diff options
Diffstat (limited to 'kernel/sched_fair.c')
| -rw-r--r-- | kernel/sched_fair.c | 4346 |
1 files changed, 4346 insertions, 0 deletions
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c new file mode 100644 index 00000000000..bc8ee999381 --- /dev/null +++ b/kernel/sched_fair.c | |||
| @@ -0,0 +1,4346 @@ | |||
| 1 | /* | ||
| 2 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | ||
| 3 | * | ||
| 4 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
| 5 | * | ||
| 6 | * Interactivity improvements by Mike Galbraith | ||
| 7 | * (C) 2007 Mike Galbraith <efault@gmx.de> | ||
| 8 | * | ||
| 9 | * Various enhancements by Dmitry Adamushko. | ||
| 10 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | ||
| 11 | * | ||
| 12 | * Group scheduling enhancements by Srivatsa Vaddagiri | ||
| 13 | * Copyright IBM Corporation, 2007 | ||
| 14 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | ||
| 15 | * | ||
| 16 | * Scaled math optimizations by Thomas Gleixner | ||
| 17 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | ||
| 18 | * | ||
| 19 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | ||
| 20 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
| 21 | */ | ||
| 22 | |||
| 23 | #include <linux/latencytop.h> | ||
| 24 | #include <linux/sched.h> | ||
| 25 | #include <linux/cpumask.h> | ||
| 26 | |||
| 27 | /* | ||
| 28 | * Targeted preemption latency for CPU-bound tasks: | ||
| 29 | * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | ||
| 30 | * | ||
| 31 | * NOTE: this latency value is not the same as the concept of | ||
| 32 | * 'timeslice length' - timeslices in CFS are of variable length | ||
| 33 | * and have no persistent notion like in traditional, time-slice | ||
| 34 | * based scheduling concepts. | ||
| 35 | * | ||
| 36 | * (to see the precise effective timeslice length of your workload, | ||
| 37 | * run vmstat and monitor the context-switches (cs) field) | ||
| 38 | */ | ||
| 39 | unsigned int sysctl_sched_latency = 6000000ULL; | ||
| 40 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; | ||
| 41 | |||
| 42 | /* | ||
| 43 | * The initial- and re-scaling of tunables is configurable | ||
| 44 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | ||
| 45 | * | ||
| 46 | * Options are: | ||
| 47 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | ||
| 48 | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | ||
| 49 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | ||
| 50 | */ | ||
| 51 | enum sched_tunable_scaling sysctl_sched_tunable_scaling | ||
| 52 | = SCHED_TUNABLESCALING_LOG; | ||
| 53 | |||
| 54 | /* | ||
| 55 | * Minimal preemption granularity for CPU-bound tasks: | ||
| 56 | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) | ||
| 57 | */ | ||
| 58 | unsigned int sysctl_sched_min_granularity = 750000ULL; | ||
| 59 | unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; | ||
| 60 | |||
| 61 | /* | ||
| 62 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | ||
| 63 | */ | ||
| 64 | static unsigned int sched_nr_latency = 8; | ||
| 65 | |||
| 66 | /* | ||
| 67 | * After fork, child runs first. If set to 0 (default) then | ||
| 68 | * parent will (try to) run first. | ||
| 69 | */ | ||
| 70 | unsigned int sysctl_sched_child_runs_first __read_mostly; | ||
| 71 | |||
| 72 | /* | ||
| 73 | * SCHED_OTHER wake-up granularity. | ||
| 74 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | ||
| 75 | * | ||
| 76 | * This option delays the preemption effects of decoupled workloads | ||
| 77 | * and reduces their over-scheduling. Synchronous workloads will still | ||
| 78 | * have immediate wakeup/sleep latencies. | ||
| 79 | */ | ||
| 80 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; | ||
| 81 | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | ||
| 82 | |||
| 83 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | ||
| 84 | |||
| 85 | /* | ||
| 86 | * The exponential sliding window over which load is averaged for shares | ||
| 87 | * distribution. | ||
| 88 | * (default: 10msec) | ||
| 89 | */ | ||
| 90 | unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; | ||
| 91 | |||
| 92 | static const struct sched_class fair_sched_class; | ||
| 93 | |||
| 94 | /************************************************************** | ||
| 95 | * CFS operations on generic schedulable entities: | ||
| 96 | */ | ||
| 97 | |||
| 98 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 99 | |||
| 100 | /* cpu runqueue to which this cfs_rq is attached */ | ||
| 101 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | ||
| 102 | { | ||
| 103 | return cfs_rq->rq; | ||
| 104 | } | ||
| 105 | |||
| 106 | /* An entity is a task if it doesn't "own" a runqueue */ | ||
| 107 | #define entity_is_task(se) (!se->my_q) | ||
| 108 | |||
| 109 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
| 110 | { | ||
| 111 | #ifdef CONFIG_SCHED_DEBUG | ||
| 112 | WARN_ON_ONCE(!entity_is_task(se)); | ||
| 113 | #endif | ||
| 114 | return container_of(se, struct task_struct, se); | ||
| 115 | } | ||
| 116 | |||
| 117 | /* Walk up scheduling entities hierarchy */ | ||
| 118 | #define for_each_sched_entity(se) \ | ||
| 119 | for (; se; se = se->parent) | ||
| 120 | |||
| 121 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | ||
| 122 | { | ||
| 123 | return p->se.cfs_rq; | ||
| 124 | } | ||
| 125 | |||
| 126 | /* runqueue on which this entity is (to be) queued */ | ||
| 127 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | ||
| 128 | { | ||
| 129 | return se->cfs_rq; | ||
| 130 | } | ||
| 131 | |||
| 132 | /* runqueue "owned" by this group */ | ||
| 133 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | ||
| 134 | { | ||
| 135 | return grp->my_q; | ||
| 136 | } | ||
| 137 | |||
| 138 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
| 139 | { | ||
| 140 | if (!cfs_rq->on_list) { | ||
| 141 | /* | ||
| 142 | * Ensure we either appear before our parent (if already | ||
| 143 | * enqueued) or force our parent to appear after us when it is | ||
| 144 | * enqueued. The fact that we always enqueue bottom-up | ||
| 145 | * reduces this to two cases. | ||
| 146 | */ | ||
| 147 | if (cfs_rq->tg->parent && | ||
| 148 | cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { | ||
| 149 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, | ||
| 150 | &rq_of(cfs_rq)->leaf_cfs_rq_list); | ||
| 151 | } else { | ||
| 152 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | ||
| 153 | &rq_of(cfs_rq)->leaf_cfs_rq_list); | ||
| 154 | } | ||
| 155 | |||
| 156 | cfs_rq->on_list = 1; | ||
| 157 | } | ||
| 158 | } | ||
| 159 | |||
| 160 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
| 161 | { | ||
| 162 | if (cfs_rq->on_list) { | ||
| 163 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | ||
| 164 | cfs_rq->on_list = 0; | ||
| 165 | } | ||
| 166 | } | ||
| 167 | |||
| 168 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | ||
| 169 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | ||
| 170 | list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | ||
| 171 | |||
| 172 | /* Do the two (enqueued) entities belong to the same group ? */ | ||
| 173 | static inline int | ||
| 174 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | ||
| 175 | { | ||
| 176 | if (se->cfs_rq == pse->cfs_rq) | ||
| 177 | return 1; | ||
| 178 | |||
| 179 | return 0; | ||
| 180 | } | ||
| 181 | |||
| 182 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | ||
| 183 | { | ||
| 184 | return se->parent; | ||
| 185 | } | ||
| 186 | |||
| 187 | /* return depth at which a sched entity is present in the hierarchy */ | ||
| 188 | static inline int depth_se(struct sched_entity *se) | ||
| 189 | { | ||
| 190 | int depth = 0; | ||
| 191 | |||
| 192 | for_each_sched_entity(se) | ||
| 193 | depth++; | ||
| 194 | |||
| 195 | return depth; | ||
| 196 | } | ||
| 197 | |||
| 198 | static void | ||
| 199 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | ||
| 200 | { | ||
| 201 | int se_depth, pse_depth; | ||
| 202 | |||
| 203 | /* | ||
| 204 | * preemption test can be made between sibling entities who are in the | ||
| 205 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | ||
| 206 | * both tasks until we find their ancestors who are siblings of common | ||
| 207 | * parent. | ||
| 208 | */ | ||
| 209 | |||
| 210 | /* First walk up until both entities are at same depth */ | ||
| 211 | se_depth = depth_se(*se); | ||
| 212 | pse_depth = depth_se(*pse); | ||
| 213 | |||
| 214 | while (se_depth > pse_depth) { | ||
| 215 | se_depth--; | ||
| 216 | *se = parent_entity(*se); | ||
| 217 | } | ||
| 218 | |||
| 219 | while (pse_depth > se_depth) { | ||
| 220 | pse_depth--; | ||
| 221 | *pse = parent_entity(*pse); | ||
| 222 | } | ||
| 223 | |||
| 224 | while (!is_same_group(*se, *pse)) { | ||
| 225 | *se = parent_entity(*se); | ||
| 226 | *pse = parent_entity(*pse); | ||
| 227 | } | ||
| 228 | } | ||
| 229 | |||
| 230 | #else /* !CONFIG_FAIR_GROUP_SCHED */ | ||
| 231 | |||
| 232 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
| 233 | { | ||
| 234 | return container_of(se, struct task_struct, se); | ||
| 235 | } | ||
| 236 | |||
| 237 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | ||
| 238 | { | ||
| 239 | return container_of(cfs_rq, struct rq, cfs); | ||
| 240 | } | ||
| 241 | |||
| 242 | #define entity_is_task(se) 1 | ||
| 243 | |||
| 244 | #define for_each_sched_entity(se) \ | ||
| 245 | for (; se; se = NULL) | ||
| 246 | |||
| 247 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | ||
| 248 | { | ||
| 249 | return &task_rq(p)->cfs; | ||
| 250 | } | ||
| 251 | |||
| 252 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | ||
| 253 | { | ||
| 254 | struct task_struct *p = task_of(se); | ||
| 255 | struct rq *rq = task_rq(p); | ||
| 256 | |||
| 257 | return &rq->cfs; | ||
| 258 | } | ||
| 259 | |||
| 260 | /* runqueue "owned" by this group */ | ||
| 261 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | ||
| 262 | { | ||
| 263 | return NULL; | ||
| 264 | } | ||
| 265 | |||
| 266 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
| 267 | { | ||
| 268 | } | ||
| 269 | |||
| 270 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | ||
| 271 | { | ||
| 272 | } | ||
| 273 | |||
| 274 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | ||
| 275 | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | ||
| 276 | |||
| 277 | static inline int | ||
| 278 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | ||
| 279 | { | ||
| 280 | return 1; | ||
| 281 | } | ||
| 282 | |||
| 283 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | ||
| 284 | { | ||
| 285 | return NULL; | ||
| 286 | } | ||
| 287 | |||
| 288 | static inline void | ||
| 289 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | ||
| 290 | { | ||
| 291 | } | ||
| 292 | |||
| 293 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
| 294 | |||
| 295 | |||
| 296 | /************************************************************** | ||
| 297 | * Scheduling class tree data structure manipulation methods: | ||
| 298 | */ | ||
| 299 | |||
| 300 | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) | ||
| 301 | { | ||
| 302 | s64 delta = (s64)(vruntime - min_vruntime); | ||
| 303 | if (delta > 0) | ||
| 304 | min_vruntime = vruntime; | ||
| 305 | |||
| 306 | return min_vruntime; | ||
| 307 | } | ||
| 308 | |||
| 309 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | ||
| 310 | { | ||
| 311 | s64 delta = (s64)(vruntime - min_vruntime); | ||
| 312 | if (delta < 0) | ||
| 313 | min_vruntime = vruntime; | ||
| 314 | |||
| 315 | return min_vruntime; | ||
| 316 | } | ||
| 317 | |||
| 318 | static inline int entity_before(struct sched_entity *a, | ||
| 319 | struct sched_entity *b) | ||
| 320 | { | ||
| 321 | return (s64)(a->vruntime - b->vruntime) < 0; | ||
| 322 | } | ||
| 323 | |||
| 324 | static void update_min_vruntime(struct cfs_rq *cfs_rq) | ||
| 325 | { | ||
| 326 | u64 vruntime = cfs_rq->min_vruntime; | ||
| 327 | |||
| 328 | if (cfs_rq->curr) | ||
| 329 | vruntime = cfs_rq->curr->vruntime; | ||
| 330 | |||
| 331 | if (cfs_rq->rb_leftmost) { | ||
| 332 | struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | ||
| 333 | struct sched_entity, | ||
| 334 | run_node); | ||
| 335 | |||
| 336 | if (!cfs_rq->curr) | ||
| 337 | vruntime = se->vruntime; | ||
| 338 | else | ||
| 339 | vruntime = min_vruntime(vruntime, se->vruntime); | ||
| 340 | } | ||
| 341 | |||
| 342 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); | ||
| 343 | #ifndef CONFIG_64BIT | ||
| 344 | smp_wmb(); | ||
| 345 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | ||
| 346 | #endif | ||
| 347 | } | ||
| 348 | |||
| 349 | /* | ||
| 350 | * Enqueue an entity into the rb-tree: | ||
| 351 | */ | ||
| 352 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 353 | { | ||
| 354 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | ||
| 355 | struct rb_node *parent = NULL; | ||
| 356 | struct sched_entity *entry; | ||
| 357 | int leftmost = 1; | ||
| 358 | |||
| 359 | /* | ||
| 360 | * Find the right place in the rbtree: | ||
| 361 | */ | ||
| 362 | while (*link) { | ||
| 363 | parent = *link; | ||
| 364 | entry = rb_entry(parent, struct sched_entity, run_node); | ||
| 365 | /* | ||
| 366 | * We dont care about collisions. Nodes with | ||
| 367 | * the same key stay together. | ||
| 368 | */ | ||
| 369 | if (entity_before(se, entry)) { | ||
| 370 | link = &parent->rb_left; | ||
| 371 | } else { | ||
| 372 | link = &parent->rb_right; | ||
| 373 | leftmost = 0; | ||
| 374 | } | ||
| 375 | } | ||
| 376 | |||
| 377 | /* | ||
| 378 | * Maintain a cache of leftmost tree entries (it is frequently | ||
| 379 | * used): | ||
| 380 | */ | ||
| 381 | if (leftmost) | ||
| 382 | cfs_rq->rb_leftmost = &se->run_node; | ||
| 383 | |||
| 384 | rb_link_node(&se->run_node, parent, link); | ||
| 385 | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | ||
| 386 | } | ||
| 387 | |||
| 388 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 389 | { | ||
| 390 | if (cfs_rq->rb_leftmost == &se->run_node) { | ||
| 391 | struct rb_node *next_node; | ||
| 392 | |||
| 393 | next_node = rb_next(&se->run_node); | ||
| 394 | cfs_rq->rb_leftmost = next_node; | ||
| 395 | } | ||
| 396 | |||
| 397 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | ||
| 398 | } | ||
| 399 | |||
| 400 | static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) | ||
| 401 | { | ||
| 402 | struct rb_node *left = cfs_rq->rb_leftmost; | ||
| 403 | |||
| 404 | if (!left) | ||
| 405 | return NULL; | ||
| 406 | |||
| 407 | return rb_entry(left, struct sched_entity, run_node); | ||
| 408 | } | ||
| 409 | |||
| 410 | static struct sched_entity *__pick_next_entity(struct sched_entity *se) | ||
| 411 | { | ||
| 412 | struct rb_node *next = rb_next(&se->run_node); | ||
| 413 | |||
| 414 | if (!next) | ||
| 415 | return NULL; | ||
| 416 | |||
| 417 | return rb_entry(next, struct sched_entity, run_node); | ||
| 418 | } | ||
| 419 | |||
| 420 | #ifdef CONFIG_SCHED_DEBUG | ||
| 421 | static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | ||
| 422 | { | ||
| 423 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | ||
| 424 | |||
| 425 | if (!last) | ||
| 426 | return NULL; | ||
| 427 | |||
| 428 | return rb_entry(last, struct sched_entity, run_node); | ||
| 429 | } | ||
| 430 | |||
| 431 | /************************************************************** | ||
| 432 | * Scheduling class statistics methods: | ||
| 433 | */ | ||
| 434 | |||
| 435 | int sched_proc_update_handler(struct ctl_table *table, int write, | ||
| 436 | void __user *buffer, size_t *lenp, | ||
| 437 | loff_t *ppos) | ||
| 438 | { | ||
| 439 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | ||
| 440 | int factor = get_update_sysctl_factor(); | ||
| 441 | |||
| 442 | if (ret || !write) | ||
| 443 | return ret; | ||
| 444 | |||
| 445 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | ||
| 446 | sysctl_sched_min_granularity); | ||
| 447 | |||
| 448 | #define WRT_SYSCTL(name) \ | ||
| 449 | (normalized_sysctl_##name = sysctl_##name / (factor)) | ||
| 450 | WRT_SYSCTL(sched_min_granularity); | ||
| 451 | WRT_SYSCTL(sched_latency); | ||
| 452 | WRT_SYSCTL(sched_wakeup_granularity); | ||
| 453 | #undef WRT_SYSCTL | ||
| 454 | |||
| 455 | return 0; | ||
| 456 | } | ||
| 457 | #endif | ||
| 458 | |||
| 459 | /* | ||
| 460 | * delta /= w | ||
| 461 | */ | ||
| 462 | static inline unsigned long | ||
| 463 | calc_delta_fair(unsigned long delta, struct sched_entity *se) | ||
| 464 | { | ||
| 465 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
| 466 | delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); | ||
| 467 | |||
| 468 | return delta; | ||
| 469 | } | ||
| 470 | |||
| 471 | /* | ||
| 472 | * The idea is to set a period in which each task runs once. | ||
| 473 | * | ||
| 474 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | ||
| 475 | * this period because otherwise the slices get too small. | ||
| 476 | * | ||
| 477 | * p = (nr <= nl) ? l : l*nr/nl | ||
| 478 | */ | ||
| 479 | static u64 __sched_period(unsigned long nr_running) | ||
| 480 | { | ||
| 481 | u64 period = sysctl_sched_latency; | ||
| 482 | unsigned long nr_latency = sched_nr_latency; | ||
| 483 | |||
| 484 | if (unlikely(nr_running > nr_latency)) { | ||
| 485 | period = sysctl_sched_min_granularity; | ||
| 486 | period *= nr_running; | ||
| 487 | } | ||
| 488 | |||
| 489 | return period; | ||
| 490 | } | ||
| 491 | |||
| 492 | /* | ||
| 493 | * We calculate the wall-time slice from the period by taking a part | ||
| 494 | * proportional to the weight. | ||
| 495 | * | ||
| 496 | * s = p*P[w/rw] | ||
| 497 | */ | ||
| 498 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 499 | { | ||
| 500 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); | ||
| 501 | |||
| 502 | for_each_sched_entity(se) { | ||
| 503 | struct load_weight *load; | ||
| 504 | struct load_weight lw; | ||
| 505 | |||
| 506 | cfs_rq = cfs_rq_of(se); | ||
| 507 | load = &cfs_rq->load; | ||
| 508 | |||
| 509 | if (unlikely(!se->on_rq)) { | ||
| 510 | lw = cfs_rq->load; | ||
| 511 | |||
| 512 | update_load_add(&lw, se->load.weight); | ||
| 513 | load = &lw; | ||
| 514 | } | ||
| 515 | slice = calc_delta_mine(slice, se->load.weight, load); | ||
| 516 | } | ||
| 517 | return slice; | ||
| 518 | } | ||
| 519 | |||
| 520 | /* | ||
| 521 | * We calculate the vruntime slice of a to be inserted task | ||
| 522 | * | ||
| 523 | * vs = s/w | ||
| 524 | */ | ||
| 525 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 526 | { | ||
| 527 | return calc_delta_fair(sched_slice(cfs_rq, se), se); | ||
| 528 | } | ||
| 529 | |||
| 530 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); | ||
| 531 | static void update_cfs_shares(struct cfs_rq *cfs_rq); | ||
| 532 | |||
| 533 | /* | ||
| 534 | * Update the current task's runtime statistics. Skip current tasks that | ||
| 535 | * are not in our scheduling class. | ||
| 536 | */ | ||
| 537 | static inline void | ||
| 538 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | ||
| 539 | unsigned long delta_exec) | ||
| 540 | { | ||
| 541 | unsigned long delta_exec_weighted; | ||
| 542 | |||
| 543 | schedstat_set(curr->statistics.exec_max, | ||
| 544 | max((u64)delta_exec, curr->statistics.exec_max)); | ||
| 545 | |||
| 546 | curr->sum_exec_runtime += delta_exec; | ||
| 547 | schedstat_add(cfs_rq, exec_clock, delta_exec); | ||
| 548 | delta_exec_weighted = calc_delta_fair(delta_exec, curr); | ||
| 549 | |||
| 550 | curr->vruntime += delta_exec_weighted; | ||
| 551 | update_min_vruntime(cfs_rq); | ||
| 552 | |||
| 553 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | ||
| 554 | cfs_rq->load_unacc_exec_time += delta_exec; | ||
| 555 | #endif | ||
| 556 | } | ||
| 557 | |||
| 558 | static void update_curr(struct cfs_rq *cfs_rq) | ||
| 559 | { | ||
| 560 | struct sched_entity *curr = cfs_rq->curr; | ||
| 561 | u64 now = rq_of(cfs_rq)->clock_task; | ||
| 562 | unsigned long delta_exec; | ||
| 563 | |||
| 564 | if (unlikely(!curr)) | ||
| 565 | return; | ||
| 566 | |||
| 567 | /* | ||
| 568 | * Get the amount of time the current task was running | ||
| 569 | * since the last time we changed load (this cannot | ||
| 570 | * overflow on 32 bits): | ||
| 571 | */ | ||
| 572 | delta_exec = (unsigned long)(now - curr->exec_start); | ||
| 573 | if (!delta_exec) | ||
| 574 | return; | ||
| 575 | |||
| 576 | __update_curr(cfs_rq, curr, delta_exec); | ||
| 577 | curr->exec_start = now; | ||
| 578 | |||
| 579 | if (entity_is_task(curr)) { | ||
| 580 | struct task_struct *curtask = task_of(curr); | ||
| 581 | |||
| 582 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | ||
| 583 | cpuacct_charge(curtask, delta_exec); | ||
| 584 | account_group_exec_runtime(curtask, delta_exec); | ||
| 585 | } | ||
| 586 | } | ||
| 587 | |||
| 588 | static inline void | ||
| 589 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 590 | { | ||
| 591 | schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); | ||
| 592 | } | ||
| 593 | |||
| 594 | /* | ||
| 595 | * Task is being enqueued - update stats: | ||
| 596 | */ | ||
| 597 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 598 | { | ||
| 599 | /* | ||
| 600 | * Are we enqueueing a waiting task? (for current tasks | ||
| 601 | * a dequeue/enqueue event is a NOP) | ||
| 602 | */ | ||
| 603 | if (se != cfs_rq->curr) | ||
| 604 | update_stats_wait_start(cfs_rq, se); | ||
| 605 | } | ||
| 606 | |||
| 607 | static void | ||
| 608 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 609 | { | ||
| 610 | schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, | ||
| 611 | rq_of(cfs_rq)->clock - se->statistics.wait_start)); | ||
| 612 | schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); | ||
| 613 | schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + | ||
| 614 | rq_of(cfs_rq)->clock - se->statistics.wait_start); | ||
| 615 | #ifdef CONFIG_SCHEDSTATS | ||
| 616 | if (entity_is_task(se)) { | ||
| 617 | trace_sched_stat_wait(task_of(se), | ||
| 618 | rq_of(cfs_rq)->clock - se->statistics.wait_start); | ||
| 619 | } | ||
| 620 | #endif | ||
| 621 | schedstat_set(se->statistics.wait_start, 0); | ||
| 622 | } | ||
| 623 | |||
| 624 | static inline void | ||
| 625 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 626 | { | ||
| 627 | /* | ||
| 628 | * Mark the end of the wait period if dequeueing a | ||
| 629 | * waiting task: | ||
| 630 | */ | ||
| 631 | if (se != cfs_rq->curr) | ||
| 632 | update_stats_wait_end(cfs_rq, se); | ||
| 633 | } | ||
| 634 | |||
| 635 | /* | ||
| 636 | * We are picking a new current task - update its stats: | ||
| 637 | */ | ||
| 638 | static inline void | ||
| 639 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 640 | { | ||
| 641 | /* | ||
| 642 | * We are starting a new run period: | ||
| 643 | */ | ||
| 644 | se->exec_start = rq_of(cfs_rq)->clock_task; | ||
| 645 | } | ||
| 646 | |||
| 647 | /************************************************** | ||
| 648 | * Scheduling class queueing methods: | ||
| 649 | */ | ||
| 650 | |||
| 651 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | ||
| 652 | static void | ||
| 653 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | ||
| 654 | { | ||
| 655 | cfs_rq->task_weight += weight; | ||
| 656 | } | ||
| 657 | #else | ||
| 658 | static inline void | ||
| 659 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | ||
| 660 | { | ||
| 661 | } | ||
| 662 | #endif | ||
| 663 | |||
| 664 | static void | ||
| 665 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 666 | { | ||
| 667 | update_load_add(&cfs_rq->load, se->load.weight); | ||
| 668 | if (!parent_entity(se)) | ||
| 669 | inc_cpu_load(rq_of(cfs_rq), se->load.weight); | ||
| 670 | if (entity_is_task(se)) { | ||
| 671 | add_cfs_task_weight(cfs_rq, se->load.weight); | ||
| 672 | list_add(&se->group_node, &cfs_rq->tasks); | ||
| 673 | } | ||
| 674 | cfs_rq->nr_running++; | ||
| 675 | } | ||
| 676 | |||
| 677 | static void | ||
| 678 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 679 | { | ||
| 680 | update_load_sub(&cfs_rq->load, se->load.weight); | ||
| 681 | if (!parent_entity(se)) | ||
| 682 | dec_cpu_load(rq_of(cfs_rq), se->load.weight); | ||
| 683 | if (entity_is_task(se)) { | ||
| 684 | add_cfs_task_weight(cfs_rq, -se->load.weight); | ||
| 685 | list_del_init(&se->group_node); | ||
| 686 | } | ||
| 687 | cfs_rq->nr_running--; | ||
| 688 | } | ||
| 689 | |||
| 690 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 691 | # ifdef CONFIG_SMP | ||
| 692 | static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, | ||
| 693 | int global_update) | ||
| 694 | { | ||
| 695 | struct task_group *tg = cfs_rq->tg; | ||
| 696 | long load_avg; | ||
| 697 | |||
| 698 | load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); | ||
| 699 | load_avg -= cfs_rq->load_contribution; | ||
| 700 | |||
| 701 | if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { | ||
| 702 | atomic_add(load_avg, &tg->load_weight); | ||
| 703 | cfs_rq->load_contribution += load_avg; | ||
| 704 | } | ||
| 705 | } | ||
| 706 | |||
| 707 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | ||
| 708 | { | ||
| 709 | u64 period = sysctl_sched_shares_window; | ||
| 710 | u64 now, delta; | ||
| 711 | unsigned long load = cfs_rq->load.weight; | ||
| 712 | |||
| 713 | if (cfs_rq->tg == &root_task_group) | ||
| 714 | return; | ||
| 715 | |||
| 716 | now = rq_of(cfs_rq)->clock_task; | ||
| 717 | delta = now - cfs_rq->load_stamp; | ||
| 718 | |||
| 719 | /* truncate load history at 4 idle periods */ | ||
| 720 | if (cfs_rq->load_stamp > cfs_rq->load_last && | ||
| 721 | now - cfs_rq->load_last > 4 * period) { | ||
| 722 | cfs_rq->load_period = 0; | ||
| 723 | cfs_rq->load_avg = 0; | ||
| 724 | delta = period - 1; | ||
| 725 | } | ||
| 726 | |||
| 727 | cfs_rq->load_stamp = now; | ||
| 728 | cfs_rq->load_unacc_exec_time = 0; | ||
| 729 | cfs_rq->load_period += delta; | ||
| 730 | if (load) { | ||
| 731 | cfs_rq->load_last = now; | ||
| 732 | cfs_rq->load_avg += delta * load; | ||
| 733 | } | ||
| 734 | |||
| 735 | /* consider updating load contribution on each fold or truncate */ | ||
| 736 | if (global_update || cfs_rq->load_period > period | ||
| 737 | || !cfs_rq->load_period) | ||
| 738 | update_cfs_rq_load_contribution(cfs_rq, global_update); | ||
| 739 | |||
| 740 | while (cfs_rq->load_period > period) { | ||
| 741 | /* | ||
| 742 | * Inline assembly required to prevent the compiler | ||
| 743 | * optimising this loop into a divmod call. | ||
| 744 | * See __iter_div_u64_rem() for another example of this. | ||
| 745 | */ | ||
| 746 | asm("" : "+rm" (cfs_rq->load_period)); | ||
| 747 | cfs_rq->load_period /= 2; | ||
| 748 | cfs_rq->load_avg /= 2; | ||
| 749 | } | ||
| 750 | |||
| 751 | if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) | ||
| 752 | list_del_leaf_cfs_rq(cfs_rq); | ||
| 753 | } | ||
| 754 | |||
| 755 | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | ||
| 756 | { | ||
| 757 | long load_weight, load, shares; | ||
| 758 | |||
| 759 | load = cfs_rq->load.weight; | ||
| 760 | |||
| 761 | load_weight = atomic_read(&tg->load_weight); | ||
| 762 | load_weight += load; | ||
| 763 | load_weight -= cfs_rq->load_contribution; | ||
| 764 | |||
| 765 | shares = (tg->shares * load); | ||
| 766 | if (load_weight) | ||
| 767 | shares /= load_weight; | ||
| 768 | |||
| 769 | if (shares < MIN_SHARES) | ||
| 770 | shares = MIN_SHARES; | ||
| 771 | if (shares > tg->shares) | ||
| 772 | shares = tg->shares; | ||
| 773 | |||
| 774 | return shares; | ||
| 775 | } | ||
| 776 | |||
| 777 | static void update_entity_shares_tick(struct cfs_rq *cfs_rq) | ||
| 778 | { | ||
| 779 | if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { | ||
| 780 | update_cfs_load(cfs_rq, 0); | ||
| 781 | update_cfs_shares(cfs_rq); | ||
| 782 | } | ||
| 783 | } | ||
| 784 | # else /* CONFIG_SMP */ | ||
| 785 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | ||
| 786 | { | ||
| 787 | } | ||
| 788 | |||
| 789 | static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | ||
| 790 | { | ||
| 791 | return tg->shares; | ||
| 792 | } | ||
| 793 | |||
| 794 | static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) | ||
| 795 | { | ||
| 796 | } | ||
| 797 | # endif /* CONFIG_SMP */ | ||
| 798 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | ||
| 799 | unsigned long weight) | ||
| 800 | { | ||
| 801 | if (se->on_rq) { | ||
| 802 | /* commit outstanding execution time */ | ||
| 803 | if (cfs_rq->curr == se) | ||
| 804 | update_curr(cfs_rq); | ||
| 805 | account_entity_dequeue(cfs_rq, se); | ||
| 806 | } | ||
| 807 | |||
| 808 | update_load_set(&se->load, weight); | ||
| 809 | |||
| 810 | if (se->on_rq) | ||
| 811 | account_entity_enqueue(cfs_rq, se); | ||
| 812 | } | ||
| 813 | |||
| 814 | static void update_cfs_shares(struct cfs_rq *cfs_rq) | ||
| 815 | { | ||
| 816 | struct task_group *tg; | ||
| 817 | struct sched_entity *se; | ||
| 818 | long shares; | ||
| 819 | |||
| 820 | tg = cfs_rq->tg; | ||
| 821 | se = tg->se[cpu_of(rq_of(cfs_rq))]; | ||
| 822 | if (!se) | ||
| 823 | return; | ||
| 824 | #ifndef CONFIG_SMP | ||
| 825 | if (likely(se->load.weight == tg->shares)) | ||
| 826 | return; | ||
| 827 | #endif | ||
| 828 | shares = calc_cfs_shares(cfs_rq, tg); | ||
| 829 | |||
| 830 | reweight_entity(cfs_rq_of(se), se, shares); | ||
| 831 | } | ||
| 832 | #else /* CONFIG_FAIR_GROUP_SCHED */ | ||
| 833 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | ||
| 834 | { | ||
| 835 | } | ||
| 836 | |||
| 837 | static inline void update_cfs_shares(struct cfs_rq *cfs_rq) | ||
| 838 | { | ||
| 839 | } | ||
| 840 | |||
| 841 | static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) | ||
| 842 | { | ||
| 843 | } | ||
| 844 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
| 845 | |||
| 846 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 847 | { | ||
| 848 | #ifdef CONFIG_SCHEDSTATS | ||
| 849 | struct task_struct *tsk = NULL; | ||
| 850 | |||
| 851 | if (entity_is_task(se)) | ||
| 852 | tsk = task_of(se); | ||
| 853 | |||
| 854 | if (se->statistics.sleep_start) { | ||
| 855 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; | ||
| 856 | |||
| 857 | if ((s64)delta < 0) | ||
| 858 | delta = 0; | ||
| 859 | |||
| 860 | if (unlikely(delta > se->statistics.sleep_max)) | ||
| 861 | se->statistics.sleep_max = delta; | ||
| 862 | |||
| 863 | se->statistics.sleep_start = 0; | ||
| 864 | se->statistics.sum_sleep_runtime += delta; | ||
| 865 | |||
| 866 | if (tsk) { | ||
| 867 | account_scheduler_latency(tsk, delta >> 10, 1); | ||
| 868 | trace_sched_stat_sleep(tsk, delta); | ||
| 869 | } | ||
| 870 | } | ||
| 871 | if (se->statistics.block_start) { | ||
| 872 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; | ||
| 873 | |||
| 874 | if ((s64)delta < 0) | ||
| 875 | delta = 0; | ||
| 876 | |||
| 877 | if (unlikely(delta > se->statistics.block_max)) | ||
| 878 | se->statistics.block_max = delta; | ||
| 879 | |||
| 880 | se->statistics.block_start = 0; | ||
| 881 | se->statistics.sum_sleep_runtime += delta; | ||
| 882 | |||
| 883 | if (tsk) { | ||
| 884 | if (tsk->in_iowait) { | ||
| 885 | se->statistics.iowait_sum += delta; | ||
| 886 | se->statistics.iowait_count++; | ||
| 887 | trace_sched_stat_iowait(tsk, delta); | ||
| 888 | } | ||
| 889 | |||
| 890 | /* | ||
| 891 | * Blocking time is in units of nanosecs, so shift by | ||
| 892 | * 20 to get a milliseconds-range estimation of the | ||
| 893 | * amount of time that the task spent sleeping: | ||
| 894 | */ | ||
| 895 | if (unlikely(prof_on == SLEEP_PROFILING)) { | ||
| 896 | profile_hits(SLEEP_PROFILING, | ||
| 897 | (void *)get_wchan(tsk), | ||
| 898 | delta >> 20); | ||
| 899 | } | ||
| 900 | account_scheduler_latency(tsk, delta >> 10, 0); | ||
| 901 | } | ||
| 902 | } | ||
| 903 | #endif | ||
| 904 | } | ||
| 905 | |||
| 906 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 907 | { | ||
| 908 | #ifdef CONFIG_SCHED_DEBUG | ||
| 909 | s64 d = se->vruntime - cfs_rq->min_vruntime; | ||
| 910 | |||
| 911 | if (d < 0) | ||
| 912 | d = -d; | ||
| 913 | |||
| 914 | if (d > 3*sysctl_sched_latency) | ||
| 915 | schedstat_inc(cfs_rq, nr_spread_over); | ||
| 916 | #endif | ||
| 917 | } | ||
| 918 | |||
| 919 | static void | ||
| 920 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | ||
| 921 | { | ||
| 922 | u64 vruntime = cfs_rq->min_vruntime; | ||
| 923 | |||
| 924 | /* | ||
| 925 | * The 'current' period is already promised to the current tasks, | ||
| 926 | * however the extra weight of the new task will slow them down a | ||
| 927 | * little, place the new task so that it fits in the slot that | ||
| 928 | * stays open at the end. | ||
| 929 | */ | ||
| 930 | if (initial && sched_feat(START_DEBIT)) | ||
| 931 | vruntime += sched_vslice(cfs_rq, se); | ||
| 932 | |||
| 933 | /* sleeps up to a single latency don't count. */ | ||
| 934 | if (!initial) { | ||
| 935 | unsigned long thresh = sysctl_sched_latency; | ||
| 936 | |||
| 937 | /* | ||
| 938 | * Halve their sleep time's effect, to allow | ||
| 939 | * for a gentler effect of sleepers: | ||
| 940 | */ | ||
| 941 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||
| 942 | thresh >>= 1; | ||
| 943 | |||
| 944 | vruntime -= thresh; | ||
| 945 | } | ||
| 946 | |||
| 947 | /* ensure we never gain time by being placed backwards. */ | ||
| 948 | vruntime = max_vruntime(se->vruntime, vruntime); | ||
| 949 | |||
| 950 | se->vruntime = vruntime; | ||
| 951 | } | ||
| 952 | |||
| 953 | static void | ||
| 954 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | ||
| 955 | { | ||
| 956 | /* | ||
| 957 | * Update the normalized vruntime before updating min_vruntime | ||
| 958 | * through callig update_curr(). | ||
| 959 | */ | ||
| 960 | if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) | ||
| 961 | se->vruntime += cfs_rq->min_vruntime; | ||
| 962 | |||
| 963 | /* | ||
| 964 | * Update run-time statistics of the 'current'. | ||
| 965 | */ | ||
| 966 | update_curr(cfs_rq); | ||
| 967 | update_cfs_load(cfs_rq, 0); | ||
| 968 | account_entity_enqueue(cfs_rq, se); | ||
| 969 | update_cfs_shares(cfs_rq); | ||
| 970 | |||
| 971 | if (flags & ENQUEUE_WAKEUP) { | ||
| 972 | place_entity(cfs_rq, se, 0); | ||
| 973 | enqueue_sleeper(cfs_rq, se); | ||
| 974 | } | ||
| 975 | |||
| 976 | update_stats_enqueue(cfs_rq, se); | ||
| 977 | check_spread(cfs_rq, se); | ||
| 978 | if (se != cfs_rq->curr) | ||
| 979 | __enqueue_entity(cfs_rq, se); | ||
| 980 | se->on_rq = 1; | ||
| 981 | |||
| 982 | if (cfs_rq->nr_running == 1) | ||
| 983 | list_add_leaf_cfs_rq(cfs_rq); | ||
| 984 | } | ||
| 985 | |||
| 986 | static void __clear_buddies_last(struct sched_entity *se) | ||
| 987 | { | ||
| 988 | for_each_sched_entity(se) { | ||
| 989 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
| 990 | if (cfs_rq->last == se) | ||
| 991 | cfs_rq->last = NULL; | ||
| 992 | else | ||
| 993 | break; | ||
| 994 | } | ||
| 995 | } | ||
| 996 | |||
| 997 | static void __clear_buddies_next(struct sched_entity *se) | ||
| 998 | { | ||
| 999 | for_each_sched_entity(se) { | ||
| 1000 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
| 1001 | if (cfs_rq->next == se) | ||
| 1002 | cfs_rq->next = NULL; | ||
| 1003 | else | ||
| 1004 | break; | ||
| 1005 | } | ||
| 1006 | } | ||
| 1007 | |||
| 1008 | static void __clear_buddies_skip(struct sched_entity *se) | ||
| 1009 | { | ||
| 1010 | for_each_sched_entity(se) { | ||
| 1011 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
| 1012 | if (cfs_rq->skip == se) | ||
| 1013 | cfs_rq->skip = NULL; | ||
| 1014 | else | ||
| 1015 | break; | ||
| 1016 | } | ||
| 1017 | } | ||
| 1018 | |||
| 1019 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 1020 | { | ||
| 1021 | if (cfs_rq->last == se) | ||
| 1022 | __clear_buddies_last(se); | ||
| 1023 | |||
| 1024 | if (cfs_rq->next == se) | ||
| 1025 | __clear_buddies_next(se); | ||
| 1026 | |||
| 1027 | if (cfs_rq->skip == se) | ||
| 1028 | __clear_buddies_skip(se); | ||
| 1029 | } | ||
| 1030 | |||
| 1031 | static void | ||
| 1032 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | ||
| 1033 | { | ||
| 1034 | /* | ||
| 1035 | * Update run-time statistics of the 'current'. | ||
| 1036 | */ | ||
| 1037 | update_curr(cfs_rq); | ||
| 1038 | |||
| 1039 | update_stats_dequeue(cfs_rq, se); | ||
| 1040 | if (flags & DEQUEUE_SLEEP) { | ||
| 1041 | #ifdef CONFIG_SCHEDSTATS | ||
| 1042 | if (entity_is_task(se)) { | ||
| 1043 | struct task_struct *tsk = task_of(se); | ||
| 1044 | |||
| 1045 | if (tsk->state & TASK_INTERRUPTIBLE) | ||
| 1046 | se->statistics.sleep_start = rq_of(cfs_rq)->clock; | ||
| 1047 | if (tsk->state & TASK_UNINTERRUPTIBLE) | ||
| 1048 | se->statistics.block_start = rq_of(cfs_rq)->clock; | ||
| 1049 | } | ||
| 1050 | #endif | ||
| 1051 | } | ||
| 1052 | |||
| 1053 | clear_buddies(cfs_rq, se); | ||
| 1054 | |||
| 1055 | if (se != cfs_rq->curr) | ||
| 1056 | __dequeue_entity(cfs_rq, se); | ||
| 1057 | se->on_rq = 0; | ||
| 1058 | update_cfs_load(cfs_rq, 0); | ||
| 1059 | account_entity_dequeue(cfs_rq, se); | ||
| 1060 | |||
| 1061 | /* | ||
| 1062 | * Normalize the entity after updating the min_vruntime because the | ||
| 1063 | * update can refer to the ->curr item and we need to reflect this | ||
| 1064 | * movement in our normalized position. | ||
| 1065 | */ | ||
| 1066 | if (!(flags & DEQUEUE_SLEEP)) | ||
| 1067 | se->vruntime -= cfs_rq->min_vruntime; | ||
| 1068 | |||
| 1069 | update_min_vruntime(cfs_rq); | ||
| 1070 | update_cfs_shares(cfs_rq); | ||
| 1071 | } | ||
| 1072 | |||
| 1073 | /* | ||
| 1074 | * Preempt the current task with a newly woken task if needed: | ||
| 1075 | */ | ||
| 1076 | static void | ||
| 1077 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | ||
| 1078 | { | ||
| 1079 | unsigned long ideal_runtime, delta_exec; | ||
| 1080 | |||
| 1081 | ideal_runtime = sched_slice(cfs_rq, curr); | ||
| 1082 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | ||
| 1083 | if (delta_exec > ideal_runtime) { | ||
| 1084 | resched_task(rq_of(cfs_rq)->curr); | ||
| 1085 | /* | ||
| 1086 | * The current task ran long enough, ensure it doesn't get | ||
| 1087 | * re-elected due to buddy favours. | ||
| 1088 | */ | ||
| 1089 | clear_buddies(cfs_rq, curr); | ||
| 1090 | return; | ||
| 1091 | } | ||
| 1092 | |||
| 1093 | /* | ||
| 1094 | * Ensure that a task that missed wakeup preemption by a | ||
| 1095 | * narrow margin doesn't have to wait for a full slice. | ||
| 1096 | * This also mitigates buddy induced latencies under load. | ||
| 1097 | */ | ||
| 1098 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
| 1099 | return; | ||
| 1100 | |||
| 1101 | if (delta_exec < sysctl_sched_min_granularity) | ||
| 1102 | return; | ||
| 1103 | |||
| 1104 | if (cfs_rq->nr_running > 1) { | ||
| 1105 | struct sched_entity *se = __pick_first_entity(cfs_rq); | ||
| 1106 | s64 delta = curr->vruntime - se->vruntime; | ||
| 1107 | |||
| 1108 | if (delta < 0) | ||
| 1109 | return; | ||
| 1110 | |||
| 1111 | if (delta > ideal_runtime) | ||
| 1112 | resched_task(rq_of(cfs_rq)->curr); | ||
| 1113 | } | ||
| 1114 | } | ||
| 1115 | |||
| 1116 | static void | ||
| 1117 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
| 1118 | { | ||
| 1119 | /* 'current' is not kept within the tree. */ | ||
| 1120 | if (se->on_rq) { | ||
| 1121 | /* | ||
| 1122 | * Any task has to be enqueued before it get to execute on | ||
| 1123 | * a CPU. So account for the time it spent waiting on the | ||
| 1124 | * runqueue. | ||
| 1125 | */ | ||
| 1126 | update_stats_wait_end(cfs_rq, se); | ||
| 1127 | __dequeue_entity(cfs_rq, se); | ||
| 1128 | } | ||
| 1129 | |||
| 1130 | update_stats_curr_start(cfs_rq, se); | ||
| 1131 | cfs_rq->curr = se; | ||
| 1132 | #ifdef CONFIG_SCHEDSTATS | ||
| 1133 | /* | ||
| 1134 | * Track our maximum slice length, if the CPU's load is at | ||
| 1135 | * least twice that of our own weight (i.e. dont track it | ||
| 1136 | * when there are only lesser-weight tasks around): | ||
| 1137 | */ | ||
| 1138 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | ||
| 1139 | se->statistics.slice_max = max(se->statistics.slice_max, | ||
| 1140 | se->sum_exec_runtime - se->prev_sum_exec_runtime); | ||
| 1141 | } | ||
| 1142 | #endif | ||
| 1143 | se->prev_sum_exec_runtime = se->sum_exec_runtime; | ||
| 1144 | } | ||
| 1145 | |||
| 1146 | static int | ||
| 1147 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | ||
| 1148 | |||
| 1149 | /* | ||
| 1150 | * Pick the next process, keeping these things in mind, in this order: | ||
| 1151 | * 1) keep things fair between processes/task groups | ||
| 1152 | * 2) pick the "next" process, since someone really wants that to run | ||
| 1153 | * 3) pick the "last" process, for cache locality | ||
| 1154 | * 4) do not run the "skip" process, if something else is available | ||
| 1155 | */ | ||
| 1156 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) | ||
| 1157 | { | ||
| 1158 | struct sched_entity *se = __pick_first_entity(cfs_rq); | ||
| 1159 | struct sched_entity *left = se; | ||
| 1160 | |||
| 1161 | /* | ||
| 1162 | * Avoid running the skip buddy, if running something else can | ||
| 1163 | * be done without getting too unfair. | ||
| 1164 | */ | ||
| 1165 | if (cfs_rq->skip == se) { | ||
| 1166 | struct sched_entity *second = __pick_next_entity(se); | ||
| 1167 | if (second && wakeup_preempt_entity(second, left) < 1) | ||
| 1168 | se = second; | ||
| 1169 | } | ||
| 1170 | |||
| 1171 | /* | ||
| 1172 | * Prefer last buddy, try to return the CPU to a preempted task. | ||
| 1173 | */ | ||
| 1174 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | ||
| 1175 | se = cfs_rq->last; | ||
| 1176 | |||
| 1177 | /* | ||
| 1178 | * Someone really wants this to run. If it's not unfair, run it. | ||
| 1179 | */ | ||
| 1180 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) | ||
| 1181 | se = cfs_rq->next; | ||
| 1182 | |||
| 1183 | clear_buddies(cfs_rq, se); | ||
| 1184 | |||
| 1185 | return se; | ||
| 1186 | } | ||
| 1187 | |||
| 1188 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | ||
| 1189 | { | ||
| 1190 | /* | ||
| 1191 | * If still on the runqueue then deactivate_task() | ||
| 1192 | * was not called and update_curr() has to be done: | ||
| 1193 | */ | ||
| 1194 | if (prev->on_rq) | ||
| 1195 | update_curr(cfs_rq); | ||
| 1196 | |||
| 1197 | check_spread(cfs_rq, prev); | ||
| 1198 | if (prev->on_rq) { | ||
| 1199 | update_stats_wait_start(cfs_rq, prev); | ||
| 1200 | /* Put 'current' back into the tree. */ | ||
| 1201 | __enqueue_entity(cfs_rq, prev); | ||
| 1202 | } | ||
| 1203 | cfs_rq->curr = NULL; | ||
| 1204 | } | ||
| 1205 | |||
| 1206 | static void | ||
| 1207 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | ||
| 1208 | { | ||
| 1209 | /* | ||
| 1210 | * Update run-time statistics of the 'current'. | ||
| 1211 | */ | ||
| 1212 | update_curr(cfs_rq); | ||
| 1213 | |||
| 1214 | /* | ||
| 1215 | * Update share accounting for long-running entities. | ||
| 1216 | */ | ||
| 1217 | update_entity_shares_tick(cfs_rq); | ||
| 1218 | |||
| 1219 | #ifdef CONFIG_SCHED_HRTICK | ||
| 1220 | /* | ||
| 1221 | * queued ticks are scheduled to match the slice, so don't bother | ||
| 1222 | * validating it and just reschedule. | ||
| 1223 | */ | ||
| 1224 | if (queued) { | ||
| 1225 | resched_task(rq_of(cfs_rq)->curr); | ||
| 1226 | return; | ||
| 1227 | } | ||
| 1228 | /* | ||
| 1229 | * don't let the period tick interfere with the hrtick preemption | ||
| 1230 | */ | ||
| 1231 | if (!sched_feat(DOUBLE_TICK) && | ||
| 1232 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | ||
| 1233 | return; | ||
| 1234 | #endif | ||
| 1235 | |||
| 1236 | if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT)) | ||
| 1237 | check_preempt_tick(cfs_rq, curr); | ||
| 1238 | } | ||
| 1239 | |||
| 1240 | /************************************************** | ||
| 1241 | * CFS operations on tasks: | ||
| 1242 | */ | ||
| 1243 | |||
| 1244 | #ifdef CONFIG_SCHED_HRTICK | ||
| 1245 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | ||
| 1246 | { | ||
| 1247 | struct sched_entity *se = &p->se; | ||
| 1248 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
| 1249 | |||
| 1250 | WARN_ON(task_rq(p) != rq); | ||
| 1251 | |||
| 1252 | if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { | ||
| 1253 | u64 slice = sched_slice(cfs_rq, se); | ||
| 1254 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | ||
| 1255 | s64 delta = slice - ran; | ||
| 1256 | |||
| 1257 | if (delta < 0) { | ||
| 1258 | if (rq->curr == p) | ||
| 1259 | resched_task(p); | ||
| 1260 | return; | ||
| 1261 | } | ||
| 1262 | |||
| 1263 | /* | ||
| 1264 | * Don't schedule slices shorter than 10000ns, that just | ||
| 1265 | * doesn't make sense. Rely on vruntime for fairness. | ||
| 1266 | */ | ||
| 1267 | if (rq->curr != p) | ||
| 1268 | delta = max_t(s64, 10000LL, delta); | ||
| 1269 | |||
| 1270 | hrtick_start(rq, delta); | ||
| 1271 | } | ||
| 1272 | } | ||
| 1273 | |||
| 1274 | /* | ||
| 1275 | * called from enqueue/dequeue and updates the hrtick when the | ||
| 1276 | * current task is from our class and nr_running is low enough | ||
| 1277 | * to matter. | ||
| 1278 | */ | ||
| 1279 | static void hrtick_update(struct rq *rq) | ||
| 1280 | { | ||
| 1281 | struct task_struct *curr = rq->curr; | ||
| 1282 | |||
| 1283 | if (curr->sched_class != &fair_sched_class) | ||
| 1284 | return; | ||
| 1285 | |||
| 1286 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | ||
| 1287 | hrtick_start_fair(rq, curr); | ||
| 1288 | } | ||
| 1289 | #else /* !CONFIG_SCHED_HRTICK */ | ||
| 1290 | static inline void | ||
| 1291 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | ||
| 1292 | { | ||
| 1293 | } | ||
| 1294 | |||
| 1295 | static inline void hrtick_update(struct rq *rq) | ||
| 1296 | { | ||
| 1297 | } | ||
| 1298 | #endif | ||
| 1299 | |||
| 1300 | /* | ||
| 1301 | * The enqueue_task method is called before nr_running is | ||
| 1302 | * increased. Here we update the fair scheduling stats and | ||
| 1303 | * then put the task into the rbtree: | ||
| 1304 | */ | ||
| 1305 | static void | ||
| 1306 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) | ||
| 1307 | { | ||
| 1308 | struct cfs_rq *cfs_rq; | ||
| 1309 | struct sched_entity *se = &p->se; | ||
| 1310 | |||
| 1311 | for_each_sched_entity(se) { | ||
| 1312 | if (se->on_rq) | ||
| 1313 | break; | ||
| 1314 | cfs_rq = cfs_rq_of(se); | ||
| 1315 | enqueue_entity(cfs_rq, se, flags); | ||
| 1316 | flags = ENQUEUE_WAKEUP; | ||
| 1317 | } | ||
| 1318 | |||
| 1319 | for_each_sched_entity(se) { | ||
| 1320 | cfs_rq = cfs_rq_of(se); | ||
| 1321 | |||
| 1322 | update_cfs_load(cfs_rq, 0); | ||
| 1323 | update_cfs_shares(cfs_rq); | ||
| 1324 | } | ||
| 1325 | |||
| 1326 | hrtick_update(rq); | ||
| 1327 | } | ||
| 1328 | |||
| 1329 | static void set_next_buddy(struct sched_entity *se); | ||
| 1330 | |||
| 1331 | /* | ||
| 1332 | * The dequeue_task method is called before nr_running is | ||
| 1333 | * decreased. We remove the task from the rbtree and | ||
| 1334 | * update the fair scheduling stats: | ||
| 1335 | */ | ||
| 1336 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | ||
| 1337 | { | ||
| 1338 | struct cfs_rq *cfs_rq; | ||
| 1339 | struct sched_entity *se = &p->se; | ||
| 1340 | int task_sleep = flags & DEQUEUE_SLEEP; | ||
| 1341 | |||
| 1342 | for_each_sched_entity(se) { | ||
| 1343 | cfs_rq = cfs_rq_of(se); | ||
| 1344 | dequeue_entity(cfs_rq, se, flags); | ||
| 1345 | |||
| 1346 | /* Don't dequeue parent if it has other entities besides us */ | ||
| 1347 | if (cfs_rq->load.weight) { | ||
| 1348 | /* | ||
| 1349 | * Bias pick_next to pick a task from this cfs_rq, as | ||
| 1350 | * p is sleeping when it is within its sched_slice. | ||
| 1351 | */ | ||
| 1352 | if (task_sleep && parent_entity(se)) | ||
| 1353 | set_next_buddy(parent_entity(se)); | ||
| 1354 | |||
| 1355 | /* avoid re-evaluating load for this entity */ | ||
| 1356 | se = parent_entity(se); | ||
| 1357 | break; | ||
| 1358 | } | ||
| 1359 | flags |= DEQUEUE_SLEEP; | ||
| 1360 | } | ||
| 1361 | |||
| 1362 | for_each_sched_entity(se) { | ||
| 1363 | cfs_rq = cfs_rq_of(se); | ||
| 1364 | |||
| 1365 | update_cfs_load(cfs_rq, 0); | ||
| 1366 | update_cfs_shares(cfs_rq); | ||
| 1367 | } | ||
| 1368 | |||
| 1369 | hrtick_update(rq); | ||
| 1370 | } | ||
| 1371 | |||
| 1372 | #ifdef CONFIG_SMP | ||
| 1373 | |||
| 1374 | static void task_waking_fair(struct task_struct *p) | ||
| 1375 | { | ||
| 1376 | struct sched_entity *se = &p->se; | ||
| 1377 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
| 1378 | u64 min_vruntime; | ||
| 1379 | |||
| 1380 | #ifndef CONFIG_64BIT | ||
| 1381 | u64 min_vruntime_copy; | ||
| 1382 | |||
| 1383 | do { | ||
| 1384 | min_vruntime_copy = cfs_rq->min_vruntime_copy; | ||
| 1385 | smp_rmb(); | ||
| 1386 | min_vruntime = cfs_rq->min_vruntime; | ||
| 1387 | } while (min_vruntime != min_vruntime_copy); | ||
| 1388 | #else | ||
| 1389 | min_vruntime = cfs_rq->min_vruntime; | ||
| 1390 | #endif | ||
| 1391 | |||
| 1392 | se->vruntime -= min_vruntime; | ||
| 1393 | } | ||
| 1394 | |||
| 1395 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 1396 | /* | ||
| 1397 | * effective_load() calculates the load change as seen from the root_task_group | ||
| 1398 | * | ||
| 1399 | * Adding load to a group doesn't make a group heavier, but can cause movement | ||
| 1400 | * of group shares between cpus. Assuming the shares were perfectly aligned one | ||
| 1401 | * can calculate the shift in shares. | ||
| 1402 | */ | ||
| 1403 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) | ||
| 1404 | { | ||
| 1405 | struct sched_entity *se = tg->se[cpu]; | ||
| 1406 | |||
| 1407 | if (!tg->parent) | ||
| 1408 | return wl; | ||
| 1409 | |||
| 1410 | for_each_sched_entity(se) { | ||
| 1411 | long lw, w; | ||
| 1412 | |||
| 1413 | tg = se->my_q->tg; | ||
| 1414 | w = se->my_q->load.weight; | ||
| 1415 | |||
| 1416 | /* use this cpu's instantaneous contribution */ | ||
| 1417 | lw = atomic_read(&tg->load_weight); | ||
| 1418 | lw -= se->my_q->load_contribution; | ||
| 1419 | lw += w + wg; | ||
| 1420 | |||
| 1421 | wl += w; | ||
| 1422 | |||
| 1423 | if (lw > 0 && wl < lw) | ||
| 1424 | wl = (wl * tg->shares) / lw; | ||
| 1425 | else | ||
| 1426 | wl = tg->shares; | ||
| 1427 | |||
| 1428 | /* zero point is MIN_SHARES */ | ||
| 1429 | if (wl < MIN_SHARES) | ||
| 1430 | wl = MIN_SHARES; | ||
| 1431 | wl -= se->load.weight; | ||
| 1432 | wg = 0; | ||
| 1433 | } | ||
| 1434 | |||
| 1435 | return wl; | ||
| 1436 | } | ||
| 1437 | |||
| 1438 | #else | ||
| 1439 | |||
| 1440 | static inline unsigned long effective_load(struct task_group *tg, int cpu, | ||
| 1441 | unsigned long wl, unsigned long wg) | ||
| 1442 | { | ||
| 1443 | return wl; | ||
| 1444 | } | ||
| 1445 | |||
| 1446 | #endif | ||
| 1447 | |||
| 1448 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | ||
| 1449 | { | ||
| 1450 | s64 this_load, load; | ||
| 1451 | int idx, this_cpu, prev_cpu; | ||
| 1452 | unsigned long tl_per_task; | ||
| 1453 | struct task_group *tg; | ||
| 1454 | unsigned long weight; | ||
| 1455 | int balanced; | ||
| 1456 | |||
| 1457 | idx = sd->wake_idx; | ||
| 1458 | this_cpu = smp_processor_id(); | ||
| 1459 | prev_cpu = task_cpu(p); | ||
| 1460 | load = source_load(prev_cpu, idx); | ||
| 1461 | this_load = target_load(this_cpu, idx); | ||
| 1462 | |||
| 1463 | /* | ||
| 1464 | * If sync wakeup then subtract the (maximum possible) | ||
| 1465 | * effect of the currently running task from the load | ||
| 1466 | * of the current CPU: | ||
| 1467 | */ | ||
| 1468 | if (sync) { | ||
| 1469 | tg = task_group(current); | ||
| 1470 | weight = current->se.load.weight; | ||
| 1471 | |||
| 1472 | this_load += effective_load(tg, this_cpu, -weight, -weight); | ||
| 1473 | load += effective_load(tg, prev_cpu, 0, -weight); | ||
| 1474 | } | ||
| 1475 | |||
| 1476 | tg = task_group(p); | ||
| 1477 | weight = p->se.load.weight; | ||
| 1478 | |||
| 1479 | /* | ||
| 1480 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | ||
| 1481 | * due to the sync cause above having dropped this_load to 0, we'll | ||
| 1482 | * always have an imbalance, but there's really nothing you can do | ||
| 1483 | * about that, so that's good too. | ||
| 1484 | * | ||
| 1485 | * Otherwise check if either cpus are near enough in load to allow this | ||
| 1486 | * task to be woken on this_cpu. | ||
| 1487 | */ | ||
| 1488 | if (this_load > 0) { | ||
| 1489 | s64 this_eff_load, prev_eff_load; | ||
| 1490 | |||
| 1491 | this_eff_load = 100; | ||
| 1492 | this_eff_load *= power_of(prev_cpu); | ||
| 1493 | this_eff_load *= this_load + | ||
| 1494 | effective_load(tg, this_cpu, weight, weight); | ||
| 1495 | |||
| 1496 | prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; | ||
| 1497 | prev_eff_load *= power_of(this_cpu); | ||
| 1498 | prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); | ||
| 1499 | |||
| 1500 | balanced = this_eff_load <= prev_eff_load; | ||
| 1501 | } else | ||
| 1502 | balanced = true; | ||
| 1503 | |||
| 1504 | /* | ||
| 1505 | * If the currently running task will sleep within | ||
| 1506 | * a reasonable amount of time then attract this newly | ||
| 1507 | * woken task: | ||
| 1508 | */ | ||
| 1509 | if (sync && balanced) | ||
| 1510 | return 1; | ||
| 1511 | |||
| 1512 | schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); | ||
| 1513 | tl_per_task = cpu_avg_load_per_task(this_cpu); | ||
| 1514 | |||
| 1515 | if (balanced || | ||
| 1516 | (this_load <= load && | ||
| 1517 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | ||
| 1518 | /* | ||
| 1519 | * This domain has SD_WAKE_AFFINE and | ||
| 1520 | * p is cache cold in this domain, and | ||
| 1521 | * there is no bad imbalance. | ||
| 1522 | */ | ||
| 1523 | schedstat_inc(sd, ttwu_move_affine); | ||
| 1524 | schedstat_inc(p, se.statistics.nr_wakeups_affine); | ||
| 1525 | |||
| 1526 | return 1; | ||
| 1527 | } | ||
| 1528 | return 0; | ||
| 1529 | } | ||
| 1530 | |||
| 1531 | /* | ||
| 1532 | * find_idlest_group finds and returns the least busy CPU group within the | ||
| 1533 | * domain. | ||
| 1534 | */ | ||
| 1535 | static struct sched_group * | ||
| 1536 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | ||
| 1537 | int this_cpu, int load_idx) | ||
| 1538 | { | ||
| 1539 | struct sched_group *idlest = NULL, *group = sd->groups; | ||
| 1540 | unsigned long min_load = ULONG_MAX, this_load = 0; | ||
| 1541 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | ||
| 1542 | |||
| 1543 | do { | ||
| 1544 | unsigned long load, avg_load; | ||
| 1545 | int local_group; | ||
| 1546 | int i; | ||
| 1547 | |||
| 1548 | /* Skip over this group if it has no CPUs allowed */ | ||
| 1549 | if (!cpumask_intersects(sched_group_cpus(group), | ||
| 1550 | &p->cpus_allowed)) | ||
| 1551 | continue; | ||
| 1552 | |||
| 1553 | local_group = cpumask_test_cpu(this_cpu, | ||
| 1554 | sched_group_cpus(group)); | ||
| 1555 | |||
| 1556 | /* Tally up the load of all CPUs in the group */ | ||
| 1557 | avg_load = 0; | ||
| 1558 | |||
| 1559 | for_each_cpu(i, sched_group_cpus(group)) { | ||
| 1560 | /* Bias balancing toward cpus of our domain */ | ||
| 1561 | if (local_group) | ||
| 1562 | load = source_load(i, load_idx); | ||
| 1563 | else | ||
| 1564 | load = target_load(i, load_idx); | ||
| 1565 | |||
| 1566 | avg_load += load; | ||
| 1567 | } | ||
| 1568 | |||
| 1569 | /* Adjust by relative CPU power of the group */ | ||
| 1570 | avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; | ||
| 1571 | |||
| 1572 | if (local_group) { | ||
| 1573 | this_load = avg_load; | ||
| 1574 | } else if (avg_load < min_load) { | ||
| 1575 | min_load = avg_load; | ||
| 1576 | idlest = group; | ||
| 1577 | } | ||
| 1578 | } while (group = group->next, group != sd->groups); | ||
| 1579 | |||
| 1580 | if (!idlest || 100*this_load < imbalance*min_load) | ||
| 1581 | return NULL; | ||
| 1582 | return idlest; | ||
| 1583 | } | ||
| 1584 | |||
| 1585 | /* | ||
| 1586 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
| 1587 | */ | ||
| 1588 | static int | ||
| 1589 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
| 1590 | { | ||
| 1591 | unsigned long load, min_load = ULONG_MAX; | ||
| 1592 | int idlest = -1; | ||
| 1593 | int i; | ||
| 1594 | |||
| 1595 | /* Traverse only the allowed CPUs */ | ||
| 1596 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
| 1597 | load = weighted_cpuload(i); | ||
| 1598 | |||
| 1599 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
| 1600 | min_load = load; | ||
| 1601 | idlest = i; | ||
| 1602 | } | ||
| 1603 | } | ||
| 1604 | |||
| 1605 | return idlest; | ||
| 1606 | } | ||
| 1607 | |||
| 1608 | /* | ||
| 1609 | * Try and locate an idle CPU in the sched_domain. | ||
| 1610 | */ | ||
| 1611 | static int select_idle_sibling(struct task_struct *p, int target) | ||
| 1612 | { | ||
| 1613 | int cpu = smp_processor_id(); | ||
| 1614 | int prev_cpu = task_cpu(p); | ||
| 1615 | struct sched_domain *sd; | ||
| 1616 | int i; | ||
| 1617 | |||
| 1618 | /* | ||
| 1619 | * If the task is going to be woken-up on this cpu and if it is | ||
| 1620 | * already idle, then it is the right target. | ||
| 1621 | */ | ||
| 1622 | if (target == cpu && idle_cpu(cpu)) | ||
| 1623 | return cpu; | ||
| 1624 | |||
| 1625 | /* | ||
| 1626 | * If the task is going to be woken-up on the cpu where it previously | ||
| 1627 | * ran and if it is currently idle, then it the right target. | ||
| 1628 | */ | ||
| 1629 | if (target == prev_cpu && idle_cpu(prev_cpu)) | ||
| 1630 | return prev_cpu; | ||
| 1631 | |||
| 1632 | /* | ||
| 1633 | * Otherwise, iterate the domains and find an elegible idle cpu. | ||
| 1634 | */ | ||
| 1635 | rcu_read_lock(); | ||
| 1636 | for_each_domain(target, sd) { | ||
| 1637 | if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) | ||
| 1638 | break; | ||
| 1639 | |||
| 1640 | for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { | ||
| 1641 | if (idle_cpu(i)) { | ||
| 1642 | target = i; | ||
| 1643 | break; | ||
| 1644 | } | ||
| 1645 | } | ||
| 1646 | |||
| 1647 | /* | ||
| 1648 | * Lets stop looking for an idle sibling when we reached | ||
| 1649 | * the domain that spans the current cpu and prev_cpu. | ||
| 1650 | */ | ||
| 1651 | if (cpumask_test_cpu(cpu, sched_domain_span(sd)) && | ||
| 1652 | cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) | ||
| 1653 | break; | ||
| 1654 | } | ||
| 1655 | rcu_read_unlock(); | ||
| 1656 | |||
| 1657 | return target; | ||
| 1658 | } | ||
| 1659 | |||
| 1660 | /* | ||
| 1661 | * sched_balance_self: balance the current task (running on cpu) in domains | ||
| 1662 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | ||
| 1663 | * SD_BALANCE_EXEC. | ||
| 1664 | * | ||
| 1665 | * Balance, ie. select the least loaded group. | ||
| 1666 | * | ||
| 1667 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
| 1668 | * | ||
| 1669 | * preempt must be disabled. | ||
| 1670 | */ | ||
| 1671 | static int | ||
| 1672 | select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | ||
| 1673 | { | ||
| 1674 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | ||
| 1675 | int cpu = smp_processor_id(); | ||
| 1676 | int prev_cpu = task_cpu(p); | ||
| 1677 | int new_cpu = cpu; | ||
| 1678 | int want_affine = 0; | ||
| 1679 | int want_sd = 1; | ||
| 1680 | int sync = wake_flags & WF_SYNC; | ||
| 1681 | |||
| 1682 | if (sd_flag & SD_BALANCE_WAKE) { | ||
| 1683 | if (cpumask_test_cpu(cpu, &p->cpus_allowed)) | ||
| 1684 | want_affine = 1; | ||
| 1685 | new_cpu = prev_cpu; | ||
| 1686 | } | ||
| 1687 | |||
| 1688 | rcu_read_lock(); | ||
| 1689 | for_each_domain(cpu, tmp) { | ||
| 1690 | if (!(tmp->flags & SD_LOAD_BALANCE)) | ||
| 1691 | continue; | ||
| 1692 | |||
| 1693 | /* | ||
| 1694 | * If power savings logic is enabled for a domain, see if we | ||
| 1695 | * are not overloaded, if so, don't balance wider. | ||
| 1696 | */ | ||
| 1697 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | ||
| 1698 | unsigned long power = 0; | ||
| 1699 | unsigned long nr_running = 0; | ||
| 1700 | unsigned long capacity; | ||
| 1701 | int i; | ||
| 1702 | |||
| 1703 | for_each_cpu(i, sched_domain_span(tmp)) { | ||
| 1704 | power += power_of(i); | ||
| 1705 | nr_running += cpu_rq(i)->cfs.nr_running; | ||
| 1706 | } | ||
| 1707 | |||
| 1708 | capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); | ||
| 1709 | |||
| 1710 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
| 1711 | nr_running /= 2; | ||
| 1712 | |||
| 1713 | if (nr_running < capacity) | ||
| 1714 | want_sd = 0; | ||
| 1715 | } | ||
| 1716 | |||
| 1717 | /* | ||
| 1718 | * If both cpu and prev_cpu are part of this domain, | ||
| 1719 | * cpu is a valid SD_WAKE_AFFINE target. | ||
| 1720 | */ | ||
| 1721 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | ||
| 1722 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | ||
| 1723 | affine_sd = tmp; | ||
| 1724 | want_affine = 0; | ||
| 1725 | } | ||
| 1726 | |||
| 1727 | if (!want_sd && !want_affine) | ||
| 1728 | break; | ||
| 1729 | |||
| 1730 | if (!(tmp->flags & sd_flag)) | ||
| 1731 | continue; | ||
| 1732 | |||
| 1733 | if (want_sd) | ||
| 1734 | sd = tmp; | ||
| 1735 | } | ||
| 1736 | |||
| 1737 | if (affine_sd) { | ||
| 1738 | if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) | ||
| 1739 | prev_cpu = cpu; | ||
| 1740 | |||
| 1741 | new_cpu = select_idle_sibling(p, prev_cpu); | ||
| 1742 | goto unlock; | ||
| 1743 | } | ||
| 1744 | |||
| 1745 | while (sd) { | ||
| 1746 | int load_idx = sd->forkexec_idx; | ||
| 1747 | struct sched_group *group; | ||
| 1748 | int weight; | ||
| 1749 | |||
| 1750 | if (!(sd->flags & sd_flag)) { | ||
| 1751 | sd = sd->child; | ||
| 1752 | continue; | ||
| 1753 | } | ||
| 1754 | |||
| 1755 | if (sd_flag & SD_BALANCE_WAKE) | ||
| 1756 | load_idx = sd->wake_idx; | ||
| 1757 | |||
| 1758 | group = find_idlest_group(sd, p, cpu, load_idx); | ||
| 1759 | if (!group) { | ||
| 1760 | sd = sd->child; | ||
| 1761 | continue; | ||
| 1762 | } | ||
| 1763 | |||
| 1764 | new_cpu = find_idlest_cpu(group, p, cpu); | ||
| 1765 | if (new_cpu == -1 || new_cpu == cpu) { | ||
| 1766 | /* Now try balancing at a lower domain level of cpu */ | ||
| 1767 | sd = sd->child; | ||
| 1768 | continue; | ||
| 1769 | } | ||
| 1770 | |||
| 1771 | /* Now try balancing at a lower domain level of new_cpu */ | ||
| 1772 | cpu = new_cpu; | ||
| 1773 | weight = sd->span_weight; | ||
| 1774 | sd = NULL; | ||
| 1775 | for_each_domain(cpu, tmp) { | ||
| 1776 | if (weight <= tmp->span_weight) | ||
| 1777 | break; | ||
| 1778 | if (tmp->flags & sd_flag) | ||
| 1779 | sd = tmp; | ||
| 1780 | } | ||
| 1781 | /* while loop will break here if sd == NULL */ | ||
| 1782 | } | ||
| 1783 | unlock: | ||
| 1784 | rcu_read_unlock(); | ||
| 1785 | |||
| 1786 | return new_cpu; | ||
| 1787 | } | ||
| 1788 | #endif /* CONFIG_SMP */ | ||
| 1789 | |||
| 1790 | static unsigned long | ||
| 1791 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | ||
| 1792 | { | ||
| 1793 | unsigned long gran = sysctl_sched_wakeup_granularity; | ||
| 1794 | |||
| 1795 | /* | ||
| 1796 | * Since its curr running now, convert the gran from real-time | ||
| 1797 | * to virtual-time in his units. | ||
| 1798 | * | ||
| 1799 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
| 1800 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
| 1801 | * the resulting gran will be larger, therefore penalizing the | ||
| 1802 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
| 1803 | * be smaller, again penalizing the lighter task. | ||
| 1804 | * | ||
| 1805 | * This is especially important for buddies when the leftmost | ||
| 1806 | * task is higher priority than the buddy. | ||
| 1807 | */ | ||
| 1808 | return calc_delta_fair(gran, se); | ||
| 1809 | } | ||
| 1810 | |||
| 1811 | /* | ||
| 1812 | * Should 'se' preempt 'curr'. | ||
| 1813 | * | ||
| 1814 | * |s1 | ||
| 1815 | * |s2 | ||
| 1816 | * |s3 | ||
| 1817 | * g | ||
| 1818 | * |<--->|c | ||
| 1819 | * | ||
| 1820 | * w(c, s1) = -1 | ||
| 1821 | * w(c, s2) = 0 | ||
| 1822 | * w(c, s3) = 1 | ||
| 1823 | * | ||
| 1824 | */ | ||
| 1825 | static int | ||
| 1826 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | ||
| 1827 | { | ||
| 1828 | s64 gran, vdiff = curr->vruntime - se->vruntime; | ||
| 1829 | |||
| 1830 | if (vdiff <= 0) | ||
| 1831 | return -1; | ||
| 1832 | |||
| 1833 | gran = wakeup_gran(curr, se); | ||
| 1834 | if (vdiff > gran) | ||
| 1835 | return 1; | ||
| 1836 | |||
| 1837 | return 0; | ||
| 1838 | } | ||
| 1839 | |||
| 1840 | static void set_last_buddy(struct sched_entity *se) | ||
| 1841 | { | ||
| 1842 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | ||
| 1843 | return; | ||
| 1844 | |||
| 1845 | for_each_sched_entity(se) | ||
| 1846 | cfs_rq_of(se)->last = se; | ||
| 1847 | } | ||
| 1848 | |||
| 1849 | static void set_next_buddy(struct sched_entity *se) | ||
| 1850 | { | ||
| 1851 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | ||
| 1852 | return; | ||
| 1853 | |||
| 1854 | for_each_sched_entity(se) | ||
| 1855 | cfs_rq_of(se)->next = se; | ||
| 1856 | } | ||
| 1857 | |||
| 1858 | static void set_skip_buddy(struct sched_entity *se) | ||
| 1859 | { | ||
| 1860 | for_each_sched_entity(se) | ||
| 1861 | cfs_rq_of(se)->skip = se; | ||
| 1862 | } | ||
| 1863 | |||
| 1864 | /* | ||
| 1865 | * Preempt the current task with a newly woken task if needed: | ||
| 1866 | */ | ||
| 1867 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) | ||
| 1868 | { | ||
| 1869 | struct task_struct *curr = rq->curr; | ||
| 1870 | struct sched_entity *se = &curr->se, *pse = &p->se; | ||
| 1871 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | ||
| 1872 | int scale = cfs_rq->nr_running >= sched_nr_latency; | ||
| 1873 | int next_buddy_marked = 0; | ||
| 1874 | |||
| 1875 | if (unlikely(se == pse)) | ||
| 1876 | return; | ||
| 1877 | |||
| 1878 | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { | ||
| 1879 | set_next_buddy(pse); | ||
| 1880 | next_buddy_marked = 1; | ||
| 1881 | } | ||
| 1882 | |||
| 1883 | /* | ||
| 1884 | * We can come here with TIF_NEED_RESCHED already set from new task | ||
| 1885 | * wake up path. | ||
| 1886 | */ | ||
| 1887 | if (test_tsk_need_resched(curr)) | ||
| 1888 | return; | ||
| 1889 | |||
| 1890 | /* Idle tasks are by definition preempted by non-idle tasks. */ | ||
| 1891 | if (unlikely(curr->policy == SCHED_IDLE) && | ||
| 1892 | likely(p->policy != SCHED_IDLE)) | ||
| 1893 | goto preempt; | ||
| 1894 | |||
| 1895 | /* | ||
| 1896 | * Batch and idle tasks do not preempt non-idle tasks (their preemption | ||
| 1897 | * is driven by the tick): | ||
| 1898 | */ | ||
| 1899 | if (unlikely(p->policy != SCHED_NORMAL)) | ||
| 1900 | return; | ||
| 1901 | |||
| 1902 | |||
| 1903 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
| 1904 | return; | ||
| 1905 | |||
| 1906 | find_matching_se(&se, &pse); | ||
| 1907 | update_curr(cfs_rq_of(se)); | ||
| 1908 | BUG_ON(!pse); | ||
| 1909 | if (wakeup_preempt_entity(se, pse) == 1) { | ||
| 1910 | /* | ||
| 1911 | * Bias pick_next to pick the sched entity that is | ||
| 1912 | * triggering this preemption. | ||
| 1913 | */ | ||
| 1914 | if (!next_buddy_marked) | ||
| 1915 | set_next_buddy(pse); | ||
| 1916 | goto preempt; | ||
| 1917 | } | ||
| 1918 | |||
| 1919 | return; | ||
| 1920 | |||
| 1921 | preempt: | ||
| 1922 | resched_task(curr); | ||
| 1923 | /* | ||
| 1924 | * Only set the backward buddy when the current task is still | ||
| 1925 | * on the rq. This can happen when a wakeup gets interleaved | ||
| 1926 | * with schedule on the ->pre_schedule() or idle_balance() | ||
| 1927 | * point, either of which can * drop the rq lock. | ||
| 1928 | * | ||
| 1929 | * Also, during early boot the idle thread is in the fair class, | ||
| 1930 | * for obvious reasons its a bad idea to schedule back to it. | ||
| 1931 | */ | ||
| 1932 | if (unlikely(!se->on_rq || curr == rq->idle)) | ||
| 1933 | return; | ||
| 1934 | |||
| 1935 | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | ||
| 1936 | set_last_buddy(se); | ||
| 1937 | } | ||
| 1938 | |||
| 1939 | static struct task_struct *pick_next_task_fair(struct rq *rq) | ||
| 1940 | { | ||
| 1941 | struct task_struct *p; | ||
| 1942 | struct cfs_rq *cfs_rq = &rq->cfs; | ||
| 1943 | struct sched_entity *se; | ||
| 1944 | |||
| 1945 | if (!cfs_rq->nr_running) | ||
| 1946 | return NULL; | ||
| 1947 | |||
| 1948 | do { | ||
| 1949 | se = pick_next_entity(cfs_rq); | ||
| 1950 | set_next_entity(cfs_rq, se); | ||
| 1951 | cfs_rq = group_cfs_rq(se); | ||
| 1952 | } while (cfs_rq); | ||
| 1953 | |||
| 1954 | p = task_of(se); | ||
| 1955 | hrtick_start_fair(rq, p); | ||
| 1956 | |||
| 1957 | return p; | ||
| 1958 | } | ||
| 1959 | |||
| 1960 | /* | ||
| 1961 | * Account for a descheduled task: | ||
| 1962 | */ | ||
| 1963 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | ||
| 1964 | { | ||
| 1965 | struct sched_entity *se = &prev->se; | ||
| 1966 | struct cfs_rq *cfs_rq; | ||
| 1967 | |||
| 1968 | for_each_sched_entity(se) { | ||
| 1969 | cfs_rq = cfs_rq_of(se); | ||
| 1970 | put_prev_entity(cfs_rq, se); | ||
| 1971 | } | ||
| 1972 | } | ||
| 1973 | |||
| 1974 | /* | ||
| 1975 | * sched_yield() is very simple | ||
| 1976 | * | ||
| 1977 | * The magic of dealing with the ->skip buddy is in pick_next_entity. | ||
| 1978 | */ | ||
| 1979 | static void yield_task_fair(struct rq *rq) | ||
| 1980 | { | ||
| 1981 | struct task_struct *curr = rq->curr; | ||
| 1982 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | ||
| 1983 | struct sched_entity *se = &curr->se; | ||
| 1984 | |||
| 1985 | /* | ||
| 1986 | * Are we the only task in the tree? | ||
| 1987 | */ | ||
| 1988 | if (unlikely(rq->nr_running == 1)) | ||
| 1989 | return; | ||
| 1990 | |||
| 1991 | clear_buddies(cfs_rq, se); | ||
| 1992 | |||
| 1993 | if (curr->policy != SCHED_BATCH) { | ||
| 1994 | update_rq_clock(rq); | ||
| 1995 | /* | ||
| 1996 | * Update run-time statistics of the 'current'. | ||
| 1997 | */ | ||
| 1998 | update_curr(cfs_rq); | ||
| 1999 | } | ||
| 2000 | |||
| 2001 | set_skip_buddy(se); | ||
| 2002 | } | ||
| 2003 | |||
| 2004 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) | ||
| 2005 | { | ||
| 2006 | struct sched_entity *se = &p->se; | ||
| 2007 | |||
| 2008 | if (!se->on_rq) | ||
| 2009 | return false; | ||
| 2010 | |||
| 2011 | /* Tell the scheduler that we'd really like pse to run next. */ | ||
| 2012 | set_next_buddy(se); | ||
| 2013 | |||
| 2014 | yield_task_fair(rq); | ||
| 2015 | |||
| 2016 | return true; | ||
| 2017 | } | ||
| 2018 | |||
| 2019 | #ifdef CONFIG_SMP | ||
| 2020 | /************************************************** | ||
| 2021 | * Fair scheduling class load-balancing methods: | ||
| 2022 | */ | ||
| 2023 | |||
| 2024 | /* | ||
| 2025 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
| 2026 | * Both runqueues must be locked. | ||
| 2027 | */ | ||
| 2028 | static void pull_task(struct rq *src_rq, struct task_struct *p, | ||
| 2029 | struct rq *this_rq, int this_cpu) | ||
| 2030 | { | ||
| 2031 | deactivate_task(src_rq, p, 0); | ||
| 2032 | set_task_cpu(p, this_cpu); | ||
| 2033 | activate_task(this_rq, p, 0); | ||
| 2034 | check_preempt_curr(this_rq, p, 0); | ||
| 2035 | } | ||
| 2036 | |||
| 2037 | /* | ||
| 2038 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
| 2039 | */ | ||
| 2040 | static | ||
| 2041 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
| 2042 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 2043 | int *all_pinned) | ||
| 2044 | { | ||
| 2045 | int tsk_cache_hot = 0; | ||
| 2046 | /* | ||
| 2047 | * We do not migrate tasks that are: | ||
| 2048 | * 1) running (obviously), or | ||
| 2049 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
| 2050 | * 3) are cache-hot on their current CPU. | ||
| 2051 | */ | ||
| 2052 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | ||
| 2053 | schedstat_inc(p, se.statistics.nr_failed_migrations_affine); | ||
| 2054 | return 0; | ||
| 2055 | } | ||
| 2056 | *all_pinned = 0; | ||
| 2057 | |||
| 2058 | if (task_running(rq, p)) { | ||
| 2059 | schedstat_inc(p, se.statistics.nr_failed_migrations_running); | ||
| 2060 | return 0; | ||
| 2061 | } | ||
| 2062 | |||
| 2063 | /* | ||
| 2064 | * Aggressive migration if: | ||
| 2065 | * 1) task is cache cold, or | ||
| 2066 | * 2) too many balance attempts have failed. | ||
| 2067 | */ | ||
| 2068 | |||
| 2069 | tsk_cache_hot = task_hot(p, rq->clock_task, sd); | ||
| 2070 | if (!tsk_cache_hot || | ||
| 2071 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
| 2072 | #ifdef CONFIG_SCHEDSTATS | ||
| 2073 | if (tsk_cache_hot) { | ||
| 2074 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
| 2075 | schedstat_inc(p, se.statistics.nr_forced_migrations); | ||
| 2076 | } | ||
| 2077 | #endif | ||
| 2078 | return 1; | ||
| 2079 | } | ||
| 2080 | |||
| 2081 | if (tsk_cache_hot) { | ||
| 2082 | schedstat_inc(p, se.statistics.nr_failed_migrations_hot); | ||
| 2083 | return 0; | ||
| 2084 | } | ||
| 2085 | return 1; | ||
| 2086 | } | ||
| 2087 | |||
| 2088 | /* | ||
| 2089 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
| 2090 | * part of active balancing operations within "domain". | ||
| 2091 | * Returns 1 if successful and 0 otherwise. | ||
| 2092 | * | ||
| 2093 | * Called with both runqueues locked. | ||
| 2094 | */ | ||
| 2095 | static int | ||
| 2096 | move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 2097 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
| 2098 | { | ||
| 2099 | struct task_struct *p, *n; | ||
| 2100 | struct cfs_rq *cfs_rq; | ||
| 2101 | int pinned = 0; | ||
| 2102 | |||
| 2103 | for_each_leaf_cfs_rq(busiest, cfs_rq) { | ||
| 2104 | list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { | ||
| 2105 | |||
| 2106 | if (!can_migrate_task(p, busiest, this_cpu, | ||
| 2107 | sd, idle, &pinned)) | ||
| 2108 | continue; | ||
| 2109 | |||
| 2110 | pull_task(busiest, p, this_rq, this_cpu); | ||
| 2111 | /* | ||
| 2112 | * Right now, this is only the second place pull_task() | ||
| 2113 | * is called, so we can safely collect pull_task() | ||
| 2114 | * stats here rather than inside pull_task(). | ||
| 2115 | */ | ||
| 2116 | schedstat_inc(sd, lb_gained[idle]); | ||
| 2117 | return 1; | ||
| 2118 | } | ||
| 2119 | } | ||
| 2120 | |||
| 2121 | return 0; | ||
| 2122 | } | ||
| 2123 | |||
| 2124 | static unsigned long | ||
| 2125 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 2126 | unsigned long max_load_move, struct sched_domain *sd, | ||
| 2127 | enum cpu_idle_type idle, int *all_pinned, | ||
| 2128 | struct cfs_rq *busiest_cfs_rq) | ||
| 2129 | { | ||
| 2130 | int loops = 0, pulled = 0; | ||
| 2131 | long rem_load_move = max_load_move; | ||
| 2132 | struct task_struct *p, *n; | ||
| 2133 | |||
| 2134 | if (max_load_move == 0) | ||
| 2135 | goto out; | ||
| 2136 | |||
| 2137 | list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { | ||
| 2138 | if (loops++ > sysctl_sched_nr_migrate) | ||
| 2139 | break; | ||
| 2140 | |||
| 2141 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
| 2142 | !can_migrate_task(p, busiest, this_cpu, sd, idle, | ||
| 2143 | all_pinned)) | ||
| 2144 | continue; | ||
| 2145 | |||
| 2146 | pull_task(busiest, p, this_rq, this_cpu); | ||
| 2147 | pulled++; | ||
| 2148 | rem_load_move -= p->se.load.weight; | ||
| 2149 | |||
| 2150 | #ifdef CONFIG_PREEMPT | ||
| 2151 | /* | ||
| 2152 | * NEWIDLE balancing is a source of latency, so preemptible | ||
| 2153 | * kernels will stop after the first task is pulled to minimize | ||
| 2154 | * the critical section. | ||
| 2155 | */ | ||
| 2156 | if (idle == CPU_NEWLY_IDLE) | ||
| 2157 | break; | ||
| 2158 | #endif | ||
| 2159 | |||
| 2160 | /* | ||
| 2161 | * We only want to steal up to the prescribed amount of | ||
| 2162 | * weighted load. | ||
| 2163 | */ | ||
| 2164 | if (rem_load_move <= 0) | ||
| 2165 | break; | ||
| 2166 | } | ||
| 2167 | out: | ||
| 2168 | /* | ||
| 2169 | * Right now, this is one of only two places pull_task() is called, | ||
| 2170 | * so we can safely collect pull_task() stats here rather than | ||
| 2171 | * inside pull_task(). | ||
| 2172 | */ | ||
| 2173 | schedstat_add(sd, lb_gained[idle], pulled); | ||
| 2174 | |||
| 2175 | return max_load_move - rem_load_move; | ||
| 2176 | } | ||
| 2177 | |||
| 2178 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 2179 | /* | ||
| 2180 | * update tg->load_weight by folding this cpu's load_avg | ||
| 2181 | */ | ||
| 2182 | static int update_shares_cpu(struct task_group *tg, int cpu) | ||
| 2183 | { | ||
| 2184 | struct cfs_rq *cfs_rq; | ||
| 2185 | unsigned long flags; | ||
| 2186 | struct rq *rq; | ||
| 2187 | |||
| 2188 | if (!tg->se[cpu]) | ||
| 2189 | return 0; | ||
| 2190 | |||
| 2191 | rq = cpu_rq(cpu); | ||
| 2192 | cfs_rq = tg->cfs_rq[cpu]; | ||
| 2193 | |||
| 2194 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
| 2195 | |||
| 2196 | update_rq_clock(rq); | ||
| 2197 | update_cfs_load(cfs_rq, 1); | ||
| 2198 | |||
| 2199 | /* | ||
| 2200 | * We need to update shares after updating tg->load_weight in | ||
| 2201 | * order to adjust the weight of groups with long running tasks. | ||
| 2202 | */ | ||
| 2203 | update_cfs_shares(cfs_rq); | ||
| 2204 | |||
| 2205 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
| 2206 | |||
| 2207 | return 0; | ||
| 2208 | } | ||
| 2209 | |||
| 2210 | static void update_shares(int cpu) | ||
| 2211 | { | ||
| 2212 | struct cfs_rq *cfs_rq; | ||
| 2213 | struct rq *rq = cpu_rq(cpu); | ||
| 2214 | |||
| 2215 | rcu_read_lock(); | ||
| 2216 | /* | ||
| 2217 | * Iterates the task_group tree in a bottom up fashion, see | ||
| 2218 | * list_add_leaf_cfs_rq() for details. | ||
| 2219 | */ | ||
| 2220 | for_each_leaf_cfs_rq(rq, cfs_rq) | ||
| 2221 | update_shares_cpu(cfs_rq->tg, cpu); | ||
| 2222 | rcu_read_unlock(); | ||
| 2223 | } | ||
| 2224 | |||
| 2225 | /* | ||
| 2226 | * Compute the cpu's hierarchical load factor for each task group. | ||
| 2227 | * This needs to be done in a top-down fashion because the load of a child | ||
| 2228 | * group is a fraction of its parents load. | ||
| 2229 | */ | ||
| 2230 | static int tg_load_down(struct task_group *tg, void *data) | ||
| 2231 | { | ||
| 2232 | unsigned long load; | ||
| 2233 | long cpu = (long)data; | ||
| 2234 | |||
| 2235 | if (!tg->parent) { | ||
| 2236 | load = cpu_rq(cpu)->load.weight; | ||
| 2237 | } else { | ||
| 2238 | load = tg->parent->cfs_rq[cpu]->h_load; | ||
| 2239 | load *= tg->se[cpu]->load.weight; | ||
| 2240 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | ||
| 2241 | } | ||
| 2242 | |||
| 2243 | tg->cfs_rq[cpu]->h_load = load; | ||
| 2244 | |||
| 2245 | return 0; | ||
| 2246 | } | ||
| 2247 | |||
| 2248 | static void update_h_load(long cpu) | ||
| 2249 | { | ||
| 2250 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); | ||
| 2251 | } | ||
| 2252 | |||
| 2253 | static unsigned long | ||
| 2254 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 2255 | unsigned long max_load_move, | ||
| 2256 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 2257 | int *all_pinned) | ||
| 2258 | { | ||
| 2259 | long rem_load_move = max_load_move; | ||
| 2260 | struct cfs_rq *busiest_cfs_rq; | ||
| 2261 | |||
| 2262 | rcu_read_lock(); | ||
| 2263 | update_h_load(cpu_of(busiest)); | ||
| 2264 | |||
| 2265 | for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) { | ||
| 2266 | unsigned long busiest_h_load = busiest_cfs_rq->h_load; | ||
| 2267 | unsigned long busiest_weight = busiest_cfs_rq->load.weight; | ||
| 2268 | u64 rem_load, moved_load; | ||
| 2269 | |||
| 2270 | /* | ||
| 2271 | * empty group | ||
| 2272 | */ | ||
| 2273 | if (!busiest_cfs_rq->task_weight) | ||
| 2274 | continue; | ||
| 2275 | |||
| 2276 | rem_load = (u64)rem_load_move * busiest_weight; | ||
| 2277 | rem_load = div_u64(rem_load, busiest_h_load + 1); | ||
| 2278 | |||
| 2279 | moved_load = balance_tasks(this_rq, this_cpu, busiest, | ||
| 2280 | rem_load, sd, idle, all_pinned, | ||
| 2281 | busiest_cfs_rq); | ||
| 2282 | |||
| 2283 | if (!moved_load) | ||
| 2284 | continue; | ||
| 2285 | |||
| 2286 | moved_load *= busiest_h_load; | ||
| 2287 | moved_load = div_u64(moved_load, busiest_weight + 1); | ||
| 2288 | |||
| 2289 | rem_load_move -= moved_load; | ||
| 2290 | if (rem_load_move < 0) | ||
| 2291 | break; | ||
| 2292 | } | ||
| 2293 | rcu_read_unlock(); | ||
| 2294 | |||
| 2295 | return max_load_move - rem_load_move; | ||
| 2296 | } | ||
| 2297 | #else | ||
| 2298 | static inline void update_shares(int cpu) | ||
| 2299 | { | ||
| 2300 | } | ||
| 2301 | |||
| 2302 | static unsigned long | ||
| 2303 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 2304 | unsigned long max_load_move, | ||
| 2305 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 2306 | int *all_pinned) | ||
| 2307 | { | ||
| 2308 | return balance_tasks(this_rq, this_cpu, busiest, | ||
| 2309 | max_load_move, sd, idle, all_pinned, | ||
| 2310 | &busiest->cfs); | ||
| 2311 | } | ||
| 2312 | #endif | ||
| 2313 | |||
| 2314 | /* | ||
| 2315 | * move_tasks tries to move up to max_load_move weighted load from busiest to | ||
| 2316 | * this_rq, as part of a balancing operation within domain "sd". | ||
| 2317 | * Returns 1 if successful and 0 otherwise. | ||
| 2318 | * | ||
| 2319 | * Called with both runqueues locked. | ||
| 2320 | */ | ||
| 2321 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 2322 | unsigned long max_load_move, | ||
| 2323 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 2324 | int *all_pinned) | ||
| 2325 | { | ||
| 2326 | unsigned long total_load_moved = 0, load_moved; | ||
| 2327 | |||
| 2328 | do { | ||
| 2329 | load_moved = load_balance_fair(this_rq, this_cpu, busiest, | ||
| 2330 | max_load_move - total_load_moved, | ||
| 2331 | sd, idle, all_pinned); | ||
| 2332 | |||
| 2333 | total_load_moved += load_moved; | ||
| 2334 | |||
| 2335 | #ifdef CONFIG_PREEMPT | ||
| 2336 | /* | ||
| 2337 | * NEWIDLE balancing is a source of latency, so preemptible | ||
| 2338 | * kernels will stop after the first task is pulled to minimize | ||
| 2339 | * the critical section. | ||
| 2340 | */ | ||
| 2341 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | ||
| 2342 | break; | ||
| 2343 | |||
| 2344 | if (raw_spin_is_contended(&this_rq->lock) || | ||
| 2345 | raw_spin_is_contended(&busiest->lock)) | ||
| 2346 | break; | ||
| 2347 | #endif | ||
| 2348 | } while (load_moved && max_load_move > total_load_moved); | ||
| 2349 | |||
| 2350 | return total_load_moved > 0; | ||
| 2351 | } | ||
| 2352 | |||
| 2353 | /********** Helpers for find_busiest_group ************************/ | ||
| 2354 | /* | ||
| 2355 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
| 2356 | * during load balancing. | ||
| 2357 | */ | ||
| 2358 | struct sd_lb_stats { | ||
| 2359 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
| 2360 | struct sched_group *this; /* Local group in this sd */ | ||
| 2361 | unsigned long total_load; /* Total load of all groups in sd */ | ||
| 2362 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
| 2363 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
| 2364 | |||
| 2365 | /** Statistics of this group */ | ||
| 2366 | unsigned long this_load; | ||
| 2367 | unsigned long this_load_per_task; | ||
| 2368 | unsigned long this_nr_running; | ||
| 2369 | unsigned long this_has_capacity; | ||
| 2370 | unsigned int this_idle_cpus; | ||
| 2371 | |||
| 2372 | /* Statistics of the busiest group */ | ||
| 2373 | unsigned int busiest_idle_cpus; | ||
| 2374 | unsigned long max_load; | ||
| 2375 | unsigned long busiest_load_per_task; | ||
| 2376 | unsigned long busiest_nr_running; | ||
| 2377 | unsigned long busiest_group_capacity; | ||
| 2378 | unsigned long busiest_has_capacity; | ||
| 2379 | unsigned int busiest_group_weight; | ||
| 2380 | |||
| 2381 | int group_imb; /* Is there imbalance in this sd */ | ||
| 2382 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 2383 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
| 2384 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
| 2385 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
| 2386 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
| 2387 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
| 2388 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
| 2389 | #endif | ||
| 2390 | }; | ||
| 2391 | |||
| 2392 | /* | ||
| 2393 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
| 2394 | */ | ||
| 2395 | struct sg_lb_stats { | ||
| 2396 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
| 2397 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
| 2398 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
| 2399 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
| 2400 | unsigned long group_capacity; | ||
| 2401 | unsigned long idle_cpus; | ||
| 2402 | unsigned long group_weight; | ||
| 2403 | int group_imb; /* Is there an imbalance in the group ? */ | ||
| 2404 | int group_has_capacity; /* Is there extra capacity in the group? */ | ||
| 2405 | }; | ||
| 2406 | |||
| 2407 | /** | ||
| 2408 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
| 2409 | * @group: The group whose first cpu is to be returned. | ||
| 2410 | */ | ||
| 2411 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
| 2412 | { | ||
| 2413 | return cpumask_first(sched_group_cpus(group)); | ||
| 2414 | } | ||
| 2415 | |||
| 2416 | /** | ||
| 2417 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
| 2418 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
| 2419 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
| 2420 | */ | ||
| 2421 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
| 2422 | enum cpu_idle_type idle) | ||
| 2423 | { | ||
| 2424 | int load_idx; | ||
| 2425 | |||
| 2426 | switch (idle) { | ||
| 2427 | case CPU_NOT_IDLE: | ||
| 2428 | load_idx = sd->busy_idx; | ||
| 2429 | break; | ||
| 2430 | |||
| 2431 | case CPU_NEWLY_IDLE: | ||
| 2432 | load_idx = sd->newidle_idx; | ||
| 2433 | break; | ||
| 2434 | default: | ||
| 2435 | load_idx = sd->idle_idx; | ||
| 2436 | break; | ||
| 2437 | } | ||
| 2438 | |||
| 2439 | return load_idx; | ||
| 2440 | } | ||
| 2441 | |||
| 2442 | |||
| 2443 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 2444 | /** | ||
| 2445 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
| 2446 | * the given sched_domain, during load balancing. | ||
| 2447 | * | ||
| 2448 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
| 2449 | * @sds: Variable containing the statistics for sd. | ||
| 2450 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
| 2451 | */ | ||
| 2452 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
| 2453 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
| 2454 | { | ||
| 2455 | /* | ||
| 2456 | * Busy processors will not participate in power savings | ||
| 2457 | * balance. | ||
| 2458 | */ | ||
| 2459 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 2460 | sds->power_savings_balance = 0; | ||
| 2461 | else { | ||
| 2462 | sds->power_savings_balance = 1; | ||
| 2463 | sds->min_nr_running = ULONG_MAX; | ||
| 2464 | sds->leader_nr_running = 0; | ||
| 2465 | } | ||
| 2466 | } | ||
| 2467 | |||
| 2468 | /** | ||
| 2469 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
| 2470 | * sched_domain while performing load balancing. | ||
| 2471 | * | ||
| 2472 | * @group: sched_group belonging to the sched_domain under consideration. | ||
| 2473 | * @sds: Variable containing the statistics of the sched_domain | ||
| 2474 | * @local_group: Does group contain the CPU for which we're performing | ||
| 2475 | * load balancing ? | ||
| 2476 | * @sgs: Variable containing the statistics of the group. | ||
| 2477 | */ | ||
| 2478 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
| 2479 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
| 2480 | { | ||
| 2481 | |||
| 2482 | if (!sds->power_savings_balance) | ||
| 2483 | return; | ||
| 2484 | |||
| 2485 | /* | ||
| 2486 | * If the local group is idle or completely loaded | ||
| 2487 | * no need to do power savings balance at this domain | ||
| 2488 | */ | ||
| 2489 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
| 2490 | !sds->this_nr_running)) | ||
| 2491 | sds->power_savings_balance = 0; | ||
| 2492 | |||
| 2493 | /* | ||
| 2494 | * If a group is already running at full capacity or idle, | ||
| 2495 | * don't include that group in power savings calculations | ||
| 2496 | */ | ||
| 2497 | if (!sds->power_savings_balance || | ||
| 2498 | sgs->sum_nr_running >= sgs->group_capacity || | ||
| 2499 | !sgs->sum_nr_running) | ||
| 2500 | return; | ||
| 2501 | |||
| 2502 | /* | ||
| 2503 | * Calculate the group which has the least non-idle load. | ||
| 2504 | * This is the group from where we need to pick up the load | ||
| 2505 | * for saving power | ||
| 2506 | */ | ||
| 2507 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
| 2508 | (sgs->sum_nr_running == sds->min_nr_running && | ||
| 2509 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
| 2510 | sds->group_min = group; | ||
| 2511 | sds->min_nr_running = sgs->sum_nr_running; | ||
| 2512 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
| 2513 | sgs->sum_nr_running; | ||
| 2514 | } | ||
| 2515 | |||
| 2516 | /* | ||
| 2517 | * Calculate the group which is almost near its | ||
| 2518 | * capacity but still has some space to pick up some load | ||
| 2519 | * from other group and save more power | ||
| 2520 | */ | ||
| 2521 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
| 2522 | return; | ||
| 2523 | |||
| 2524 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
| 2525 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
| 2526 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
| 2527 | sds->group_leader = group; | ||
| 2528 | sds->leader_nr_running = sgs->sum_nr_running; | ||
| 2529 | } | ||
| 2530 | } | ||
| 2531 | |||
| 2532 | /** | ||
| 2533 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
| 2534 | * @sds: Variable containing the statistics of the sched_domain | ||
| 2535 | * under consideration. | ||
| 2536 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
| 2537 | * @imbalance: Variable to store the imbalance. | ||
| 2538 | * | ||
| 2539 | * Description: | ||
| 2540 | * Check if we have potential to perform some power-savings balance. | ||
| 2541 | * If yes, set the busiest group to be the least loaded group in the | ||
| 2542 | * sched_domain, so that it's CPUs can be put to idle. | ||
| 2543 | * | ||
| 2544 | * Returns 1 if there is potential to perform power-savings balance. | ||
| 2545 | * Else returns 0. | ||
| 2546 | */ | ||
| 2547 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 2548 | int this_cpu, unsigned long *imbalance) | ||
| 2549 | { | ||
| 2550 | if (!sds->power_savings_balance) | ||
| 2551 | return 0; | ||
| 2552 | |||
| 2553 | if (sds->this != sds->group_leader || | ||
| 2554 | sds->group_leader == sds->group_min) | ||
| 2555 | return 0; | ||
| 2556 | |||
| 2557 | *imbalance = sds->min_load_per_task; | ||
| 2558 | sds->busiest = sds->group_min; | ||
| 2559 | |||
| 2560 | return 1; | ||
| 2561 | |||
| 2562 | } | ||
| 2563 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
| 2564 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
| 2565 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
| 2566 | { | ||
| 2567 | return; | ||
| 2568 | } | ||
| 2569 | |||
| 2570 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
| 2571 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
| 2572 | { | ||
| 2573 | return; | ||
| 2574 | } | ||
| 2575 | |||
| 2576 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 2577 | int this_cpu, unsigned long *imbalance) | ||
| 2578 | { | ||
| 2579 | return 0; | ||
| 2580 | } | ||
| 2581 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
| 2582 | |||
| 2583 | |||
| 2584 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 2585 | { | ||
| 2586 | return SCHED_POWER_SCALE; | ||
| 2587 | } | ||
| 2588 | |||
| 2589 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 2590 | { | ||
| 2591 | return default_scale_freq_power(sd, cpu); | ||
| 2592 | } | ||
| 2593 | |||
| 2594 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 2595 | { | ||
| 2596 | unsigned long weight = sd->span_weight; | ||
| 2597 | unsigned long smt_gain = sd->smt_gain; | ||
| 2598 | |||
| 2599 | smt_gain /= weight; | ||
| 2600 | |||
| 2601 | return smt_gain; | ||
| 2602 | } | ||
| 2603 | |||
| 2604 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 2605 | { | ||
| 2606 | return default_scale_smt_power(sd, cpu); | ||
| 2607 | } | ||
| 2608 | |||
| 2609 | unsigned long scale_rt_power(int cpu) | ||
| 2610 | { | ||
| 2611 | struct rq *rq = cpu_rq(cpu); | ||
| 2612 | u64 total, available; | ||
| 2613 | |||
| 2614 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
| 2615 | |||
| 2616 | if (unlikely(total < rq->rt_avg)) { | ||
| 2617 | /* Ensures that power won't end up being negative */ | ||
| 2618 | available = 0; | ||
| 2619 | } else { | ||
| 2620 | available = total - rq->rt_avg; | ||
| 2621 | } | ||
| 2622 | |||
| 2623 | if (unlikely((s64)total < SCHED_POWER_SCALE)) | ||
| 2624 | total = SCHED_POWER_SCALE; | ||
| 2625 | |||
| 2626 | total >>= SCHED_POWER_SHIFT; | ||
| 2627 | |||
| 2628 | return div_u64(available, total); | ||
| 2629 | } | ||
| 2630 | |||
| 2631 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
| 2632 | { | ||
| 2633 | unsigned long weight = sd->span_weight; | ||
| 2634 | unsigned long power = SCHED_POWER_SCALE; | ||
| 2635 | struct sched_group *sdg = sd->groups; | ||
| 2636 | |||
| 2637 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
| 2638 | if (sched_feat(ARCH_POWER)) | ||
| 2639 | power *= arch_scale_smt_power(sd, cpu); | ||
| 2640 | else | ||
| 2641 | power *= default_scale_smt_power(sd, cpu); | ||
| 2642 | |||
| 2643 | power >>= SCHED_POWER_SHIFT; | ||
| 2644 | } | ||
| 2645 | |||
| 2646 | sdg->sgp->power_orig = power; | ||
| 2647 | |||
| 2648 | if (sched_feat(ARCH_POWER)) | ||
| 2649 | power *= arch_scale_freq_power(sd, cpu); | ||
| 2650 | else | ||
| 2651 | power *= default_scale_freq_power(sd, cpu); | ||
| 2652 | |||
| 2653 | power >>= SCHED_POWER_SHIFT; | ||
| 2654 | |||
| 2655 | power *= scale_rt_power(cpu); | ||
| 2656 | power >>= SCHED_POWER_SHIFT; | ||
| 2657 | |||
| 2658 | if (!power) | ||
| 2659 | power = 1; | ||
| 2660 | |||
| 2661 | cpu_rq(cpu)->cpu_power = power; | ||
| 2662 | sdg->sgp->power = power; | ||
| 2663 | } | ||
| 2664 | |||
| 2665 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
| 2666 | { | ||
| 2667 | struct sched_domain *child = sd->child; | ||
| 2668 | struct sched_group *group, *sdg = sd->groups; | ||
| 2669 | unsigned long power; | ||
| 2670 | |||
| 2671 | if (!child) { | ||
| 2672 | update_cpu_power(sd, cpu); | ||
| 2673 | return; | ||
| 2674 | } | ||
| 2675 | |||
| 2676 | power = 0; | ||
| 2677 | |||
| 2678 | group = child->groups; | ||
| 2679 | do { | ||
| 2680 | power += group->sgp->power; | ||
| 2681 | group = group->next; | ||
| 2682 | } while (group != child->groups); | ||
| 2683 | |||
| 2684 | sdg->sgp->power = power; | ||
| 2685 | } | ||
| 2686 | |||
| 2687 | /* | ||
| 2688 | * Try and fix up capacity for tiny siblings, this is needed when | ||
| 2689 | * things like SD_ASYM_PACKING need f_b_g to select another sibling | ||
| 2690 | * which on its own isn't powerful enough. | ||
| 2691 | * | ||
| 2692 | * See update_sd_pick_busiest() and check_asym_packing(). | ||
| 2693 | */ | ||
| 2694 | static inline int | ||
| 2695 | fix_small_capacity(struct sched_domain *sd, struct sched_group *group) | ||
| 2696 | { | ||
| 2697 | /* | ||
| 2698 | * Only siblings can have significantly less than SCHED_POWER_SCALE | ||
| 2699 | */ | ||
| 2700 | if (!(sd->flags & SD_SHARE_CPUPOWER)) | ||
| 2701 | return 0; | ||
| 2702 | |||
| 2703 | /* | ||
| 2704 | * If ~90% of the cpu_power is still there, we're good. | ||
| 2705 | */ | ||
| 2706 | if (group->sgp->power * 32 > group->sgp->power_orig * 29) | ||
| 2707 | return 1; | ||
| 2708 | |||
| 2709 | return 0; | ||
| 2710 | } | ||
| 2711 | |||
| 2712 | /** | ||
| 2713 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
| 2714 | * @sd: The sched_domain whose statistics are to be updated. | ||
| 2715 | * @group: sched_group whose statistics are to be updated. | ||
| 2716 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 2717 | * @idle: Idle status of this_cpu | ||
| 2718 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
| 2719 | * @local_group: Does group contain this_cpu. | ||
| 2720 | * @cpus: Set of cpus considered for load balancing. | ||
| 2721 | * @balance: Should we balance. | ||
| 2722 | * @sgs: variable to hold the statistics for this group. | ||
| 2723 | */ | ||
| 2724 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
| 2725 | struct sched_group *group, int this_cpu, | ||
| 2726 | enum cpu_idle_type idle, int load_idx, | ||
| 2727 | int local_group, const struct cpumask *cpus, | ||
| 2728 | int *balance, struct sg_lb_stats *sgs) | ||
| 2729 | { | ||
| 2730 | unsigned long load, max_cpu_load, min_cpu_load, max_nr_running; | ||
| 2731 | int i; | ||
| 2732 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
| 2733 | unsigned long avg_load_per_task = 0; | ||
| 2734 | |||
| 2735 | if (local_group) | ||
| 2736 | balance_cpu = group_first_cpu(group); | ||
| 2737 | |||
| 2738 | /* Tally up the load of all CPUs in the group */ | ||
| 2739 | max_cpu_load = 0; | ||
| 2740 | min_cpu_load = ~0UL; | ||
| 2741 | max_nr_running = 0; | ||
| 2742 | |||
| 2743 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
| 2744 | struct rq *rq = cpu_rq(i); | ||
| 2745 | |||
| 2746 | /* Bias balancing toward cpus of our domain */ | ||
| 2747 | if (local_group) { | ||
| 2748 | if (idle_cpu(i) && !first_idle_cpu) { | ||
| 2749 | first_idle_cpu = 1; | ||
| 2750 | balance_cpu = i; | ||
| 2751 | } | ||
| 2752 | |||
| 2753 | load = target_load(i, load_idx); | ||
| 2754 | } else { | ||
| 2755 | load = source_load(i, load_idx); | ||
| 2756 | if (load > max_cpu_load) { | ||
| 2757 | max_cpu_load = load; | ||
| 2758 | max_nr_running = rq->nr_running; | ||
| 2759 | } | ||
| 2760 | if (min_cpu_load > load) | ||
| 2761 | min_cpu_load = load; | ||
| 2762 | } | ||
| 2763 | |||
| 2764 | sgs->group_load += load; | ||
| 2765 | sgs->sum_nr_running += rq->nr_running; | ||
| 2766 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
| 2767 | if (idle_cpu(i)) | ||
| 2768 | sgs->idle_cpus++; | ||
| 2769 | } | ||
| 2770 | |||
| 2771 | /* | ||
| 2772 | * First idle cpu or the first cpu(busiest) in this sched group | ||
| 2773 | * is eligible for doing load balancing at this and above | ||
| 2774 | * domains. In the newly idle case, we will allow all the cpu's | ||
| 2775 | * to do the newly idle load balance. | ||
| 2776 | */ | ||
| 2777 | if (idle != CPU_NEWLY_IDLE && local_group) { | ||
| 2778 | if (balance_cpu != this_cpu) { | ||
| 2779 | *balance = 0; | ||
| 2780 | return; | ||
| 2781 | } | ||
| 2782 | update_group_power(sd, this_cpu); | ||
| 2783 | } | ||
| 2784 | |||
| 2785 | /* Adjust by relative CPU power of the group */ | ||
| 2786 | sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; | ||
| 2787 | |||
| 2788 | /* | ||
| 2789 | * Consider the group unbalanced when the imbalance is larger | ||
| 2790 | * than the average weight of a task. | ||
| 2791 | * | ||
| 2792 | * APZ: with cgroup the avg task weight can vary wildly and | ||
| 2793 | * might not be a suitable number - should we keep a | ||
| 2794 | * normalized nr_running number somewhere that negates | ||
| 2795 | * the hierarchy? | ||
| 2796 | */ | ||
| 2797 | if (sgs->sum_nr_running) | ||
| 2798 | avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; | ||
| 2799 | |||
| 2800 | if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1) | ||
| 2801 | sgs->group_imb = 1; | ||
| 2802 | |||
| 2803 | sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, | ||
| 2804 | SCHED_POWER_SCALE); | ||
| 2805 | if (!sgs->group_capacity) | ||
| 2806 | sgs->group_capacity = fix_small_capacity(sd, group); | ||
| 2807 | sgs->group_weight = group->group_weight; | ||
| 2808 | |||
| 2809 | if (sgs->group_capacity > sgs->sum_nr_running) | ||
| 2810 | sgs->group_has_capacity = 1; | ||
| 2811 | } | ||
| 2812 | |||
| 2813 | /** | ||
| 2814 | * update_sd_pick_busiest - return 1 on busiest group | ||
| 2815 | * @sd: sched_domain whose statistics are to be checked | ||
| 2816 | * @sds: sched_domain statistics | ||
| 2817 | * @sg: sched_group candidate to be checked for being the busiest | ||
| 2818 | * @sgs: sched_group statistics | ||
| 2819 | * @this_cpu: the current cpu | ||
| 2820 | * | ||
| 2821 | * Determine if @sg is a busier group than the previously selected | ||
| 2822 | * busiest group. | ||
| 2823 | */ | ||
| 2824 | static bool update_sd_pick_busiest(struct sched_domain *sd, | ||
| 2825 | struct sd_lb_stats *sds, | ||
| 2826 | struct sched_group *sg, | ||
| 2827 | struct sg_lb_stats *sgs, | ||
| 2828 | int this_cpu) | ||
| 2829 | { | ||
| 2830 | if (sgs->avg_load <= sds->max_load) | ||
| 2831 | return false; | ||
| 2832 | |||
| 2833 | if (sgs->sum_nr_running > sgs->group_capacity) | ||
| 2834 | return true; | ||
| 2835 | |||
| 2836 | if (sgs->group_imb) | ||
| 2837 | return true; | ||
| 2838 | |||
| 2839 | /* | ||
| 2840 | * ASYM_PACKING needs to move all the work to the lowest | ||
| 2841 | * numbered CPUs in the group, therefore mark all groups | ||
| 2842 | * higher than ourself as busy. | ||
| 2843 | */ | ||
| 2844 | if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && | ||
| 2845 | this_cpu < group_first_cpu(sg)) { | ||
| 2846 | if (!sds->busiest) | ||
| 2847 | return true; | ||
| 2848 | |||
| 2849 | if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) | ||
| 2850 | return true; | ||
| 2851 | } | ||
| 2852 | |||
| 2853 | return false; | ||
| 2854 | } | ||
| 2855 | |||
| 2856 | /** | ||
| 2857 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
| 2858 | * @sd: sched_domain whose statistics are to be updated. | ||
| 2859 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 2860 | * @idle: Idle status of this_cpu | ||
| 2861 | * @cpus: Set of cpus considered for load balancing. | ||
| 2862 | * @balance: Should we balance. | ||
| 2863 | * @sds: variable to hold the statistics for this sched_domain. | ||
| 2864 | */ | ||
| 2865 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
| 2866 | enum cpu_idle_type idle, const struct cpumask *cpus, | ||
| 2867 | int *balance, struct sd_lb_stats *sds) | ||
| 2868 | { | ||
| 2869 | struct sched_domain *child = sd->child; | ||
| 2870 | struct sched_group *sg = sd->groups; | ||
| 2871 | struct sg_lb_stats sgs; | ||
| 2872 | int load_idx, prefer_sibling = 0; | ||
| 2873 | |||
| 2874 | if (child && child->flags & SD_PREFER_SIBLING) | ||
| 2875 | prefer_sibling = 1; | ||
| 2876 | |||
| 2877 | init_sd_power_savings_stats(sd, sds, idle); | ||
| 2878 | load_idx = get_sd_load_idx(sd, idle); | ||
| 2879 | |||
| 2880 | do { | ||
| 2881 | int local_group; | ||
| 2882 | |||
| 2883 | local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); | ||
| 2884 | memset(&sgs, 0, sizeof(sgs)); | ||
| 2885 | update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, | ||
| 2886 | local_group, cpus, balance, &sgs); | ||
| 2887 | |||
| 2888 | if (local_group && !(*balance)) | ||
| 2889 | return; | ||
| 2890 | |||
| 2891 | sds->total_load += sgs.group_load; | ||
| 2892 | sds->total_pwr += sg->sgp->power; | ||
| 2893 | |||
| 2894 | /* | ||
| 2895 | * In case the child domain prefers tasks go to siblings | ||
| 2896 | * first, lower the sg capacity to one so that we'll try | ||
| 2897 | * and move all the excess tasks away. We lower the capacity | ||
| 2898 | * of a group only if the local group has the capacity to fit | ||
| 2899 | * these excess tasks, i.e. nr_running < group_capacity. The | ||
| 2900 | * extra check prevents the case where you always pull from the | ||
| 2901 | * heaviest group when it is already under-utilized (possible | ||
| 2902 | * with a large weight task outweighs the tasks on the system). | ||
| 2903 | */ | ||
| 2904 | if (prefer_sibling && !local_group && sds->this_has_capacity) | ||
| 2905 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
| 2906 | |||
| 2907 | if (local_group) { | ||
| 2908 | sds->this_load = sgs.avg_load; | ||
| 2909 | sds->this = sg; | ||
| 2910 | sds->this_nr_running = sgs.sum_nr_running; | ||
| 2911 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
| 2912 | sds->this_has_capacity = sgs.group_has_capacity; | ||
| 2913 | sds->this_idle_cpus = sgs.idle_cpus; | ||
| 2914 | } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) { | ||
| 2915 | sds->max_load = sgs.avg_load; | ||
| 2916 | sds->busiest = sg; | ||
| 2917 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
| 2918 | sds->busiest_idle_cpus = sgs.idle_cpus; | ||
| 2919 | sds->busiest_group_capacity = sgs.group_capacity; | ||
| 2920 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
| 2921 | sds->busiest_has_capacity = sgs.group_has_capacity; | ||
| 2922 | sds->busiest_group_weight = sgs.group_weight; | ||
| 2923 | sds->group_imb = sgs.group_imb; | ||
| 2924 | } | ||
| 2925 | |||
| 2926 | update_sd_power_savings_stats(sg, sds, local_group, &sgs); | ||
| 2927 | sg = sg->next; | ||
| 2928 | } while (sg != sd->groups); | ||
| 2929 | } | ||
| 2930 | |||
| 2931 | int __weak arch_sd_sibling_asym_packing(void) | ||
| 2932 | { | ||
| 2933 | return 0*SD_ASYM_PACKING; | ||
| 2934 | } | ||
| 2935 | |||
| 2936 | /** | ||
| 2937 | * check_asym_packing - Check to see if the group is packed into the | ||
| 2938 | * sched doman. | ||
| 2939 | * | ||
| 2940 | * This is primarily intended to used at the sibling level. Some | ||
| 2941 | * cores like POWER7 prefer to use lower numbered SMT threads. In the | ||
| 2942 | * case of POWER7, it can move to lower SMT modes only when higher | ||
| 2943 | * threads are idle. When in lower SMT modes, the threads will | ||
| 2944 | * perform better since they share less core resources. Hence when we | ||
| 2945 | * have idle threads, we want them to be the higher ones. | ||
| 2946 | * | ||
| 2947 | * This packing function is run on idle threads. It checks to see if | ||
| 2948 | * the busiest CPU in this domain (core in the P7 case) has a higher | ||
| 2949 | * CPU number than the packing function is being run on. Here we are | ||
| 2950 | * assuming lower CPU number will be equivalent to lower a SMT thread | ||
| 2951 | * number. | ||
| 2952 | * | ||
| 2953 | * Returns 1 when packing is required and a task should be moved to | ||
| 2954 | * this CPU. The amount of the imbalance is returned in *imbalance. | ||
| 2955 | * | ||
| 2956 | * @sd: The sched_domain whose packing is to be checked. | ||
| 2957 | * @sds: Statistics of the sched_domain which is to be packed | ||
| 2958 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
| 2959 | * @imbalance: returns amount of imbalanced due to packing. | ||
| 2960 | */ | ||
| 2961 | static int check_asym_packing(struct sched_domain *sd, | ||
| 2962 | struct sd_lb_stats *sds, | ||
| 2963 | int this_cpu, unsigned long *imbalance) | ||
| 2964 | { | ||
| 2965 | int busiest_cpu; | ||
| 2966 | |||
| 2967 | if (!(sd->flags & SD_ASYM_PACKING)) | ||
| 2968 | return 0; | ||
| 2969 | |||
| 2970 | if (!sds->busiest) | ||
| 2971 | return 0; | ||
| 2972 | |||
| 2973 | busiest_cpu = group_first_cpu(sds->busiest); | ||
| 2974 | if (this_cpu > busiest_cpu) | ||
| 2975 | return 0; | ||
| 2976 | |||
| 2977 | *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power, | ||
| 2978 | SCHED_POWER_SCALE); | ||
| 2979 | return 1; | ||
| 2980 | } | ||
| 2981 | |||
| 2982 | /** | ||
| 2983 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
| 2984 | * amongst the groups of a sched_domain, during | ||
| 2985 | * load balancing. | ||
| 2986 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
| 2987 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
| 2988 | * @imbalance: Variable to store the imbalance. | ||
| 2989 | */ | ||
| 2990 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
| 2991 | int this_cpu, unsigned long *imbalance) | ||
| 2992 | { | ||
| 2993 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
| 2994 | unsigned int imbn = 2; | ||
| 2995 | unsigned long scaled_busy_load_per_task; | ||
| 2996 | |||
| 2997 | if (sds->this_nr_running) { | ||
| 2998 | sds->this_load_per_task /= sds->this_nr_running; | ||
| 2999 | if (sds->busiest_load_per_task > | ||
| 3000 | sds->this_load_per_task) | ||
| 3001 | imbn = 1; | ||
| 3002 | } else | ||
| 3003 | sds->this_load_per_task = | ||
| 3004 | cpu_avg_load_per_task(this_cpu); | ||
| 3005 | |||
| 3006 | scaled_busy_load_per_task = sds->busiest_load_per_task | ||
| 3007 | * SCHED_POWER_SCALE; | ||
| 3008 | scaled_busy_load_per_task /= sds->busiest->sgp->power; | ||
| 3009 | |||
| 3010 | if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= | ||
| 3011 | (scaled_busy_load_per_task * imbn)) { | ||
| 3012 | *imbalance = sds->busiest_load_per_task; | ||
| 3013 | return; | ||
| 3014 | } | ||
| 3015 | |||
| 3016 | /* | ||
| 3017 | * OK, we don't have enough imbalance to justify moving tasks, | ||
| 3018 | * however we may be able to increase total CPU power used by | ||
| 3019 | * moving them. | ||
| 3020 | */ | ||
| 3021 | |||
| 3022 | pwr_now += sds->busiest->sgp->power * | ||
| 3023 | min(sds->busiest_load_per_task, sds->max_load); | ||
| 3024 | pwr_now += sds->this->sgp->power * | ||
| 3025 | min(sds->this_load_per_task, sds->this_load); | ||
| 3026 | pwr_now /= SCHED_POWER_SCALE; | ||
| 3027 | |||
| 3028 | /* Amount of load we'd subtract */ | ||
| 3029 | tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / | ||
| 3030 | sds->busiest->sgp->power; | ||
| 3031 | if (sds->max_load > tmp) | ||
| 3032 | pwr_move += sds->busiest->sgp->power * | ||
| 3033 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
| 3034 | |||
| 3035 | /* Amount of load we'd add */ | ||
| 3036 | if (sds->max_load * sds->busiest->sgp->power < | ||
| 3037 | sds->busiest_load_per_task * SCHED_POWER_SCALE) | ||
| 3038 | tmp = (sds->max_load * sds->busiest->sgp->power) / | ||
| 3039 | sds->this->sgp->power; | ||
| 3040 | else | ||
| 3041 | tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / | ||
| 3042 | sds->this->sgp->power; | ||
| 3043 | pwr_move += sds->this->sgp->power * | ||
| 3044 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
| 3045 | pwr_move /= SCHED_POWER_SCALE; | ||
| 3046 | |||
| 3047 | /* Move if we gain throughput */ | ||
| 3048 | if (pwr_move > pwr_now) | ||
| 3049 | *imbalance = sds->busiest_load_per_task; | ||
| 3050 | } | ||
| 3051 | |||
| 3052 | /** | ||
| 3053 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
| 3054 | * groups of a given sched_domain during load balance. | ||
| 3055 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
| 3056 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
| 3057 | * @imbalance: The variable to store the imbalance. | ||
| 3058 | */ | ||
| 3059 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
| 3060 | unsigned long *imbalance) | ||
| 3061 | { | ||
| 3062 | unsigned long max_pull, load_above_capacity = ~0UL; | ||
| 3063 | |||
| 3064 | sds->busiest_load_per_task /= sds->busiest_nr_running; | ||
| 3065 | if (sds->group_imb) { | ||
| 3066 | sds->busiest_load_per_task = | ||
| 3067 | min(sds->busiest_load_per_task, sds->avg_load); | ||
| 3068 | } | ||
| 3069 | |||
| 3070 | /* | ||
| 3071 | * In the presence of smp nice balancing, certain scenarios can have | ||
| 3072 | * max load less than avg load(as we skip the groups at or below | ||
| 3073 | * its cpu_power, while calculating max_load..) | ||
| 3074 | */ | ||
| 3075 | if (sds->max_load < sds->avg_load) { | ||
| 3076 | *imbalance = 0; | ||
| 3077 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
| 3078 | } | ||
| 3079 | |||
| 3080 | if (!sds->group_imb) { | ||
| 3081 | /* | ||
| 3082 | * Don't want to pull so many tasks that a group would go idle. | ||
| 3083 | */ | ||
| 3084 | load_above_capacity = (sds->busiest_nr_running - | ||
| 3085 | sds->busiest_group_capacity); | ||
| 3086 | |||
| 3087 | load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); | ||
| 3088 | |||
| 3089 | load_above_capacity /= sds->busiest->sgp->power; | ||
| 3090 | } | ||
| 3091 | |||
| 3092 | /* | ||
| 3093 | * We're trying to get all the cpus to the average_load, so we don't | ||
| 3094 | * want to push ourselves above the average load, nor do we wish to | ||
| 3095 | * reduce the max loaded cpu below the average load. At the same time, | ||
| 3096 | * we also don't want to reduce the group load below the group capacity | ||
| 3097 | * (so that we can implement power-savings policies etc). Thus we look | ||
| 3098 | * for the minimum possible imbalance. | ||
| 3099 | * Be careful of negative numbers as they'll appear as very large values | ||
| 3100 | * with unsigned longs. | ||
| 3101 | */ | ||
| 3102 | max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); | ||
| 3103 | |||
| 3104 | /* How much load to actually move to equalise the imbalance */ | ||
| 3105 | *imbalance = min(max_pull * sds->busiest->sgp->power, | ||
| 3106 | (sds->avg_load - sds->this_load) * sds->this->sgp->power) | ||
| 3107 | / SCHED_POWER_SCALE; | ||
| 3108 | |||
| 3109 | /* | ||
| 3110 | * if *imbalance is less than the average load per runnable task | ||
| 3111 | * there is no guarantee that any tasks will be moved so we'll have | ||
| 3112 | * a think about bumping its value to force at least one task to be | ||
| 3113 | * moved | ||
| 3114 | */ | ||
| 3115 | if (*imbalance < sds->busiest_load_per_task) | ||
| 3116 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
| 3117 | |||
| 3118 | } | ||
| 3119 | |||
| 3120 | /******* find_busiest_group() helpers end here *********************/ | ||
| 3121 | |||
| 3122 | /** | ||
| 3123 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
| 3124 | * if there is an imbalance. If there isn't an imbalance, and | ||
| 3125 | * the user has opted for power-savings, it returns a group whose | ||
| 3126 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
| 3127 | * such a group exists. | ||
| 3128 | * | ||
| 3129 | * Also calculates the amount of weighted load which should be moved | ||
| 3130 | * to restore balance. | ||
| 3131 | * | ||
| 3132 | * @sd: The sched_domain whose busiest group is to be returned. | ||
| 3133 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
| 3134 | * @imbalance: Variable which stores amount of weighted load which should | ||
| 3135 | * be moved to restore balance/put a group to idle. | ||
| 3136 | * @idle: The idle status of this_cpu. | ||
| 3137 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
| 3138 | * @balance: Pointer to a variable indicating if this_cpu | ||
| 3139 | * is the appropriate cpu to perform load balancing at this_level. | ||
| 3140 | * | ||
| 3141 | * Returns: - the busiest group if imbalance exists. | ||
| 3142 | * - If no imbalance and user has opted for power-savings balance, | ||
| 3143 | * return the least loaded group whose CPUs can be | ||
| 3144 | * put to idle by rebalancing its tasks onto our group. | ||
| 3145 | */ | ||
| 3146 | static struct sched_group * | ||
| 3147 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
| 3148 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
| 3149 | const struct cpumask *cpus, int *balance) | ||
| 3150 | { | ||
| 3151 | struct sd_lb_stats sds; | ||
| 3152 | |||
| 3153 | memset(&sds, 0, sizeof(sds)); | ||
| 3154 | |||
| 3155 | /* | ||
| 3156 | * Compute the various statistics relavent for load balancing at | ||
| 3157 | * this level. | ||
| 3158 | */ | ||
| 3159 | update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds); | ||
| 3160 | |||
| 3161 | /* | ||
| 3162 | * this_cpu is not the appropriate cpu to perform load balancing at | ||
| 3163 | * this level. | ||
| 3164 | */ | ||
| 3165 | if (!(*balance)) | ||
| 3166 | goto ret; | ||
| 3167 | |||
| 3168 | if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) && | ||
| 3169 | check_asym_packing(sd, &sds, this_cpu, imbalance)) | ||
| 3170 | return sds.busiest; | ||
| 3171 | |||
| 3172 | /* There is no busy sibling group to pull tasks from */ | ||
| 3173 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
| 3174 | goto out_balanced; | ||
| 3175 | |||
| 3176 | sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; | ||
| 3177 | |||
| 3178 | /* | ||
| 3179 | * If the busiest group is imbalanced the below checks don't | ||
| 3180 | * work because they assumes all things are equal, which typically | ||
| 3181 | * isn't true due to cpus_allowed constraints and the like. | ||
| 3182 | */ | ||
| 3183 | if (sds.group_imb) | ||
| 3184 | goto force_balance; | ||
| 3185 | |||
| 3186 | /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ | ||
| 3187 | if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity && | ||
| 3188 | !sds.busiest_has_capacity) | ||
| 3189 | goto force_balance; | ||
| 3190 | |||
| 3191 | /* | ||
| 3192 | * If the local group is more busy than the selected busiest group | ||
| 3193 | * don't try and pull any tasks. | ||
| 3194 | */ | ||
| 3195 | if (sds.this_load >= sds.max_load) | ||
| 3196 | goto out_balanced; | ||
| 3197 | |||
| 3198 | /* | ||
| 3199 | * Don't pull any tasks if this group is already above the domain | ||
| 3200 | * average load. | ||
| 3201 | */ | ||
| 3202 | if (sds.this_load >= sds.avg_load) | ||
| 3203 | goto out_balanced; | ||
| 3204 | |||
| 3205 | if (idle == CPU_IDLE) { | ||
| 3206 | /* | ||
| 3207 | * This cpu is idle. If the busiest group load doesn't | ||
| 3208 | * have more tasks than the number of available cpu's and | ||
| 3209 | * there is no imbalance between this and busiest group | ||
| 3210 | * wrt to idle cpu's, it is balanced. | ||
| 3211 | */ | ||
| 3212 | if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && | ||
| 3213 | sds.busiest_nr_running <= sds.busiest_group_weight) | ||
| 3214 | goto out_balanced; | ||
| 3215 | } else { | ||
| 3216 | /* | ||
| 3217 | * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use | ||
| 3218 | * imbalance_pct to be conservative. | ||
| 3219 | */ | ||
| 3220 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
| 3221 | goto out_balanced; | ||
| 3222 | } | ||
| 3223 | |||
| 3224 | force_balance: | ||
| 3225 | /* Looks like there is an imbalance. Compute it */ | ||
| 3226 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
| 3227 | return sds.busiest; | ||
| 3228 | |||
| 3229 | out_balanced: | ||
| 3230 | /* | ||
| 3231 | * There is no obvious imbalance. But check if we can do some balancing | ||
| 3232 | * to save power. | ||
| 3233 | */ | ||
| 3234 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
| 3235 | return sds.busiest; | ||
| 3236 | ret: | ||
| 3237 | *imbalance = 0; | ||
| 3238 | return NULL; | ||
| 3239 | } | ||
| 3240 | |||
| 3241 | /* | ||
| 3242 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
| 3243 | */ | ||
| 3244 | static struct rq * | ||
| 3245 | find_busiest_queue(struct sched_domain *sd, struct sched_group *group, | ||
| 3246 | enum cpu_idle_type idle, unsigned long imbalance, | ||
| 3247 | const struct cpumask *cpus) | ||
| 3248 | { | ||
| 3249 | struct rq *busiest = NULL, *rq; | ||
| 3250 | unsigned long max_load = 0; | ||
| 3251 | int i; | ||
| 3252 | |||
| 3253 | for_each_cpu(i, sched_group_cpus(group)) { | ||
| 3254 | unsigned long power = power_of(i); | ||
| 3255 | unsigned long capacity = DIV_ROUND_CLOSEST(power, | ||
| 3256 | SCHED_POWER_SCALE); | ||
| 3257 | unsigned long wl; | ||
| 3258 | |||
| 3259 | if (!capacity) | ||
| 3260 | capacity = fix_small_capacity(sd, group); | ||
| 3261 | |||
| 3262 | if (!cpumask_test_cpu(i, cpus)) | ||
| 3263 | continue; | ||
| 3264 | |||
| 3265 | rq = cpu_rq(i); | ||
| 3266 | wl = weighted_cpuload(i); | ||
| 3267 | |||
| 3268 | /* | ||
| 3269 | * When comparing with imbalance, use weighted_cpuload() | ||
| 3270 | * which is not scaled with the cpu power. | ||
| 3271 | */ | ||
| 3272 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
| 3273 | continue; | ||
| 3274 | |||
| 3275 | /* | ||
| 3276 | * For the load comparisons with the other cpu's, consider | ||
| 3277 | * the weighted_cpuload() scaled with the cpu power, so that | ||
| 3278 | * the load can be moved away from the cpu that is potentially | ||
| 3279 | * running at a lower capacity. | ||
| 3280 | */ | ||
| 3281 | wl = (wl * SCHED_POWER_SCALE) / power; | ||
| 3282 | |||
| 3283 | if (wl > max_load) { | ||
| 3284 | max_load = wl; | ||
| 3285 | busiest = rq; | ||
| 3286 | } | ||
| 3287 | } | ||
| 3288 | |||
| 3289 | return busiest; | ||
| 3290 | } | ||
| 3291 | |||
| 3292 | /* | ||
| 3293 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
| 3294 | * so long as it is large enough. | ||
| 3295 | */ | ||
| 3296 | #define MAX_PINNED_INTERVAL 512 | ||
| 3297 | |||
| 3298 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
| 3299 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
| 3300 | |||
| 3301 | static int need_active_balance(struct sched_domain *sd, int idle, | ||
| 3302 | int busiest_cpu, int this_cpu) | ||
| 3303 | { | ||
| 3304 | if (idle == CPU_NEWLY_IDLE) { | ||
| 3305 | |||
| 3306 | /* | ||
| 3307 | * ASYM_PACKING needs to force migrate tasks from busy but | ||
| 3308 | * higher numbered CPUs in order to pack all tasks in the | ||
| 3309 | * lowest numbered CPUs. | ||
| 3310 | */ | ||
| 3311 | if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu) | ||
| 3312 | return 1; | ||
| 3313 | |||
| 3314 | /* | ||
| 3315 | * The only task running in a non-idle cpu can be moved to this | ||
| 3316 | * cpu in an attempt to completely freeup the other CPU | ||
| 3317 | * package. | ||
| 3318 | * | ||
| 3319 | * The package power saving logic comes from | ||
| 3320 | * find_busiest_group(). If there are no imbalance, then | ||
| 3321 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
| 3322 | * f_b_g() will select a group from which a running task may be | ||
| 3323 | * pulled to this cpu in order to make the other package idle. | ||
| 3324 | * If there is no opportunity to make a package idle and if | ||
| 3325 | * there are no imbalance, then f_b_g() will return NULL and no | ||
| 3326 | * action will be taken in load_balance_newidle(). | ||
| 3327 | * | ||
| 3328 | * Under normal task pull operation due to imbalance, there | ||
| 3329 | * will be more than one task in the source run queue and | ||
| 3330 | * move_tasks() will succeed. ld_moved will be true and this | ||
| 3331 | * active balance code will not be triggered. | ||
| 3332 | */ | ||
| 3333 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
| 3334 | return 0; | ||
| 3335 | } | ||
| 3336 | |||
| 3337 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); | ||
| 3338 | } | ||
| 3339 | |||
| 3340 | static int active_load_balance_cpu_stop(void *data); | ||
| 3341 | |||
| 3342 | /* | ||
| 3343 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
| 3344 | * tasks if there is an imbalance. | ||
| 3345 | */ | ||
| 3346 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
| 3347 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 3348 | int *balance) | ||
| 3349 | { | ||
| 3350 | int ld_moved, all_pinned = 0, active_balance = 0; | ||
| 3351 | struct sched_group *group; | ||
| 3352 | unsigned long imbalance; | ||
| 3353 | struct rq *busiest; | ||
| 3354 | unsigned long flags; | ||
| 3355 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
| 3356 | |||
| 3357 | cpumask_copy(cpus, cpu_active_mask); | ||
| 3358 | |||
| 3359 | schedstat_inc(sd, lb_count[idle]); | ||
| 3360 | |||
| 3361 | redo: | ||
| 3362 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, | ||
| 3363 | cpus, balance); | ||
| 3364 | |||
| 3365 | if (*balance == 0) | ||
| 3366 | goto out_balanced; | ||
| 3367 | |||
| 3368 | if (!group) { | ||
| 3369 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
| 3370 | goto out_balanced; | ||
| 3371 | } | ||
| 3372 | |||
| 3373 | busiest = find_busiest_queue(sd, group, idle, imbalance, cpus); | ||
| 3374 | if (!busiest) { | ||
| 3375 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
| 3376 | goto out_balanced; | ||
| 3377 | } | ||
| 3378 | |||
| 3379 | BUG_ON(busiest == this_rq); | ||
| 3380 | |||
| 3381 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
| 3382 | |||
| 3383 | ld_moved = 0; | ||
| 3384 | if (busiest->nr_running > 1) { | ||
| 3385 | /* | ||
| 3386 | * Attempt to move tasks. If find_busiest_group has found | ||
| 3387 | * an imbalance but busiest->nr_running <= 1, the group is | ||
| 3388 | * still unbalanced. ld_moved simply stays zero, so it is | ||
| 3389 | * correctly treated as an imbalance. | ||
| 3390 | */ | ||
| 3391 | all_pinned = 1; | ||
| 3392 | local_irq_save(flags); | ||
| 3393 | double_rq_lock(this_rq, busiest); | ||
| 3394 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
| 3395 | imbalance, sd, idle, &all_pinned); | ||
| 3396 | double_rq_unlock(this_rq, busiest); | ||
| 3397 | local_irq_restore(flags); | ||
| 3398 | |||
| 3399 | /* | ||
| 3400 | * some other cpu did the load balance for us. | ||
| 3401 | */ | ||
| 3402 | if (ld_moved && this_cpu != smp_processor_id()) | ||
| 3403 | resched_cpu(this_cpu); | ||
| 3404 | |||
| 3405 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
| 3406 | if (unlikely(all_pinned)) { | ||
| 3407 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
| 3408 | if (!cpumask_empty(cpus)) | ||
| 3409 | goto redo; | ||
| 3410 | goto out_balanced; | ||
| 3411 | } | ||
| 3412 | } | ||
| 3413 | |||
| 3414 | if (!ld_moved) { | ||
| 3415 | schedstat_inc(sd, lb_failed[idle]); | ||
| 3416 | /* | ||
| 3417 | * Increment the failure counter only on periodic balance. | ||
| 3418 | * We do not want newidle balance, which can be very | ||
| 3419 | * frequent, pollute the failure counter causing | ||
| 3420 | * excessive cache_hot migrations and active balances. | ||
| 3421 | */ | ||
| 3422 | if (idle != CPU_NEWLY_IDLE) | ||
| 3423 | sd->nr_balance_failed++; | ||
| 3424 | |||
| 3425 | if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) { | ||
| 3426 | raw_spin_lock_irqsave(&busiest->lock, flags); | ||
| 3427 | |||
| 3428 | /* don't kick the active_load_balance_cpu_stop, | ||
| 3429 | * if the curr task on busiest cpu can't be | ||
| 3430 | * moved to this_cpu | ||
| 3431 | */ | ||
| 3432 | if (!cpumask_test_cpu(this_cpu, | ||
| 3433 | &busiest->curr->cpus_allowed)) { | ||
| 3434 | raw_spin_unlock_irqrestore(&busiest->lock, | ||
| 3435 | flags); | ||
| 3436 | all_pinned = 1; | ||
| 3437 | goto out_one_pinned; | ||
| 3438 | } | ||
| 3439 | |||
| 3440 | /* | ||
| 3441 | * ->active_balance synchronizes accesses to | ||
| 3442 | * ->active_balance_work. Once set, it's cleared | ||
| 3443 | * only after active load balance is finished. | ||
| 3444 | */ | ||
| 3445 | if (!busiest->active_balance) { | ||
| 3446 | busiest->active_balance = 1; | ||
| 3447 | busiest->push_cpu = this_cpu; | ||
| 3448 | active_balance = 1; | ||
| 3449 | } | ||
| 3450 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | ||
| 3451 | |||
| 3452 | if (active_balance) | ||
| 3453 | stop_one_cpu_nowait(cpu_of(busiest), | ||
| 3454 | active_load_balance_cpu_stop, busiest, | ||
| 3455 | &busiest->active_balance_work); | ||
| 3456 | |||
| 3457 | /* | ||
| 3458 | * We've kicked active balancing, reset the failure | ||
| 3459 | * counter. | ||
| 3460 | */ | ||
| 3461 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
| 3462 | } | ||
| 3463 | } else | ||
| 3464 | sd->nr_balance_failed = 0; | ||
| 3465 | |||
| 3466 | if (likely(!active_balance)) { | ||
| 3467 | /* We were unbalanced, so reset the balancing interval */ | ||
| 3468 | sd->balance_interval = sd->min_interval; | ||
| 3469 | } else { | ||
| 3470 | /* | ||
| 3471 | * If we've begun active balancing, start to back off. This | ||
| 3472 | * case may not be covered by the all_pinned logic if there | ||
| 3473 | * is only 1 task on the busy runqueue (because we don't call | ||
| 3474 | * move_tasks). | ||
| 3475 | */ | ||
| 3476 | if (sd->balance_interval < sd->max_interval) | ||
| 3477 | sd->balance_interval *= 2; | ||
| 3478 | } | ||
| 3479 | |||
| 3480 | goto out; | ||
| 3481 | |||
| 3482 | out_balanced: | ||
| 3483 | schedstat_inc(sd, lb_balanced[idle]); | ||
| 3484 | |||
| 3485 | sd->nr_balance_failed = 0; | ||
| 3486 | |||
| 3487 | out_one_pinned: | ||
| 3488 | /* tune up the balancing interval */ | ||
| 3489 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
| 3490 | (sd->balance_interval < sd->max_interval)) | ||
| 3491 | sd->balance_interval *= 2; | ||
| 3492 | |||
| 3493 | ld_moved = 0; | ||
| 3494 | out: | ||
| 3495 | return ld_moved; | ||
| 3496 | } | ||
| 3497 | |||
| 3498 | /* | ||
| 3499 | * idle_balance is called by schedule() if this_cpu is about to become | ||
| 3500 | * idle. Attempts to pull tasks from other CPUs. | ||
| 3501 | */ | ||
| 3502 | static void idle_balance(int this_cpu, struct rq *this_rq) | ||
| 3503 | { | ||
| 3504 | struct sched_domain *sd; | ||
| 3505 | int pulled_task = 0; | ||
| 3506 | unsigned long next_balance = jiffies + HZ; | ||
| 3507 | |||
| 3508 | this_rq->idle_stamp = this_rq->clock; | ||
| 3509 | |||
| 3510 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
| 3511 | return; | ||
| 3512 | |||
| 3513 | /* | ||
| 3514 | * Drop the rq->lock, but keep IRQ/preempt disabled. | ||
| 3515 | */ | ||
| 3516 | raw_spin_unlock(&this_rq->lock); | ||
| 3517 | |||
| 3518 | update_shares(this_cpu); | ||
| 3519 | rcu_read_lock(); | ||
| 3520 | for_each_domain(this_cpu, sd) { | ||
| 3521 | unsigned long interval; | ||
| 3522 | int balance = 1; | ||
| 3523 | |||
| 3524 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
| 3525 | continue; | ||
| 3526 | |||
| 3527 | if (sd->flags & SD_BALANCE_NEWIDLE) { | ||
| 3528 | /* If we've pulled tasks over stop searching: */ | ||
| 3529 | pulled_task = load_balance(this_cpu, this_rq, | ||
| 3530 | sd, CPU_NEWLY_IDLE, &balance); | ||
| 3531 | } | ||
| 3532 | |||
| 3533 | interval = msecs_to_jiffies(sd->balance_interval); | ||
| 3534 | if (time_after(next_balance, sd->last_balance + interval)) | ||
| 3535 | next_balance = sd->last_balance + interval; | ||
| 3536 | if (pulled_task) { | ||
| 3537 | this_rq->idle_stamp = 0; | ||
| 3538 | break; | ||
| 3539 | } | ||
| 3540 | } | ||
| 3541 | rcu_read_unlock(); | ||
| 3542 | |||
| 3543 | raw_spin_lock(&this_rq->lock); | ||
| 3544 | |||
| 3545 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
| 3546 | /* | ||
| 3547 | * We are going idle. next_balance may be set based on | ||
| 3548 | * a busy processor. So reset next_balance. | ||
| 3549 | */ | ||
| 3550 | this_rq->next_balance = next_balance; | ||
| 3551 | } | ||
| 3552 | } | ||
| 3553 | |||
| 3554 | /* | ||
| 3555 | * active_load_balance_cpu_stop is run by cpu stopper. It pushes | ||
| 3556 | * running tasks off the busiest CPU onto idle CPUs. It requires at | ||
| 3557 | * least 1 task to be running on each physical CPU where possible, and | ||
| 3558 | * avoids physical / logical imbalances. | ||
| 3559 | */ | ||
| 3560 | static int active_load_balance_cpu_stop(void *data) | ||
| 3561 | { | ||
| 3562 | struct rq *busiest_rq = data; | ||
| 3563 | int busiest_cpu = cpu_of(busiest_rq); | ||
| 3564 | int target_cpu = busiest_rq->push_cpu; | ||
| 3565 | struct rq *target_rq = cpu_rq(target_cpu); | ||
| 3566 | struct sched_domain *sd; | ||
| 3567 | |||
| 3568 | raw_spin_lock_irq(&busiest_rq->lock); | ||
| 3569 | |||
| 3570 | /* make sure the requested cpu hasn't gone down in the meantime */ | ||
| 3571 | if (unlikely(busiest_cpu != smp_processor_id() || | ||
| 3572 | !busiest_rq->active_balance)) | ||
| 3573 | goto out_unlock; | ||
| 3574 | |||
| 3575 | /* Is there any task to move? */ | ||
| 3576 | if (busiest_rq->nr_running <= 1) | ||
| 3577 | goto out_unlock; | ||
| 3578 | |||
| 3579 | /* | ||
| 3580 | * This condition is "impossible", if it occurs | ||
| 3581 | * we need to fix it. Originally reported by | ||
| 3582 | * Bjorn Helgaas on a 128-cpu setup. | ||
| 3583 | */ | ||
| 3584 | BUG_ON(busiest_rq == target_rq); | ||
| 3585 | |||
| 3586 | /* move a task from busiest_rq to target_rq */ | ||
| 3587 | double_lock_balance(busiest_rq, target_rq); | ||
| 3588 | |||
| 3589 | /* Search for an sd spanning us and the target CPU. */ | ||
| 3590 | rcu_read_lock(); | ||
| 3591 | for_each_domain(target_cpu, sd) { | ||
| 3592 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
| 3593 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
| 3594 | break; | ||
| 3595 | } | ||
| 3596 | |||
| 3597 | if (likely(sd)) { | ||
| 3598 | schedstat_inc(sd, alb_count); | ||
| 3599 | |||
| 3600 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
| 3601 | sd, CPU_IDLE)) | ||
| 3602 | schedstat_inc(sd, alb_pushed); | ||
| 3603 | else | ||
| 3604 | schedstat_inc(sd, alb_failed); | ||
| 3605 | } | ||
| 3606 | rcu_read_unlock(); | ||
| 3607 | double_unlock_balance(busiest_rq, target_rq); | ||
| 3608 | out_unlock: | ||
| 3609 | busiest_rq->active_balance = 0; | ||
| 3610 | raw_spin_unlock_irq(&busiest_rq->lock); | ||
| 3611 | return 0; | ||
| 3612 | } | ||
| 3613 | |||
| 3614 | #ifdef CONFIG_NO_HZ | ||
| 3615 | |||
| 3616 | static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb); | ||
| 3617 | |||
| 3618 | static void trigger_sched_softirq(void *data) | ||
| 3619 | { | ||
| 3620 | raise_softirq_irqoff(SCHED_SOFTIRQ); | ||
| 3621 | } | ||
| 3622 | |||
| 3623 | static inline void init_sched_softirq_csd(struct call_single_data *csd) | ||
| 3624 | { | ||
| 3625 | csd->func = trigger_sched_softirq; | ||
| 3626 | csd->info = NULL; | ||
| 3627 | csd->flags = 0; | ||
| 3628 | csd->priv = 0; | ||
| 3629 | } | ||
| 3630 | |||
| 3631 | /* | ||
| 3632 | * idle load balancing details | ||
| 3633 | * - One of the idle CPUs nominates itself as idle load_balancer, while | ||
| 3634 | * entering idle. | ||
| 3635 | * - This idle load balancer CPU will also go into tickless mode when | ||
| 3636 | * it is idle, just like all other idle CPUs | ||
| 3637 | * - When one of the busy CPUs notice that there may be an idle rebalancing | ||
| 3638 | * needed, they will kick the idle load balancer, which then does idle | ||
| 3639 | * load balancing for all the idle CPUs. | ||
| 3640 | */ | ||
| 3641 | static struct { | ||
| 3642 | atomic_t load_balancer; | ||
| 3643 | atomic_t first_pick_cpu; | ||
| 3644 | atomic_t second_pick_cpu; | ||
| 3645 | cpumask_var_t idle_cpus_mask; | ||
| 3646 | cpumask_var_t grp_idle_mask; | ||
| 3647 | unsigned long next_balance; /* in jiffy units */ | ||
| 3648 | } nohz ____cacheline_aligned; | ||
| 3649 | |||
| 3650 | int get_nohz_load_balancer(void) | ||
| 3651 | { | ||
| 3652 | return atomic_read(&nohz.load_balancer); | ||
| 3653 | } | ||
| 3654 | |||
| 3655 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 3656 | /** | ||
| 3657 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
| 3658 | * @cpu: The cpu whose lowest level of sched domain is to | ||
| 3659 | * be returned. | ||
| 3660 | * @flag: The flag to check for the lowest sched_domain | ||
| 3661 | * for the given cpu. | ||
| 3662 | * | ||
| 3663 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
| 3664 | */ | ||
| 3665 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
| 3666 | { | ||
| 3667 | struct sched_domain *sd; | ||
| 3668 | |||
| 3669 | for_each_domain(cpu, sd) | ||
| 3670 | if (sd && (sd->flags & flag)) | ||
| 3671 | break; | ||
| 3672 | |||
| 3673 | return sd; | ||
| 3674 | } | ||
| 3675 | |||
| 3676 | /** | ||
| 3677 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
| 3678 | * @cpu: The cpu whose domains we're iterating over. | ||
| 3679 | * @sd: variable holding the value of the power_savings_sd | ||
| 3680 | * for cpu. | ||
| 3681 | * @flag: The flag to filter the sched_domains to be iterated. | ||
| 3682 | * | ||
| 3683 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
| 3684 | * set, starting from the lowest sched_domain to the highest. | ||
| 3685 | */ | ||
| 3686 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
| 3687 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
| 3688 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
| 3689 | |||
| 3690 | /** | ||
| 3691 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
| 3692 | * @ilb_group: group to be checked for semi-idleness | ||
| 3693 | * | ||
| 3694 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
| 3695 | * | ||
| 3696 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
| 3697 | * and atleast one non-idle CPU. This helper function checks if the given | ||
| 3698 | * sched_group is semi-idle or not. | ||
| 3699 | */ | ||
| 3700 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
| 3701 | { | ||
| 3702 | cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask, | ||
| 3703 | sched_group_cpus(ilb_group)); | ||
| 3704 | |||
| 3705 | /* | ||
| 3706 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
| 3707 | * and atleast one idle cpu. | ||
| 3708 | */ | ||
| 3709 | if (cpumask_empty(nohz.grp_idle_mask)) | ||
| 3710 | return 0; | ||
| 3711 | |||
| 3712 | if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group))) | ||
| 3713 | return 0; | ||
| 3714 | |||
| 3715 | return 1; | ||
| 3716 | } | ||
| 3717 | /** | ||
| 3718 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
| 3719 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
| 3720 | * | ||
| 3721 | * Returns: Returns the id of the idle load balancer if it exists, | ||
| 3722 | * Else, returns >= nr_cpu_ids. | ||
| 3723 | * | ||
| 3724 | * This algorithm picks the idle load balancer such that it belongs to a | ||
| 3725 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
| 3726 | * completely idle packages/cores just for the purpose of idle load balancing | ||
| 3727 | * when there are other idle cpu's which are better suited for that job. | ||
| 3728 | */ | ||
| 3729 | static int find_new_ilb(int cpu) | ||
| 3730 | { | ||
| 3731 | struct sched_domain *sd; | ||
| 3732 | struct sched_group *ilb_group; | ||
| 3733 | int ilb = nr_cpu_ids; | ||
| 3734 | |||
| 3735 | /* | ||
| 3736 | * Have idle load balancer selection from semi-idle packages only | ||
| 3737 | * when power-aware load balancing is enabled | ||
| 3738 | */ | ||
| 3739 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
| 3740 | goto out_done; | ||
| 3741 | |||
| 3742 | /* | ||
| 3743 | * Optimize for the case when we have no idle CPUs or only one | ||
| 3744 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
| 3745 | */ | ||
| 3746 | if (cpumask_weight(nohz.idle_cpus_mask) < 2) | ||
| 3747 | goto out_done; | ||
| 3748 | |||
| 3749 | rcu_read_lock(); | ||
| 3750 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
| 3751 | ilb_group = sd->groups; | ||
| 3752 | |||
| 3753 | do { | ||
| 3754 | if (is_semi_idle_group(ilb_group)) { | ||
| 3755 | ilb = cpumask_first(nohz.grp_idle_mask); | ||
| 3756 | goto unlock; | ||
| 3757 | } | ||
| 3758 | |||
| 3759 | ilb_group = ilb_group->next; | ||
| 3760 | |||
| 3761 | } while (ilb_group != sd->groups); | ||
| 3762 | } | ||
| 3763 | unlock: | ||
| 3764 | rcu_read_unlock(); | ||
| 3765 | |||
| 3766 | out_done: | ||
| 3767 | return ilb; | ||
| 3768 | } | ||
| 3769 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
| 3770 | static inline int find_new_ilb(int call_cpu) | ||
| 3771 | { | ||
| 3772 | return nr_cpu_ids; | ||
| 3773 | } | ||
| 3774 | #endif | ||
| 3775 | |||
| 3776 | /* | ||
| 3777 | * Kick a CPU to do the nohz balancing, if it is time for it. We pick the | ||
| 3778 | * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle | ||
| 3779 | * CPU (if there is one). | ||
| 3780 | */ | ||
| 3781 | static void nohz_balancer_kick(int cpu) | ||
| 3782 | { | ||
| 3783 | int ilb_cpu; | ||
| 3784 | |||
| 3785 | nohz.next_balance++; | ||
| 3786 | |||
| 3787 | ilb_cpu = get_nohz_load_balancer(); | ||
| 3788 | |||
| 3789 | if (ilb_cpu >= nr_cpu_ids) { | ||
| 3790 | ilb_cpu = cpumask_first(nohz.idle_cpus_mask); | ||
| 3791 | if (ilb_cpu >= nr_cpu_ids) | ||
| 3792 | return; | ||
| 3793 | } | ||
| 3794 | |||
| 3795 | if (!cpu_rq(ilb_cpu)->nohz_balance_kick) { | ||
| 3796 | struct call_single_data *cp; | ||
| 3797 | |||
| 3798 | cpu_rq(ilb_cpu)->nohz_balance_kick = 1; | ||
| 3799 | cp = &per_cpu(remote_sched_softirq_cb, cpu); | ||
| 3800 | __smp_call_function_single(ilb_cpu, cp, 0); | ||
| 3801 | } | ||
| 3802 | return; | ||
| 3803 | } | ||
| 3804 | |||
| 3805 | /* | ||
| 3806 | * This routine will try to nominate the ilb (idle load balancing) | ||
| 3807 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
| 3808 | * load balancing on behalf of all those cpus. | ||
| 3809 | * | ||
| 3810 | * When the ilb owner becomes busy, we will not have new ilb owner until some | ||
| 3811 | * idle CPU wakes up and goes back to idle or some busy CPU tries to kick | ||
| 3812 | * idle load balancing by kicking one of the idle CPUs. | ||
| 3813 | * | ||
| 3814 | * Ticks are stopped for the ilb owner as well, with busy CPU kicking this | ||
| 3815 | * ilb owner CPU in future (when there is a need for idle load balancing on | ||
| 3816 | * behalf of all idle CPUs). | ||
| 3817 | */ | ||
| 3818 | void select_nohz_load_balancer(int stop_tick) | ||
| 3819 | { | ||
| 3820 | int cpu = smp_processor_id(); | ||
| 3821 | |||
| 3822 | if (stop_tick) { | ||
| 3823 | if (!cpu_active(cpu)) { | ||
| 3824 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
| 3825 | return; | ||
| 3826 | |||
| 3827 | /* | ||
| 3828 | * If we are going offline and still the leader, | ||
| 3829 | * give up! | ||
| 3830 | */ | ||
| 3831 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, | ||
| 3832 | nr_cpu_ids) != cpu) | ||
| 3833 | BUG(); | ||
| 3834 | |||
| 3835 | return; | ||
| 3836 | } | ||
| 3837 | |||
| 3838 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); | ||
| 3839 | |||
| 3840 | if (atomic_read(&nohz.first_pick_cpu) == cpu) | ||
| 3841 | atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids); | ||
| 3842 | if (atomic_read(&nohz.second_pick_cpu) == cpu) | ||
| 3843 | atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); | ||
| 3844 | |||
| 3845 | if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) { | ||
| 3846 | int new_ilb; | ||
| 3847 | |||
| 3848 | /* make me the ilb owner */ | ||
| 3849 | if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids, | ||
| 3850 | cpu) != nr_cpu_ids) | ||
| 3851 | return; | ||
| 3852 | |||
| 3853 | /* | ||
| 3854 | * Check to see if there is a more power-efficient | ||
| 3855 | * ilb. | ||
| 3856 | */ | ||
| 3857 | new_ilb = find_new_ilb(cpu); | ||
| 3858 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
| 3859 | atomic_set(&nohz.load_balancer, nr_cpu_ids); | ||
| 3860 | resched_cpu(new_ilb); | ||
| 3861 | return; | ||
| 3862 | } | ||
| 3863 | return; | ||
| 3864 | } | ||
| 3865 | } else { | ||
| 3866 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) | ||
| 3867 | return; | ||
| 3868 | |||
| 3869 | cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); | ||
| 3870 | |||
| 3871 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
| 3872 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, | ||
| 3873 | nr_cpu_ids) != cpu) | ||
| 3874 | BUG(); | ||
| 3875 | } | ||
| 3876 | return; | ||
| 3877 | } | ||
| 3878 | #endif | ||
| 3879 | |||
| 3880 | static DEFINE_SPINLOCK(balancing); | ||
| 3881 | |||
| 3882 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; | ||
| 3883 | |||
| 3884 | /* | ||
| 3885 | * Scale the max load_balance interval with the number of CPUs in the system. | ||
| 3886 | * This trades load-balance latency on larger machines for less cross talk. | ||
| 3887 | */ | ||
| 3888 | static void update_max_interval(void) | ||
| 3889 | { | ||
| 3890 | max_load_balance_interval = HZ*num_online_cpus()/10; | ||
| 3891 | } | ||
| 3892 | |||
| 3893 | /* | ||
| 3894 | * It checks each scheduling domain to see if it is due to be balanced, | ||
| 3895 | * and initiates a balancing operation if so. | ||
| 3896 | * | ||
| 3897 | * Balancing parameters are set up in arch_init_sched_domains. | ||
| 3898 | */ | ||
| 3899 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
| 3900 | { | ||
| 3901 | int balance = 1; | ||
| 3902 | struct rq *rq = cpu_rq(cpu); | ||
| 3903 | unsigned long interval; | ||
| 3904 | struct sched_domain *sd; | ||
| 3905 | /* Earliest time when we have to do rebalance again */ | ||
| 3906 | unsigned long next_balance = jiffies + 60*HZ; | ||
| 3907 | int update_next_balance = 0; | ||
| 3908 | int need_serialize; | ||
| 3909 | |||
| 3910 | update_shares(cpu); | ||
| 3911 | |||
| 3912 | rcu_read_lock(); | ||
| 3913 | for_each_domain(cpu, sd) { | ||
| 3914 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
| 3915 | continue; | ||
| 3916 | |||
| 3917 | interval = sd->balance_interval; | ||
| 3918 | if (idle != CPU_IDLE) | ||
| 3919 | interval *= sd->busy_factor; | ||
| 3920 | |||
| 3921 | /* scale ms to jiffies */ | ||
| 3922 | interval = msecs_to_jiffies(interval); | ||
| 3923 | interval = clamp(interval, 1UL, max_load_balance_interval); | ||
| 3924 | |||
| 3925 | need_serialize = sd->flags & SD_SERIALIZE; | ||
| 3926 | |||
| 3927 | if (need_serialize) { | ||
| 3928 | if (!spin_trylock(&balancing)) | ||
| 3929 | goto out; | ||
| 3930 | } | ||
| 3931 | |||
| 3932 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
| 3933 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
| 3934 | /* | ||
| 3935 | * We've pulled tasks over so either we're no | ||
| 3936 | * longer idle. | ||
| 3937 | */ | ||
| 3938 | idle = CPU_NOT_IDLE; | ||
| 3939 | } | ||
| 3940 | sd->last_balance = jiffies; | ||
| 3941 | } | ||
| 3942 | if (need_serialize) | ||
| 3943 | spin_unlock(&balancing); | ||
| 3944 | out: | ||
| 3945 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
| 3946 | next_balance = sd->last_balance + interval; | ||
| 3947 | update_next_balance = 1; | ||
| 3948 | } | ||
| 3949 | |||
| 3950 | /* | ||
| 3951 | * Stop the load balance at this level. There is another | ||
| 3952 | * CPU in our sched group which is doing load balancing more | ||
| 3953 | * actively. | ||
| 3954 | */ | ||
| 3955 | if (!balance) | ||
| 3956 | break; | ||
| 3957 | } | ||
| 3958 | rcu_read_unlock(); | ||
| 3959 | |||
| 3960 | /* | ||
| 3961 | * next_balance will be updated only when there is a need. | ||
| 3962 | * When the cpu is attached to null domain for ex, it will not be | ||
| 3963 | * updated. | ||
| 3964 | */ | ||
| 3965 | if (likely(update_next_balance)) | ||
| 3966 | rq->next_balance = next_balance; | ||
| 3967 | } | ||
| 3968 | |||
| 3969 | #ifdef CONFIG_NO_HZ | ||
| 3970 | /* | ||
| 3971 | * In CONFIG_NO_HZ case, the idle balance kickee will do the | ||
| 3972 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
| 3973 | */ | ||
| 3974 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) | ||
| 3975 | { | ||
| 3976 | struct rq *this_rq = cpu_rq(this_cpu); | ||
| 3977 | struct rq *rq; | ||
| 3978 | int balance_cpu; | ||
| 3979 | |||
| 3980 | if (idle != CPU_IDLE || !this_rq->nohz_balance_kick) | ||
| 3981 | return; | ||
| 3982 | |||
| 3983 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { | ||
| 3984 | if (balance_cpu == this_cpu) | ||
| 3985 | continue; | ||
| 3986 | |||
| 3987 | /* | ||
| 3988 | * If this cpu gets work to do, stop the load balancing | ||
| 3989 | * work being done for other cpus. Next load | ||
| 3990 | * balancing owner will pick it up. | ||
| 3991 | */ | ||
| 3992 | if (need_resched()) { | ||
| 3993 | this_rq->nohz_balance_kick = 0; | ||
| 3994 | break; | ||
| 3995 | } | ||
| 3996 | |||
| 3997 | raw_spin_lock_irq(&this_rq->lock); | ||
| 3998 | update_rq_clock(this_rq); | ||
| 3999 | update_cpu_load(this_rq); | ||
| 4000 | raw_spin_unlock_irq(&this_rq->lock); | ||
| 4001 | |||
| 4002 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
| 4003 | |||
| 4004 | rq = cpu_rq(balance_cpu); | ||
| 4005 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
| 4006 | this_rq->next_balance = rq->next_balance; | ||
| 4007 | } | ||
| 4008 | nohz.next_balance = this_rq->next_balance; | ||
| 4009 | this_rq->nohz_balance_kick = 0; | ||
| 4010 | } | ||
| 4011 | |||
| 4012 | /* | ||
| 4013 | * Current heuristic for kicking the idle load balancer | ||
| 4014 | * - first_pick_cpu is the one of the busy CPUs. It will kick | ||
| 4015 | * idle load balancer when it has more than one process active. This | ||
| 4016 | * eliminates the need for idle load balancing altogether when we have | ||
| 4017 | * only one running process in the system (common case). | ||
| 4018 | * - If there are more than one busy CPU, idle load balancer may have | ||
| 4019 | * to run for active_load_balance to happen (i.e., two busy CPUs are | ||
| 4020 | * SMT or core siblings and can run better if they move to different | ||
| 4021 | * physical CPUs). So, second_pick_cpu is the second of the busy CPUs | ||
| 4022 | * which will kick idle load balancer as soon as it has any load. | ||
| 4023 | */ | ||
| 4024 | static inline int nohz_kick_needed(struct rq *rq, int cpu) | ||
| 4025 | { | ||
| 4026 | unsigned long now = jiffies; | ||
| 4027 | int ret; | ||
| 4028 | int first_pick_cpu, second_pick_cpu; | ||
| 4029 | |||
| 4030 | if (time_before(now, nohz.next_balance)) | ||
| 4031 | return 0; | ||
| 4032 | |||
| 4033 | if (rq->idle_at_tick) | ||
| 4034 | return 0; | ||
| 4035 | |||
| 4036 | first_pick_cpu = atomic_read(&nohz.first_pick_cpu); | ||
| 4037 | second_pick_cpu = atomic_read(&nohz.second_pick_cpu); | ||
| 4038 | |||
| 4039 | if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu && | ||
| 4040 | second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu) | ||
| 4041 | return 0; | ||
| 4042 | |||
| 4043 | ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu); | ||
| 4044 | if (ret == nr_cpu_ids || ret == cpu) { | ||
| 4045 | atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); | ||
| 4046 | if (rq->nr_running > 1) | ||
| 4047 | return 1; | ||
| 4048 | } else { | ||
| 4049 | ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu); | ||
| 4050 | if (ret == nr_cpu_ids || ret == cpu) { | ||
| 4051 | if (rq->nr_running) | ||
| 4052 | return 1; | ||
| 4053 | } | ||
| 4054 | } | ||
| 4055 | return 0; | ||
| 4056 | } | ||
| 4057 | #else | ||
| 4058 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } | ||
| 4059 | #endif | ||
| 4060 | |||
| 4061 | /* | ||
| 4062 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
| 4063 | * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | ||
| 4064 | */ | ||
| 4065 | static void run_rebalance_domains(struct softirq_action *h) | ||
| 4066 | { | ||
| 4067 | int this_cpu = smp_processor_id(); | ||
| 4068 | struct rq *this_rq = cpu_rq(this_cpu); | ||
| 4069 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | ||
| 4070 | CPU_IDLE : CPU_NOT_IDLE; | ||
| 4071 | |||
| 4072 | rebalance_domains(this_cpu, idle); | ||
| 4073 | |||
| 4074 | /* | ||
| 4075 | * If this cpu has a pending nohz_balance_kick, then do the | ||
| 4076 | * balancing on behalf of the other idle cpus whose ticks are | ||
| 4077 | * stopped. | ||
| 4078 | */ | ||
| 4079 | nohz_idle_balance(this_cpu, idle); | ||
| 4080 | } | ||
| 4081 | |||
| 4082 | static inline int on_null_domain(int cpu) | ||
| 4083 | { | ||
| 4084 | return !rcu_dereference_sched(cpu_rq(cpu)->sd); | ||
| 4085 | } | ||
| 4086 | |||
| 4087 | /* | ||
| 4088 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
| 4089 | */ | ||
| 4090 | static inline void trigger_load_balance(struct rq *rq, int cpu) | ||
| 4091 | { | ||
| 4092 | /* Don't need to rebalance while attached to NULL domain */ | ||
| 4093 | if (time_after_eq(jiffies, rq->next_balance) && | ||
| 4094 | likely(!on_null_domain(cpu))) | ||
| 4095 | raise_softirq(SCHED_SOFTIRQ); | ||
| 4096 | #ifdef CONFIG_NO_HZ | ||
| 4097 | else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) | ||
| 4098 | nohz_balancer_kick(cpu); | ||
| 4099 | #endif | ||
| 4100 | } | ||
| 4101 | |||
| 4102 | static void rq_online_fair(struct rq *rq) | ||
| 4103 | { | ||
| 4104 | update_sysctl(); | ||
| 4105 | } | ||
| 4106 | |||
| 4107 | static void rq_offline_fair(struct rq *rq) | ||
| 4108 | { | ||
| 4109 | update_sysctl(); | ||
| 4110 | } | ||
| 4111 | |||
| 4112 | #else /* CONFIG_SMP */ | ||
| 4113 | |||
| 4114 | /* | ||
| 4115 | * on UP we do not need to balance between CPUs: | ||
| 4116 | */ | ||
| 4117 | static inline void idle_balance(int cpu, struct rq *rq) | ||
| 4118 | { | ||
| 4119 | } | ||
| 4120 | |||
| 4121 | #endif /* CONFIG_SMP */ | ||
| 4122 | |||
| 4123 | /* | ||
| 4124 | * scheduler tick hitting a task of our scheduling class: | ||
| 4125 | */ | ||
| 4126 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | ||
| 4127 | { | ||
| 4128 | struct cfs_rq *cfs_rq; | ||
| 4129 | struct sched_entity *se = &curr->se; | ||
| 4130 | |||
| 4131 | for_each_sched_entity(se) { | ||
| 4132 | cfs_rq = cfs_rq_of(se); | ||
| 4133 | entity_tick(cfs_rq, se, queued); | ||
| 4134 | } | ||
| 4135 | } | ||
| 4136 | |||
| 4137 | /* | ||
| 4138 | * called on fork with the child task as argument from the parent's context | ||
| 4139 | * - child not yet on the tasklist | ||
| 4140 | * - preemption disabled | ||
| 4141 | */ | ||
| 4142 | static void task_fork_fair(struct task_struct *p) | ||
| 4143 | { | ||
| 4144 | struct cfs_rq *cfs_rq = task_cfs_rq(current); | ||
| 4145 | struct sched_entity *se = &p->se, *curr = cfs_rq->curr; | ||
| 4146 | int this_cpu = smp_processor_id(); | ||
| 4147 | struct rq *rq = this_rq(); | ||
| 4148 | unsigned long flags; | ||
| 4149 | |||
| 4150 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
| 4151 | |||
| 4152 | update_rq_clock(rq); | ||
| 4153 | |||
| 4154 | if (unlikely(task_cpu(p) != this_cpu)) { | ||
| 4155 | rcu_read_lock(); | ||
| 4156 | __set_task_cpu(p, this_cpu); | ||
| 4157 | rcu_read_unlock(); | ||
| 4158 | } | ||
| 4159 | |||
| 4160 | update_curr(cfs_rq); | ||
| 4161 | |||
| 4162 | if (curr) | ||
| 4163 | se->vruntime = curr->vruntime; | ||
| 4164 | place_entity(cfs_rq, se, 1); | ||
| 4165 | |||
| 4166 | if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { | ||
| 4167 | /* | ||
| 4168 | * Upon rescheduling, sched_class::put_prev_task() will place | ||
| 4169 | * 'current' within the tree based on its new key value. | ||
| 4170 | */ | ||
| 4171 | swap(curr->vruntime, se->vruntime); | ||
| 4172 | resched_task(rq->curr); | ||
| 4173 | } | ||
| 4174 | |||
| 4175 | se->vruntime -= cfs_rq->min_vruntime; | ||
| 4176 | |||
| 4177 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
| 4178 | } | ||
| 4179 | |||
| 4180 | /* | ||
| 4181 | * Priority of the task has changed. Check to see if we preempt | ||
| 4182 | * the current task. | ||
| 4183 | */ | ||
| 4184 | static void | ||
| 4185 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | ||
| 4186 | { | ||
| 4187 | if (!p->se.on_rq) | ||
| 4188 | return; | ||
| 4189 | |||
| 4190 | /* | ||
| 4191 | * Reschedule if we are currently running on this runqueue and | ||
| 4192 | * our priority decreased, or if we are not currently running on | ||
| 4193 | * this runqueue and our priority is higher than the current's | ||
| 4194 | */ | ||
| 4195 | if (rq->curr == p) { | ||
| 4196 | if (p->prio > oldprio) | ||
| 4197 | resched_task(rq->curr); | ||
| 4198 | } else | ||
| 4199 | check_preempt_curr(rq, p, 0); | ||
| 4200 | } | ||
| 4201 | |||
| 4202 | static void switched_from_fair(struct rq *rq, struct task_struct *p) | ||
| 4203 | { | ||
| 4204 | struct sched_entity *se = &p->se; | ||
| 4205 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||
| 4206 | |||
| 4207 | /* | ||
| 4208 | * Ensure the task's vruntime is normalized, so that when its | ||
| 4209 | * switched back to the fair class the enqueue_entity(.flags=0) will | ||
| 4210 | * do the right thing. | ||
| 4211 | * | ||
| 4212 | * If it was on_rq, then the dequeue_entity(.flags=0) will already | ||
| 4213 | * have normalized the vruntime, if it was !on_rq, then only when | ||
| 4214 | * the task is sleeping will it still have non-normalized vruntime. | ||
| 4215 | */ | ||
| 4216 | if (!se->on_rq && p->state != TASK_RUNNING) { | ||
| 4217 | /* | ||
| 4218 | * Fix up our vruntime so that the current sleep doesn't | ||
| 4219 | * cause 'unlimited' sleep bonus. | ||
| 4220 | */ | ||
| 4221 | place_entity(cfs_rq, se, 0); | ||
| 4222 | se->vruntime -= cfs_rq->min_vruntime; | ||
| 4223 | } | ||
| 4224 | } | ||
| 4225 | |||
| 4226 | /* | ||
| 4227 | * We switched to the sched_fair class. | ||
| 4228 | */ | ||
| 4229 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | ||
| 4230 | { | ||
| 4231 | if (!p->se.on_rq) | ||
| 4232 | return; | ||
| 4233 | |||
| 4234 | /* | ||
| 4235 | * We were most likely switched from sched_rt, so | ||
| 4236 | * kick off the schedule if running, otherwise just see | ||
| 4237 | * if we can still preempt the current task. | ||
| 4238 | */ | ||
| 4239 | if (rq->curr == p) | ||
| 4240 | resched_task(rq->curr); | ||
| 4241 | else | ||
| 4242 | check_preempt_curr(rq, p, 0); | ||
| 4243 | } | ||
| 4244 | |||
| 4245 | /* Account for a task changing its policy or group. | ||
| 4246 | * | ||
| 4247 | * This routine is mostly called to set cfs_rq->curr field when a task | ||
| 4248 | * migrates between groups/classes. | ||
| 4249 | */ | ||
| 4250 | static void set_curr_task_fair(struct rq *rq) | ||
| 4251 | { | ||
| 4252 | struct sched_entity *se = &rq->curr->se; | ||
| 4253 | |||
| 4254 | for_each_sched_entity(se) | ||
| 4255 | set_next_entity(cfs_rq_of(se), se); | ||
| 4256 | } | ||
| 4257 | |||
| 4258 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 4259 | static void task_move_group_fair(struct task_struct *p, int on_rq) | ||
| 4260 | { | ||
| 4261 | /* | ||
| 4262 | * If the task was not on the rq at the time of this cgroup movement | ||
| 4263 | * it must have been asleep, sleeping tasks keep their ->vruntime | ||
| 4264 | * absolute on their old rq until wakeup (needed for the fair sleeper | ||
| 4265 | * bonus in place_entity()). | ||
| 4266 | * | ||
| 4267 | * If it was on the rq, we've just 'preempted' it, which does convert | ||
| 4268 | * ->vruntime to a relative base. | ||
| 4269 | * | ||
| 4270 | * Make sure both cases convert their relative position when migrating | ||
| 4271 | * to another cgroup's rq. This does somewhat interfere with the | ||
| 4272 | * fair sleeper stuff for the first placement, but who cares. | ||
| 4273 | */ | ||
| 4274 | if (!on_rq) | ||
| 4275 | p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; | ||
| 4276 | set_task_rq(p, task_cpu(p)); | ||
| 4277 | if (!on_rq) | ||
| 4278 | p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; | ||
| 4279 | } | ||
| 4280 | #endif | ||
| 4281 | |||
| 4282 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | ||
| 4283 | { | ||
| 4284 | struct sched_entity *se = &task->se; | ||
| 4285 | unsigned int rr_interval = 0; | ||
| 4286 | |||
| 4287 | /* | ||
| 4288 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | ||
| 4289 | * idle runqueue: | ||
| 4290 | */ | ||
| 4291 | if (rq->cfs.load.weight) | ||
| 4292 | rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
| 4293 | |||
| 4294 | return rr_interval; | ||
| 4295 | } | ||
| 4296 | |||
| 4297 | /* | ||
| 4298 | * All the scheduling class methods: | ||
| 4299 | */ | ||
| 4300 | static const struct sched_class fair_sched_class = { | ||
| 4301 | .next = &idle_sched_class, | ||
| 4302 | .enqueue_task = enqueue_task_fair, | ||
| 4303 | .dequeue_task = dequeue_task_fair, | ||
| 4304 | .yield_task = yield_task_fair, | ||
| 4305 | .yield_to_task = yield_to_task_fair, | ||
| 4306 | |||
| 4307 | .check_preempt_curr = check_preempt_wakeup, | ||
| 4308 | |||
| 4309 | .pick_next_task = pick_next_task_fair, | ||
| 4310 | .put_prev_task = put_prev_task_fair, | ||
| 4311 | |||
| 4312 | #ifdef CONFIG_SMP | ||
| 4313 | .select_task_rq = select_task_rq_fair, | ||
| 4314 | |||
| 4315 | .rq_online = rq_online_fair, | ||
| 4316 | .rq_offline = rq_offline_fair, | ||
| 4317 | |||
| 4318 | .task_waking = task_waking_fair, | ||
| 4319 | #endif | ||
| 4320 | |||
| 4321 | .set_curr_task = set_curr_task_fair, | ||
| 4322 | .task_tick = task_tick_fair, | ||
| 4323 | .task_fork = task_fork_fair, | ||
| 4324 | |||
| 4325 | .prio_changed = prio_changed_fair, | ||
| 4326 | .switched_from = switched_from_fair, | ||
| 4327 | .switched_to = switched_to_fair, | ||
| 4328 | |||
| 4329 | .get_rr_interval = get_rr_interval_fair, | ||
| 4330 | |||
| 4331 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 4332 | .task_move_group = task_move_group_fair, | ||
| 4333 | #endif | ||
| 4334 | }; | ||
| 4335 | |||
| 4336 | #ifdef CONFIG_SCHED_DEBUG | ||
| 4337 | static void print_cfs_stats(struct seq_file *m, int cpu) | ||
| 4338 | { | ||
| 4339 | struct cfs_rq *cfs_rq; | ||
| 4340 | |||
| 4341 | rcu_read_lock(); | ||
| 4342 | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | ||
| 4343 | print_cfs_rq(m, cpu, cfs_rq); | ||
| 4344 | rcu_read_unlock(); | ||
| 4345 | } | ||
| 4346 | #endif | ||
