diff options
Diffstat (limited to 'kernel/sched_fair.c')
-rw-r--r-- | kernel/sched_fair.c | 4346 |
1 files changed, 4346 insertions, 0 deletions
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c new file mode 100644 index 00000000000..bc8ee999381 --- /dev/null +++ b/kernel/sched_fair.c | |||
@@ -0,0 +1,4346 @@ | |||
1 | /* | ||
2 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | ||
3 | * | ||
4 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
5 | * | ||
6 | * Interactivity improvements by Mike Galbraith | ||
7 | * (C) 2007 Mike Galbraith <efault@gmx.de> | ||
8 | * | ||
9 | * Various enhancements by Dmitry Adamushko. | ||
10 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | ||
11 | * | ||
12 | * Group scheduling enhancements by Srivatsa Vaddagiri | ||
13 | * Copyright IBM Corporation, 2007 | ||
14 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | ||
15 | * | ||
16 | * Scaled math optimizations by Thomas Gleixner | ||
17 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | ||
18 | * | ||
19 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | ||
20 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
21 | */ | ||
22 | |||
23 | #include <linux/latencytop.h> | ||
24 | #include <linux/sched.h> | ||
25 | #include <linux/cpumask.h> | ||
26 | |||
27 | /* | ||
28 | * Targeted preemption latency for CPU-bound tasks: | ||
29 | * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | ||
30 | * | ||
31 | * NOTE: this latency value is not the same as the concept of | ||
32 | * 'timeslice length' - timeslices in CFS are of variable length | ||
33 | * and have no persistent notion like in traditional, time-slice | ||
34 | * based scheduling concepts. | ||
35 | * | ||
36 | * (to see the precise effective timeslice length of your workload, | ||
37 | * run vmstat and monitor the context-switches (cs) field) | ||
38 | */ | ||
39 | unsigned int sysctl_sched_latency = 6000000ULL; | ||
40 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; | ||
41 | |||
42 | /* | ||
43 | * The initial- and re-scaling of tunables is configurable | ||
44 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | ||
45 | * | ||
46 | * Options are: | ||
47 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | ||
48 | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | ||
49 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | ||
50 | */ | ||
51 | enum sched_tunable_scaling sysctl_sched_tunable_scaling | ||
52 | = SCHED_TUNABLESCALING_LOG; | ||
53 | |||
54 | /* | ||
55 | * Minimal preemption granularity for CPU-bound tasks: | ||
56 | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) | ||
57 | */ | ||
58 | unsigned int sysctl_sched_min_granularity = 750000ULL; | ||
59 | unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; | ||
60 | |||
61 | /* | ||
62 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | ||
63 | */ | ||
64 | static unsigned int sched_nr_latency = 8; | ||
65 | |||
66 | /* | ||
67 | * After fork, child runs first. If set to 0 (default) then | ||
68 | * parent will (try to) run first. | ||
69 | */ | ||
70 | unsigned int sysctl_sched_child_runs_first __read_mostly; | ||
71 | |||
72 | /* | ||
73 | * SCHED_OTHER wake-up granularity. | ||
74 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | ||
75 | * | ||
76 | * This option delays the preemption effects of decoupled workloads | ||
77 | * and reduces their over-scheduling. Synchronous workloads will still | ||
78 | * have immediate wakeup/sleep latencies. | ||
79 | */ | ||
80 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; | ||
81 | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | ||
82 | |||
83 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | ||
84 | |||
85 | /* | ||
86 | * The exponential sliding window over which load is averaged for shares | ||
87 | * distribution. | ||
88 | * (default: 10msec) | ||
89 | */ | ||
90 | unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; | ||
91 | |||
92 | static const struct sched_class fair_sched_class; | ||
93 | |||
94 | /************************************************************** | ||
95 | * CFS operations on generic schedulable entities: | ||
96 | */ | ||
97 | |||
98 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
99 | |||
100 | /* cpu runqueue to which this cfs_rq is attached */ | ||
101 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | ||
102 | { | ||
103 | return cfs_rq->rq; | ||
104 | } | ||
105 | |||
106 | /* An entity is a task if it doesn't "own" a runqueue */ | ||
107 | #define entity_is_task(se) (!se->my_q) | ||
108 | |||
109 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
110 | { | ||
111 | #ifdef CONFIG_SCHED_DEBUG | ||
112 | WARN_ON_ONCE(!entity_is_task(se)); | ||
113 | #endif | ||
114 | return container_of(se, struct task_struct, se); | ||
115 | } | ||
116 | |||
117 | /* Walk up scheduling entities hierarchy */ | ||
118 | #define for_each_sched_entity(se) \ | ||
119 | for (; se; se = se->parent) | ||
120 | |||
121 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | ||
122 | { | ||
123 | return p->se.cfs_rq; | ||
124 | } | ||
125 | |||
126 | /* runqueue on which this entity is (to be) queued */ | ||
127 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | ||
128 | { | ||
129 | return se->cfs_rq; | ||
130 | } | ||
131 | |||
132 | /* runqueue "owned" by this group */ | ||
133 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | ||
134 | { | ||
135 | return grp->my_q; | ||
136 | } | ||
137 | |||
138 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
139 | { | ||
140 | if (!cfs_rq->on_list) { | ||
141 | /* | ||
142 | * Ensure we either appear before our parent (if already | ||
143 | * enqueued) or force our parent to appear after us when it is | ||
144 | * enqueued. The fact that we always enqueue bottom-up | ||
145 | * reduces this to two cases. | ||
146 | */ | ||
147 | if (cfs_rq->tg->parent && | ||
148 | cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { | ||
149 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, | ||
150 | &rq_of(cfs_rq)->leaf_cfs_rq_list); | ||
151 | } else { | ||
152 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | ||
153 | &rq_of(cfs_rq)->leaf_cfs_rq_list); | ||
154 | } | ||
155 | |||
156 | cfs_rq->on_list = 1; | ||
157 | } | ||
158 | } | ||
159 | |||
160 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
161 | { | ||
162 | if (cfs_rq->on_list) { | ||
163 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | ||
164 | cfs_rq->on_list = 0; | ||
165 | } | ||
166 | } | ||
167 | |||
168 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | ||
169 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | ||
170 | list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | ||
171 | |||
172 | /* Do the two (enqueued) entities belong to the same group ? */ | ||
173 | static inline int | ||
174 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | ||
175 | { | ||
176 | if (se->cfs_rq == pse->cfs_rq) | ||
177 | return 1; | ||
178 | |||
179 | return 0; | ||
180 | } | ||
181 | |||
182 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | ||
183 | { | ||
184 | return se->parent; | ||
185 | } | ||
186 | |||
187 | /* return depth at which a sched entity is present in the hierarchy */ | ||
188 | static inline int depth_se(struct sched_entity *se) | ||
189 | { | ||
190 | int depth = 0; | ||
191 | |||
192 | for_each_sched_entity(se) | ||
193 | depth++; | ||
194 | |||
195 | return depth; | ||
196 | } | ||
197 | |||
198 | static void | ||
199 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | ||
200 | { | ||
201 | int se_depth, pse_depth; | ||
202 | |||
203 | /* | ||
204 | * preemption test can be made between sibling entities who are in the | ||
205 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | ||
206 | * both tasks until we find their ancestors who are siblings of common | ||
207 | * parent. | ||
208 | */ | ||
209 | |||
210 | /* First walk up until both entities are at same depth */ | ||
211 | se_depth = depth_se(*se); | ||
212 | pse_depth = depth_se(*pse); | ||
213 | |||
214 | while (se_depth > pse_depth) { | ||
215 | se_depth--; | ||
216 | *se = parent_entity(*se); | ||
217 | } | ||
218 | |||
219 | while (pse_depth > se_depth) { | ||
220 | pse_depth--; | ||
221 | *pse = parent_entity(*pse); | ||
222 | } | ||
223 | |||
224 | while (!is_same_group(*se, *pse)) { | ||
225 | *se = parent_entity(*se); | ||
226 | *pse = parent_entity(*pse); | ||
227 | } | ||
228 | } | ||
229 | |||
230 | #else /* !CONFIG_FAIR_GROUP_SCHED */ | ||
231 | |||
232 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
233 | { | ||
234 | return container_of(se, struct task_struct, se); | ||
235 | } | ||
236 | |||
237 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | ||
238 | { | ||
239 | return container_of(cfs_rq, struct rq, cfs); | ||
240 | } | ||
241 | |||
242 | #define entity_is_task(se) 1 | ||
243 | |||
244 | #define for_each_sched_entity(se) \ | ||
245 | for (; se; se = NULL) | ||
246 | |||
247 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | ||
248 | { | ||
249 | return &task_rq(p)->cfs; | ||
250 | } | ||
251 | |||
252 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | ||
253 | { | ||
254 | struct task_struct *p = task_of(se); | ||
255 | struct rq *rq = task_rq(p); | ||
256 | |||
257 | return &rq->cfs; | ||
258 | } | ||
259 | |||
260 | /* runqueue "owned" by this group */ | ||
261 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | ||
262 | { | ||
263 | return NULL; | ||
264 | } | ||
265 | |||
266 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
267 | { | ||
268 | } | ||
269 | |||
270 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
271 | { | ||
272 | } | ||
273 | |||
274 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | ||
275 | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | ||
276 | |||
277 | static inline int | ||
278 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | ||
279 | { | ||
280 | return 1; | ||
281 | } | ||
282 | |||
283 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | ||
284 | { | ||
285 | return NULL; | ||
286 | } | ||
287 | |||
288 | static inline void | ||
289 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | ||
290 | { | ||
291 | } | ||
292 | |||
293 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
294 | |||
295 | |||
296 | /************************************************************** | ||
297 | * Scheduling class tree data structure manipulation methods: | ||
298 | */ | ||
299 | |||
300 | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) | ||
301 | { | ||
302 | s64 delta = (s64)(vruntime - min_vruntime); | ||
303 | if (delta > 0) | ||
304 | min_vruntime = vruntime; | ||
305 | |||
306 | return min_vruntime; | ||
307 | } | ||
308 | |||
309 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | ||
310 | { | ||
311 | s64 delta = (s64)(vruntime - min_vruntime); | ||
312 | if (delta < 0) | ||
313 | min_vruntime = vruntime; | ||
314 | |||
315 | return min_vruntime; | ||
316 | } | ||
317 | |||
318 | static inline int entity_before(struct sched_entity *a, | ||
319 | struct sched_entity *b) | ||
320 | { | ||
321 | return (s64)(a->vruntime - b->vruntime) < 0; | ||
322 | } | ||
323 | |||
324 | static void update_min_vruntime(struct cfs_rq *cfs_rq) | ||
325 | { | ||
326 | u64 vruntime = cfs_rq->min_vruntime; | ||
327 | |||
328 | if (cfs_rq->curr) | ||
329 | vruntime = cfs_rq->curr->vruntime; | ||
330 | |||
331 | if (cfs_rq->rb_leftmost) { | ||
332 | struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | ||
333 | struct sched_entity, | ||
334 | run_node); | ||
335 | |||
336 | if (!cfs_rq->curr) | ||
337 | vruntime = se->vruntime; | ||
338 | else | ||
339 | vruntime = min_vruntime(vruntime, se->vruntime); | ||
340 | } | ||
341 | |||
342 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); | ||
343 | #ifndef CONFIG_64BIT | ||
344 | smp_wmb(); | ||
345 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | ||
346 | #endif | ||
347 | } | ||
348 | |||
349 | /* | ||
350 | * Enqueue an entity into the rb-tree: | ||
351 | */ | ||
352 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
353 | { | ||
354 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | ||
355 | struct rb_node *parent = NULL; | ||
356 | struct sched_entity *entry; | ||
357 | int leftmost = 1; | ||
358 | |||
359 | /* | ||
360 | * Find the right place in the rbtree: | ||
361 | */ | ||
362 | while (*link) { | ||
363 | parent = *link; | ||
364 | entry = rb_entry(parent, struct sched_entity, run_node); | ||
365 | /* | ||
366 | * We dont care about collisions. Nodes with | ||
367 | * the same key stay together. | ||
368 | */ | ||
369 | if (entity_before(se, entry)) { | ||
370 | link = &parent->rb_left; | ||
371 | } else { | ||
372 | link = &parent->rb_right; | ||
373 | leftmost = 0; | ||
374 | } | ||
375 | } | ||
376 | |||
377 | /* | ||
378 | * Maintain a cache of leftmost tree entries (it is frequently | ||
379 | * used): | ||
380 | */ | ||
381 | if (leftmost) | ||
382 | cfs_rq->rb_leftmost = &se->run_node; | ||
383 | |||
384 | rb_link_node(&se->run_node, parent, link); | ||
385 | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | ||
386 | } | ||
387 | |||
388 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
389 | { | ||
390 | if (cfs_rq->rb_leftmost == &se->run_node) { | ||
391 | struct rb_node *next_node; | ||
392 | |||
393 | next_node = rb_next(&se->run_node); | ||
394 | cfs_rq->rb_leftmost = next_node; | ||
395 | } | ||
396 | |||
397 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | ||
398 | } | ||
399 | |||
400 | static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) | ||
401 | { | ||
402 | struct rb_node *left = cfs_rq->rb_leftmost; | ||
403 | |||
404 | if (!left) | ||
405 | return NULL; | ||
406 | |||
407 | return rb_entry(left, struct sched_entity, run_node); | ||
408 | } | ||
409 | |||
410 | static struct sched_entity *__pick_next_entity(struct sched_entity *se) | ||
411 | { | ||
412 | struct rb_node *next = rb_next(&se->run_node); | ||
413 | |||
414 | if (!next) | ||
415 | return NULL; | ||
416 | |||
417 | return rb_entry(next, struct sched_entity, run_node); | ||
418 | } | ||
419 | |||
420 | #ifdef CONFIG_SCHED_DEBUG | ||
421 | static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | ||
422 | { | ||
423 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | ||
424 | |||
425 | if (!last) | ||
426 | return NULL; | ||
427 | |||
428 | return rb_entry(last, struct sched_entity, run_node); | ||
429 | } | ||
430 | |||
431 | /************************************************************** | ||
432 | * Scheduling class statistics methods: | ||
433 | */ | ||
434 | |||
435 | int sched_proc_update_handler(struct ctl_table *table, int write, | ||
436 | void __user *buffer, size_t *lenp, | ||
437 | loff_t *ppos) | ||
438 | { | ||
439 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | ||
440 | int factor = get_update_sysctl_factor(); | ||
441 | |||
442 | if (ret || !write) | ||
443 | return ret; | ||
444 | |||
445 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | ||
446 | sysctl_sched_min_granularity); | ||
447 | |||
448 | #define WRT_SYSCTL(name) \ | ||
449 | (normalized_sysctl_##name = sysctl_##name / (factor)) | ||
450 | WRT_SYSCTL(sched_min_granularity); | ||
451 | WRT_SYSCTL(sched_latency); | ||
452 | WRT_SYSCTL(sched_wakeup_granularity); | ||
453 | #undef WRT_SYSCTL | ||
454 | |||
455 | return 0; | ||
456 | } | ||
457 | #endif | ||
458 | |||
459 | /* | ||
460 | * delta /= w | ||
461 | */ | ||
462 | static inline unsigned long | ||
463 | calc_delta_fair(unsigned long delta, struct sched_entity *se) | ||
464 | { | ||
465 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
466 | delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); | ||
467 | |||
468 | return delta; | ||
469 | } | ||
470 | |||
471 | /* | ||
472 | * The idea is to set a period in which each task runs once. | ||
473 | * | ||
474 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | ||
475 | * this period because otherwise the slices get too small. | ||
476 | * | ||
477 | * p = (nr <= nl) ? l : l*nr/nl | ||
478 | */ | ||
479 | static u64 __sched_period(unsigned long nr_running) | ||
480 | { | ||
481 | u64 period = sysctl_sched_latency; | ||
482 | unsigned long nr_latency = sched_nr_latency; | ||
483 | |||
484 | if (unlikely(nr_running > nr_latency)) { | ||
485 | period = sysctl_sched_min_granularity; | ||
486 | period *= nr_running; | ||
487 | } | ||
488 | |||
489 | return period; | ||
490 | } | ||
491 | |||
492 | /* | ||
493 | * We calculate the wall-time slice from the period by taking a part | ||
494 | * proportional to the weight. | ||
495 | * | ||
496 | * s = p*P[w/rw] | ||
497 | */ | ||
498 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
499 | { | ||
500 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); | ||
501 | |||
502 | for_each_sched_entity(se) { | ||
503 | struct load_weight *load; | ||
504 | struct load_weight lw; | ||
505 | |||
506 | cfs_rq = cfs_rq_of(se); | ||
507 | load = &cfs_rq->load; | ||
508 | |||
509 | if (unlikely(!se->on_rq)) { | ||
510 | lw = cfs_rq->load; | ||
511 | |||
512 | update_load_add(&lw, se->load.weight); | ||
513 | load = &lw; | ||
514 | } | ||
515 | slice = calc_delta_mine(slice, se->load.weight, load); | ||
516 | } | ||
517 | return slice; | ||
518 | } | ||
519 | |||
520 | /* | ||
521 | * We calculate the vruntime slice of a to be inserted task | ||
522 | * | ||
523 | * vs = s/w | ||
524 | */ | ||
525 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
526 | { | ||
527 | return calc_delta_fair(sched_slice(cfs_rq, se), se); | ||
528 | } | ||
529 | |||
530 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); | ||
531 | static void update_cfs_shares(struct cfs_rq *cfs_rq); | ||
532 | |||
533 | /* | ||
534 | * Update the current task's runtime statistics. Skip current tasks that | ||
535 | * are not in our scheduling class. | ||
536 | */ | ||
537 | static inline void | ||
538 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | ||
539 | unsigned long delta_exec) | ||
540 | { | ||
541 | unsigned long delta_exec_weighted; | ||
542 | |||
543 | schedstat_set(curr->statistics.exec_max, | ||
544 | max((u64)delta_exec, curr->statistics.exec_max)); | ||
545 | |||
546 | curr->sum_exec_runtime += delta_exec; | ||
547 | schedstat_add(cfs_rq, exec_clock, delta_exec); | ||
548 | delta_exec_weighted = calc_delta_fair(delta_exec, curr); | ||
549 | |||
550 | curr->vruntime += delta_exec_weighted; | ||
551 | update_min_vruntime(cfs_rq); | ||
552 | |||
553 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | ||
554 | cfs_rq->load_unacc_exec_time += delta_exec; | ||
555 | #endif | ||
556 | } | ||
557 | |||
558 | static void update_curr(struct cfs_rq *cfs_rq) | ||
559 | { | ||
560 | struct sched_entity *curr = cfs_rq->curr; | ||
561 | u64 now = rq_of(cfs_rq)->clock_task; | ||
562 | unsigned long delta_exec; | ||
563 | |||
564 | if (unlikely(!curr)) | ||
565 | return; | ||
566 | |||
567 | /* | ||
568 | * Get the amount of time the current task was running | ||
569 | * since the last time we changed load (this cannot | ||
570 | * overflow on 32 bits): | ||
571 | */ | ||
572 | delta_exec = (unsigned long)(now - curr->exec_start); | ||
573 | if (!delta_exec) | ||
574 | return; | ||
575 | |||
576 | __update_curr(cfs_rq, curr, delta_exec); | ||
577 | curr->exec_start = now; | ||
578 | |||
579 | if (entity_is_task(curr)) { | ||
580 | struct task_struct *curtask = task_of(curr); | ||
581 | |||
582 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | ||
583 | cpuacct_charge(curtask, delta_exec); | ||
584 | account_group_exec_runtime(curtask, delta_exec); | ||
585 | } | ||
586 | } | ||
587 | |||
588 | static inline void | ||
589 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
590 | { | ||
591 | schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); | ||
592 | } | ||
593 | |||
594 | /* | ||
595 | * Task is being enqueued - update stats: | ||
596 | */ | ||
597 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
598 | { | ||
599 | /* | ||
600 | * Are we enqueueing a waiting task? (for current tasks | ||
601 | * a dequeue/enqueue event is a NOP) | ||
602 | */ | ||
603 | if (se != cfs_rq->curr) | ||
604 | update_stats_wait_start(cfs_rq, se); | ||
605 | } | ||
606 | |||
607 | static void | ||
608 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
609 | { | ||
610 | schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, | ||
611 | rq_of(cfs_rq)->clock - se->statistics.wait_start)); | ||
612 | schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); | ||
613 | schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + | ||
614 | rq_of(cfs_rq)->clock - se->statistics.wait_start); | ||
615 | #ifdef CONFIG_SCHEDSTATS | ||
616 | if (entity_is_task(se)) { | ||
617 | trace_sched_stat_wait(task_of(se), | ||
618 | rq_of(cfs_rq)->clock - se->statistics.wait_start); | ||
619 | } | ||
620 | #endif | ||
621 | schedstat_set(se->statistics.wait_start, 0); | ||
622 | } | ||
623 | |||
624 | static inline void | ||
625 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
626 | { | ||
627 | /* | ||
628 | * Mark the end of the wait period if dequeueing a | ||
629 | * waiting task: | ||
630 | */ | ||
631 | if (se != cfs_rq->curr) | ||
632 | update_stats_wait_end(cfs_rq, se); | ||
633 | } | ||
634 | |||
635 | /* | ||
636 | * We are picking a new current task - update its stats: | ||
637 | */ | ||
638 | static inline void | ||
639 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
640 | { | ||
641 | /* | ||
642 | * We are starting a new run period: | ||
643 | */ | ||
644 | se->exec_start = rq_of(cfs_rq)->clock_task; | ||
645 | } | ||
646 | |||
647 | /************************************************** | ||
648 | * Scheduling class queueing methods: | ||
649 | */ | ||
650 | |||
651 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | ||
652 | static void | ||
653 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | ||
654 | { | ||
655 | cfs_rq->task_weight += weight; | ||
656 | } | ||
657 | #else | ||
658 | static inline void | ||
659 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | ||
660 | { | ||
661 | } | ||
662 | #endif | ||
663 | |||
664 | static void | ||
665 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
666 | { | ||
667 | update_load_add(&cfs_rq->load, se->load.weight); | ||
668 | if (!parent_entity(se)) | ||
669 | inc_cpu_load(rq_of(cfs_rq), se->load.weight); | ||
670 | if (entity_is_task(se)) { | ||
671 | add_cfs_task_weight(cfs_rq, se->load.weight); | ||
672 | list_add(&se->group_node, &cfs_rq->tasks); | ||
673 | } | ||
674 | cfs_rq->nr_running++; | ||
675 | } | ||
676 | |||
677 | static void | ||
678 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
679 | { | ||
680 | update_load_sub(&cfs_rq->load, se->load.weight); | ||
681 | if (!parent_entity(se)) | ||
682 | dec_cpu_load(rq_of(cfs_rq), se->load.weight); | ||
683 | if (entity_is_task(se)) { | ||
684 | add_cfs_task_weight(cfs_rq, -se->load.weight); | ||
685 | list_del_init(&se->group_node); | ||
686 | } | ||
687 | cfs_rq->nr_running--; | ||
688 | } | ||
689 | |||
690 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
691 | # ifdef CONFIG_SMP | ||
692 | static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, | ||
693 | int global_update) | ||
694 | { | ||
695 | struct task_group *tg = cfs_rq->tg; | ||
696 | long load_avg; | ||
697 | |||
698 | load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); | ||
699 | load_avg -= cfs_rq->load_contribution; | ||
700 | |||
701 | if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { | ||
702 | atomic_add(load_avg, &tg->load_weight); | ||
703 | cfs_rq->load_contribution += load_avg; | ||
704 | } | ||
705 | } | ||
706 | |||
707 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | ||
708 | { | ||
709 | u64 period = sysctl_sched_shares_window; | ||
710 | u64 now, delta; | ||
711 | unsigned long load = cfs_rq->load.weight; | ||
712 | |||
713 | if (cfs_rq->tg == &root_task_group) | ||
714 | return; | ||
715 | |||
716 | now = rq_of(cfs_rq)->clock_task; | ||
717 | delta = now - cfs_rq->load_stamp; | ||
718 | |||
719 | /* truncate load history at 4 idle periods */ | ||
720 | if (cfs_rq->load_stamp > cfs_rq->load_last && | ||
721 | now - cfs_rq->load_last > 4 * period) { | ||
722 | cfs_rq->load_period = 0; | ||
723 | cfs_rq->load_avg = 0; | ||
724 | delta = period - 1; | ||
725 | } | ||
726 | |||
727 | cfs_rq->load_stamp = now; | ||
728 | cfs_rq->load_unacc_exec_time = 0; | ||
729 | cfs_rq->load_period += delta; | ||
730 | if (load) { | ||
731 | cfs_rq->load_last = now; | ||
732 | cfs_rq->load_avg += delta * load; | ||
733 | } | ||
734 | |||
735 | /* consider updating load contribution on each fold or truncate */ | ||
736 | if (global_update || cfs_rq->load_period > period | ||
737 | || !cfs_rq->load_period) | ||
738 | update_cfs_rq_load_contribution(cfs_rq, global_update); | ||
739 | |||
740 | while (cfs_rq->load_period > period) { | ||
741 | /* | ||
742 | * Inline assembly required to prevent the compiler | ||
743 | * optimising this loop into a divmod call. | ||
744 | * See __iter_div_u64_rem() for another example of this. | ||
745 | */ | ||
746 | asm("" : "+rm" (cfs_rq->load_period)); | ||
747 | cfs_rq->load_period /= 2; | ||
748 | cfs_rq->load_avg /= 2; | ||
749 | } | ||
750 | |||
751 | if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) | ||
752 | list_del_leaf_cfs_rq(cfs_rq); | ||
753 | } | ||
754 | |||
755 | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | ||
756 | { | ||
757 | long load_weight, load, shares; | ||
758 | |||
759 | load = cfs_rq->load.weight; | ||
760 | |||
761 | load_weight = atomic_read(&tg->load_weight); | ||
762 | load_weight += load; | ||
763 | load_weight -= cfs_rq->load_contribution; | ||
764 | |||
765 | shares = (tg->shares * load); | ||
766 | if (load_weight) | ||
767 | shares /= load_weight; | ||
768 | |||
769 | if (shares < MIN_SHARES) | ||
770 | shares = MIN_SHARES; | ||
771 | if (shares > tg->shares) | ||
772 | shares = tg->shares; | ||
773 | |||
774 | return shares; | ||
775 | } | ||
776 | |||
777 | static void update_entity_shares_tick(struct cfs_rq *cfs_rq) | ||
778 | { | ||
779 | if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { | ||
780 | update_cfs_load(cfs_rq, 0); | ||
781 | update_cfs_shares(cfs_rq); | ||
782 | } | ||
783 | } | ||
784 | # else /* CONFIG_SMP */ | ||
785 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | ||
786 | { | ||
787 | } | ||
788 | |||
789 | static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | ||
790 | { | ||
791 | return tg->shares; | ||
792 | } | ||
793 | |||
794 | static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) | ||
795 | { | ||
796 | } | ||
797 | # endif /* CONFIG_SMP */ | ||
798 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | ||
799 | unsigned long weight) | ||
800 | { | ||
801 | if (se->on_rq) { | ||
802 | /* commit outstanding execution time */ | ||
803 | if (cfs_rq->curr == se) | ||
804 | update_curr(cfs_rq); | ||
805 | account_entity_dequeue(cfs_rq, se); | ||
806 | } | ||
807 | |||
808 | update_load_set(&se->load, weight); | ||
809 | |||
810 | if (se->on_rq) | ||
811 | account_entity_enqueue(cfs_rq, se); | ||
812 | } | ||
813 | |||
814 | static void update_cfs_shares(struct cfs_rq *cfs_rq) | ||
815 | { | ||
816 | struct task_group *tg; | ||
817 | struct sched_entity *se; | ||
818 | long shares; | ||
819 | |||
820 | tg = cfs_rq->tg; | ||
821 | se = tg->se[cpu_of(rq_of(cfs_rq))]; | ||
822 | if (!se) | ||
823 | return; | ||
824 | #ifndef CONFIG_SMP | ||
825 | if (likely(se->load.weight == tg->shares)) | ||
826 | return; | ||
827 | #endif | ||
828 | shares = calc_cfs_shares(cfs_rq, tg); | ||
829 | |||
830 | reweight_entity(cfs_rq_of(se), se, shares); | ||
831 | } | ||
832 | #else /* CONFIG_FAIR_GROUP_SCHED */ | ||
833 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | ||
834 | { | ||
835 | } | ||
836 | |||
837 | static inline void update_cfs_shares(struct cfs_rq *cfs_rq) | ||
838 | { | ||
839 | } | ||
840 | |||
841 | static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) | ||
842 | { | ||
843 | } | ||
844 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
845 | |||
846 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
847 | { | ||
848 | #ifdef CONFIG_SCHEDSTATS | ||
849 | struct task_struct *tsk = NULL; | ||
850 | |||
851 | if (entity_is_task(se)) | ||
852 | tsk = task_of(se); | ||
853 | |||
854 | if (se->statistics.sleep_start) { | ||
855 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; | ||
856 | |||
857 | if ((s64)delta < 0) | ||
858 | delta = 0; | ||
859 | |||
860 | if (unlikely(delta > se->statistics.sleep_max)) | ||
861 | se->statistics.sleep_max = delta; | ||
862 | |||
863 | se->statistics.sleep_start = 0; | ||
864 | se->statistics.sum_sleep_runtime += delta; | ||
865 | |||
866 | if (tsk) { | ||
867 | account_scheduler_latency(tsk, delta >> 10, 1); | ||
868 | trace_sched_stat_sleep(tsk, delta); | ||
869 | } | ||
870 | } | ||
871 | if (se->statistics.block_start) { | ||
872 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; | ||
873 | |||
874 | if ((s64)delta < 0) | ||
875 | delta = 0; | ||
876 | |||
877 | if (unlikely(delta > se->statistics.block_max)) | ||
878 | se->statistics.block_max = delta; | ||
879 | |||
880 | se->statistics.block_start = 0; | ||
881 | se->statistics.sum_sleep_runtime += delta; | ||
882 | |||
883 | if (tsk) { | ||
884 | if (tsk->in_iowait) { | ||
885 | se->statistics.iowait_sum += delta; | ||
886 | se->statistics.iowait_count++; | ||
887 | trace_sched_stat_iowait(tsk, delta); | ||
888 | } | ||
889 | |||
890 | /* | ||
891 | * Blocking time is in units of nanosecs, so shift by | ||
892 | * 20 to get a milliseconds-range estimation of the | ||
893 | * amount of time that the task spent sleeping: | ||
894 | */ | ||
895 | if (unlikely(prof_on == SLEEP_PROFILING)) { | ||
896 | profile_hits(SLEEP_PROFILING, | ||
897 | (void *)get_wchan(tsk), | ||
898 | delta >> 20); | ||
899 | } | ||
900 | account_scheduler_latency(tsk, delta >> 10, 0); | ||
901 | } | ||
902 | } | ||
903 | #endif | ||
904 | } | ||
905 | |||
906 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
907 | { | ||
908 | #ifdef CONFIG_SCHED_DEBUG | ||
909 | s64 d = se->vruntime - cfs_rq->min_vruntime; | ||
910 | |||
911 | if (d < 0) | ||
912 | d = -d; | ||
913 | |||
914 | if (d > 3*sysctl_sched_latency) | ||
915 | schedstat_inc(cfs_rq, nr_spread_over); | ||
916 | #endif | ||
917 | } | ||
918 | |||
919 | static void | ||
920 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | ||
921 | { | ||
922 | u64 vruntime = cfs_rq->min_vruntime; | ||
923 | |||
924 | /* | ||
925 | * The 'current' period is already promised to the current tasks, | ||
926 | * however the extra weight of the new task will slow them down a | ||
927 | * little, place the new task so that it fits in the slot that | ||
928 | * stays open at the end. | ||
929 | */ | ||
930 | if (initial && sched_feat(START_DEBIT)) | ||
931 | vruntime += sched_vslice(cfs_rq, se); | ||
932 | |||
933 | /* sleeps up to a single latency don't count. */ | ||
934 | if (!initial) { | ||
935 | unsigned long thresh = sysctl_sched_latency; | ||
936 | |||
937 | /* | ||
938 | * Halve their sleep time's effect, to allow | ||
939 | * for a gentler effect of sleepers: | ||
940 | */ | ||
941 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||
942 | thresh >>= 1; | ||
943 | |||
944 | vruntime -= thresh; | ||
945 | } | ||
946 | |||
947 | /* ensure we never gain time by being placed backwards. */ | ||
948 | vruntime = max_vruntime(se->vruntime, vruntime); | ||
949 | |||
950 | se->vruntime = vruntime; | ||
951 | } | ||
952 | |||
953 | static void | ||
954 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | ||
955 | { | ||
956 | /* | ||
957 | * Update the normalized vruntime before updating min_vruntime | ||
958 | * through callig update_curr(). | ||
959 | */ | ||
960 | if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) | ||
961 | se->vruntime += cfs_rq->min_vruntime; | ||
962 | |||
963 | /* | ||
964 | * Update run-time statistics of the 'current'. | ||
965 | */ | ||
966 | update_curr(cfs_rq); | ||
967 | update_cfs_load(cfs_rq, 0); | ||
968 | account_entity_enqueue(cfs_rq, se); | ||
969 | update_cfs_shares(cfs_rq); | ||
970 | |||
971 | if (flags & ENQUEUE_WAKEUP) { | ||
972 | place_entity(cfs_rq, se, 0); | ||
973 | enqueue_sleeper(cfs_rq, se); | ||
974 | } | ||
975 | |||
976 | update_stats_enqueue(cfs_rq, se); | ||
977 | check_spread(cfs_rq, se); | ||
978 | if (se != cfs_rq->curr) | ||
979 | __enqueue_entity(cfs_rq, se); | ||
980 | se->on_rq = 1; | ||
981 | |||
982 | if (cfs_rq->nr_running == 1) | ||
983 | list_add_leaf_cfs_rq(cfs_rq); | ||
984 | } | ||
985 | |||
986 | static void __clear_buddies_last(struct sched_entity *se) | ||
987 | { | ||
988 | for_each_sched_entity(se) { | ||
989 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
990 | if (cfs_rq->last == se) | ||
991 | cfs_rq->last = NULL; | ||
992 | else | ||
993 | break; | ||
994 | } | ||
995 | } | ||
996 | |||
997 | static void __clear_buddies_next(struct sched_entity *se) | ||
998 | { | ||
999 | for_each_sched_entity(se) { | ||
1000 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
1001 | if (cfs_rq->next == se) | ||
1002 | cfs_rq->next = NULL; | ||
1003 | else | ||
1004 | break; | ||
1005 | } | ||
1006 | } | ||
1007 | |||
1008 | static void __clear_buddies_skip(struct sched_entity *se) | ||
1009 | { | ||
1010 | for_each_sched_entity(se) { | ||
1011 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
1012 | if (cfs_rq->skip == se) | ||
1013 | cfs_rq->skip = NULL; | ||
1014 | else | ||
1015 | break; | ||
1016 | } | ||
1017 | } | ||
1018 | |||
1019 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
1020 | { | ||
1021 | if (cfs_rq->last == se) | ||
1022 | __clear_buddies_last(se); | ||
1023 | |||
1024 | if (cfs_rq->next == se) | ||
1025 | __clear_buddies_next(se); | ||
1026 | |||
1027 | if (cfs_rq->skip == se) | ||
1028 | __clear_buddies_skip(se); | ||
1029 | } | ||
1030 | |||
1031 | static void | ||
1032 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | ||
1033 | { | ||
1034 | /* | ||
1035 | * Update run-time statistics of the 'current'. | ||
1036 | */ | ||
1037 | update_curr(cfs_rq); | ||
1038 | |||
1039 | update_stats_dequeue(cfs_rq, se); | ||
1040 | if (flags & DEQUEUE_SLEEP) { | ||
1041 | #ifdef CONFIG_SCHEDSTATS | ||
1042 | if (entity_is_task(se)) { | ||
1043 | struct task_struct *tsk = task_of(se); | ||
1044 | |||
1045 | if (tsk->state & TASK_INTERRUPTIBLE) | ||
1046 | se->statistics.sleep_start = rq_of(cfs_rq)->clock; | ||
1047 | if (tsk->state & TASK_UNINTERRUPTIBLE) | ||
1048 | se->statistics.block_start = rq_of(cfs_rq)->clock; | ||
1049 | } | ||
1050 | #endif | ||
1051 | } | ||
1052 | |||
1053 | clear_buddies(cfs_rq, se); | ||
1054 | |||
1055 | if (se != cfs_rq->curr) | ||
1056 | __dequeue_entity(cfs_rq, se); | ||
1057 | se->on_rq = 0; | ||
1058 | update_cfs_load(cfs_rq, 0); | ||
1059 | account_entity_dequeue(cfs_rq, se); | ||
1060 | |||
1061 | /* | ||
1062 | * Normalize the entity after updating the min_vruntime because the | ||
1063 | * update can refer to the ->curr item and we need to reflect this | ||
1064 | * movement in our normalized position. | ||
1065 | */ | ||
1066 | if (!(flags & DEQUEUE_SLEEP)) | ||
1067 | se->vruntime -= cfs_rq->min_vruntime; | ||
1068 | |||
1069 | update_min_vruntime(cfs_rq); | ||
1070 | update_cfs_shares(cfs_rq); | ||
1071 | } | ||
1072 | |||
1073 | /* | ||
1074 | * Preempt the current task with a newly woken task if needed: | ||
1075 | */ | ||
1076 | static void | ||
1077 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | ||
1078 | { | ||
1079 | unsigned long ideal_runtime, delta_exec; | ||
1080 | |||
1081 | ideal_runtime = sched_slice(cfs_rq, curr); | ||
1082 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | ||
1083 | if (delta_exec > ideal_runtime) { | ||
1084 | resched_task(rq_of(cfs_rq)->curr); | ||
1085 | /* | ||
1086 | * The current task ran long enough, ensure it doesn't get | ||
1087 | * re-elected due to buddy favours. | ||
1088 | */ | ||
1089 | clear_buddies(cfs_rq, curr); | ||
1090 | return; | ||
1091 | } | ||
1092 | |||
1093 | /* | ||
1094 | * Ensure that a task that missed wakeup preemption by a | ||
1095 | * narrow margin doesn't have to wait for a full slice. | ||
1096 | * This also mitigates buddy induced latencies under load. | ||
1097 | */ | ||
1098 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
1099 | return; | ||
1100 | |||
1101 | if (delta_exec < sysctl_sched_min_granularity) | ||
1102 | return; | ||
1103 | |||
1104 | if (cfs_rq->nr_running > 1) { | ||
1105 | struct sched_entity *se = __pick_first_entity(cfs_rq); | ||
1106 | s64 delta = curr->vruntime - se->vruntime; | ||
1107 | |||
1108 | if (delta < 0) | ||
1109 | return; | ||
1110 | |||
1111 | if (delta > ideal_runtime) | ||
1112 | resched_task(rq_of(cfs_rq)->curr); | ||
1113 | } | ||
1114 | } | ||
1115 | |||
1116 | static void | ||
1117 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
1118 | { | ||
1119 | /* 'current' is not kept within the tree. */ | ||
1120 | if (se->on_rq) { | ||
1121 | /* | ||
1122 | * Any task has to be enqueued before it get to execute on | ||
1123 | * a CPU. So account for the time it spent waiting on the | ||
1124 | * runqueue. | ||
1125 | */ | ||
1126 | update_stats_wait_end(cfs_rq, se); | ||
1127 | __dequeue_entity(cfs_rq, se); | ||
1128 | } | ||
1129 | |||
1130 | update_stats_curr_start(cfs_rq, se); | ||
1131 | cfs_rq->curr = se; | ||
1132 | #ifdef CONFIG_SCHEDSTATS | ||
1133 | /* | ||
1134 | * Track our maximum slice length, if the CPU's load is at | ||
1135 | * least twice that of our own weight (i.e. dont track it | ||
1136 | * when there are only lesser-weight tasks around): | ||
1137 | */ | ||
1138 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | ||
1139 | se->statistics.slice_max = max(se->statistics.slice_max, | ||
1140 | se->sum_exec_runtime - se->prev_sum_exec_runtime); | ||
1141 | } | ||
1142 | #endif | ||
1143 | se->prev_sum_exec_runtime = se->sum_exec_runtime; | ||
1144 | } | ||
1145 | |||
1146 | static int | ||
1147 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | ||
1148 | |||
1149 | /* | ||
1150 | * Pick the next process, keeping these things in mind, in this order: | ||
1151 | * 1) keep things fair between processes/task groups | ||
1152 | * 2) pick the "next" process, since someone really wants that to run | ||
1153 | * 3) pick the "last" process, for cache locality | ||
1154 | * 4) do not run the "skip" process, if something else is available | ||
1155 | */ | ||
1156 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) | ||
1157 | { | ||
1158 | struct sched_entity *se = __pick_first_entity(cfs_rq); | ||
1159 | struct sched_entity *left = se; | ||
1160 | |||
1161 | /* | ||
1162 | * Avoid running the skip buddy, if running something else can | ||
1163 | * be done without getting too unfair. | ||
1164 | */ | ||
1165 | if (cfs_rq->skip == se) { | ||
1166 | struct sched_entity *second = __pick_next_entity(se); | ||
1167 | if (second && wakeup_preempt_entity(second, left) < 1) | ||
1168 | se = second; | ||
1169 | } | ||
1170 | |||
1171 | /* | ||
1172 | * Prefer last buddy, try to return the CPU to a preempted task. | ||
1173 | */ | ||
1174 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | ||
1175 | se = cfs_rq->last; | ||
1176 | |||
1177 | /* | ||
1178 | * Someone really wants this to run. If it's not unfair, run it. | ||
1179 | */ | ||
1180 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) | ||
1181 | se = cfs_rq->next; | ||
1182 | |||
1183 | clear_buddies(cfs_rq, se); | ||
1184 | |||
1185 | return se; | ||
1186 | } | ||
1187 | |||
1188 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | ||
1189 | { | ||
1190 | /* | ||
1191 | * If still on the runqueue then deactivate_task() | ||
1192 | * was not called and update_curr() has to be done: | ||
1193 | */ | ||
1194 | if (prev->on_rq) | ||
1195 | update_curr(cfs_rq); | ||
1196 | |||
1197 | check_spread(cfs_rq, prev); | ||
1198 | if (prev->on_rq) { | ||
1199 | update_stats_wait_start(cfs_rq, prev); | ||
1200 | /* Put 'current' back into the tree. */ | ||
1201 | __enqueue_entity(cfs_rq, prev); | ||
1202 | } | ||
1203 | cfs_rq->curr = NULL; | ||
1204 | } | ||
1205 | |||
1206 | static void | ||
1207 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | ||
1208 | { | ||
1209 | /* | ||
1210 | * Update run-time statistics of the 'current'. | ||
1211 | */ | ||
1212 | update_curr(cfs_rq); | ||
1213 | |||
1214 | /* | ||
1215 | * Update share accounting for long-running entities. | ||
1216 | */ | ||
1217 | update_entity_shares_tick(cfs_rq); | ||
1218 | |||
1219 | #ifdef CONFIG_SCHED_HRTICK | ||
1220 | /* | ||
1221 | * queued ticks are scheduled to match the slice, so don't bother | ||
1222 | * validating it and just reschedule. | ||
1223 | */ | ||
1224 | if (queued) { | ||
1225 | resched_task(rq_of(cfs_rq)->curr); | ||
1226 | return; | ||
1227 | } | ||
1228 | /* | ||
1229 | * don't let the period tick interfere with the hrtick preemption | ||
1230 | */ | ||
1231 | if (!sched_feat(DOUBLE_TICK) && | ||
1232 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | ||
1233 | return; | ||
1234 | #endif | ||
1235 | |||
1236 | if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT)) | ||
1237 | check_preempt_tick(cfs_rq, curr); | ||
1238 | } | ||
1239 | |||
1240 | /************************************************** | ||
1241 | * CFS operations on tasks: | ||
1242 | */ | ||
1243 | |||
1244 | #ifdef CONFIG_SCHED_HRTICK | ||
1245 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | ||
1246 | { | ||
1247 | struct sched_entity *se = &p->se; | ||
1248 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
1249 | |||
1250 | WARN_ON(task_rq(p) != rq); | ||
1251 | |||
1252 | if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { | ||
1253 | u64 slice = sched_slice(cfs_rq, se); | ||
1254 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | ||
1255 | s64 delta = slice - ran; | ||
1256 | |||
1257 | if (delta < 0) { | ||
1258 | if (rq->curr == p) | ||
1259 | resched_task(p); | ||
1260 | return; | ||
1261 | } | ||
1262 | |||
1263 | /* | ||
1264 | * Don't schedule slices shorter than 10000ns, that just | ||
1265 | * doesn't make sense. Rely on vruntime for fairness. | ||
1266 | */ | ||
1267 | if (rq->curr != p) | ||
1268 | delta = max_t(s64, 10000LL, delta); | ||
1269 | |||
1270 | hrtick_start(rq, delta); | ||
1271 | } | ||
1272 | } | ||
1273 | |||
1274 | /* | ||
1275 | * called from enqueue/dequeue and updates the hrtick when the | ||
1276 | * current task is from our class and nr_running is low enough | ||
1277 | * to matter. | ||
1278 | */ | ||
1279 | static void hrtick_update(struct rq *rq) | ||
1280 | { | ||
1281 | struct task_struct *curr = rq->curr; | ||
1282 | |||
1283 | if (curr->sched_class != &fair_sched_class) | ||
1284 | return; | ||
1285 | |||
1286 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | ||
1287 | hrtick_start_fair(rq, curr); | ||
1288 | } | ||
1289 | #else /* !CONFIG_SCHED_HRTICK */ | ||
1290 | static inline void | ||
1291 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | ||
1292 | { | ||
1293 | } | ||
1294 | |||
1295 | static inline void hrtick_update(struct rq *rq) | ||
1296 | { | ||
1297 | } | ||
1298 | #endif | ||
1299 | |||
1300 | /* | ||
1301 | * The enqueue_task method is called before nr_running is | ||
1302 | * increased. Here we update the fair scheduling stats and | ||
1303 | * then put the task into the rbtree: | ||
1304 | */ | ||
1305 | static void | ||
1306 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) | ||
1307 | { | ||
1308 | struct cfs_rq *cfs_rq; | ||
1309 | struct sched_entity *se = &p->se; | ||
1310 | |||
1311 | for_each_sched_entity(se) { | ||
1312 | if (se->on_rq) | ||
1313 | break; | ||
1314 | cfs_rq = cfs_rq_of(se); | ||
1315 | enqueue_entity(cfs_rq, se, flags); | ||
1316 | flags = ENQUEUE_WAKEUP; | ||
1317 | } | ||
1318 | |||
1319 | for_each_sched_entity(se) { | ||
1320 | cfs_rq = cfs_rq_of(se); | ||
1321 | |||
1322 | update_cfs_load(cfs_rq, 0); | ||
1323 | update_cfs_shares(cfs_rq); | ||
1324 | } | ||
1325 | |||
1326 | hrtick_update(rq); | ||
1327 | } | ||
1328 | |||
1329 | static void set_next_buddy(struct sched_entity *se); | ||
1330 | |||
1331 | /* | ||
1332 | * The dequeue_task method is called before nr_running is | ||
1333 | * decreased. We remove the task from the rbtree and | ||
1334 | * update the fair scheduling stats: | ||
1335 | */ | ||
1336 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | ||
1337 | { | ||
1338 | struct cfs_rq *cfs_rq; | ||
1339 | struct sched_entity *se = &p->se; | ||
1340 | int task_sleep = flags & DEQUEUE_SLEEP; | ||
1341 | |||
1342 | for_each_sched_entity(se) { | ||
1343 | cfs_rq = cfs_rq_of(se); | ||
1344 | dequeue_entity(cfs_rq, se, flags); | ||
1345 | |||
1346 | /* Don't dequeue parent if it has other entities besides us */ | ||
1347 | if (cfs_rq->load.weight) { | ||
1348 | /* | ||
1349 | * Bias pick_next to pick a task from this cfs_rq, as | ||
1350 | * p is sleeping when it is within its sched_slice. | ||
1351 | */ | ||
1352 | if (task_sleep && parent_entity(se)) | ||
1353 | set_next_buddy(parent_entity(se)); | ||
1354 | |||
1355 | /* avoid re-evaluating load for this entity */ | ||
1356 | se = parent_entity(se); | ||
1357 | break; | ||
1358 | } | ||
1359 | flags |= DEQUEUE_SLEEP; | ||
1360 | } | ||
1361 | |||
1362 | for_each_sched_entity(se) { | ||
1363 | cfs_rq = cfs_rq_of(se); | ||
1364 | |||
1365 | update_cfs_load(cfs_rq, 0); | ||
1366 | update_cfs_shares(cfs_rq); | ||
1367 | } | ||
1368 | |||
1369 | hrtick_update(rq); | ||
1370 | } | ||
1371 | |||
1372 | #ifdef CONFIG_SMP | ||
1373 | |||
1374 | static void task_waking_fair(struct task_struct *p) | ||
1375 | { | ||
1376 | struct sched_entity *se = &p->se; | ||
1377 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
1378 | u64 min_vruntime; | ||
1379 | |||
1380 | #ifndef CONFIG_64BIT | ||
1381 | u64 min_vruntime_copy; | ||
1382 | |||
1383 | do { | ||
1384 | min_vruntime_copy = cfs_rq->min_vruntime_copy; | ||
1385 | smp_rmb(); | ||
1386 | min_vruntime = cfs_rq->min_vruntime; | ||
1387 | } while (min_vruntime != min_vruntime_copy); | ||
1388 | #else | ||
1389 | min_vruntime = cfs_rq->min_vruntime; | ||
1390 | #endif | ||
1391 | |||
1392 | se->vruntime -= min_vruntime; | ||
1393 | } | ||
1394 | |||
1395 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
1396 | /* | ||
1397 | * effective_load() calculates the load change as seen from the root_task_group | ||
1398 | * | ||
1399 | * Adding load to a group doesn't make a group heavier, but can cause movement | ||
1400 | * of group shares between cpus. Assuming the shares were perfectly aligned one | ||
1401 | * can calculate the shift in shares. | ||
1402 | */ | ||
1403 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) | ||
1404 | { | ||
1405 | struct sched_entity *se = tg->se[cpu]; | ||
1406 | |||
1407 | if (!tg->parent) | ||
1408 | return wl; | ||
1409 | |||
1410 | for_each_sched_entity(se) { | ||
1411 | long lw, w; | ||
1412 | |||
1413 | tg = se->my_q->tg; | ||
1414 | w = se->my_q->load.weight; | ||
1415 | |||
1416 | /* use this cpu's instantaneous contribution */ | ||
1417 | lw = atomic_read(&tg->load_weight); | ||
1418 | lw -= se->my_q->load_contribution; | ||
1419 | lw += w + wg; | ||
1420 | |||
1421 | wl += w; | ||
1422 | |||
1423 | if (lw > 0 && wl < lw) | ||
1424 | wl = (wl * tg->shares) / lw; | ||
1425 | else | ||
1426 | wl = tg->shares; | ||
1427 | |||
1428 | /* zero point is MIN_SHARES */ | ||
1429 | if (wl < MIN_SHARES) | ||
1430 | wl = MIN_SHARES; | ||
1431 | wl -= se->load.weight; | ||
1432 | wg = 0; | ||
1433 | } | ||
1434 | |||
1435 | return wl; | ||
1436 | } | ||
1437 | |||
1438 | #else | ||
1439 | |||
1440 | static inline unsigned long effective_load(struct task_group *tg, int cpu, | ||
1441 | unsigned long wl, unsigned long wg) | ||
1442 | { | ||
1443 | return wl; | ||
1444 | } | ||
1445 | |||
1446 | #endif | ||
1447 | |||
1448 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | ||
1449 | { | ||
1450 | s64 this_load, load; | ||
1451 | int idx, this_cpu, prev_cpu; | ||
1452 | unsigned long tl_per_task; | ||
1453 | struct task_group *tg; | ||
1454 | unsigned long weight; | ||
1455 | int balanced; | ||
1456 | |||
1457 | idx = sd->wake_idx; | ||
1458 | this_cpu = smp_processor_id(); | ||
1459 | prev_cpu = task_cpu(p); | ||
1460 | load = source_load(prev_cpu, idx); | ||
1461 | this_load = target_load(this_cpu, idx); | ||
1462 | |||
1463 | /* | ||
1464 | * If sync wakeup then subtract the (maximum possible) | ||
1465 | * effect of the currently running task from the load | ||
1466 | * of the current CPU: | ||
1467 | */ | ||
1468 | if (sync) { | ||
1469 | tg = task_group(current); | ||
1470 | weight = current->se.load.weight; | ||
1471 | |||
1472 | this_load += effective_load(tg, this_cpu, -weight, -weight); | ||
1473 | load += effective_load(tg, prev_cpu, 0, -weight); | ||
1474 | } | ||
1475 | |||
1476 | tg = task_group(p); | ||
1477 | weight = p->se.load.weight; | ||
1478 | |||
1479 | /* | ||
1480 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | ||
1481 | * due to the sync cause above having dropped this_load to 0, we'll | ||
1482 | * always have an imbalance, but there's really nothing you can do | ||
1483 | * about that, so that's good too. | ||
1484 | * | ||
1485 | * Otherwise check if either cpus are near enough in load to allow this | ||
1486 | * task to be woken on this_cpu. | ||
1487 | */ | ||
1488 | if (this_load > 0) { | ||
1489 | s64 this_eff_load, prev_eff_load; | ||
1490 | |||
1491 | this_eff_load = 100; | ||
1492 | this_eff_load *= power_of(prev_cpu); | ||
1493 | this_eff_load *= this_load + | ||
1494 | effective_load(tg, this_cpu, weight, weight); | ||
1495 | |||
1496 | prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; | ||
1497 | prev_eff_load *= power_of(this_cpu); | ||
1498 | prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); | ||
1499 | |||
1500 | balanced = this_eff_load <= prev_eff_load; | ||
1501 | } else | ||
1502 | balanced = true; | ||
1503 | |||
1504 | /* | ||
1505 | * If the currently running task will sleep within | ||
1506 | * a reasonable amount of time then attract this newly | ||
1507 | * woken task: | ||
1508 | */ | ||
1509 | if (sync && balanced) | ||
1510 | return 1; | ||
1511 | |||
1512 | schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); | ||
1513 | tl_per_task = cpu_avg_load_per_task(this_cpu); | ||
1514 | |||
1515 | if (balanced || | ||
1516 | (this_load <= load && | ||
1517 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | ||
1518 | /* | ||
1519 | * This domain has SD_WAKE_AFFINE and | ||
1520 | * p is cache cold in this domain, and | ||
1521 | * there is no bad imbalance. | ||
1522 | */ | ||
1523 | schedstat_inc(sd, ttwu_move_affine); | ||
1524 | schedstat_inc(p, se.statistics.nr_wakeups_affine); | ||
1525 | |||
1526 | return 1; | ||
1527 | } | ||
1528 | return 0; | ||
1529 | } | ||
1530 | |||
1531 | /* | ||
1532 | * find_idlest_group finds and returns the least busy CPU group within the | ||
1533 | * domain. | ||
1534 | */ | ||
1535 | static struct sched_group * | ||
1536 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | ||
1537 | int this_cpu, int load_idx) | ||
1538 | { | ||
1539 | struct sched_group *idlest = NULL, *group = sd->groups; | ||
1540 | unsigned long min_load = ULONG_MAX, this_load = 0; | ||
1541 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | ||
1542 | |||
1543 | do { | ||
1544 | unsigned long load, avg_load; | ||
1545 | int local_group; | ||
1546 | int i; | ||
1547 | |||
1548 | /* Skip over this group if it has no CPUs allowed */ | ||
1549 | if (!cpumask_intersects(sched_group_cpus(group), | ||
1550 | &p->cpus_allowed)) | ||
1551 | continue; | ||
1552 | |||
1553 | local_group = cpumask_test_cpu(this_cpu, | ||
1554 | sched_group_cpus(group)); | ||
1555 | |||
1556 | /* Tally up the load of all CPUs in the group */ | ||
1557 | avg_load = 0; | ||
1558 | |||
1559 | for_each_cpu(i, sched_group_cpus(group)) { | ||
1560 | /* Bias balancing toward cpus of our domain */ | ||
1561 | if (local_group) | ||
1562 | load = source_load(i, load_idx); | ||
1563 | else | ||
1564 | load = target_load(i, load_idx); | ||
1565 | |||
1566 | avg_load += load; | ||
1567 | } | ||
1568 | |||
1569 | /* Adjust by relative CPU power of the group */ | ||
1570 | avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; | ||
1571 | |||
1572 | if (local_group) { | ||
1573 | this_load = avg_load; | ||
1574 | } else if (avg_load < min_load) { | ||
1575 | min_load = avg_load; | ||
1576 | idlest = group; | ||
1577 | } | ||
1578 | } while (group = group->next, group != sd->groups); | ||
1579 | |||
1580 | if (!idlest || 100*this_load < imbalance*min_load) | ||
1581 | return NULL; | ||
1582 | return idlest; | ||
1583 | } | ||
1584 | |||
1585 | /* | ||
1586 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
1587 | */ | ||
1588 | static int | ||
1589 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
1590 | { | ||
1591 | unsigned long load, min_load = ULONG_MAX; | ||
1592 | int idlest = -1; | ||
1593 | int i; | ||
1594 | |||
1595 | /* Traverse only the allowed CPUs */ | ||
1596 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
1597 | load = weighted_cpuload(i); | ||
1598 | |||
1599 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
1600 | min_load = load; | ||
1601 | idlest = i; | ||
1602 | } | ||
1603 | } | ||
1604 | |||
1605 | return idlest; | ||
1606 | } | ||
1607 | |||
1608 | /* | ||
1609 | * Try and locate an idle CPU in the sched_domain. | ||
1610 | */ | ||
1611 | static int select_idle_sibling(struct task_struct *p, int target) | ||
1612 | { | ||
1613 | int cpu = smp_processor_id(); | ||
1614 | int prev_cpu = task_cpu(p); | ||
1615 | struct sched_domain *sd; | ||
1616 | int i; | ||
1617 | |||
1618 | /* | ||
1619 | * If the task is going to be woken-up on this cpu and if it is | ||
1620 | * already idle, then it is the right target. | ||
1621 | */ | ||
1622 | if (target == cpu && idle_cpu(cpu)) | ||
1623 | return cpu; | ||
1624 | |||
1625 | /* | ||
1626 | * If the task is going to be woken-up on the cpu where it previously | ||
1627 | * ran and if it is currently idle, then it the right target. | ||
1628 | */ | ||
1629 | if (target == prev_cpu && idle_cpu(prev_cpu)) | ||
1630 | return prev_cpu; | ||
1631 | |||
1632 | /* | ||
1633 | * Otherwise, iterate the domains and find an elegible idle cpu. | ||
1634 | */ | ||
1635 | rcu_read_lock(); | ||
1636 | for_each_domain(target, sd) { | ||
1637 | if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) | ||
1638 | break; | ||
1639 | |||
1640 | for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { | ||
1641 | if (idle_cpu(i)) { | ||
1642 | target = i; | ||
1643 | break; | ||
1644 | } | ||
1645 | } | ||
1646 | |||
1647 | /* | ||
1648 | * Lets stop looking for an idle sibling when we reached | ||
1649 | * the domain that spans the current cpu and prev_cpu. | ||
1650 | */ | ||
1651 | if (cpumask_test_cpu(cpu, sched_domain_span(sd)) && | ||
1652 | cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) | ||
1653 | break; | ||
1654 | } | ||
1655 | rcu_read_unlock(); | ||
1656 | |||
1657 | return target; | ||
1658 | } | ||
1659 | |||
1660 | /* | ||
1661 | * sched_balance_self: balance the current task (running on cpu) in domains | ||
1662 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | ||
1663 | * SD_BALANCE_EXEC. | ||
1664 | * | ||
1665 | * Balance, ie. select the least loaded group. | ||
1666 | * | ||
1667 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
1668 | * | ||
1669 | * preempt must be disabled. | ||
1670 | */ | ||
1671 | static int | ||
1672 | select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | ||
1673 | { | ||
1674 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | ||
1675 | int cpu = smp_processor_id(); | ||
1676 | int prev_cpu = task_cpu(p); | ||
1677 | int new_cpu = cpu; | ||
1678 | int want_affine = 0; | ||
1679 | int want_sd = 1; | ||
1680 | int sync = wake_flags & WF_SYNC; | ||
1681 | |||
1682 | if (sd_flag & SD_BALANCE_WAKE) { | ||
1683 | if (cpumask_test_cpu(cpu, &p->cpus_allowed)) | ||
1684 | want_affine = 1; | ||
1685 | new_cpu = prev_cpu; | ||
1686 | } | ||
1687 | |||
1688 | rcu_read_lock(); | ||
1689 | for_each_domain(cpu, tmp) { | ||
1690 | if (!(tmp->flags & SD_LOAD_BALANCE)) | ||
1691 | continue; | ||
1692 | |||
1693 | /* | ||
1694 | * If power savings logic is enabled for a domain, see if we | ||
1695 | * are not overloaded, if so, don't balance wider. | ||
1696 | */ | ||
1697 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | ||
1698 | unsigned long power = 0; | ||
1699 | unsigned long nr_running = 0; | ||
1700 | unsigned long capacity; | ||
1701 | int i; | ||
1702 | |||
1703 | for_each_cpu(i, sched_domain_span(tmp)) { | ||
1704 | power += power_of(i); | ||
1705 | nr_running += cpu_rq(i)->cfs.nr_running; | ||
1706 | } | ||
1707 | |||
1708 | capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); | ||
1709 | |||
1710 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
1711 | nr_running /= 2; | ||
1712 | |||
1713 | if (nr_running < capacity) | ||
1714 | want_sd = 0; | ||
1715 | } | ||
1716 | |||
1717 | /* | ||
1718 | * If both cpu and prev_cpu are part of this domain, | ||
1719 | * cpu is a valid SD_WAKE_AFFINE target. | ||
1720 | */ | ||
1721 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | ||
1722 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | ||
1723 | affine_sd = tmp; | ||
1724 | want_affine = 0; | ||
1725 | } | ||
1726 | |||
1727 | if (!want_sd && !want_affine) | ||
1728 | break; | ||
1729 | |||
1730 | if (!(tmp->flags & sd_flag)) | ||
1731 | continue; | ||
1732 | |||
1733 | if (want_sd) | ||
1734 | sd = tmp; | ||
1735 | } | ||
1736 | |||
1737 | if (affine_sd) { | ||
1738 | if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) | ||
1739 | prev_cpu = cpu; | ||
1740 | |||
1741 | new_cpu = select_idle_sibling(p, prev_cpu); | ||
1742 | goto unlock; | ||
1743 | } | ||
1744 | |||
1745 | while (sd) { | ||
1746 | int load_idx = sd->forkexec_idx; | ||
1747 | struct sched_group *group; | ||
1748 | int weight; | ||
1749 | |||
1750 | if (!(sd->flags & sd_flag)) { | ||
1751 | sd = sd->child; | ||
1752 | continue; | ||
1753 | } | ||
1754 | |||
1755 | if (sd_flag & SD_BALANCE_WAKE) | ||
1756 | load_idx = sd->wake_idx; | ||
1757 | |||
1758 | group = find_idlest_group(sd, p, cpu, load_idx); | ||
1759 | if (!group) { | ||
1760 | sd = sd->child; | ||
1761 | continue; | ||
1762 | } | ||
1763 | |||
1764 | new_cpu = find_idlest_cpu(group, p, cpu); | ||
1765 | if (new_cpu == -1 || new_cpu == cpu) { | ||
1766 | /* Now try balancing at a lower domain level of cpu */ | ||
1767 | sd = sd->child; | ||
1768 | continue; | ||
1769 | } | ||
1770 | |||
1771 | /* Now try balancing at a lower domain level of new_cpu */ | ||
1772 | cpu = new_cpu; | ||
1773 | weight = sd->span_weight; | ||
1774 | sd = NULL; | ||
1775 | for_each_domain(cpu, tmp) { | ||
1776 | if (weight <= tmp->span_weight) | ||
1777 | break; | ||
1778 | if (tmp->flags & sd_flag) | ||
1779 | sd = tmp; | ||
1780 | } | ||
1781 | /* while loop will break here if sd == NULL */ | ||
1782 | } | ||
1783 | unlock: | ||
1784 | rcu_read_unlock(); | ||
1785 | |||
1786 | return new_cpu; | ||
1787 | } | ||
1788 | #endif /* CONFIG_SMP */ | ||
1789 | |||
1790 | static unsigned long | ||
1791 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | ||
1792 | { | ||
1793 | unsigned long gran = sysctl_sched_wakeup_granularity; | ||
1794 | |||
1795 | /* | ||
1796 | * Since its curr running now, convert the gran from real-time | ||
1797 | * to virtual-time in his units. | ||
1798 | * | ||
1799 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
1800 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
1801 | * the resulting gran will be larger, therefore penalizing the | ||
1802 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
1803 | * be smaller, again penalizing the lighter task. | ||
1804 | * | ||
1805 | * This is especially important for buddies when the leftmost | ||
1806 | * task is higher priority than the buddy. | ||
1807 | */ | ||
1808 | return calc_delta_fair(gran, se); | ||
1809 | } | ||
1810 | |||
1811 | /* | ||
1812 | * Should 'se' preempt 'curr'. | ||
1813 | * | ||
1814 | * |s1 | ||
1815 | * |s2 | ||
1816 | * |s3 | ||
1817 | * g | ||
1818 | * |<--->|c | ||
1819 | * | ||
1820 | * w(c, s1) = -1 | ||
1821 | * w(c, s2) = 0 | ||
1822 | * w(c, s3) = 1 | ||
1823 | * | ||
1824 | */ | ||
1825 | static int | ||
1826 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | ||
1827 | { | ||
1828 | s64 gran, vdiff = curr->vruntime - se->vruntime; | ||
1829 | |||
1830 | if (vdiff <= 0) | ||
1831 | return -1; | ||
1832 | |||
1833 | gran = wakeup_gran(curr, se); | ||
1834 | if (vdiff > gran) | ||
1835 | return 1; | ||
1836 | |||
1837 | return 0; | ||
1838 | } | ||
1839 | |||
1840 | static void set_last_buddy(struct sched_entity *se) | ||
1841 | { | ||
1842 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | ||
1843 | return; | ||
1844 | |||
1845 | for_each_sched_entity(se) | ||
1846 | cfs_rq_of(se)->last = se; | ||
1847 | } | ||
1848 | |||
1849 | static void set_next_buddy(struct sched_entity *se) | ||
1850 | { | ||
1851 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | ||
1852 | return; | ||
1853 | |||
1854 | for_each_sched_entity(se) | ||
1855 | cfs_rq_of(se)->next = se; | ||
1856 | } | ||
1857 | |||
1858 | static void set_skip_buddy(struct sched_entity *se) | ||
1859 | { | ||
1860 | for_each_sched_entity(se) | ||
1861 | cfs_rq_of(se)->skip = se; | ||
1862 | } | ||
1863 | |||
1864 | /* | ||
1865 | * Preempt the current task with a newly woken task if needed: | ||
1866 | */ | ||
1867 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) | ||
1868 | { | ||
1869 | struct task_struct *curr = rq->curr; | ||
1870 | struct sched_entity *se = &curr->se, *pse = &p->se; | ||
1871 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | ||
1872 | int scale = cfs_rq->nr_running >= sched_nr_latency; | ||
1873 | int next_buddy_marked = 0; | ||
1874 | |||
1875 | if (unlikely(se == pse)) | ||
1876 | return; | ||
1877 | |||
1878 | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { | ||
1879 | set_next_buddy(pse); | ||
1880 | next_buddy_marked = 1; | ||
1881 | } | ||
1882 | |||
1883 | /* | ||
1884 | * We can come here with TIF_NEED_RESCHED already set from new task | ||
1885 | * wake up path. | ||
1886 | */ | ||
1887 | if (test_tsk_need_resched(curr)) | ||
1888 | return; | ||
1889 | |||
1890 | /* Idle tasks are by definition preempted by non-idle tasks. */ | ||
1891 | if (unlikely(curr->policy == SCHED_IDLE) && | ||
1892 | likely(p->policy != SCHED_IDLE)) | ||
1893 | goto preempt; | ||
1894 | |||
1895 | /* | ||
1896 | * Batch and idle tasks do not preempt non-idle tasks (their preemption | ||
1897 | * is driven by the tick): | ||
1898 | */ | ||
1899 | if (unlikely(p->policy != SCHED_NORMAL)) | ||
1900 | return; | ||
1901 | |||
1902 | |||
1903 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
1904 | return; | ||
1905 | |||
1906 | find_matching_se(&se, &pse); | ||
1907 | update_curr(cfs_rq_of(se)); | ||
1908 | BUG_ON(!pse); | ||
1909 | if (wakeup_preempt_entity(se, pse) == 1) { | ||
1910 | /* | ||
1911 | * Bias pick_next to pick the sched entity that is | ||
1912 | * triggering this preemption. | ||
1913 | */ | ||
1914 | if (!next_buddy_marked) | ||
1915 | set_next_buddy(pse); | ||
1916 | goto preempt; | ||
1917 | } | ||
1918 | |||
1919 | return; | ||
1920 | |||
1921 | preempt: | ||
1922 | resched_task(curr); | ||
1923 | /* | ||
1924 | * Only set the backward buddy when the current task is still | ||
1925 | * on the rq. This can happen when a wakeup gets interleaved | ||
1926 | * with schedule on the ->pre_schedule() or idle_balance() | ||
1927 | * point, either of which can * drop the rq lock. | ||
1928 | * | ||
1929 | * Also, during early boot the idle thread is in the fair class, | ||
1930 | * for obvious reasons its a bad idea to schedule back to it. | ||
1931 | */ | ||
1932 | if (unlikely(!se->on_rq || curr == rq->idle)) | ||
1933 | return; | ||
1934 | |||
1935 | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | ||
1936 | set_last_buddy(se); | ||
1937 | } | ||
1938 | |||
1939 | static struct task_struct *pick_next_task_fair(struct rq *rq) | ||
1940 | { | ||
1941 | struct task_struct *p; | ||
1942 | struct cfs_rq *cfs_rq = &rq->cfs; | ||
1943 | struct sched_entity *se; | ||
1944 | |||
1945 | if (!cfs_rq->nr_running) | ||
1946 | return NULL; | ||
1947 | |||
1948 | do { | ||
1949 | se = pick_next_entity(cfs_rq); | ||
1950 | set_next_entity(cfs_rq, se); | ||
1951 | cfs_rq = group_cfs_rq(se); | ||
1952 | } while (cfs_rq); | ||
1953 | |||
1954 | p = task_of(se); | ||
1955 | hrtick_start_fair(rq, p); | ||
1956 | |||
1957 | return p; | ||
1958 | } | ||
1959 | |||
1960 | /* | ||
1961 | * Account for a descheduled task: | ||
1962 | */ | ||
1963 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | ||
1964 | { | ||
1965 | struct sched_entity *se = &prev->se; | ||
1966 | struct cfs_rq *cfs_rq; | ||
1967 | |||
1968 | for_each_sched_entity(se) { | ||
1969 | cfs_rq = cfs_rq_of(se); | ||
1970 | put_prev_entity(cfs_rq, se); | ||
1971 | } | ||
1972 | } | ||
1973 | |||
1974 | /* | ||
1975 | * sched_yield() is very simple | ||
1976 | * | ||
1977 | * The magic of dealing with the ->skip buddy is in pick_next_entity. | ||
1978 | */ | ||
1979 | static void yield_task_fair(struct rq *rq) | ||
1980 | { | ||
1981 | struct task_struct *curr = rq->curr; | ||
1982 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | ||
1983 | struct sched_entity *se = &curr->se; | ||
1984 | |||
1985 | /* | ||
1986 | * Are we the only task in the tree? | ||
1987 | */ | ||
1988 | if (unlikely(rq->nr_running == 1)) | ||
1989 | return; | ||
1990 | |||
1991 | clear_buddies(cfs_rq, se); | ||
1992 | |||
1993 | if (curr->policy != SCHED_BATCH) { | ||
1994 | update_rq_clock(rq); | ||
1995 | /* | ||
1996 | * Update run-time statistics of the 'current'. | ||
1997 | */ | ||
1998 | update_curr(cfs_rq); | ||
1999 | } | ||
2000 | |||
2001 | set_skip_buddy(se); | ||
2002 | } | ||
2003 | |||
2004 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) | ||
2005 | { | ||
2006 | struct sched_entity *se = &p->se; | ||
2007 | |||
2008 | if (!se->on_rq) | ||
2009 | return false; | ||
2010 | |||
2011 | /* Tell the scheduler that we'd really like pse to run next. */ | ||
2012 | set_next_buddy(se); | ||
2013 | |||
2014 | yield_task_fair(rq); | ||
2015 | |||
2016 | return true; | ||
2017 | } | ||
2018 | |||
2019 | #ifdef CONFIG_SMP | ||
2020 | /************************************************** | ||
2021 | * Fair scheduling class load-balancing methods: | ||
2022 | */ | ||
2023 | |||
2024 | /* | ||
2025 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
2026 | * Both runqueues must be locked. | ||
2027 | */ | ||
2028 | static void pull_task(struct rq *src_rq, struct task_struct *p, | ||
2029 | struct rq *this_rq, int this_cpu) | ||
2030 | { | ||
2031 | deactivate_task(src_rq, p, 0); | ||
2032 | set_task_cpu(p, this_cpu); | ||
2033 | activate_task(this_rq, p, 0); | ||
2034 | check_preempt_curr(this_rq, p, 0); | ||
2035 | } | ||
2036 | |||
2037 | /* | ||
2038 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
2039 | */ | ||
2040 | static | ||
2041 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
2042 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
2043 | int *all_pinned) | ||
2044 | { | ||
2045 | int tsk_cache_hot = 0; | ||
2046 | /* | ||
2047 | * We do not migrate tasks that are: | ||
2048 | * 1) running (obviously), or | ||
2049 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
2050 | * 3) are cache-hot on their current CPU. | ||
2051 | */ | ||
2052 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | ||
2053 | schedstat_inc(p, se.statistics.nr_failed_migrations_affine); | ||
2054 | return 0; | ||
2055 | } | ||
2056 | *all_pinned = 0; | ||
2057 | |||
2058 | if (task_running(rq, p)) { | ||
2059 | schedstat_inc(p, se.statistics.nr_failed_migrations_running); | ||
2060 | return 0; | ||
2061 | } | ||
2062 | |||
2063 | /* | ||
2064 | * Aggressive migration if: | ||
2065 | * 1) task is cache cold, or | ||
2066 | * 2) too many balance attempts have failed. | ||
2067 | */ | ||
2068 | |||
2069 | tsk_cache_hot = task_hot(p, rq->clock_task, sd); | ||
2070 | if (!tsk_cache_hot || | ||
2071 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
2072 | #ifdef CONFIG_SCHEDSTATS | ||
2073 | if (tsk_cache_hot) { | ||
2074 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
2075 | schedstat_inc(p, se.statistics.nr_forced_migrations); | ||
2076 | } | ||
2077 | #endif | ||
2078 | return 1; | ||
2079 | } | ||
2080 | |||
2081 | if (tsk_cache_hot) { | ||
2082 | schedstat_inc(p, se.statistics.nr_failed_migrations_hot); | ||
2083 | return 0; | ||
2084 | } | ||
2085 | return 1; | ||
2086 | } | ||
2087 | |||
2088 | /* | ||
2089 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
2090 | * part of active balancing operations within "domain". | ||
2091 | * Returns 1 if successful and 0 otherwise. | ||
2092 | * | ||
2093 | * Called with both runqueues locked. | ||
2094 | */ | ||
2095 | static int | ||
2096 | move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
2097 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
2098 | { | ||
2099 | struct task_struct *p, *n; | ||
2100 | struct cfs_rq *cfs_rq; | ||
2101 | int pinned = 0; | ||
2102 | |||
2103 | for_each_leaf_cfs_rq(busiest, cfs_rq) { | ||
2104 | list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { | ||
2105 | |||
2106 | if (!can_migrate_task(p, busiest, this_cpu, | ||
2107 | sd, idle, &pinned)) | ||
2108 | continue; | ||
2109 | |||
2110 | pull_task(busiest, p, this_rq, this_cpu); | ||
2111 | /* | ||
2112 | * Right now, this is only the second place pull_task() | ||
2113 | * is called, so we can safely collect pull_task() | ||
2114 | * stats here rather than inside pull_task(). | ||
2115 | */ | ||
2116 | schedstat_inc(sd, lb_gained[idle]); | ||
2117 | return 1; | ||
2118 | } | ||
2119 | } | ||
2120 | |||
2121 | return 0; | ||
2122 | } | ||
2123 | |||
2124 | static unsigned long | ||
2125 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
2126 | unsigned long max_load_move, struct sched_domain *sd, | ||
2127 | enum cpu_idle_type idle, int *all_pinned, | ||
2128 | struct cfs_rq *busiest_cfs_rq) | ||
2129 | { | ||
2130 | int loops = 0, pulled = 0; | ||
2131 | long rem_load_move = max_load_move; | ||
2132 | struct task_struct *p, *n; | ||
2133 | |||
2134 | if (max_load_move == 0) | ||
2135 | goto out; | ||
2136 | |||
2137 | list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { | ||
2138 | if (loops++ > sysctl_sched_nr_migrate) | ||
2139 | break; | ||
2140 | |||
2141 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
2142 | !can_migrate_task(p, busiest, this_cpu, sd, idle, | ||
2143 | all_pinned)) | ||
2144 | continue; | ||
2145 | |||
2146 | pull_task(busiest, p, this_rq, this_cpu); | ||
2147 | pulled++; | ||
2148 | rem_load_move -= p->se.load.weight; | ||
2149 | |||
2150 | #ifdef CONFIG_PREEMPT | ||
2151 | /* | ||
2152 | * NEWIDLE balancing is a source of latency, so preemptible | ||
2153 | * kernels will stop after the first task is pulled to minimize | ||
2154 | * the critical section. | ||
2155 | */ | ||
2156 | if (idle == CPU_NEWLY_IDLE) | ||
2157 | break; | ||
2158 | #endif | ||
2159 | |||
2160 | /* | ||
2161 | * We only want to steal up to the prescribed amount of | ||
2162 | * weighted load. | ||
2163 | */ | ||
2164 | if (rem_load_move <= 0) | ||
2165 | break; | ||
2166 | } | ||
2167 | out: | ||
2168 | /* | ||
2169 | * Right now, this is one of only two places pull_task() is called, | ||
2170 | * so we can safely collect pull_task() stats here rather than | ||
2171 | * inside pull_task(). | ||
2172 | */ | ||
2173 | schedstat_add(sd, lb_gained[idle], pulled); | ||
2174 | |||
2175 | return max_load_move - rem_load_move; | ||
2176 | } | ||
2177 | |||
2178 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
2179 | /* | ||
2180 | * update tg->load_weight by folding this cpu's load_avg | ||
2181 | */ | ||
2182 | static int update_shares_cpu(struct task_group *tg, int cpu) | ||
2183 | { | ||
2184 | struct cfs_rq *cfs_rq; | ||
2185 | unsigned long flags; | ||
2186 | struct rq *rq; | ||
2187 | |||
2188 | if (!tg->se[cpu]) | ||
2189 | return 0; | ||
2190 | |||
2191 | rq = cpu_rq(cpu); | ||
2192 | cfs_rq = tg->cfs_rq[cpu]; | ||
2193 | |||
2194 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
2195 | |||
2196 | update_rq_clock(rq); | ||
2197 | update_cfs_load(cfs_rq, 1); | ||
2198 | |||
2199 | /* | ||
2200 | * We need to update shares after updating tg->load_weight in | ||
2201 | * order to adjust the weight of groups with long running tasks. | ||
2202 | */ | ||
2203 | update_cfs_shares(cfs_rq); | ||
2204 | |||
2205 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
2206 | |||
2207 | return 0; | ||
2208 | } | ||
2209 | |||
2210 | static void update_shares(int cpu) | ||
2211 | { | ||
2212 | struct cfs_rq *cfs_rq; | ||
2213 | struct rq *rq = cpu_rq(cpu); | ||
2214 | |||
2215 | rcu_read_lock(); | ||
2216 | /* | ||
2217 | * Iterates the task_group tree in a bottom up fashion, see | ||
2218 | * list_add_leaf_cfs_rq() for details. | ||
2219 | */ | ||
2220 | for_each_leaf_cfs_rq(rq, cfs_rq) | ||
2221 | update_shares_cpu(cfs_rq->tg, cpu); | ||
2222 | rcu_read_unlock(); | ||
2223 | } | ||
2224 | |||
2225 | /* | ||
2226 | * Compute the cpu's hierarchical load factor for each task group. | ||
2227 | * This needs to be done in a top-down fashion because the load of a child | ||
2228 | * group is a fraction of its parents load. | ||
2229 | */ | ||
2230 | static int tg_load_down(struct task_group *tg, void *data) | ||
2231 | { | ||
2232 | unsigned long load; | ||
2233 | long cpu = (long)data; | ||
2234 | |||
2235 | if (!tg->parent) { | ||
2236 | load = cpu_rq(cpu)->load.weight; | ||
2237 | } else { | ||
2238 | load = tg->parent->cfs_rq[cpu]->h_load; | ||
2239 | load *= tg->se[cpu]->load.weight; | ||
2240 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | ||
2241 | } | ||
2242 | |||
2243 | tg->cfs_rq[cpu]->h_load = load; | ||
2244 | |||
2245 | return 0; | ||
2246 | } | ||
2247 | |||
2248 | static void update_h_load(long cpu) | ||
2249 | { | ||
2250 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); | ||
2251 | } | ||
2252 | |||
2253 | static unsigned long | ||
2254 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
2255 | unsigned long max_load_move, | ||
2256 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
2257 | int *all_pinned) | ||
2258 | { | ||
2259 | long rem_load_move = max_load_move; | ||
2260 | struct cfs_rq *busiest_cfs_rq; | ||
2261 | |||
2262 | rcu_read_lock(); | ||
2263 | update_h_load(cpu_of(busiest)); | ||
2264 | |||
2265 | for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) { | ||
2266 | unsigned long busiest_h_load = busiest_cfs_rq->h_load; | ||
2267 | unsigned long busiest_weight = busiest_cfs_rq->load.weight; | ||
2268 | u64 rem_load, moved_load; | ||
2269 | |||
2270 | /* | ||
2271 | * empty group | ||
2272 | */ | ||
2273 | if (!busiest_cfs_rq->task_weight) | ||
2274 | continue; | ||
2275 | |||
2276 | rem_load = (u64)rem_load_move * busiest_weight; | ||
2277 | rem_load = div_u64(rem_load, busiest_h_load + 1); | ||
2278 | |||
2279 | moved_load = balance_tasks(this_rq, this_cpu, busiest, | ||
2280 | rem_load, sd, idle, all_pinned, | ||
2281 | busiest_cfs_rq); | ||
2282 | |||
2283 | if (!moved_load) | ||
2284 | continue; | ||
2285 | |||
2286 | moved_load *= busiest_h_load; | ||
2287 | moved_load = div_u64(moved_load, busiest_weight + 1); | ||
2288 | |||
2289 | rem_load_move -= moved_load; | ||
2290 | if (rem_load_move < 0) | ||
2291 | break; | ||
2292 | } | ||
2293 | rcu_read_unlock(); | ||
2294 | |||
2295 | return max_load_move - rem_load_move; | ||
2296 | } | ||
2297 | #else | ||
2298 | static inline void update_shares(int cpu) | ||
2299 | { | ||
2300 | } | ||
2301 | |||
2302 | static unsigned long | ||
2303 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
2304 | unsigned long max_load_move, | ||
2305 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
2306 | int *all_pinned) | ||
2307 | { | ||
2308 | return balance_tasks(this_rq, this_cpu, busiest, | ||
2309 | max_load_move, sd, idle, all_pinned, | ||
2310 | &busiest->cfs); | ||
2311 | } | ||
2312 | #endif | ||
2313 | |||
2314 | /* | ||
2315 | * move_tasks tries to move up to max_load_move weighted load from busiest to | ||
2316 | * this_rq, as part of a balancing operation within domain "sd". | ||
2317 | * Returns 1 if successful and 0 otherwise. | ||
2318 | * | ||
2319 | * Called with both runqueues locked. | ||
2320 | */ | ||
2321 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
2322 | unsigned long max_load_move, | ||
2323 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
2324 | int *all_pinned) | ||
2325 | { | ||
2326 | unsigned long total_load_moved = 0, load_moved; | ||
2327 | |||
2328 | do { | ||
2329 | load_moved = load_balance_fair(this_rq, this_cpu, busiest, | ||
2330 | max_load_move - total_load_moved, | ||
2331 | sd, idle, all_pinned); | ||
2332 | |||
2333 | total_load_moved += load_moved; | ||
2334 | |||
2335 | #ifdef CONFIG_PREEMPT | ||
2336 | /* | ||
2337 | * NEWIDLE balancing is a source of latency, so preemptible | ||
2338 | * kernels will stop after the first task is pulled to minimize | ||
2339 | * the critical section. | ||
2340 | */ | ||
2341 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | ||
2342 | break; | ||
2343 | |||
2344 | if (raw_spin_is_contended(&this_rq->lock) || | ||
2345 | raw_spin_is_contended(&busiest->lock)) | ||
2346 | break; | ||
2347 | #endif | ||
2348 | } while (load_moved && max_load_move > total_load_moved); | ||
2349 | |||
2350 | return total_load_moved > 0; | ||
2351 | } | ||
2352 | |||
2353 | /********** Helpers for find_busiest_group ************************/ | ||
2354 | /* | ||
2355 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
2356 | * during load balancing. | ||
2357 | */ | ||
2358 | struct sd_lb_stats { | ||
2359 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
2360 | struct sched_group *this; /* Local group in this sd */ | ||
2361 | unsigned long total_load; /* Total load of all groups in sd */ | ||
2362 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
2363 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
2364 | |||
2365 | /** Statistics of this group */ | ||
2366 | unsigned long this_load; | ||
2367 | unsigned long this_load_per_task; | ||
2368 | unsigned long this_nr_running; | ||
2369 | unsigned long this_has_capacity; | ||
2370 | unsigned int this_idle_cpus; | ||
2371 | |||
2372 | /* Statistics of the busiest group */ | ||
2373 | unsigned int busiest_idle_cpus; | ||
2374 | unsigned long max_load; | ||
2375 | unsigned long busiest_load_per_task; | ||
2376 | unsigned long busiest_nr_running; | ||
2377 | unsigned long busiest_group_capacity; | ||
2378 | unsigned long busiest_has_capacity; | ||
2379 | unsigned int busiest_group_weight; | ||
2380 | |||
2381 | int group_imb; /* Is there imbalance in this sd */ | ||
2382 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
2383 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
2384 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
2385 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
2386 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
2387 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
2388 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
2389 | #endif | ||
2390 | }; | ||
2391 | |||
2392 | /* | ||
2393 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
2394 | */ | ||
2395 | struct sg_lb_stats { | ||
2396 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
2397 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
2398 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
2399 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
2400 | unsigned long group_capacity; | ||
2401 | unsigned long idle_cpus; | ||
2402 | unsigned long group_weight; | ||
2403 | int group_imb; /* Is there an imbalance in the group ? */ | ||
2404 | int group_has_capacity; /* Is there extra capacity in the group? */ | ||
2405 | }; | ||
2406 | |||
2407 | /** | ||
2408 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
2409 | * @group: The group whose first cpu is to be returned. | ||
2410 | */ | ||
2411 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
2412 | { | ||
2413 | return cpumask_first(sched_group_cpus(group)); | ||
2414 | } | ||
2415 | |||
2416 | /** | ||
2417 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
2418 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
2419 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
2420 | */ | ||
2421 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
2422 | enum cpu_idle_type idle) | ||
2423 | { | ||
2424 | int load_idx; | ||
2425 | |||
2426 | switch (idle) { | ||
2427 | case CPU_NOT_IDLE: | ||
2428 | load_idx = sd->busy_idx; | ||
2429 | break; | ||
2430 | |||
2431 | case CPU_NEWLY_IDLE: | ||
2432 | load_idx = sd->newidle_idx; | ||
2433 | break; | ||
2434 | default: | ||
2435 | load_idx = sd->idle_idx; | ||
2436 | break; | ||
2437 | } | ||
2438 | |||
2439 | return load_idx; | ||
2440 | } | ||
2441 | |||
2442 | |||
2443 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
2444 | /** | ||
2445 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
2446 | * the given sched_domain, during load balancing. | ||
2447 | * | ||
2448 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
2449 | * @sds: Variable containing the statistics for sd. | ||
2450 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
2451 | */ | ||
2452 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
2453 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
2454 | { | ||
2455 | /* | ||
2456 | * Busy processors will not participate in power savings | ||
2457 | * balance. | ||
2458 | */ | ||
2459 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
2460 | sds->power_savings_balance = 0; | ||
2461 | else { | ||
2462 | sds->power_savings_balance = 1; | ||
2463 | sds->min_nr_running = ULONG_MAX; | ||
2464 | sds->leader_nr_running = 0; | ||
2465 | } | ||
2466 | } | ||
2467 | |||
2468 | /** | ||
2469 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
2470 | * sched_domain while performing load balancing. | ||
2471 | * | ||
2472 | * @group: sched_group belonging to the sched_domain under consideration. | ||
2473 | * @sds: Variable containing the statistics of the sched_domain | ||
2474 | * @local_group: Does group contain the CPU for which we're performing | ||
2475 | * load balancing ? | ||
2476 | * @sgs: Variable containing the statistics of the group. | ||
2477 | */ | ||
2478 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
2479 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
2480 | { | ||
2481 | |||
2482 | if (!sds->power_savings_balance) | ||
2483 | return; | ||
2484 | |||
2485 | /* | ||
2486 | * If the local group is idle or completely loaded | ||
2487 | * no need to do power savings balance at this domain | ||
2488 | */ | ||
2489 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
2490 | !sds->this_nr_running)) | ||
2491 | sds->power_savings_balance = 0; | ||
2492 | |||
2493 | /* | ||
2494 | * If a group is already running at full capacity or idle, | ||
2495 | * don't include that group in power savings calculations | ||
2496 | */ | ||
2497 | if (!sds->power_savings_balance || | ||
2498 | sgs->sum_nr_running >= sgs->group_capacity || | ||
2499 | !sgs->sum_nr_running) | ||
2500 | return; | ||
2501 | |||
2502 | /* | ||
2503 | * Calculate the group which has the least non-idle load. | ||
2504 | * This is the group from where we need to pick up the load | ||
2505 | * for saving power | ||
2506 | */ | ||
2507 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
2508 | (sgs->sum_nr_running == sds->min_nr_running && | ||
2509 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
2510 | sds->group_min = group; | ||
2511 | sds->min_nr_running = sgs->sum_nr_running; | ||
2512 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
2513 | sgs->sum_nr_running; | ||
2514 | } | ||
2515 | |||
2516 | /* | ||
2517 | * Calculate the group which is almost near its | ||
2518 | * capacity but still has some space to pick up some load | ||
2519 | * from other group and save more power | ||
2520 | */ | ||
2521 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
2522 | return; | ||
2523 | |||
2524 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
2525 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
2526 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
2527 | sds->group_leader = group; | ||
2528 | sds->leader_nr_running = sgs->sum_nr_running; | ||
2529 | } | ||
2530 | } | ||
2531 | |||
2532 | /** | ||
2533 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
2534 | * @sds: Variable containing the statistics of the sched_domain | ||
2535 | * under consideration. | ||
2536 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
2537 | * @imbalance: Variable to store the imbalance. | ||
2538 | * | ||
2539 | * Description: | ||
2540 | * Check if we have potential to perform some power-savings balance. | ||
2541 | * If yes, set the busiest group to be the least loaded group in the | ||
2542 | * sched_domain, so that it's CPUs can be put to idle. | ||
2543 | * | ||
2544 | * Returns 1 if there is potential to perform power-savings balance. | ||
2545 | * Else returns 0. | ||
2546 | */ | ||
2547 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
2548 | int this_cpu, unsigned long *imbalance) | ||
2549 | { | ||
2550 | if (!sds->power_savings_balance) | ||
2551 | return 0; | ||
2552 | |||
2553 | if (sds->this != sds->group_leader || | ||
2554 | sds->group_leader == sds->group_min) | ||
2555 | return 0; | ||
2556 | |||
2557 | *imbalance = sds->min_load_per_task; | ||
2558 | sds->busiest = sds->group_min; | ||
2559 | |||
2560 | return 1; | ||
2561 | |||
2562 | } | ||
2563 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
2564 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
2565 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
2566 | { | ||
2567 | return; | ||
2568 | } | ||
2569 | |||
2570 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
2571 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
2572 | { | ||
2573 | return; | ||
2574 | } | ||
2575 | |||
2576 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
2577 | int this_cpu, unsigned long *imbalance) | ||
2578 | { | ||
2579 | return 0; | ||
2580 | } | ||
2581 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
2582 | |||
2583 | |||
2584 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
2585 | { | ||
2586 | return SCHED_POWER_SCALE; | ||
2587 | } | ||
2588 | |||
2589 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
2590 | { | ||
2591 | return default_scale_freq_power(sd, cpu); | ||
2592 | } | ||
2593 | |||
2594 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
2595 | { | ||
2596 | unsigned long weight = sd->span_weight; | ||
2597 | unsigned long smt_gain = sd->smt_gain; | ||
2598 | |||
2599 | smt_gain /= weight; | ||
2600 | |||
2601 | return smt_gain; | ||
2602 | } | ||
2603 | |||
2604 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
2605 | { | ||
2606 | return default_scale_smt_power(sd, cpu); | ||
2607 | } | ||
2608 | |||
2609 | unsigned long scale_rt_power(int cpu) | ||
2610 | { | ||
2611 | struct rq *rq = cpu_rq(cpu); | ||
2612 | u64 total, available; | ||
2613 | |||
2614 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
2615 | |||
2616 | if (unlikely(total < rq->rt_avg)) { | ||
2617 | /* Ensures that power won't end up being negative */ | ||
2618 | available = 0; | ||
2619 | } else { | ||
2620 | available = total - rq->rt_avg; | ||
2621 | } | ||
2622 | |||
2623 | if (unlikely((s64)total < SCHED_POWER_SCALE)) | ||
2624 | total = SCHED_POWER_SCALE; | ||
2625 | |||
2626 | total >>= SCHED_POWER_SHIFT; | ||
2627 | |||
2628 | return div_u64(available, total); | ||
2629 | } | ||
2630 | |||
2631 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
2632 | { | ||
2633 | unsigned long weight = sd->span_weight; | ||
2634 | unsigned long power = SCHED_POWER_SCALE; | ||
2635 | struct sched_group *sdg = sd->groups; | ||
2636 | |||
2637 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
2638 | if (sched_feat(ARCH_POWER)) | ||
2639 | power *= arch_scale_smt_power(sd, cpu); | ||
2640 | else | ||
2641 | power *= default_scale_smt_power(sd, cpu); | ||
2642 | |||
2643 | power >>= SCHED_POWER_SHIFT; | ||
2644 | } | ||
2645 | |||
2646 | sdg->sgp->power_orig = power; | ||
2647 | |||
2648 | if (sched_feat(ARCH_POWER)) | ||
2649 | power *= arch_scale_freq_power(sd, cpu); | ||
2650 | else | ||
2651 | power *= default_scale_freq_power(sd, cpu); | ||
2652 | |||
2653 | power >>= SCHED_POWER_SHIFT; | ||
2654 | |||
2655 | power *= scale_rt_power(cpu); | ||
2656 | power >>= SCHED_POWER_SHIFT; | ||
2657 | |||
2658 | if (!power) | ||
2659 | power = 1; | ||
2660 | |||
2661 | cpu_rq(cpu)->cpu_power = power; | ||
2662 | sdg->sgp->power = power; | ||
2663 | } | ||
2664 | |||
2665 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
2666 | { | ||
2667 | struct sched_domain *child = sd->child; | ||
2668 | struct sched_group *group, *sdg = sd->groups; | ||
2669 | unsigned long power; | ||
2670 | |||
2671 | if (!child) { | ||
2672 | update_cpu_power(sd, cpu); | ||
2673 | return; | ||
2674 | } | ||
2675 | |||
2676 | power = 0; | ||
2677 | |||
2678 | group = child->groups; | ||
2679 | do { | ||
2680 | power += group->sgp->power; | ||
2681 | group = group->next; | ||
2682 | } while (group != child->groups); | ||
2683 | |||
2684 | sdg->sgp->power = power; | ||
2685 | } | ||
2686 | |||
2687 | /* | ||
2688 | * Try and fix up capacity for tiny siblings, this is needed when | ||
2689 | * things like SD_ASYM_PACKING need f_b_g to select another sibling | ||
2690 | * which on its own isn't powerful enough. | ||
2691 | * | ||
2692 | * See update_sd_pick_busiest() and check_asym_packing(). | ||
2693 | */ | ||
2694 | static inline int | ||
2695 | fix_small_capacity(struct sched_domain *sd, struct sched_group *group) | ||
2696 | { | ||
2697 | /* | ||
2698 | * Only siblings can have significantly less than SCHED_POWER_SCALE | ||
2699 | */ | ||
2700 | if (!(sd->flags & SD_SHARE_CPUPOWER)) | ||
2701 | return 0; | ||
2702 | |||
2703 | /* | ||
2704 | * If ~90% of the cpu_power is still there, we're good. | ||
2705 | */ | ||
2706 | if (group->sgp->power * 32 > group->sgp->power_orig * 29) | ||
2707 | return 1; | ||
2708 | |||
2709 | return 0; | ||
2710 | } | ||
2711 | |||
2712 | /** | ||
2713 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
2714 | * @sd: The sched_domain whose statistics are to be updated. | ||
2715 | * @group: sched_group whose statistics are to be updated. | ||
2716 | * @this_cpu: Cpu for which load balance is currently performed. | ||
2717 | * @idle: Idle status of this_cpu | ||
2718 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
2719 | * @local_group: Does group contain this_cpu. | ||
2720 | * @cpus: Set of cpus considered for load balancing. | ||
2721 | * @balance: Should we balance. | ||
2722 | * @sgs: variable to hold the statistics for this group. | ||
2723 | */ | ||
2724 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
2725 | struct sched_group *group, int this_cpu, | ||
2726 | enum cpu_idle_type idle, int load_idx, | ||
2727 | int local_group, const struct cpumask *cpus, | ||
2728 | int *balance, struct sg_lb_stats *sgs) | ||
2729 | { | ||
2730 | unsigned long load, max_cpu_load, min_cpu_load, max_nr_running; | ||
2731 | int i; | ||
2732 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
2733 | unsigned long avg_load_per_task = 0; | ||
2734 | |||
2735 | if (local_group) | ||
2736 | balance_cpu = group_first_cpu(group); | ||
2737 | |||
2738 | /* Tally up the load of all CPUs in the group */ | ||
2739 | max_cpu_load = 0; | ||
2740 | min_cpu_load = ~0UL; | ||
2741 | max_nr_running = 0; | ||
2742 | |||
2743 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
2744 | struct rq *rq = cpu_rq(i); | ||
2745 | |||
2746 | /* Bias balancing toward cpus of our domain */ | ||
2747 | if (local_group) { | ||
2748 | if (idle_cpu(i) && !first_idle_cpu) { | ||
2749 | first_idle_cpu = 1; | ||
2750 | balance_cpu = i; | ||
2751 | } | ||
2752 | |||
2753 | load = target_load(i, load_idx); | ||
2754 | } else { | ||
2755 | load = source_load(i, load_idx); | ||
2756 | if (load > max_cpu_load) { | ||
2757 | max_cpu_load = load; | ||
2758 | max_nr_running = rq->nr_running; | ||
2759 | } | ||
2760 | if (min_cpu_load > load) | ||
2761 | min_cpu_load = load; | ||
2762 | } | ||
2763 | |||
2764 | sgs->group_load += load; | ||
2765 | sgs->sum_nr_running += rq->nr_running; | ||
2766 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
2767 | if (idle_cpu(i)) | ||
2768 | sgs->idle_cpus++; | ||
2769 | } | ||
2770 | |||
2771 | /* | ||
2772 | * First idle cpu or the first cpu(busiest) in this sched group | ||
2773 | * is eligible for doing load balancing at this and above | ||
2774 | * domains. In the newly idle case, we will allow all the cpu's | ||
2775 | * to do the newly idle load balance. | ||
2776 | */ | ||
2777 | if (idle != CPU_NEWLY_IDLE && local_group) { | ||
2778 | if (balance_cpu != this_cpu) { | ||
2779 | *balance = 0; | ||
2780 | return; | ||
2781 | } | ||
2782 | update_group_power(sd, this_cpu); | ||
2783 | } | ||
2784 | |||
2785 | /* Adjust by relative CPU power of the group */ | ||
2786 | sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; | ||
2787 | |||
2788 | /* | ||
2789 | * Consider the group unbalanced when the imbalance is larger | ||
2790 | * than the average weight of a task. | ||
2791 | * | ||
2792 | * APZ: with cgroup the avg task weight can vary wildly and | ||
2793 | * might not be a suitable number - should we keep a | ||
2794 | * normalized nr_running number somewhere that negates | ||
2795 | * the hierarchy? | ||
2796 | */ | ||
2797 | if (sgs->sum_nr_running) | ||
2798 | avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; | ||
2799 | |||
2800 | if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1) | ||
2801 | sgs->group_imb = 1; | ||
2802 | |||
2803 | sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, | ||
2804 | SCHED_POWER_SCALE); | ||
2805 | if (!sgs->group_capacity) | ||
2806 | sgs->group_capacity = fix_small_capacity(sd, group); | ||
2807 | sgs->group_weight = group->group_weight; | ||
2808 | |||
2809 | if (sgs->group_capacity > sgs->sum_nr_running) | ||
2810 | sgs->group_has_capacity = 1; | ||
2811 | } | ||
2812 | |||
2813 | /** | ||
2814 | * update_sd_pick_busiest - return 1 on busiest group | ||
2815 | * @sd: sched_domain whose statistics are to be checked | ||
2816 | * @sds: sched_domain statistics | ||
2817 | * @sg: sched_group candidate to be checked for being the busiest | ||
2818 | * @sgs: sched_group statistics | ||
2819 | * @this_cpu: the current cpu | ||
2820 | * | ||
2821 | * Determine if @sg is a busier group than the previously selected | ||
2822 | * busiest group. | ||
2823 | */ | ||
2824 | static bool update_sd_pick_busiest(struct sched_domain *sd, | ||
2825 | struct sd_lb_stats *sds, | ||
2826 | struct sched_group *sg, | ||
2827 | struct sg_lb_stats *sgs, | ||
2828 | int this_cpu) | ||
2829 | { | ||
2830 | if (sgs->avg_load <= sds->max_load) | ||
2831 | return false; | ||
2832 | |||
2833 | if (sgs->sum_nr_running > sgs->group_capacity) | ||
2834 | return true; | ||
2835 | |||
2836 | if (sgs->group_imb) | ||
2837 | return true; | ||
2838 | |||
2839 | /* | ||
2840 | * ASYM_PACKING needs to move all the work to the lowest | ||
2841 | * numbered CPUs in the group, therefore mark all groups | ||
2842 | * higher than ourself as busy. | ||
2843 | */ | ||
2844 | if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && | ||
2845 | this_cpu < group_first_cpu(sg)) { | ||
2846 | if (!sds->busiest) | ||
2847 | return true; | ||
2848 | |||
2849 | if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) | ||
2850 | return true; | ||
2851 | } | ||
2852 | |||
2853 | return false; | ||
2854 | } | ||
2855 | |||
2856 | /** | ||
2857 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
2858 | * @sd: sched_domain whose statistics are to be updated. | ||
2859 | * @this_cpu: Cpu for which load balance is currently performed. | ||
2860 | * @idle: Idle status of this_cpu | ||
2861 | * @cpus: Set of cpus considered for load balancing. | ||
2862 | * @balance: Should we balance. | ||
2863 | * @sds: variable to hold the statistics for this sched_domain. | ||
2864 | */ | ||
2865 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
2866 | enum cpu_idle_type idle, const struct cpumask *cpus, | ||
2867 | int *balance, struct sd_lb_stats *sds) | ||
2868 | { | ||
2869 | struct sched_domain *child = sd->child; | ||
2870 | struct sched_group *sg = sd->groups; | ||
2871 | struct sg_lb_stats sgs; | ||
2872 | int load_idx, prefer_sibling = 0; | ||
2873 | |||
2874 | if (child && child->flags & SD_PREFER_SIBLING) | ||
2875 | prefer_sibling = 1; | ||
2876 | |||
2877 | init_sd_power_savings_stats(sd, sds, idle); | ||
2878 | load_idx = get_sd_load_idx(sd, idle); | ||
2879 | |||
2880 | do { | ||
2881 | int local_group; | ||
2882 | |||
2883 | local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); | ||
2884 | memset(&sgs, 0, sizeof(sgs)); | ||
2885 | update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, | ||
2886 | local_group, cpus, balance, &sgs); | ||
2887 | |||
2888 | if (local_group && !(*balance)) | ||
2889 | return; | ||
2890 | |||
2891 | sds->total_load += sgs.group_load; | ||
2892 | sds->total_pwr += sg->sgp->power; | ||
2893 | |||
2894 | /* | ||
2895 | * In case the child domain prefers tasks go to siblings | ||
2896 | * first, lower the sg capacity to one so that we'll try | ||
2897 | * and move all the excess tasks away. We lower the capacity | ||
2898 | * of a group only if the local group has the capacity to fit | ||
2899 | * these excess tasks, i.e. nr_running < group_capacity. The | ||
2900 | * extra check prevents the case where you always pull from the | ||
2901 | * heaviest group when it is already under-utilized (possible | ||
2902 | * with a large weight task outweighs the tasks on the system). | ||
2903 | */ | ||
2904 | if (prefer_sibling && !local_group && sds->this_has_capacity) | ||
2905 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
2906 | |||
2907 | if (local_group) { | ||
2908 | sds->this_load = sgs.avg_load; | ||
2909 | sds->this = sg; | ||
2910 | sds->this_nr_running = sgs.sum_nr_running; | ||
2911 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
2912 | sds->this_has_capacity = sgs.group_has_capacity; | ||
2913 | sds->this_idle_cpus = sgs.idle_cpus; | ||
2914 | } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) { | ||
2915 | sds->max_load = sgs.avg_load; | ||
2916 | sds->busiest = sg; | ||
2917 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
2918 | sds->busiest_idle_cpus = sgs.idle_cpus; | ||
2919 | sds->busiest_group_capacity = sgs.group_capacity; | ||
2920 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
2921 | sds->busiest_has_capacity = sgs.group_has_capacity; | ||
2922 | sds->busiest_group_weight = sgs.group_weight; | ||
2923 | sds->group_imb = sgs.group_imb; | ||
2924 | } | ||
2925 | |||
2926 | update_sd_power_savings_stats(sg, sds, local_group, &sgs); | ||
2927 | sg = sg->next; | ||
2928 | } while (sg != sd->groups); | ||
2929 | } | ||
2930 | |||
2931 | int __weak arch_sd_sibling_asym_packing(void) | ||
2932 | { | ||
2933 | return 0*SD_ASYM_PACKING; | ||
2934 | } | ||
2935 | |||
2936 | /** | ||
2937 | * check_asym_packing - Check to see if the group is packed into the | ||
2938 | * sched doman. | ||
2939 | * | ||
2940 | * This is primarily intended to used at the sibling level. Some | ||
2941 | * cores like POWER7 prefer to use lower numbered SMT threads. In the | ||
2942 | * case of POWER7, it can move to lower SMT modes only when higher | ||
2943 | * threads are idle. When in lower SMT modes, the threads will | ||
2944 | * perform better since they share less core resources. Hence when we | ||
2945 | * have idle threads, we want them to be the higher ones. | ||
2946 | * | ||
2947 | * This packing function is run on idle threads. It checks to see if | ||
2948 | * the busiest CPU in this domain (core in the P7 case) has a higher | ||
2949 | * CPU number than the packing function is being run on. Here we are | ||
2950 | * assuming lower CPU number will be equivalent to lower a SMT thread | ||
2951 | * number. | ||
2952 | * | ||
2953 | * Returns 1 when packing is required and a task should be moved to | ||
2954 | * this CPU. The amount of the imbalance is returned in *imbalance. | ||
2955 | * | ||
2956 | * @sd: The sched_domain whose packing is to be checked. | ||
2957 | * @sds: Statistics of the sched_domain which is to be packed | ||
2958 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
2959 | * @imbalance: returns amount of imbalanced due to packing. | ||
2960 | */ | ||
2961 | static int check_asym_packing(struct sched_domain *sd, | ||
2962 | struct sd_lb_stats *sds, | ||
2963 | int this_cpu, unsigned long *imbalance) | ||
2964 | { | ||
2965 | int busiest_cpu; | ||
2966 | |||
2967 | if (!(sd->flags & SD_ASYM_PACKING)) | ||
2968 | return 0; | ||
2969 | |||
2970 | if (!sds->busiest) | ||
2971 | return 0; | ||
2972 | |||
2973 | busiest_cpu = group_first_cpu(sds->busiest); | ||
2974 | if (this_cpu > busiest_cpu) | ||
2975 | return 0; | ||
2976 | |||
2977 | *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power, | ||
2978 | SCHED_POWER_SCALE); | ||
2979 | return 1; | ||
2980 | } | ||
2981 | |||
2982 | /** | ||
2983 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
2984 | * amongst the groups of a sched_domain, during | ||
2985 | * load balancing. | ||
2986 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
2987 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
2988 | * @imbalance: Variable to store the imbalance. | ||
2989 | */ | ||
2990 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
2991 | int this_cpu, unsigned long *imbalance) | ||
2992 | { | ||
2993 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
2994 | unsigned int imbn = 2; | ||
2995 | unsigned long scaled_busy_load_per_task; | ||
2996 | |||
2997 | if (sds->this_nr_running) { | ||
2998 | sds->this_load_per_task /= sds->this_nr_running; | ||
2999 | if (sds->busiest_load_per_task > | ||
3000 | sds->this_load_per_task) | ||
3001 | imbn = 1; | ||
3002 | } else | ||
3003 | sds->this_load_per_task = | ||
3004 | cpu_avg_load_per_task(this_cpu); | ||
3005 | |||
3006 | scaled_busy_load_per_task = sds->busiest_load_per_task | ||
3007 | * SCHED_POWER_SCALE; | ||
3008 | scaled_busy_load_per_task /= sds->busiest->sgp->power; | ||
3009 | |||
3010 | if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= | ||
3011 | (scaled_busy_load_per_task * imbn)) { | ||
3012 | *imbalance = sds->busiest_load_per_task; | ||
3013 | return; | ||
3014 | } | ||
3015 | |||
3016 | /* | ||
3017 | * OK, we don't have enough imbalance to justify moving tasks, | ||
3018 | * however we may be able to increase total CPU power used by | ||
3019 | * moving them. | ||
3020 | */ | ||
3021 | |||
3022 | pwr_now += sds->busiest->sgp->power * | ||
3023 | min(sds->busiest_load_per_task, sds->max_load); | ||
3024 | pwr_now += sds->this->sgp->power * | ||
3025 | min(sds->this_load_per_task, sds->this_load); | ||
3026 | pwr_now /= SCHED_POWER_SCALE; | ||
3027 | |||
3028 | /* Amount of load we'd subtract */ | ||
3029 | tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / | ||
3030 | sds->busiest->sgp->power; | ||
3031 | if (sds->max_load > tmp) | ||
3032 | pwr_move += sds->busiest->sgp->power * | ||
3033 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
3034 | |||
3035 | /* Amount of load we'd add */ | ||
3036 | if (sds->max_load * sds->busiest->sgp->power < | ||
3037 | sds->busiest_load_per_task * SCHED_POWER_SCALE) | ||
3038 | tmp = (sds->max_load * sds->busiest->sgp->power) / | ||
3039 | sds->this->sgp->power; | ||
3040 | else | ||
3041 | tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / | ||
3042 | sds->this->sgp->power; | ||
3043 | pwr_move += sds->this->sgp->power * | ||
3044 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
3045 | pwr_move /= SCHED_POWER_SCALE; | ||
3046 | |||
3047 | /* Move if we gain throughput */ | ||
3048 | if (pwr_move > pwr_now) | ||
3049 | *imbalance = sds->busiest_load_per_task; | ||
3050 | } | ||
3051 | |||
3052 | /** | ||
3053 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
3054 | * groups of a given sched_domain during load balance. | ||
3055 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
3056 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
3057 | * @imbalance: The variable to store the imbalance. | ||
3058 | */ | ||
3059 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
3060 | unsigned long *imbalance) | ||
3061 | { | ||
3062 | unsigned long max_pull, load_above_capacity = ~0UL; | ||
3063 | |||
3064 | sds->busiest_load_per_task /= sds->busiest_nr_running; | ||
3065 | if (sds->group_imb) { | ||
3066 | sds->busiest_load_per_task = | ||
3067 | min(sds->busiest_load_per_task, sds->avg_load); | ||
3068 | } | ||
3069 | |||
3070 | /* | ||
3071 | * In the presence of smp nice balancing, certain scenarios can have | ||
3072 | * max load less than avg load(as we skip the groups at or below | ||
3073 | * its cpu_power, while calculating max_load..) | ||
3074 | */ | ||
3075 | if (sds->max_load < sds->avg_load) { | ||
3076 | *imbalance = 0; | ||
3077 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
3078 | } | ||
3079 | |||
3080 | if (!sds->group_imb) { | ||
3081 | /* | ||
3082 | * Don't want to pull so many tasks that a group would go idle. | ||
3083 | */ | ||
3084 | load_above_capacity = (sds->busiest_nr_running - | ||
3085 | sds->busiest_group_capacity); | ||
3086 | |||
3087 | load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); | ||
3088 | |||
3089 | load_above_capacity /= sds->busiest->sgp->power; | ||
3090 | } | ||
3091 | |||
3092 | /* | ||
3093 | * We're trying to get all the cpus to the average_load, so we don't | ||
3094 | * want to push ourselves above the average load, nor do we wish to | ||
3095 | * reduce the max loaded cpu below the average load. At the same time, | ||
3096 | * we also don't want to reduce the group load below the group capacity | ||
3097 | * (so that we can implement power-savings policies etc). Thus we look | ||
3098 | * for the minimum possible imbalance. | ||
3099 | * Be careful of negative numbers as they'll appear as very large values | ||
3100 | * with unsigned longs. | ||
3101 | */ | ||
3102 | max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); | ||
3103 | |||
3104 | /* How much load to actually move to equalise the imbalance */ | ||
3105 | *imbalance = min(max_pull * sds->busiest->sgp->power, | ||
3106 | (sds->avg_load - sds->this_load) * sds->this->sgp->power) | ||
3107 | / SCHED_POWER_SCALE; | ||
3108 | |||
3109 | /* | ||
3110 | * if *imbalance is less than the average load per runnable task | ||
3111 | * there is no guarantee that any tasks will be moved so we'll have | ||
3112 | * a think about bumping its value to force at least one task to be | ||
3113 | * moved | ||
3114 | */ | ||
3115 | if (*imbalance < sds->busiest_load_per_task) | ||
3116 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
3117 | |||
3118 | } | ||
3119 | |||
3120 | /******* find_busiest_group() helpers end here *********************/ | ||
3121 | |||
3122 | /** | ||
3123 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
3124 | * if there is an imbalance. If there isn't an imbalance, and | ||
3125 | * the user has opted for power-savings, it returns a group whose | ||
3126 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
3127 | * such a group exists. | ||
3128 | * | ||
3129 | * Also calculates the amount of weighted load which should be moved | ||
3130 | * to restore balance. | ||
3131 | * | ||
3132 | * @sd: The sched_domain whose busiest group is to be returned. | ||
3133 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
3134 | * @imbalance: Variable which stores amount of weighted load which should | ||
3135 | * be moved to restore balance/put a group to idle. | ||
3136 | * @idle: The idle status of this_cpu. | ||
3137 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
3138 | * @balance: Pointer to a variable indicating if this_cpu | ||
3139 | * is the appropriate cpu to perform load balancing at this_level. | ||
3140 | * | ||
3141 | * Returns: - the busiest group if imbalance exists. | ||
3142 | * - If no imbalance and user has opted for power-savings balance, | ||
3143 | * return the least loaded group whose CPUs can be | ||
3144 | * put to idle by rebalancing its tasks onto our group. | ||
3145 | */ | ||
3146 | static struct sched_group * | ||
3147 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
3148 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
3149 | const struct cpumask *cpus, int *balance) | ||
3150 | { | ||
3151 | struct sd_lb_stats sds; | ||
3152 | |||
3153 | memset(&sds, 0, sizeof(sds)); | ||
3154 | |||
3155 | /* | ||
3156 | * Compute the various statistics relavent for load balancing at | ||
3157 | * this level. | ||
3158 | */ | ||
3159 | update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds); | ||
3160 | |||
3161 | /* | ||
3162 | * this_cpu is not the appropriate cpu to perform load balancing at | ||
3163 | * this level. | ||
3164 | */ | ||
3165 | if (!(*balance)) | ||
3166 | goto ret; | ||
3167 | |||
3168 | if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) && | ||
3169 | check_asym_packing(sd, &sds, this_cpu, imbalance)) | ||
3170 | return sds.busiest; | ||
3171 | |||
3172 | /* There is no busy sibling group to pull tasks from */ | ||
3173 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
3174 | goto out_balanced; | ||
3175 | |||
3176 | sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; | ||
3177 | |||
3178 | /* | ||
3179 | * If the busiest group is imbalanced the below checks don't | ||
3180 | * work because they assumes all things are equal, which typically | ||
3181 | * isn't true due to cpus_allowed constraints and the like. | ||
3182 | */ | ||
3183 | if (sds.group_imb) | ||
3184 | goto force_balance; | ||
3185 | |||
3186 | /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ | ||
3187 | if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity && | ||
3188 | !sds.busiest_has_capacity) | ||
3189 | goto force_balance; | ||
3190 | |||
3191 | /* | ||
3192 | * If the local group is more busy than the selected busiest group | ||
3193 | * don't try and pull any tasks. | ||
3194 | */ | ||
3195 | if (sds.this_load >= sds.max_load) | ||
3196 | goto out_balanced; | ||
3197 | |||
3198 | /* | ||
3199 | * Don't pull any tasks if this group is already above the domain | ||
3200 | * average load. | ||
3201 | */ | ||
3202 | if (sds.this_load >= sds.avg_load) | ||
3203 | goto out_balanced; | ||
3204 | |||
3205 | if (idle == CPU_IDLE) { | ||
3206 | /* | ||
3207 | * This cpu is idle. If the busiest group load doesn't | ||
3208 | * have more tasks than the number of available cpu's and | ||
3209 | * there is no imbalance between this and busiest group | ||
3210 | * wrt to idle cpu's, it is balanced. | ||
3211 | */ | ||
3212 | if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && | ||
3213 | sds.busiest_nr_running <= sds.busiest_group_weight) | ||
3214 | goto out_balanced; | ||
3215 | } else { | ||
3216 | /* | ||
3217 | * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use | ||
3218 | * imbalance_pct to be conservative. | ||
3219 | */ | ||
3220 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
3221 | goto out_balanced; | ||
3222 | } | ||
3223 | |||
3224 | force_balance: | ||
3225 | /* Looks like there is an imbalance. Compute it */ | ||
3226 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
3227 | return sds.busiest; | ||
3228 | |||
3229 | out_balanced: | ||
3230 | /* | ||
3231 | * There is no obvious imbalance. But check if we can do some balancing | ||
3232 | * to save power. | ||
3233 | */ | ||
3234 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
3235 | return sds.busiest; | ||
3236 | ret: | ||
3237 | *imbalance = 0; | ||
3238 | return NULL; | ||
3239 | } | ||
3240 | |||
3241 | /* | ||
3242 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
3243 | */ | ||
3244 | static struct rq * | ||
3245 | find_busiest_queue(struct sched_domain *sd, struct sched_group *group, | ||
3246 | enum cpu_idle_type idle, unsigned long imbalance, | ||
3247 | const struct cpumask *cpus) | ||
3248 | { | ||
3249 | struct rq *busiest = NULL, *rq; | ||
3250 | unsigned long max_load = 0; | ||
3251 | int i; | ||
3252 | |||
3253 | for_each_cpu(i, sched_group_cpus(group)) { | ||
3254 | unsigned long power = power_of(i); | ||
3255 | unsigned long capacity = DIV_ROUND_CLOSEST(power, | ||
3256 | SCHED_POWER_SCALE); | ||
3257 | unsigned long wl; | ||
3258 | |||
3259 | if (!capacity) | ||
3260 | capacity = fix_small_capacity(sd, group); | ||
3261 | |||
3262 | if (!cpumask_test_cpu(i, cpus)) | ||
3263 | continue; | ||
3264 | |||
3265 | rq = cpu_rq(i); | ||
3266 | wl = weighted_cpuload(i); | ||
3267 | |||
3268 | /* | ||
3269 | * When comparing with imbalance, use weighted_cpuload() | ||
3270 | * which is not scaled with the cpu power. | ||
3271 | */ | ||
3272 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
3273 | continue; | ||
3274 | |||
3275 | /* | ||
3276 | * For the load comparisons with the other cpu's, consider | ||
3277 | * the weighted_cpuload() scaled with the cpu power, so that | ||
3278 | * the load can be moved away from the cpu that is potentially | ||
3279 | * running at a lower capacity. | ||
3280 | */ | ||
3281 | wl = (wl * SCHED_POWER_SCALE) / power; | ||
3282 | |||
3283 | if (wl > max_load) { | ||
3284 | max_load = wl; | ||
3285 | busiest = rq; | ||
3286 | } | ||
3287 | } | ||
3288 | |||
3289 | return busiest; | ||
3290 | } | ||
3291 | |||
3292 | /* | ||
3293 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
3294 | * so long as it is large enough. | ||
3295 | */ | ||
3296 | #define MAX_PINNED_INTERVAL 512 | ||
3297 | |||
3298 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
3299 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
3300 | |||
3301 | static int need_active_balance(struct sched_domain *sd, int idle, | ||
3302 | int busiest_cpu, int this_cpu) | ||
3303 | { | ||
3304 | if (idle == CPU_NEWLY_IDLE) { | ||
3305 | |||
3306 | /* | ||
3307 | * ASYM_PACKING needs to force migrate tasks from busy but | ||
3308 | * higher numbered CPUs in order to pack all tasks in the | ||
3309 | * lowest numbered CPUs. | ||
3310 | */ | ||
3311 | if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu) | ||
3312 | return 1; | ||
3313 | |||
3314 | /* | ||
3315 | * The only task running in a non-idle cpu can be moved to this | ||
3316 | * cpu in an attempt to completely freeup the other CPU | ||
3317 | * package. | ||
3318 | * | ||
3319 | * The package power saving logic comes from | ||
3320 | * find_busiest_group(). If there are no imbalance, then | ||
3321 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
3322 | * f_b_g() will select a group from which a running task may be | ||
3323 | * pulled to this cpu in order to make the other package idle. | ||
3324 | * If there is no opportunity to make a package idle and if | ||
3325 | * there are no imbalance, then f_b_g() will return NULL and no | ||
3326 | * action will be taken in load_balance_newidle(). | ||
3327 | * | ||
3328 | * Under normal task pull operation due to imbalance, there | ||
3329 | * will be more than one task in the source run queue and | ||
3330 | * move_tasks() will succeed. ld_moved will be true and this | ||
3331 | * active balance code will not be triggered. | ||
3332 | */ | ||
3333 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
3334 | return 0; | ||
3335 | } | ||
3336 | |||
3337 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); | ||
3338 | } | ||
3339 | |||
3340 | static int active_load_balance_cpu_stop(void *data); | ||
3341 | |||
3342 | /* | ||
3343 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
3344 | * tasks if there is an imbalance. | ||
3345 | */ | ||
3346 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
3347 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3348 | int *balance) | ||
3349 | { | ||
3350 | int ld_moved, all_pinned = 0, active_balance = 0; | ||
3351 | struct sched_group *group; | ||
3352 | unsigned long imbalance; | ||
3353 | struct rq *busiest; | ||
3354 | unsigned long flags; | ||
3355 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
3356 | |||
3357 | cpumask_copy(cpus, cpu_active_mask); | ||
3358 | |||
3359 | schedstat_inc(sd, lb_count[idle]); | ||
3360 | |||
3361 | redo: | ||
3362 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, | ||
3363 | cpus, balance); | ||
3364 | |||
3365 | if (*balance == 0) | ||
3366 | goto out_balanced; | ||
3367 | |||
3368 | if (!group) { | ||
3369 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
3370 | goto out_balanced; | ||
3371 | } | ||
3372 | |||
3373 | busiest = find_busiest_queue(sd, group, idle, imbalance, cpus); | ||
3374 | if (!busiest) { | ||
3375 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
3376 | goto out_balanced; | ||
3377 | } | ||
3378 | |||
3379 | BUG_ON(busiest == this_rq); | ||
3380 | |||
3381 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
3382 | |||
3383 | ld_moved = 0; | ||
3384 | if (busiest->nr_running > 1) { | ||
3385 | /* | ||
3386 | * Attempt to move tasks. If find_busiest_group has found | ||
3387 | * an imbalance but busiest->nr_running <= 1, the group is | ||
3388 | * still unbalanced. ld_moved simply stays zero, so it is | ||
3389 | * correctly treated as an imbalance. | ||
3390 | */ | ||
3391 | all_pinned = 1; | ||
3392 | local_irq_save(flags); | ||
3393 | double_rq_lock(this_rq, busiest); | ||
3394 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
3395 | imbalance, sd, idle, &all_pinned); | ||
3396 | double_rq_unlock(this_rq, busiest); | ||
3397 | local_irq_restore(flags); | ||
3398 | |||
3399 | /* | ||
3400 | * some other cpu did the load balance for us. | ||
3401 | */ | ||
3402 | if (ld_moved && this_cpu != smp_processor_id()) | ||
3403 | resched_cpu(this_cpu); | ||
3404 | |||
3405 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
3406 | if (unlikely(all_pinned)) { | ||
3407 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
3408 | if (!cpumask_empty(cpus)) | ||
3409 | goto redo; | ||
3410 | goto out_balanced; | ||
3411 | } | ||
3412 | } | ||
3413 | |||
3414 | if (!ld_moved) { | ||
3415 | schedstat_inc(sd, lb_failed[idle]); | ||
3416 | /* | ||
3417 | * Increment the failure counter only on periodic balance. | ||
3418 | * We do not want newidle balance, which can be very | ||
3419 | * frequent, pollute the failure counter causing | ||
3420 | * excessive cache_hot migrations and active balances. | ||
3421 | */ | ||
3422 | if (idle != CPU_NEWLY_IDLE) | ||
3423 | sd->nr_balance_failed++; | ||
3424 | |||
3425 | if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) { | ||
3426 | raw_spin_lock_irqsave(&busiest->lock, flags); | ||
3427 | |||
3428 | /* don't kick the active_load_balance_cpu_stop, | ||
3429 | * if the curr task on busiest cpu can't be | ||
3430 | * moved to this_cpu | ||
3431 | */ | ||
3432 | if (!cpumask_test_cpu(this_cpu, | ||
3433 | &busiest->curr->cpus_allowed)) { | ||
3434 | raw_spin_unlock_irqrestore(&busiest->lock, | ||
3435 | flags); | ||
3436 | all_pinned = 1; | ||
3437 | goto out_one_pinned; | ||
3438 | } | ||
3439 | |||
3440 | /* | ||
3441 | * ->active_balance synchronizes accesses to | ||
3442 | * ->active_balance_work. Once set, it's cleared | ||
3443 | * only after active load balance is finished. | ||
3444 | */ | ||
3445 | if (!busiest->active_balance) { | ||
3446 | busiest->active_balance = 1; | ||
3447 | busiest->push_cpu = this_cpu; | ||
3448 | active_balance = 1; | ||
3449 | } | ||
3450 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | ||
3451 | |||
3452 | if (active_balance) | ||
3453 | stop_one_cpu_nowait(cpu_of(busiest), | ||
3454 | active_load_balance_cpu_stop, busiest, | ||
3455 | &busiest->active_balance_work); | ||
3456 | |||
3457 | /* | ||
3458 | * We've kicked active balancing, reset the failure | ||
3459 | * counter. | ||
3460 | */ | ||
3461 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
3462 | } | ||
3463 | } else | ||
3464 | sd->nr_balance_failed = 0; | ||
3465 | |||
3466 | if (likely(!active_balance)) { | ||
3467 | /* We were unbalanced, so reset the balancing interval */ | ||
3468 | sd->balance_interval = sd->min_interval; | ||
3469 | } else { | ||
3470 | /* | ||
3471 | * If we've begun active balancing, start to back off. This | ||
3472 | * case may not be covered by the all_pinned logic if there | ||
3473 | * is only 1 task on the busy runqueue (because we don't call | ||
3474 | * move_tasks). | ||
3475 | */ | ||
3476 | if (sd->balance_interval < sd->max_interval) | ||
3477 | sd->balance_interval *= 2; | ||
3478 | } | ||
3479 | |||
3480 | goto out; | ||
3481 | |||
3482 | out_balanced: | ||
3483 | schedstat_inc(sd, lb_balanced[idle]); | ||
3484 | |||
3485 | sd->nr_balance_failed = 0; | ||
3486 | |||
3487 | out_one_pinned: | ||
3488 | /* tune up the balancing interval */ | ||
3489 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
3490 | (sd->balance_interval < sd->max_interval)) | ||
3491 | sd->balance_interval *= 2; | ||
3492 | |||
3493 | ld_moved = 0; | ||
3494 | out: | ||
3495 | return ld_moved; | ||
3496 | } | ||
3497 | |||
3498 | /* | ||
3499 | * idle_balance is called by schedule() if this_cpu is about to become | ||
3500 | * idle. Attempts to pull tasks from other CPUs. | ||
3501 | */ | ||
3502 | static void idle_balance(int this_cpu, struct rq *this_rq) | ||
3503 | { | ||
3504 | struct sched_domain *sd; | ||
3505 | int pulled_task = 0; | ||
3506 | unsigned long next_balance = jiffies + HZ; | ||
3507 | |||
3508 | this_rq->idle_stamp = this_rq->clock; | ||
3509 | |||
3510 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
3511 | return; | ||
3512 | |||
3513 | /* | ||
3514 | * Drop the rq->lock, but keep IRQ/preempt disabled. | ||
3515 | */ | ||
3516 | raw_spin_unlock(&this_rq->lock); | ||
3517 | |||
3518 | update_shares(this_cpu); | ||
3519 | rcu_read_lock(); | ||
3520 | for_each_domain(this_cpu, sd) { | ||
3521 | unsigned long interval; | ||
3522 | int balance = 1; | ||
3523 | |||
3524 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
3525 | continue; | ||
3526 | |||
3527 | if (sd->flags & SD_BALANCE_NEWIDLE) { | ||
3528 | /* If we've pulled tasks over stop searching: */ | ||
3529 | pulled_task = load_balance(this_cpu, this_rq, | ||
3530 | sd, CPU_NEWLY_IDLE, &balance); | ||
3531 | } | ||
3532 | |||
3533 | interval = msecs_to_jiffies(sd->balance_interval); | ||
3534 | if (time_after(next_balance, sd->last_balance + interval)) | ||
3535 | next_balance = sd->last_balance + interval; | ||
3536 | if (pulled_task) { | ||
3537 | this_rq->idle_stamp = 0; | ||
3538 | break; | ||
3539 | } | ||
3540 | } | ||
3541 | rcu_read_unlock(); | ||
3542 | |||
3543 | raw_spin_lock(&this_rq->lock); | ||
3544 | |||
3545 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
3546 | /* | ||
3547 | * We are going idle. next_balance may be set based on | ||
3548 | * a busy processor. So reset next_balance. | ||
3549 | */ | ||
3550 | this_rq->next_balance = next_balance; | ||
3551 | } | ||
3552 | } | ||
3553 | |||
3554 | /* | ||
3555 | * active_load_balance_cpu_stop is run by cpu stopper. It pushes | ||
3556 | * running tasks off the busiest CPU onto idle CPUs. It requires at | ||
3557 | * least 1 task to be running on each physical CPU where possible, and | ||
3558 | * avoids physical / logical imbalances. | ||
3559 | */ | ||
3560 | static int active_load_balance_cpu_stop(void *data) | ||
3561 | { | ||
3562 | struct rq *busiest_rq = data; | ||
3563 | int busiest_cpu = cpu_of(busiest_rq); | ||
3564 | int target_cpu = busiest_rq->push_cpu; | ||
3565 | struct rq *target_rq = cpu_rq(target_cpu); | ||
3566 | struct sched_domain *sd; | ||
3567 | |||
3568 | raw_spin_lock_irq(&busiest_rq->lock); | ||
3569 | |||
3570 | /* make sure the requested cpu hasn't gone down in the meantime */ | ||
3571 | if (unlikely(busiest_cpu != smp_processor_id() || | ||
3572 | !busiest_rq->active_balance)) | ||
3573 | goto out_unlock; | ||
3574 | |||
3575 | /* Is there any task to move? */ | ||
3576 | if (busiest_rq->nr_running <= 1) | ||
3577 | goto out_unlock; | ||
3578 | |||
3579 | /* | ||
3580 | * This condition is "impossible", if it occurs | ||
3581 | * we need to fix it. Originally reported by | ||
3582 | * Bjorn Helgaas on a 128-cpu setup. | ||
3583 | */ | ||
3584 | BUG_ON(busiest_rq == target_rq); | ||
3585 | |||
3586 | /* move a task from busiest_rq to target_rq */ | ||
3587 | double_lock_balance(busiest_rq, target_rq); | ||
3588 | |||
3589 | /* Search for an sd spanning us and the target CPU. */ | ||
3590 | rcu_read_lock(); | ||
3591 | for_each_domain(target_cpu, sd) { | ||
3592 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
3593 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
3594 | break; | ||
3595 | } | ||
3596 | |||
3597 | if (likely(sd)) { | ||
3598 | schedstat_inc(sd, alb_count); | ||
3599 | |||
3600 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
3601 | sd, CPU_IDLE)) | ||
3602 | schedstat_inc(sd, alb_pushed); | ||
3603 | else | ||
3604 | schedstat_inc(sd, alb_failed); | ||
3605 | } | ||
3606 | rcu_read_unlock(); | ||
3607 | double_unlock_balance(busiest_rq, target_rq); | ||
3608 | out_unlock: | ||
3609 | busiest_rq->active_balance = 0; | ||
3610 | raw_spin_unlock_irq(&busiest_rq->lock); | ||
3611 | return 0; | ||
3612 | } | ||
3613 | |||
3614 | #ifdef CONFIG_NO_HZ | ||
3615 | |||
3616 | static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb); | ||
3617 | |||
3618 | static void trigger_sched_softirq(void *data) | ||
3619 | { | ||
3620 | raise_softirq_irqoff(SCHED_SOFTIRQ); | ||
3621 | } | ||
3622 | |||
3623 | static inline void init_sched_softirq_csd(struct call_single_data *csd) | ||
3624 | { | ||
3625 | csd->func = trigger_sched_softirq; | ||
3626 | csd->info = NULL; | ||
3627 | csd->flags = 0; | ||
3628 | csd->priv = 0; | ||
3629 | } | ||
3630 | |||
3631 | /* | ||
3632 | * idle load balancing details | ||
3633 | * - One of the idle CPUs nominates itself as idle load_balancer, while | ||
3634 | * entering idle. | ||
3635 | * - This idle load balancer CPU will also go into tickless mode when | ||
3636 | * it is idle, just like all other idle CPUs | ||
3637 | * - When one of the busy CPUs notice that there may be an idle rebalancing | ||
3638 | * needed, they will kick the idle load balancer, which then does idle | ||
3639 | * load balancing for all the idle CPUs. | ||
3640 | */ | ||
3641 | static struct { | ||
3642 | atomic_t load_balancer; | ||
3643 | atomic_t first_pick_cpu; | ||
3644 | atomic_t second_pick_cpu; | ||
3645 | cpumask_var_t idle_cpus_mask; | ||
3646 | cpumask_var_t grp_idle_mask; | ||
3647 | unsigned long next_balance; /* in jiffy units */ | ||
3648 | } nohz ____cacheline_aligned; | ||
3649 | |||
3650 | int get_nohz_load_balancer(void) | ||
3651 | { | ||
3652 | return atomic_read(&nohz.load_balancer); | ||
3653 | } | ||
3654 | |||
3655 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3656 | /** | ||
3657 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
3658 | * @cpu: The cpu whose lowest level of sched domain is to | ||
3659 | * be returned. | ||
3660 | * @flag: The flag to check for the lowest sched_domain | ||
3661 | * for the given cpu. | ||
3662 | * | ||
3663 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
3664 | */ | ||
3665 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
3666 | { | ||
3667 | struct sched_domain *sd; | ||
3668 | |||
3669 | for_each_domain(cpu, sd) | ||
3670 | if (sd && (sd->flags & flag)) | ||
3671 | break; | ||
3672 | |||
3673 | return sd; | ||
3674 | } | ||
3675 | |||
3676 | /** | ||
3677 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
3678 | * @cpu: The cpu whose domains we're iterating over. | ||
3679 | * @sd: variable holding the value of the power_savings_sd | ||
3680 | * for cpu. | ||
3681 | * @flag: The flag to filter the sched_domains to be iterated. | ||
3682 | * | ||
3683 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
3684 | * set, starting from the lowest sched_domain to the highest. | ||
3685 | */ | ||
3686 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
3687 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
3688 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
3689 | |||
3690 | /** | ||
3691 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
3692 | * @ilb_group: group to be checked for semi-idleness | ||
3693 | * | ||
3694 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
3695 | * | ||
3696 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
3697 | * and atleast one non-idle CPU. This helper function checks if the given | ||
3698 | * sched_group is semi-idle or not. | ||
3699 | */ | ||
3700 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
3701 | { | ||
3702 | cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask, | ||
3703 | sched_group_cpus(ilb_group)); | ||
3704 | |||
3705 | /* | ||
3706 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
3707 | * and atleast one idle cpu. | ||
3708 | */ | ||
3709 | if (cpumask_empty(nohz.grp_idle_mask)) | ||
3710 | return 0; | ||
3711 | |||
3712 | if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group))) | ||
3713 | return 0; | ||
3714 | |||
3715 | return 1; | ||
3716 | } | ||
3717 | /** | ||
3718 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
3719 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
3720 | * | ||
3721 | * Returns: Returns the id of the idle load balancer if it exists, | ||
3722 | * Else, returns >= nr_cpu_ids. | ||
3723 | * | ||
3724 | * This algorithm picks the idle load balancer such that it belongs to a | ||
3725 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
3726 | * completely idle packages/cores just for the purpose of idle load balancing | ||
3727 | * when there are other idle cpu's which are better suited for that job. | ||
3728 | */ | ||
3729 | static int find_new_ilb(int cpu) | ||
3730 | { | ||
3731 | struct sched_domain *sd; | ||
3732 | struct sched_group *ilb_group; | ||
3733 | int ilb = nr_cpu_ids; | ||
3734 | |||
3735 | /* | ||
3736 | * Have idle load balancer selection from semi-idle packages only | ||
3737 | * when power-aware load balancing is enabled | ||
3738 | */ | ||
3739 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
3740 | goto out_done; | ||
3741 | |||
3742 | /* | ||
3743 | * Optimize for the case when we have no idle CPUs or only one | ||
3744 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
3745 | */ | ||
3746 | if (cpumask_weight(nohz.idle_cpus_mask) < 2) | ||
3747 | goto out_done; | ||
3748 | |||
3749 | rcu_read_lock(); | ||
3750 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
3751 | ilb_group = sd->groups; | ||
3752 | |||
3753 | do { | ||
3754 | if (is_semi_idle_group(ilb_group)) { | ||
3755 | ilb = cpumask_first(nohz.grp_idle_mask); | ||
3756 | goto unlock; | ||
3757 | } | ||
3758 | |||
3759 | ilb_group = ilb_group->next; | ||
3760 | |||
3761 | } while (ilb_group != sd->groups); | ||
3762 | } | ||
3763 | unlock: | ||
3764 | rcu_read_unlock(); | ||
3765 | |||
3766 | out_done: | ||
3767 | return ilb; | ||
3768 | } | ||
3769 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
3770 | static inline int find_new_ilb(int call_cpu) | ||
3771 | { | ||
3772 | return nr_cpu_ids; | ||
3773 | } | ||
3774 | #endif | ||
3775 | |||
3776 | /* | ||
3777 | * Kick a CPU to do the nohz balancing, if it is time for it. We pick the | ||
3778 | * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle | ||
3779 | * CPU (if there is one). | ||
3780 | */ | ||
3781 | static void nohz_balancer_kick(int cpu) | ||
3782 | { | ||
3783 | int ilb_cpu; | ||
3784 | |||
3785 | nohz.next_balance++; | ||
3786 | |||
3787 | ilb_cpu = get_nohz_load_balancer(); | ||
3788 | |||
3789 | if (ilb_cpu >= nr_cpu_ids) { | ||
3790 | ilb_cpu = cpumask_first(nohz.idle_cpus_mask); | ||
3791 | if (ilb_cpu >= nr_cpu_ids) | ||
3792 | return; | ||
3793 | } | ||
3794 | |||
3795 | if (!cpu_rq(ilb_cpu)->nohz_balance_kick) { | ||
3796 | struct call_single_data *cp; | ||
3797 | |||
3798 | cpu_rq(ilb_cpu)->nohz_balance_kick = 1; | ||
3799 | cp = &per_cpu(remote_sched_softirq_cb, cpu); | ||
3800 | __smp_call_function_single(ilb_cpu, cp, 0); | ||
3801 | } | ||
3802 | return; | ||
3803 | } | ||
3804 | |||
3805 | /* | ||
3806 | * This routine will try to nominate the ilb (idle load balancing) | ||
3807 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
3808 | * load balancing on behalf of all those cpus. | ||
3809 | * | ||
3810 | * When the ilb owner becomes busy, we will not have new ilb owner until some | ||
3811 | * idle CPU wakes up and goes back to idle or some busy CPU tries to kick | ||
3812 | * idle load balancing by kicking one of the idle CPUs. | ||
3813 | * | ||
3814 | * Ticks are stopped for the ilb owner as well, with busy CPU kicking this | ||
3815 | * ilb owner CPU in future (when there is a need for idle load balancing on | ||
3816 | * behalf of all idle CPUs). | ||
3817 | */ | ||
3818 | void select_nohz_load_balancer(int stop_tick) | ||
3819 | { | ||
3820 | int cpu = smp_processor_id(); | ||
3821 | |||
3822 | if (stop_tick) { | ||
3823 | if (!cpu_active(cpu)) { | ||
3824 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
3825 | return; | ||
3826 | |||
3827 | /* | ||
3828 | * If we are going offline and still the leader, | ||
3829 | * give up! | ||
3830 | */ | ||
3831 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, | ||
3832 | nr_cpu_ids) != cpu) | ||
3833 | BUG(); | ||
3834 | |||
3835 | return; | ||
3836 | } | ||
3837 | |||
3838 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); | ||
3839 | |||
3840 | if (atomic_read(&nohz.first_pick_cpu) == cpu) | ||
3841 | atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids); | ||
3842 | if (atomic_read(&nohz.second_pick_cpu) == cpu) | ||
3843 | atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); | ||
3844 | |||
3845 | if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) { | ||
3846 | int new_ilb; | ||
3847 | |||
3848 | /* make me the ilb owner */ | ||
3849 | if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids, | ||
3850 | cpu) != nr_cpu_ids) | ||
3851 | return; | ||
3852 | |||
3853 | /* | ||
3854 | * Check to see if there is a more power-efficient | ||
3855 | * ilb. | ||
3856 | */ | ||
3857 | new_ilb = find_new_ilb(cpu); | ||
3858 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
3859 | atomic_set(&nohz.load_balancer, nr_cpu_ids); | ||
3860 | resched_cpu(new_ilb); | ||
3861 | return; | ||
3862 | } | ||
3863 | return; | ||
3864 | } | ||
3865 | } else { | ||
3866 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) | ||
3867 | return; | ||
3868 | |||
3869 | cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); | ||
3870 | |||
3871 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
3872 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, | ||
3873 | nr_cpu_ids) != cpu) | ||
3874 | BUG(); | ||
3875 | } | ||
3876 | return; | ||
3877 | } | ||
3878 | #endif | ||
3879 | |||
3880 | static DEFINE_SPINLOCK(balancing); | ||
3881 | |||
3882 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; | ||
3883 | |||
3884 | /* | ||
3885 | * Scale the max load_balance interval with the number of CPUs in the system. | ||
3886 | * This trades load-balance latency on larger machines for less cross talk. | ||
3887 | */ | ||
3888 | static void update_max_interval(void) | ||
3889 | { | ||
3890 | max_load_balance_interval = HZ*num_online_cpus()/10; | ||
3891 | } | ||
3892 | |||
3893 | /* | ||
3894 | * It checks each scheduling domain to see if it is due to be balanced, | ||
3895 | * and initiates a balancing operation if so. | ||
3896 | * | ||
3897 | * Balancing parameters are set up in arch_init_sched_domains. | ||
3898 | */ | ||
3899 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
3900 | { | ||
3901 | int balance = 1; | ||
3902 | struct rq *rq = cpu_rq(cpu); | ||
3903 | unsigned long interval; | ||
3904 | struct sched_domain *sd; | ||
3905 | /* Earliest time when we have to do rebalance again */ | ||
3906 | unsigned long next_balance = jiffies + 60*HZ; | ||
3907 | int update_next_balance = 0; | ||
3908 | int need_serialize; | ||
3909 | |||
3910 | update_shares(cpu); | ||
3911 | |||
3912 | rcu_read_lock(); | ||
3913 | for_each_domain(cpu, sd) { | ||
3914 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
3915 | continue; | ||
3916 | |||
3917 | interval = sd->balance_interval; | ||
3918 | if (idle != CPU_IDLE) | ||
3919 | interval *= sd->busy_factor; | ||
3920 | |||
3921 | /* scale ms to jiffies */ | ||
3922 | interval = msecs_to_jiffies(interval); | ||
3923 | interval = clamp(interval, 1UL, max_load_balance_interval); | ||
3924 | |||
3925 | need_serialize = sd->flags & SD_SERIALIZE; | ||
3926 | |||
3927 | if (need_serialize) { | ||
3928 | if (!spin_trylock(&balancing)) | ||
3929 | goto out; | ||
3930 | } | ||
3931 | |||
3932 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
3933 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
3934 | /* | ||
3935 | * We've pulled tasks over so either we're no | ||
3936 | * longer idle. | ||
3937 | */ | ||
3938 | idle = CPU_NOT_IDLE; | ||
3939 | } | ||
3940 | sd->last_balance = jiffies; | ||
3941 | } | ||
3942 | if (need_serialize) | ||
3943 | spin_unlock(&balancing); | ||
3944 | out: | ||
3945 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
3946 | next_balance = sd->last_balance + interval; | ||
3947 | update_next_balance = 1; | ||
3948 | } | ||
3949 | |||
3950 | /* | ||
3951 | * Stop the load balance at this level. There is another | ||
3952 | * CPU in our sched group which is doing load balancing more | ||
3953 | * actively. | ||
3954 | */ | ||
3955 | if (!balance) | ||
3956 | break; | ||
3957 | } | ||
3958 | rcu_read_unlock(); | ||
3959 | |||
3960 | /* | ||
3961 | * next_balance will be updated only when there is a need. | ||
3962 | * When the cpu is attached to null domain for ex, it will not be | ||
3963 | * updated. | ||
3964 | */ | ||
3965 | if (likely(update_next_balance)) | ||
3966 | rq->next_balance = next_balance; | ||
3967 | } | ||
3968 | |||
3969 | #ifdef CONFIG_NO_HZ | ||
3970 | /* | ||
3971 | * In CONFIG_NO_HZ case, the idle balance kickee will do the | ||
3972 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
3973 | */ | ||
3974 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) | ||
3975 | { | ||
3976 | struct rq *this_rq = cpu_rq(this_cpu); | ||
3977 | struct rq *rq; | ||
3978 | int balance_cpu; | ||
3979 | |||
3980 | if (idle != CPU_IDLE || !this_rq->nohz_balance_kick) | ||
3981 | return; | ||
3982 | |||
3983 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { | ||
3984 | if (balance_cpu == this_cpu) | ||
3985 | continue; | ||
3986 | |||
3987 | /* | ||
3988 | * If this cpu gets work to do, stop the load balancing | ||
3989 | * work being done for other cpus. Next load | ||
3990 | * balancing owner will pick it up. | ||
3991 | */ | ||
3992 | if (need_resched()) { | ||
3993 | this_rq->nohz_balance_kick = 0; | ||
3994 | break; | ||
3995 | } | ||
3996 | |||
3997 | raw_spin_lock_irq(&this_rq->lock); | ||
3998 | update_rq_clock(this_rq); | ||
3999 | update_cpu_load(this_rq); | ||
4000 | raw_spin_unlock_irq(&this_rq->lock); | ||
4001 | |||
4002 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
4003 | |||
4004 | rq = cpu_rq(balance_cpu); | ||
4005 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
4006 | this_rq->next_balance = rq->next_balance; | ||
4007 | } | ||
4008 | nohz.next_balance = this_rq->next_balance; | ||
4009 | this_rq->nohz_balance_kick = 0; | ||
4010 | } | ||
4011 | |||
4012 | /* | ||
4013 | * Current heuristic for kicking the idle load balancer | ||
4014 | * - first_pick_cpu is the one of the busy CPUs. It will kick | ||
4015 | * idle load balancer when it has more than one process active. This | ||
4016 | * eliminates the need for idle load balancing altogether when we have | ||
4017 | * only one running process in the system (common case). | ||
4018 | * - If there are more than one busy CPU, idle load balancer may have | ||
4019 | * to run for active_load_balance to happen (i.e., two busy CPUs are | ||
4020 | * SMT or core siblings and can run better if they move to different | ||
4021 | * physical CPUs). So, second_pick_cpu is the second of the busy CPUs | ||
4022 | * which will kick idle load balancer as soon as it has any load. | ||
4023 | */ | ||
4024 | static inline int nohz_kick_needed(struct rq *rq, int cpu) | ||
4025 | { | ||
4026 | unsigned long now = jiffies; | ||
4027 | int ret; | ||
4028 | int first_pick_cpu, second_pick_cpu; | ||
4029 | |||
4030 | if (time_before(now, nohz.next_balance)) | ||
4031 | return 0; | ||
4032 | |||
4033 | if (rq->idle_at_tick) | ||
4034 | return 0; | ||
4035 | |||
4036 | first_pick_cpu = atomic_read(&nohz.first_pick_cpu); | ||
4037 | second_pick_cpu = atomic_read(&nohz.second_pick_cpu); | ||
4038 | |||
4039 | if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu && | ||
4040 | second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu) | ||
4041 | return 0; | ||
4042 | |||
4043 | ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu); | ||
4044 | if (ret == nr_cpu_ids || ret == cpu) { | ||
4045 | atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); | ||
4046 | if (rq->nr_running > 1) | ||
4047 | return 1; | ||
4048 | } else { | ||
4049 | ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu); | ||
4050 | if (ret == nr_cpu_ids || ret == cpu) { | ||
4051 | if (rq->nr_running) | ||
4052 | return 1; | ||
4053 | } | ||
4054 | } | ||
4055 | return 0; | ||
4056 | } | ||
4057 | #else | ||
4058 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } | ||
4059 | #endif | ||
4060 | |||
4061 | /* | ||
4062 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
4063 | * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | ||
4064 | */ | ||
4065 | static void run_rebalance_domains(struct softirq_action *h) | ||
4066 | { | ||
4067 | int this_cpu = smp_processor_id(); | ||
4068 | struct rq *this_rq = cpu_rq(this_cpu); | ||
4069 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | ||
4070 | CPU_IDLE : CPU_NOT_IDLE; | ||
4071 | |||
4072 | rebalance_domains(this_cpu, idle); | ||
4073 | |||
4074 | /* | ||
4075 | * If this cpu has a pending nohz_balance_kick, then do the | ||
4076 | * balancing on behalf of the other idle cpus whose ticks are | ||
4077 | * stopped. | ||
4078 | */ | ||
4079 | nohz_idle_balance(this_cpu, idle); | ||
4080 | } | ||
4081 | |||
4082 | static inline int on_null_domain(int cpu) | ||
4083 | { | ||
4084 | return !rcu_dereference_sched(cpu_rq(cpu)->sd); | ||
4085 | } | ||
4086 | |||
4087 | /* | ||
4088 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
4089 | */ | ||
4090 | static inline void trigger_load_balance(struct rq *rq, int cpu) | ||
4091 | { | ||
4092 | /* Don't need to rebalance while attached to NULL domain */ | ||
4093 | if (time_after_eq(jiffies, rq->next_balance) && | ||
4094 | likely(!on_null_domain(cpu))) | ||
4095 | raise_softirq(SCHED_SOFTIRQ); | ||
4096 | #ifdef CONFIG_NO_HZ | ||
4097 | else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) | ||
4098 | nohz_balancer_kick(cpu); | ||
4099 | #endif | ||
4100 | } | ||
4101 | |||
4102 | static void rq_online_fair(struct rq *rq) | ||
4103 | { | ||
4104 | update_sysctl(); | ||
4105 | } | ||
4106 | |||
4107 | static void rq_offline_fair(struct rq *rq) | ||
4108 | { | ||
4109 | update_sysctl(); | ||
4110 | } | ||
4111 | |||
4112 | #else /* CONFIG_SMP */ | ||
4113 | |||
4114 | /* | ||
4115 | * on UP we do not need to balance between CPUs: | ||
4116 | */ | ||
4117 | static inline void idle_balance(int cpu, struct rq *rq) | ||
4118 | { | ||
4119 | } | ||
4120 | |||
4121 | #endif /* CONFIG_SMP */ | ||
4122 | |||
4123 | /* | ||
4124 | * scheduler tick hitting a task of our scheduling class: | ||
4125 | */ | ||
4126 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | ||
4127 | { | ||
4128 | struct cfs_rq *cfs_rq; | ||
4129 | struct sched_entity *se = &curr->se; | ||
4130 | |||
4131 | for_each_sched_entity(se) { | ||
4132 | cfs_rq = cfs_rq_of(se); | ||
4133 | entity_tick(cfs_rq, se, queued); | ||
4134 | } | ||
4135 | } | ||
4136 | |||
4137 | /* | ||
4138 | * called on fork with the child task as argument from the parent's context | ||
4139 | * - child not yet on the tasklist | ||
4140 | * - preemption disabled | ||
4141 | */ | ||
4142 | static void task_fork_fair(struct task_struct *p) | ||
4143 | { | ||
4144 | struct cfs_rq *cfs_rq = task_cfs_rq(current); | ||
4145 | struct sched_entity *se = &p->se, *curr = cfs_rq->curr; | ||
4146 | int this_cpu = smp_processor_id(); | ||
4147 | struct rq *rq = this_rq(); | ||
4148 | unsigned long flags; | ||
4149 | |||
4150 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
4151 | |||
4152 | update_rq_clock(rq); | ||
4153 | |||
4154 | if (unlikely(task_cpu(p) != this_cpu)) { | ||
4155 | rcu_read_lock(); | ||
4156 | __set_task_cpu(p, this_cpu); | ||
4157 | rcu_read_unlock(); | ||
4158 | } | ||
4159 | |||
4160 | update_curr(cfs_rq); | ||
4161 | |||
4162 | if (curr) | ||
4163 | se->vruntime = curr->vruntime; | ||
4164 | place_entity(cfs_rq, se, 1); | ||
4165 | |||
4166 | if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { | ||
4167 | /* | ||
4168 | * Upon rescheduling, sched_class::put_prev_task() will place | ||
4169 | * 'current' within the tree based on its new key value. | ||
4170 | */ | ||
4171 | swap(curr->vruntime, se->vruntime); | ||
4172 | resched_task(rq->curr); | ||
4173 | } | ||
4174 | |||
4175 | se->vruntime -= cfs_rq->min_vruntime; | ||
4176 | |||
4177 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
4178 | } | ||
4179 | |||
4180 | /* | ||
4181 | * Priority of the task has changed. Check to see if we preempt | ||
4182 | * the current task. | ||
4183 | */ | ||
4184 | static void | ||
4185 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | ||
4186 | { | ||
4187 | if (!p->se.on_rq) | ||
4188 | return; | ||
4189 | |||
4190 | /* | ||
4191 | * Reschedule if we are currently running on this runqueue and | ||
4192 | * our priority decreased, or if we are not currently running on | ||
4193 | * this runqueue and our priority is higher than the current's | ||
4194 | */ | ||
4195 | if (rq->curr == p) { | ||
4196 | if (p->prio > oldprio) | ||
4197 | resched_task(rq->curr); | ||
4198 | } else | ||
4199 | check_preempt_curr(rq, p, 0); | ||
4200 | } | ||
4201 | |||
4202 | static void switched_from_fair(struct rq *rq, struct task_struct *p) | ||
4203 | { | ||
4204 | struct sched_entity *se = &p->se; | ||
4205 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
4206 | |||
4207 | /* | ||
4208 | * Ensure the task's vruntime is normalized, so that when its | ||
4209 | * switched back to the fair class the enqueue_entity(.flags=0) will | ||
4210 | * do the right thing. | ||
4211 | * | ||
4212 | * If it was on_rq, then the dequeue_entity(.flags=0) will already | ||
4213 | * have normalized the vruntime, if it was !on_rq, then only when | ||
4214 | * the task is sleeping will it still have non-normalized vruntime. | ||
4215 | */ | ||
4216 | if (!se->on_rq && p->state != TASK_RUNNING) { | ||
4217 | /* | ||
4218 | * Fix up our vruntime so that the current sleep doesn't | ||
4219 | * cause 'unlimited' sleep bonus. | ||
4220 | */ | ||
4221 | place_entity(cfs_rq, se, 0); | ||
4222 | se->vruntime -= cfs_rq->min_vruntime; | ||
4223 | } | ||
4224 | } | ||
4225 | |||
4226 | /* | ||
4227 | * We switched to the sched_fair class. | ||
4228 | */ | ||
4229 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | ||
4230 | { | ||
4231 | if (!p->se.on_rq) | ||
4232 | return; | ||
4233 | |||
4234 | /* | ||
4235 | * We were most likely switched from sched_rt, so | ||
4236 | * kick off the schedule if running, otherwise just see | ||
4237 | * if we can still preempt the current task. | ||
4238 | */ | ||
4239 | if (rq->curr == p) | ||
4240 | resched_task(rq->curr); | ||
4241 | else | ||
4242 | check_preempt_curr(rq, p, 0); | ||
4243 | } | ||
4244 | |||
4245 | /* Account for a task changing its policy or group. | ||
4246 | * | ||
4247 | * This routine is mostly called to set cfs_rq->curr field when a task | ||
4248 | * migrates between groups/classes. | ||
4249 | */ | ||
4250 | static void set_curr_task_fair(struct rq *rq) | ||
4251 | { | ||
4252 | struct sched_entity *se = &rq->curr->se; | ||
4253 | |||
4254 | for_each_sched_entity(se) | ||
4255 | set_next_entity(cfs_rq_of(se), se); | ||
4256 | } | ||
4257 | |||
4258 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
4259 | static void task_move_group_fair(struct task_struct *p, int on_rq) | ||
4260 | { | ||
4261 | /* | ||
4262 | * If the task was not on the rq at the time of this cgroup movement | ||
4263 | * it must have been asleep, sleeping tasks keep their ->vruntime | ||
4264 | * absolute on their old rq until wakeup (needed for the fair sleeper | ||
4265 | * bonus in place_entity()). | ||
4266 | * | ||
4267 | * If it was on the rq, we've just 'preempted' it, which does convert | ||
4268 | * ->vruntime to a relative base. | ||
4269 | * | ||
4270 | * Make sure both cases convert their relative position when migrating | ||
4271 | * to another cgroup's rq. This does somewhat interfere with the | ||
4272 | * fair sleeper stuff for the first placement, but who cares. | ||
4273 | */ | ||
4274 | if (!on_rq) | ||
4275 | p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; | ||
4276 | set_task_rq(p, task_cpu(p)); | ||
4277 | if (!on_rq) | ||
4278 | p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; | ||
4279 | } | ||
4280 | #endif | ||
4281 | |||
4282 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | ||
4283 | { | ||
4284 | struct sched_entity *se = &task->se; | ||
4285 | unsigned int rr_interval = 0; | ||
4286 | |||
4287 | /* | ||
4288 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | ||
4289 | * idle runqueue: | ||
4290 | */ | ||
4291 | if (rq->cfs.load.weight) | ||
4292 | rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
4293 | |||
4294 | return rr_interval; | ||
4295 | } | ||
4296 | |||
4297 | /* | ||
4298 | * All the scheduling class methods: | ||
4299 | */ | ||
4300 | static const struct sched_class fair_sched_class = { | ||
4301 | .next = &idle_sched_class, | ||
4302 | .enqueue_task = enqueue_task_fair, | ||
4303 | .dequeue_task = dequeue_task_fair, | ||
4304 | .yield_task = yield_task_fair, | ||
4305 | .yield_to_task = yield_to_task_fair, | ||
4306 | |||
4307 | .check_preempt_curr = check_preempt_wakeup, | ||
4308 | |||
4309 | .pick_next_task = pick_next_task_fair, | ||
4310 | .put_prev_task = put_prev_task_fair, | ||
4311 | |||
4312 | #ifdef CONFIG_SMP | ||
4313 | .select_task_rq = select_task_rq_fair, | ||
4314 | |||
4315 | .rq_online = rq_online_fair, | ||
4316 | .rq_offline = rq_offline_fair, | ||
4317 | |||
4318 | .task_waking = task_waking_fair, | ||
4319 | #endif | ||
4320 | |||
4321 | .set_curr_task = set_curr_task_fair, | ||
4322 | .task_tick = task_tick_fair, | ||
4323 | .task_fork = task_fork_fair, | ||
4324 | |||
4325 | .prio_changed = prio_changed_fair, | ||
4326 | .switched_from = switched_from_fair, | ||
4327 | .switched_to = switched_to_fair, | ||
4328 | |||
4329 | .get_rr_interval = get_rr_interval_fair, | ||
4330 | |||
4331 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
4332 | .task_move_group = task_move_group_fair, | ||
4333 | #endif | ||
4334 | }; | ||
4335 | |||
4336 | #ifdef CONFIG_SCHED_DEBUG | ||
4337 | static void print_cfs_stats(struct seq_file *m, int cpu) | ||
4338 | { | ||
4339 | struct cfs_rq *cfs_rq; | ||
4340 | |||
4341 | rcu_read_lock(); | ||
4342 | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | ||
4343 | print_cfs_rq(m, cpu, cfs_rq); | ||
4344 | rcu_read_unlock(); | ||
4345 | } | ||
4346 | #endif | ||