | ||
1518 | goto skip; | ||
1519 | |||
1520 | p = pick_next_highest_task_rt(src_rq, this_cpu); | ||
1521 | |||
1522 | /* | ||
1523 | * Do we have an RT task that preempts | ||
1524 | * the to-be-scheduled task? | ||
1525 | */ | ||
1526 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { | ||
1527 | WARN_ON(p == src_rq->curr); | ||
1528 | WARN_ON(!p->on_rq); | ||
1529 | |||
1530 | /* | ||
1531 | * There's a chance that p is higher in priority | ||
1532 | * than what's currently running on its cpu. | ||
1533 | * This is just that p is wakeing up and hasn't | ||
1534 | * had a chance to schedule. We only pull | ||
1535 | * p if it is lower in priority than the | ||
1536 | * current task on the run queue | ||
1537 | */ | ||
1538 | if (p->prio < src_rq->curr->prio) | ||
1539 | goto skip; | ||
1540 | |||
1541 | ret = 1; | ||
1542 | |||
1543 | deactivate_task(src_rq, p, 0); | ||
1544 | set_task_cpu(p, this_cpu); | ||
1545 | activate_task(this_rq, p, 0); | ||
1546 | /* | ||
1547 | * We continue with the search, just in | ||
1548 | * case there's an even higher prio task | ||
1549 | * in another runqueue. (low likelihood | ||
1550 | * but possible) | ||
1551 | */ | ||
1552 | } | ||
1553 | skip: | ||
1554 | double_unlock_balance(this_rq, src_rq); | ||
1555 | } | ||
1556 | |||
1557 | return ret; | ||
1558 | } | ||
1559 | |||
1560 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | ||
1561 | { | ||
1562 | /* Try to pull RT tasks here if we lower this rq's prio */ | ||
1563 | if (rq->rt.highest_prio.curr > prev->prio) | ||
1564 | pull_rt_task(rq); | ||
1565 | } | ||
1566 | |||
1567 | static void post_schedule_rt(struct rq *rq) | ||
1568 | { | ||
1569 | push_rt_tasks(rq); | ||
1570 | } | ||
1571 | |||
1572 | /* | ||
1573 | * If we are not running and we are not going to reschedule soon, we should | ||
1574 | * try to push tasks away now | ||
1575 | */ | ||
1576 | static void task_woken_rt(struct rq *rq, struct task_struct *p) | ||
1577 | { | ||
1578 | if (!task_running(rq, p) && | ||
1579 | !test_tsk_need_resched(rq->curr) && | ||
1580 | has_pushable_tasks(rq) && | ||
1581 | p->rt.nr_cpus_allowed > 1 && | ||
1582 | rt_task(rq->curr) && | ||
1583 | (rq->curr->rt.nr_cpus_allowed < 2 || | ||
1584 | rq->curr->prio <= p->prio)) | ||
1585 | push_rt_tasks(rq); | ||
1586 | } | ||
1587 | |||
1588 | static void set_cpus_allowed_rt(struct task_struct *p, | ||
1589 | const struct cpumask *new_mask) | ||
1590 | { | ||
1591 | int weight = cpumask_weight(new_mask); | ||
1592 | |||
1593 | BUG_ON(!rt_task(p)); | ||
1594 | |||
1595 | /* | ||
1596 | * Update the migration status of the RQ if we have an RT task | ||
1597 | * which is running AND changing its weight value. | ||
1598 | */ | ||
1599 | if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) { | ||
1600 | struct rq *rq = task_rq(p); | ||
1601 | |||
1602 | if (!task_current(rq, p)) { | ||
1603 | /* | ||
1604 | * Make sure we dequeue this task from the pushable list | ||
1605 | * before going further. It will either remain off of | ||
1606 | * the list because we are no longer pushable, or it | ||
1607 | * will be requeued. | ||
1608 | */ | ||
1609 | if (p->rt.nr_cpus_allowed > 1) | ||
1610 | dequeue_pushable_task(rq, p); | ||
1611 | |||
1612 | /* | ||
1613 | * Requeue if our weight is changing and still > 1 | ||
1614 | */ | ||
1615 | if (weight > 1) | ||
1616 | enqueue_pushable_task(rq, p); | ||
1617 | |||
1618 | } | ||
1619 | |||
1620 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | ||
1621 | rq->rt.rt_nr_migratory++; | ||
1622 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | ||
1623 | BUG_ON(!rq->rt.rt_nr_migratory); | ||
1624 | rq->rt.rt_nr_migratory--; | ||
1625 | } | ||
1626 | |||
1627 | update_rt_migration(&rq->rt); | ||
1628 | } | ||
1629 | |||
1630 | cpumask_copy(&p->cpus_allowed, new_mask); | ||
1631 | p->rt.nr_cpus_allowed = weight; | ||
1632 | } | ||
1633 | |||
1634 | /* Assumes rq->lock is held */ | ||
1635 | static void rq_online_rt(struct rq *rq) | ||
1636 | { | ||
1637 | if (rq->rt.overloaded) | ||
1638 | rt_set_overload(rq); | ||
1639 | |||
1640 | __enable_runtime(rq); | ||
1641 | |||
1642 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); | ||
1643 | } | ||
1644 | |||
1645 | /* Assumes rq->lock is held */ | ||
1646 | static void rq_offline_rt(struct rq *rq) | ||
1647 | { | ||
1648 | if (rq->rt.overloaded) | ||
1649 | rt_clear_overload(rq); | ||
1650 | |||
1651 | __disable_runtime(rq); | ||
1652 | |||
1653 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); | ||
1654 | } | ||
1655 | |||
1656 | /* | ||
1657 | * When switch from the rt queue, we bring ourselves to a position | ||
1658 | * that we might want to pull RT tasks from other runqueues. | ||
1659 | */ | ||
1660 | static void switched_from_rt(struct rq *rq, struct task_struct *p) | ||
1661 | { | ||
1662 | /* | ||
1663 | * If there are other RT tasks then we will reschedule | ||
1664 | * and the scheduling of the other RT tasks will handle | ||
1665 | * the balancing. But if we are the last RT task | ||
1666 | * we may need to handle the pulling of RT tasks | ||
1667 | * now. | ||
1668 | */ | ||
1669 | if (p->on_rq && !rq->rt.rt_nr_running) | ||
1670 | pull_rt_task(rq); | ||
1671 | } | ||
1672 | |||
1673 | static inline void init_sched_rt_class(void) | ||
1674 | { | ||
1675 | unsigned int i; | ||
1676 | |||
1677 | for_each_possible_cpu(i) | ||
1678 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), | ||
1679 | GFP_KERNEL, cpu_to_node(i)); | ||
1680 | } | ||
1681 | #endif /* CONFIG_SMP */ | ||
1682 | |||
1683 | /* | ||
1684 | * When switching a task to RT, we may overload the runqueue | ||
1685 | * with RT tasks. In this case we try to push them off to | ||
1686 | * other runqueues. | ||
1687 | */ | ||
1688 | static void switched_to_rt(struct rq *rq, struct task_struct *p) | ||
1689 | { | ||
1690 | int check_resched = 1; | ||
1691 | |||
1692 | /* | ||
1693 | * If we are already running, then there's nothing | ||
1694 | * that needs to be done. But if we are not running | ||
1695 | * we may need to preempt the current running task. | ||
1696 | * If that current running task is also an RT task | ||
1697 | * then see if we can move to another run queue. | ||
1698 | */ | ||
1699 | if (p->on_rq && rq->curr != p) { | ||
1700 | #ifdef CONFIG_SMP | ||
1701 | if (rq->rt.overloaded && push_rt_task(rq) && | ||
1702 | /* Don't resched if we changed runqueues */ | ||
1703 | rq != task_rq(p)) | ||
1704 | check_resched = 0; | ||
1705 | #endif /* CONFIG_SMP */ | ||
1706 | if (check_resched && p->prio < rq->curr->prio) | ||
1707 | resched_task(rq->curr); | ||
1708 | } | ||
1709 | } | ||
1710 | |||
1711 | /* | ||
1712 | * Priority of the task has changed. This may cause | ||
1713 | * us to initiate a push or pull. | ||
1714 | */ | ||
1715 | static void | ||
1716 | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) | ||
1717 | { | ||
1718 | if (!p->on_rq) | ||
1719 | return; | ||
1720 | |||
1721 | if (rq->curr == p) { | ||
1722 | #ifdef CONFIG_SMP | ||
1723 | /* | ||
1724 | * If our priority decreases while running, we | ||
1725 | * may need to pull tasks to this runqueue. | ||
1726 | */ | ||
1727 | if (oldprio < p->prio) | ||
1728 | pull_rt_task(rq); | ||
1729 | /* | ||
1730 | * If there's a higher priority task waiting to run | ||
1731 | * then reschedule. Note, the above pull_rt_task | ||
1732 | * can release the rq lock and p could migrate. | ||
1733 | * Only reschedule if p is still on the same runqueue. | ||
1734 | */ | ||
1735 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) | ||
1736 | resched_task(p); | ||
1737 | #else | ||
1738 | /* For UP simply resched on drop of prio */ | ||
1739 | if (oldprio < p->prio) | ||
1740 | resched_task(p); | ||
1741 | #endif /* CONFIG_SMP */ | ||
1742 | } else { | ||
1743 | /* | ||
1744 | * This task is not running, but if it is | ||
1745 | * greater than the current running task | ||
1746 | * then reschedule. | ||
1747 | */ | ||
1748 | if (p->prio < rq->curr->prio) | ||
1749 | resched_task(rq->curr); | ||
1750 | } | ||
1751 | } | ||
1752 | |||
1753 | static void watchdog(struct rq *rq, struct task_struct *p) | ||
1754 | { | ||
1755 | unsigned long soft, hard; | ||
1756 | |||
1757 | /* max may change after cur was read, this will be fixed next tick */ | ||
1758 | soft = task_rlimit(p, RLIMIT_RTTIME); | ||
1759 | hard = task_rlimit_max(p, RLIMIT_RTTIME); | ||
1760 | |||
1761 | if (soft != RLIM_INFINITY) { | ||
1762 | unsigned long next; | ||
1763 | |||
1764 | p->rt.timeout++; | ||
1765 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | ||
1766 | if (p->rt.timeout > next) | ||
1767 | p->cputime_expires.sched_exp = p->se.sum_exec_runtime; | ||
1768 | } | ||
1769 | } | ||
1770 | |||
1771 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) | ||
1772 | { | ||
1773 | update_curr_rt(rq); | ||
1774 | |||
1775 | watchdog(rq, p); | ||
1776 | |||
1777 | /* | ||
1778 | * RR tasks need a special form of timeslice management. | ||
1779 | * FIFO tasks have no timeslices. | ||
1780 | */ | ||
1781 | if (p->policy != SCHED_RR) | ||
1782 | return; | ||
1783 | |||
1784 | if (--p->rt.time_slice) | ||
1785 | return; | ||
1786 | |||
1787 | p->rt.time_slice = DEF_TIMESLICE; | ||
1788 | |||
1789 | /* | ||
1790 | * Requeue to the end of queue if we are not the only element | ||
1791 | * on the queue: | ||
1792 | */ | ||
1793 | if (p->rt.run_list.prev != p->rt.run_list.next) { | ||
1794 | requeue_task_rt(rq, p, 0); | ||
1795 | set_tsk_need_resched(p); | ||
1796 | } | ||
1797 | } | ||
1798 | |||
1799 | static void set_curr_task_rt(struct rq *rq) | ||
1800 | { | ||
1801 | struct task_struct *p = rq->curr; | ||
1802 | |||
1803 | p->se.exec_start = rq->clock_task; | ||
1804 | |||
1805 | /* The running task is never eligible for pushing */ | ||
1806 | dequeue_pushable_task(rq, p); | ||
1807 | } | ||
1808 | |||
1809 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) | ||
1810 | { | ||
1811 | /* | ||
1812 | * Time slice is 0 for SCHED_FIFO tasks | ||
1813 | */ | ||
1814 | if (task->policy == SCHED_RR) | ||
1815 | return DEF_TIMESLICE; | ||
1816 | else | ||
1817 | return 0; | ||
1818 | } | ||
1819 | |||
1820 | static const struct sched_class rt_sched_class = { | ||
1821 | .next = &fair_sched_class, | ||
1822 | .enqueue_task = enqueue_task_rt, | ||
1823 | .dequeue_task = dequeue_task_rt, | ||
1824 | .yield_task = yield_task_rt, | ||
1825 | |||
1826 | .check_preempt_curr = check_preempt_curr_rt, | ||
1827 | |||
1828 | .pick_next_task = pick_next_task_rt, | ||
1829 | .put_prev_task = put_prev_task_rt, | ||
1830 | |||
1831 | #ifdef CONFIG_SMP | ||
1832 | .select_task_rq = select_task_rq_rt, | ||
1833 | |||
1834 | .set_cpus_allowed = set_cpus_allowed_rt, | ||
1835 | .rq_online = rq_online_rt, | ||
1836 | .rq_offline = rq_offline_rt, | ||
1837 | .pre_schedule = pre_schedule_rt, | ||
1838 | .post_schedule = post_schedule_rt, | ||
1839 | .task_woken = task_woken_rt, | ||
1840 | .switched_from = switched_from_rt, | ||
1841 | #endif | ||
1842 | |||
1843 | .set_curr_task = set_curr_task_rt, | ||
1844 | .task_tick = task_tick_rt, | ||
1845 | |||
1846 | .get_rr_interval = get_rr_interval_rt, | ||
1847 | |||
1848 | .prio_changed = prio_changed_rt, | ||
1849 | .switched_to = switched_to_rt, | ||
1850 | }; | ||
1851 | |||
1852 | #ifdef CONFIG_SCHED_DEBUG | ||
1853 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | ||
1854 | |||
1855 | static void print_rt_stats(struct seq_file *m, int cpu) | ||
1856 | { | ||
1857 | rt_rq_iter_t iter; | ||
1858 | struct rt_rq *rt_rq; | ||
1859 | |||
1860 | rcu_read_lock(); | ||
1861 | for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) | ||
1862 | print_rt_rq(m, cpu, rt_rq); | ||
1863 | rcu_read_unlock(); | ||
1864 | } | ||
1865 | #endif /* CONFIG_SCHED_DEBUG */ | ||
1866 | |||