aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c9443
1 files changed, 9443 insertions, 0 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
new file mode 100644
index 00000000000..f6cf5cbc64b
--- /dev/null
+++ b/kernel/sched.c
@@ -0,0 +1,9443 @@
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/stop_machine.h>
60#include <linux/sysctl.h>
61#include <linux/syscalls.h>
62#include <linux/times.h>
63#include <linux/tsacct_kern.h>
64#include <linux/kprobes.h>
65#include <linux/delayacct.h>
66#include <linux/unistd.h>
67#include <linux/pagemap.h>
68#include <linux/hrtimer.h>
69#include <linux/tick.h>
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
72#include <linux/ftrace.h>
73#include <linux/slab.h>
74#include <linux/cpuacct.h>
75
76#include <asm/tlb.h>
77#include <asm/irq_regs.h>
78#include <asm/mutex.h>
79#ifdef CONFIG_PARAVIRT
80#include <asm/paravirt.h>
81#endif
82
83#include "sched_cpupri.h"
84#include "workqueue_sched.h"
85#include "sched_autogroup.h"
86
87#define CREATE_TRACE_POINTS
88#include <trace/events/sched.h>
89
90/*
91 * Convert user-nice values [ -20 ... 0 ... 19 ]
92 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
93 * and back.
94 */
95#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
96#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
97#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
98
99/*
100 * 'User priority' is the nice value converted to something we
101 * can work with better when scaling various scheduler parameters,
102 * it's a [ 0 ... 39 ] range.
103 */
104#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
105#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
106#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
107
108/*
109 * Helpers for converting nanosecond timing to jiffy resolution
110 */
111#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
112
113#define NICE_0_LOAD SCHED_LOAD_SCALE
114#define NICE_0_SHIFT SCHED_LOAD_SHIFT
115
116/*
117 * These are the 'tuning knobs' of the scheduler:
118 *
119 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
120 * Timeslices get refilled after they expire.
121 */
122#define DEF_TIMESLICE (100 * HZ / 1000)
123
124/*
125 * single value that denotes runtime == period, ie unlimited time.
126 */
127#define RUNTIME_INF ((u64)~0ULL)
128
129static inline int rt_policy(int policy)
130{
131 if (policy == SCHED_FIFO || policy == SCHED_RR)
132 return 1;
133 return 0;
134}
135
136static inline int task_has_rt_policy(struct task_struct *p)
137{
138 return rt_policy(p->policy);
139}
140
141/*
142 * This is the priority-queue data structure of the RT scheduling class:
143 */
144struct rt_prio_array {
145 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
146 struct list_head queue[MAX_RT_PRIO];
147};
148
149struct rt_bandwidth {
150 /* nests inside the rq lock: */
151 raw_spinlock_t rt_runtime_lock;
152 ktime_t rt_period;
153 u64 rt_runtime;
154 struct hrtimer rt_period_timer;
155};
156
157static struct rt_bandwidth def_rt_bandwidth;
158
159static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
160
161static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
162{
163 struct rt_bandwidth *rt_b =
164 container_of(timer, struct rt_bandwidth, rt_period_timer);
165 ktime_t now;
166 int overrun;
167 int idle = 0;
168
169 for (;;) {
170 now = hrtimer_cb_get_time(timer);
171 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
172
173 if (!overrun)
174 break;
175
176 idle = do_sched_rt_period_timer(rt_b, overrun);
177 }
178
179 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
180}
181
182static
183void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
184{
185 rt_b->rt_period = ns_to_ktime(period);
186 rt_b->rt_runtime = runtime;
187
188 raw_spin_lock_init(&rt_b->rt_runtime_lock);
189
190 hrtimer_init(&rt_b->rt_period_timer,
191 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
192 rt_b->rt_period_timer.function = sched_rt_period_timer;
193}
194
195static inline int rt_bandwidth_enabled(void)
196{
197 return sysctl_sched_rt_runtime >= 0;
198}
199
200static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
201{
202 ktime_t now;
203
204 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
205 return;
206
207 if (hrtimer_active(&rt_b->rt_period_timer))
208 return;
209
210 raw_spin_lock(&rt_b->rt_runtime_lock);
211 for (;;) {
212 unsigned long delta;
213 ktime_t soft, hard;
214
215 if (hrtimer_active(&rt_b->rt_period_timer))
216 break;
217
218 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
219 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
220
221 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
222 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
223 delta = ktime_to_ns(ktime_sub(hard, soft));
224 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
225 HRTIMER_MODE_ABS_PINNED, 0);
226 }
227 raw_spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
237/*
238 * sched_domains_mutex serializes calls to init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
243#ifdef CONFIG_CGROUP_SCHED
244
245#include <linux/cgroup.h>
246
247struct cfs_rq;
248
249static LIST_HEAD(task_groups);
250
251/* task group related information */
252struct task_group {
253 struct cgroup_subsys_state css;
254
255#ifdef CONFIG_FAIR_GROUP_SCHED
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
261
262 atomic_t load_weight;
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
269 struct rt_bandwidth rt_bandwidth;
270#endif
271
272 struct rcu_head rcu;
273 struct list_head list;
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
278
279#ifdef CONFIG_SCHED_AUTOGROUP
280 struct autogroup *autogroup;
281#endif
282};
283
284/* task_group_lock serializes the addition/removal of task groups */
285static DEFINE_SPINLOCK(task_group_lock);
286
287#ifdef CONFIG_FAIR_GROUP_SCHED
288
289# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
290
291/*
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
299#define MIN_SHARES (1UL << 1)
300#define MAX_SHARES (1UL << 18)
301
302static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
303#endif
304
305/* Default task group.
306 * Every task in system belong to this group at bootup.
307 */
308struct task_group root_task_group;
309
310#endif /* CONFIG_CGROUP_SCHED */
311
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
317 u64 exec_clock;
318 u64 min_vruntime;
319#ifndef CONFIG_64BIT
320 u64 min_vruntime_copy;
321#endif
322
323 struct rb_root tasks_timeline;
324 struct rb_node *rb_leftmost;
325
326 struct list_head tasks;
327 struct list_head *balance_iterator;
328
329 /*
330 * 'curr' points to currently running entity on this cfs_rq.
331 * It is set to NULL otherwise (i.e when none are currently running).
332 */
333 struct sched_entity *curr, *next, *last, *skip;
334
335#ifdef CONFIG_SCHED_DEBUG
336 unsigned int nr_spread_over;
337#endif
338
339#ifdef CONFIG_FAIR_GROUP_SCHED
340 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
341
342 /*
343 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
344 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
345 * (like users, containers etc.)
346 *
347 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
348 * list is used during load balance.
349 */
350 int on_list;
351 struct list_head leaf_cfs_rq_list;
352 struct task_group *tg; /* group that "owns" this runqueue */
353
354#ifdef CONFIG_SMP
355 /*
356 * the part of load.weight contributed by tasks
357 */
358 unsigned long task_weight;
359
360 /*
361 * h_load = weight * f(tg)
362 *
363 * Where f(tg) is the recursive weight fraction assigned to
364 * this group.
365 */
366 unsigned long h_load;
367
368 /*
369 * Maintaining per-cpu shares distribution for group scheduling
370 *
371 * load_stamp is the last time we updated the load average
372 * load_last is the last time we updated the load average and saw load
373 * load_unacc_exec_time is currently unaccounted execution time
374 */
375 u64 load_avg;
376 u64 load_period;
377 u64 load_stamp, load_last, load_unacc_exec_time;
378
379 unsigned long load_contribution;
380#endif
381#endif
382};
383
384/* Real-Time classes' related field in a runqueue: */
385struct rt_rq {
386 struct rt_prio_array active;
387 unsigned long rt_nr_running;
388#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
389 struct {
390 int curr; /* highest queued rt task prio */
391#ifdef CONFIG_SMP
392 int next; /* next highest */
393#endif
394 } highest_prio;
395#endif
396#ifdef CONFIG_SMP
397 unsigned long rt_nr_migratory;
398 unsigned long rt_nr_total;
399 int overloaded;
400 struct plist_head pushable_tasks;
401#endif
402 int rt_throttled;
403 u64 rt_time;
404 u64 rt_runtime;
405 /* Nests inside the rq lock: */
406 raw_spinlock_t rt_runtime_lock;
407
408#ifdef CONFIG_RT_GROUP_SCHED
409 unsigned long rt_nr_boosted;
410
411 struct rq *rq;
412 struct list_head leaf_rt_rq_list;
413 struct task_group *tg;
414#endif
415};
416
417#ifdef CONFIG_SMP
418
419/*
420 * We add the notion of a root-domain which will be used to define per-domain
421 * variables. Each exclusive cpuset essentially defines an island domain by
422 * fully partitioning the member cpus from any other cpuset. Whenever a new
423 * exclusive cpuset is created, we also create and attach a new root-domain
424 * object.
425 *
426 */
427struct root_domain {
428 atomic_t refcount;
429 atomic_t rto_count;
430 struct rcu_head rcu;
431 cpumask_var_t span;
432 cpumask_var_t online;
433
434 /*
435 * The "RT overload" flag: it gets set if a CPU has more than
436 * one runnable RT task.
437 */
438 cpumask_var_t rto_mask;
439 struct cpupri cpupri;
440};
441
442/*
443 * By default the system creates a single root-domain with all cpus as
444 * members (mimicking the global state we have today).
445 */
446static struct root_domain def_root_domain;
447
448#endif /* CONFIG_SMP */
449
450/*
451 * This is the main, per-CPU runqueue data structure.
452 *
453 * Locking rule: those places that want to lock multiple runqueues
454 * (such as the load balancing or the thread migration code), lock
455 * acquire operations must be ordered by ascending &runqueue.
456 */
457struct rq {
458 /* runqueue lock: */
459 raw_spinlock_t lock;
460
461 /*
462 * nr_running and cpu_load should be in the same cacheline because
463 * remote CPUs use both these fields when doing load calculation.
464 */
465 unsigned long nr_running;
466 #define CPU_LOAD_IDX_MAX 5
467 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
468 unsigned long last_load_update_tick;
469#ifdef CONFIG_NO_HZ
470 u64 nohz_stamp;
471 unsigned char nohz_balance_kick;
472#endif
473 int skip_clock_update;
474
475 /* capture load from *all* tasks on this cpu: */
476 struct load_weight load;
477 unsigned long nr_load_updates;
478 u64 nr_switches;
479
480 struct cfs_rq cfs;
481 struct rt_rq rt;
482
483#ifdef CONFIG_FAIR_GROUP_SCHED
484 /* list of leaf cfs_rq on this cpu: */
485 struct list_head leaf_cfs_rq_list;
486#endif
487#ifdef CONFIG_RT_GROUP_SCHED
488 struct list_head leaf_rt_rq_list;
489#endif
490
491 /*
492 * This is part of a global counter where only the total sum
493 * over all CPUs matters. A task can increase this counter on
494 * one CPU and if it got migrated afterwards it may decrease
495 * it on another CPU. Always updated under the runqueue lock:
496 */
497 unsigned long nr_uninterruptible;
498
499 struct task_struct *curr, *idle, *stop;
500 unsigned long next_balance;
501 struct mm_struct *prev_mm;
502
503 u64 clock;
504 u64 clock_task;
505
506 atomic_t nr_iowait;
507
508#ifdef CONFIG_SMP
509 struct root_domain *rd;
510 struct sched_domain *sd;
511
512 unsigned long cpu_power;
513
514 unsigned char idle_at_tick;
515 /* For active balancing */
516 int post_schedule;
517 int active_balance;
518 int push_cpu;
519 struct cpu_stop_work active_balance_work;
520 /* cpu of this runqueue: */
521 int cpu;
522 int online;
523
524 unsigned long avg_load_per_task;
525
526 u64 rt_avg;
527 u64 age_stamp;
528 u64 idle_stamp;
529 u64 avg_idle;
530#endif
531
532#ifdef CONFIG_IRQ_TIME_ACCOUNTING
533 u64 prev_irq_time;
534#endif
535#ifdef CONFIG_PARAVIRT
536 u64 prev_steal_time;
537#endif
538#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
539 u64 prev_steal_time_rq;
540#endif
541
542 /* calc_load related fields */
543 unsigned long calc_load_update;
544 long calc_load_active;
545
546#ifdef CONFIG_SCHED_HRTICK
547#ifdef CONFIG_SMP
548 int hrtick_csd_pending;
549 struct call_single_data hrtick_csd;
550#endif
551 struct hrtimer hrtick_timer;
552#endif
553
554#ifdef CONFIG_SCHEDSTATS
555 /* latency stats */
556 struct sched_info rq_sched_info;
557 unsigned long long rq_cpu_time;
558 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
559
560 /* sys_sched_yield() stats */
561 unsigned int yld_count;
562
563 /* schedule() stats */
564 unsigned int sched_switch;
565 unsigned int sched_count;
566 unsigned int sched_goidle;
567
568 /* try_to_wake_up() stats */
569 unsigned int ttwu_count;
570 unsigned int ttwu_local;
571#endif
572
573#ifdef CONFIG_SMP
574 struct task_struct *wake_list;
575#endif
576};
577
578static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
579
580
581static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
582
583static inline int cpu_of(struct rq *rq)
584{
585#ifdef CONFIG_SMP
586 return rq->cpu;
587#else
588 return 0;
589#endif
590}
591
592#define rcu_dereference_check_sched_domain(p) \
593 rcu_dereference_check((p), \
594 lockdep_is_held(&sched_domains_mutex))
595
596/*
597 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
598 * See detach_destroy_domains: synchronize_sched for details.
599 *
600 * The domain tree of any CPU may only be accessed from within
601 * preempt-disabled sections.
602 */
603#define for_each_domain(cpu, __sd) \
604 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
605
606#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
607#define this_rq() (&__get_cpu_var(runqueues))
608#define task_rq(p) cpu_rq(task_cpu(p))
609#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
610#define raw_rq() (&__raw_get_cpu_var(runqueues))
611
612#ifdef CONFIG_CGROUP_SCHED
613
614/*
615 * Return the group to which this tasks belongs.
616 *
617 * We use task_subsys_state_check() and extend the RCU verification with
618 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
619 * task it moves into the cgroup. Therefore by holding either of those locks,
620 * we pin the task to the current cgroup.
621 */
622static inline struct task_group *task_group(struct task_struct *p)
623{
624 struct task_group *tg;
625 struct cgroup_subsys_state *css;
626
627 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
628 lockdep_is_held(&p->pi_lock) ||
629 lockdep_is_held(&task_rq(p)->lock));
630 tg = container_of(css, struct task_group, css);
631
632 return autogroup_task_group(p, tg);
633}
634
635/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
636static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
637{
638#ifdef CONFIG_FAIR_GROUP_SCHED
639 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
640 p->se.parent = task_group(p)->se[cpu];
641#endif
642
643#ifdef CONFIG_RT_GROUP_SCHED
644 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
645 p->rt.parent = task_group(p)->rt_se[cpu];
646#endif
647}
648
649#else /* CONFIG_CGROUP_SCHED */
650
651static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
652static inline struct task_group *task_group(struct task_struct *p)
653{
654 return NULL;
655}
656
657#endif /* CONFIG_CGROUP_SCHED */
658
659static void update_rq_clock_task(struct rq *rq, s64 delta);
660
661static void update_rq_clock(struct rq *rq)
662{
663 s64 delta;
664
665 if (rq->skip_clock_update > 0)
666 return;
667
668 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
669 rq->clock += delta;
670 update_rq_clock_task(rq, delta);
671}
672
673/*
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
675 */
676#ifdef CONFIG_SCHED_DEBUG
677# define const_debug __read_mostly
678#else
679# define const_debug static const
680#endif
681
682/**
683 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
684 * @cpu: the processor in question.
685 *
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
688 */
689int runqueue_is_locked(int cpu)
690{
691 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
692}
693
694/*
695 * Debugging: various feature bits
696 */
697
698#define SCHED_FEAT(name, enabled) \
699 __SCHED_FEAT_##name ,
700
701enum {
702#include "sched_features.h"
703};
704
705#undef SCHED_FEAT
706
707#define SCHED_FEAT(name, enabled) \
708 (1UL << __SCHED_FEAT_##name) * enabled |
709
710const_debug unsigned int sysctl_sched_features =
711#include "sched_features.h"
712 0;
713
714#undef SCHED_FEAT
715
716#ifdef CONFIG_SCHED_DEBUG
717#define SCHED_FEAT(name, enabled) \
718 #name ,
719
720static __read_mostly char *sched_feat_names[] = {
721#include "sched_features.h"
722 NULL
723};
724
725#undef SCHED_FEAT
726
727static int sched_feat_show(struct seq_file *m, void *v)
728{
729 int i;
730
731 for (i = 0; sched_feat_names[i]; i++) {
732 if (!(sysctl_sched_features & (1UL << i)))
733 seq_puts(m, "NO_");
734 seq_printf(m, "%s ", sched_feat_names[i]);
735 }
736 seq_puts(m, "\n");
737
738 return 0;
739}
740
741static ssize_t
742sched_feat_write(struct file *filp, const char __user *ubuf,
743 size_t cnt, loff_t *ppos)
744{
745 char buf[64];
746 char *cmp;
747 int neg = 0;
748 int i;
749
750 if (cnt > 63)
751 cnt = 63;
752
753 if (copy_from_user(&buf, ubuf, cnt))
754 return -EFAULT;
755
756 buf[cnt] = 0;
757 cmp = strstrip(buf);
758
759 if (strncmp(cmp, "NO_", 3) == 0) {
760 neg = 1;
761 cmp += 3;
762 }
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 if (strcmp(cmp, sched_feat_names[i]) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
777 *ppos += cnt;
778
779 return cnt;
780}
781
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784 return single_open(filp, sched_feat_show, NULL);
785}
786
787static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793};
794
795static __init int sched_init_debug(void)
796{
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814/*
815 * period over which we average the RT time consumption, measured
816 * in ms.
817 *
818 * default: 1s
819 */
820const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
821
822/*
823 * period over which we measure -rt task cpu usage in us.
824 * default: 1s
825 */
826unsigned int sysctl_sched_rt_period = 1000000;
827
828static __read_mostly int scheduler_running;
829
830/*
831 * part of the period that we allow rt tasks to run in us.
832 * default: 0.95s
833 */
834int sysctl_sched_rt_runtime = 950000;
835
836static inline u64 global_rt_period(void)
837{
838 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
839}
840
841static inline u64 global_rt_runtime(void)
842{
843 if (sysctl_sched_rt_runtime < 0)
844 return RUNTIME_INF;
845
846 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
847}
848
849#ifndef prepare_arch_switch
850# define prepare_arch_switch(next) do { } while (0)
851#endif
852#ifndef finish_arch_switch
853# define finish_arch_switch(prev) do { } while (0)
854#endif
855
856static inline int task_current(struct rq *rq, struct task_struct *p)
857{
858 return rq->curr == p;
859}
860
861static inline int task_running(struct rq *rq, struct task_struct *p)
862{
863#ifdef CONFIG_SMP
864 return p->on_cpu;
865#else
866 return task_current(rq, p);
867#endif
868}
869
870#ifndef __ARCH_WANT_UNLOCKED_CTXSW
871static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
872{
873#ifdef CONFIG_SMP
874 /*
875 * We can optimise this out completely for !SMP, because the
876 * SMP rebalancing from interrupt is the only thing that cares
877 * here.
878 */
879 next->on_cpu = 1;
880#endif
881}
882
883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884{
885#ifdef CONFIG_SMP
886 /*
887 * After ->on_cpu is cleared, the task can be moved to a different CPU.
888 * We must ensure this doesn't happen until the switch is completely
889 * finished.
890 */
891 smp_wmb();
892 prev->on_cpu = 0;
893#endif
894#ifdef CONFIG_DEBUG_SPINLOCK
895 /* this is a valid case when another task releases the spinlock */
896 rq->lock.owner = current;
897#endif
898 /*
899 * If we are tracking spinlock dependencies then we have to
900 * fix up the runqueue lock - which gets 'carried over' from
901 * prev into current:
902 */
903 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
904
905 raw_spin_unlock_irq(&rq->lock);
906}
907
908#else /* __ARCH_WANT_UNLOCKED_CTXSW */
909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->on_cpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 raw_spin_unlock_irq(&rq->lock);
921#else
922 raw_spin_unlock(&rq->lock);
923#endif
924}
925
926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->on_cpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->on_cpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939#endif
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942
943/*
944 * __task_rq_lock - lock the rq @p resides on.
945 */
946static inline struct rq *__task_rq_lock(struct task_struct *p)
947 __acquires(rq->lock)
948{
949 struct rq *rq;
950
951 lockdep_assert_held(&p->pi_lock);
952
953 for (;;) {
954 rq = task_rq(p);
955 raw_spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 raw_spin_unlock(&rq->lock);
959 }
960}
961
962/*
963 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
964 */
965static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
966 __acquires(p->pi_lock)
967 __acquires(rq->lock)
968{
969 struct rq *rq;
970
971 for (;;) {
972 raw_spin_lock_irqsave(&p->pi_lock, *flags);
973 rq = task_rq(p);
974 raw_spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
977 raw_spin_unlock(&rq->lock);
978 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
979 }
980}
981
982static void __task_rq_unlock(struct rq *rq)
983 __releases(rq->lock)
984{
985 raw_spin_unlock(&rq->lock);
986}
987
988static inline void
989task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
990 __releases(rq->lock)
991 __releases(p->pi_lock)
992{
993 raw_spin_unlock(&rq->lock);
994 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
995}
996
997/*
998 * this_rq_lock - lock this runqueue and disable interrupts.
999 */
1000static struct rq *this_rq_lock(void)
1001 __acquires(rq->lock)
1002{
1003 struct rq *rq;
1004
1005 local_irq_disable();
1006 rq = this_rq();
1007 raw_spin_lock(&rq->lock);
1008
1009 return rq;
1010}
1011
1012#ifdef CONFIG_SCHED_HRTICK
1013/*
1014 * Use HR-timers to deliver accurate preemption points.
1015 *
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1018 * reschedule event.
1019 *
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * rq->lock.
1022 */
1023
1024/*
1025 * Use hrtick when:
1026 * - enabled by features
1027 * - hrtimer is actually high res
1028 */
1029static inline int hrtick_enabled(struct rq *rq)
1030{
1031 if (!sched_feat(HRTICK))
1032 return 0;
1033 if (!cpu_active(cpu_of(rq)))
1034 return 0;
1035 return hrtimer_is_hres_active(&rq->hrtick_timer);
1036}
1037
1038static void hrtick_clear(struct rq *rq)
1039{
1040 if (hrtimer_active(&rq->hrtick_timer))
1041 hrtimer_cancel(&rq->hrtick_timer);
1042}
1043
1044/*
1045 * High-resolution timer tick.
1046 * Runs from hardirq context with interrupts disabled.
1047 */
1048static enum hrtimer_restart hrtick(struct hrtimer *timer)
1049{
1050 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1051
1052 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053
1054 raw_spin_lock(&rq->lock);
1055 update_rq_clock(rq);
1056 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1057 raw_spin_unlock(&rq->lock);
1058
1059 return HRTIMER_NORESTART;
1060}
1061
1062#ifdef CONFIG_SMP
1063/*
1064 * called from hardirq (IPI) context
1065 */
1066static void __hrtick_start(void *arg)
1067{
1068 struct rq *rq = arg;
1069
1070 raw_spin_lock(&rq->lock);
1071 hrtimer_restart(&rq->hrtick_timer);
1072 rq->hrtick_csd_pending = 0;
1073 raw_spin_unlock(&rq->lock);
1074}
1075
1076/*
1077 * Called to set the hrtick timer state.
1078 *
1079 * called with rq->lock held and irqs disabled
1080 */
1081static void hrtick_start(struct rq *rq, u64 delay)
1082{
1083 struct hrtimer *timer = &rq->hrtick_timer;
1084 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1085
1086 hrtimer_set_expires(timer, time);
1087
1088 if (rq == this_rq()) {
1089 hrtimer_restart(timer);
1090 } else if (!rq->hrtick_csd_pending) {
1091 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1092 rq->hrtick_csd_pending = 1;
1093 }
1094}
1095
1096static int
1097hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1098{
1099 int cpu = (int)(long)hcpu;
1100
1101 switch (action) {
1102 case CPU_UP_CANCELED:
1103 case CPU_UP_CANCELED_FROZEN:
1104 case CPU_DOWN_PREPARE:
1105 case CPU_DOWN_PREPARE_FROZEN:
1106 case CPU_DEAD:
1107 case CPU_DEAD_FROZEN:
1108 hrtick_clear(cpu_rq(cpu));
1109 return NOTIFY_OK;
1110 }
1111
1112 return NOTIFY_DONE;
1113}
1114
1115static __init void init_hrtick(void)
1116{
1117 hotcpu_notifier(hotplug_hrtick, 0);
1118}
1119#else
1120/*
1121 * Called to set the hrtick timer state.
1122 *
1123 * called with rq->lock held and irqs disabled
1124 */
1125static void hrtick_start(struct rq *rq, u64 delay)
1126{
1127 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1128 HRTIMER_MODE_REL_PINNED, 0);
1129}
1130
1131static inline void init_hrtick(void)
1132{
1133}
1134#endif /* CONFIG_SMP */
1135
1136static void init_rq_hrtick(struct rq *rq)
1137{
1138#ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
1140
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144#endif
1145
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
1148}
1149#else /* CONFIG_SCHED_HRTICK */
1150static inline void hrtick_clear(struct rq *rq)
1151{
1152}
1153
1154static inline void init_rq_hrtick(struct rq *rq)
1155{
1156}
1157
1158static inline void init_hrtick(void)
1159{
1160}
1161#endif /* CONFIG_SCHED_HRTICK */
1162
1163/*
1164 * resched_task - mark a task 'to be rescheduled now'.
1165 *
1166 * On UP this means the setting of the need_resched flag, on SMP it
1167 * might also involve a cross-CPU call to trigger the scheduler on
1168 * the target CPU.
1169 */
1170#ifdef CONFIG_SMP
1171
1172#ifndef tsk_is_polling
1173#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1174#endif
1175
1176static void resched_task(struct task_struct *p)
1177{
1178 int cpu;
1179
1180 assert_raw_spin_locked(&task_rq(p)->lock);
1181
1182 if (test_tsk_need_resched(p))
1183 return;
1184
1185 set_tsk_need_resched(p);
1186
1187 cpu = task_cpu(p);
1188 if (cpu == smp_processor_id())
1189 return;
1190
1191 /* NEED_RESCHED must be visible before we test polling */
1192 smp_mb();
1193 if (!tsk_is_polling(p))
1194 smp_send_reschedule(cpu);
1195}
1196
1197static void resched_cpu(int cpu)
1198{
1199 struct rq *rq = cpu_rq(cpu);
1200 unsigned long flags;
1201
1202 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1203 return;
1204 resched_task(cpu_curr(cpu));
1205 raw_spin_unlock_irqrestore(&rq->lock, flags);
1206}
1207
1208#ifdef CONFIG_NO_HZ
1209/*
1210 * In the semi idle case, use the nearest busy cpu for migrating timers
1211 * from an idle cpu. This is good for power-savings.
1212 *
1213 * We don't do similar optimization for completely idle system, as
1214 * selecting an idle cpu will add more delays to the timers than intended
1215 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1216 */
1217int get_nohz_timer_target(void)
1218{
1219 int cpu = smp_processor_id();
1220 int i;
1221 struct sched_domain *sd;
1222
1223 rcu_read_lock();
1224 for_each_domain(cpu, sd) {
1225 for_each_cpu(i, sched_domain_span(sd)) {
1226 if (!idle_cpu(i)) {
1227 cpu = i;
1228 goto unlock;
1229 }
1230 }
1231 }
1232unlock:
1233 rcu_read_unlock();
1234 return cpu;
1235}
1236/*
1237 * When add_timer_on() enqueues a timer into the timer wheel of an
1238 * idle CPU then this timer might expire before the next timer event
1239 * which is scheduled to wake up that CPU. In case of a completely
1240 * idle system the next event might even be infinite time into the
1241 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1242 * leaves the inner idle loop so the newly added timer is taken into
1243 * account when the CPU goes back to idle and evaluates the timer
1244 * wheel for the next timer event.
1245 */
1246void wake_up_idle_cpu(int cpu)
1247{
1248 struct rq *rq = cpu_rq(cpu);
1249
1250 if (cpu == smp_processor_id())
1251 return;
1252
1253 /*
1254 * This is safe, as this function is called with the timer
1255 * wheel base lock of (cpu) held. When the CPU is on the way
1256 * to idle and has not yet set rq->curr to idle then it will
1257 * be serialized on the timer wheel base lock and take the new
1258 * timer into account automatically.
1259 */
1260 if (rq->curr != rq->idle)
1261 return;
1262
1263 /*
1264 * We can set TIF_RESCHED on the idle task of the other CPU
1265 * lockless. The worst case is that the other CPU runs the
1266 * idle task through an additional NOOP schedule()
1267 */
1268 set_tsk_need_resched(rq->idle);
1269
1270 /* NEED_RESCHED must be visible before we test polling */
1271 smp_mb();
1272 if (!tsk_is_polling(rq->idle))
1273 smp_send_reschedule(cpu);
1274}
1275
1276#endif /* CONFIG_NO_HZ */
1277
1278static u64 sched_avg_period(void)
1279{
1280 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1281}
1282
1283static void sched_avg_update(struct rq *rq)
1284{
1285 s64 period = sched_avg_period();
1286
1287 while ((s64)(rq->clock - rq->age_stamp) > period) {
1288 /*
1289 * Inline assembly required to prevent the compiler
1290 * optimising this loop into a divmod call.
1291 * See __iter_div_u64_rem() for another example of this.
1292 */
1293 asm("" : "+rm" (rq->age_stamp));
1294 rq->age_stamp += period;
1295 rq->rt_avg /= 2;
1296 }
1297}
1298
1299static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1300{
1301 rq->rt_avg += rt_delta;
1302 sched_avg_update(rq);
1303}
1304
1305#else /* !CONFIG_SMP */
1306static void resched_task(struct task_struct *p)
1307{
1308 assert_raw_spin_locked(&task_rq(p)->lock);
1309 set_tsk_need_resched(p);
1310}
1311
1312static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1313{
1314}
1315
1316static void sched_avg_update(struct rq *rq)
1317{
1318}
1319#endif /* CONFIG_SMP */
1320
1321#if BITS_PER_LONG == 32
1322# define WMULT_CONST (~0UL)
1323#else
1324# define WMULT_CONST (1UL << 32)
1325#endif
1326
1327#define WMULT_SHIFT 32
1328
1329/*
1330 * Shift right and round:
1331 */
1332#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1333
1334/*
1335 * delta *= weight / lw
1336 */
1337static unsigned long
1338calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1339 struct load_weight *lw)
1340{
1341 u64 tmp;
1342
1343 /*
1344 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1345 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1346 * 2^SCHED_LOAD_RESOLUTION.
1347 */
1348 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1349 tmp = (u64)delta_exec * scale_load_down(weight);
1350 else
1351 tmp = (u64)delta_exec;
1352
1353 if (!lw->inv_weight) {
1354 unsigned long w = scale_load_down(lw->weight);
1355
1356 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1357 lw->inv_weight = 1;
1358 else if (unlikely(!w))
1359 lw->inv_weight = WMULT_CONST;
1360 else
1361 lw->inv_weight = WMULT_CONST / w;
1362 }
1363
1364 /*
1365 * Check whether we'd overflow the 64-bit multiplication:
1366 */
1367 if (unlikely(tmp > WMULT_CONST))
1368 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1369 WMULT_SHIFT/2);
1370 else
1371 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1372
1373 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1374}
1375
1376static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1377{
1378 lw->weight += inc;
1379 lw->inv_weight = 0;
1380}
1381
1382static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1383{
1384 lw->weight -= dec;
1385 lw->inv_weight = 0;
1386}
1387
1388static inline void update_load_set(struct load_weight *lw, unsigned long w)
1389{
1390 lw->weight = w;
1391 lw->inv_weight = 0;
1392}
1393
1394/*
1395 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1396 * of tasks with abnormal "nice" values across CPUs the contribution that
1397 * each task makes to its run queue's load is weighted according to its
1398 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1399 * scaled version of the new time slice allocation that they receive on time
1400 * slice expiry etc.
1401 */
1402
1403#define WEIGHT_IDLEPRIO 3
1404#define WMULT_IDLEPRIO 1431655765
1405
1406/*
1407 * Nice levels are multiplicative, with a gentle 10% change for every
1408 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1409 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1410 * that remained on nice 0.
1411 *
1412 * The "10% effect" is relative and cumulative: from _any_ nice level,
1413 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1414 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1415 * If a task goes up by ~10% and another task goes down by ~10% then
1416 * the relative distance between them is ~25%.)
1417 */
1418static const int prio_to_weight[40] = {
1419 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1420 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1421 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1422 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1423 /* 0 */ 1024, 820, 655, 526, 423,
1424 /* 5 */ 335, 272, 215, 172, 137,
1425 /* 10 */ 110, 87, 70, 56, 45,
1426 /* 15 */ 36, 29, 23, 18, 15,
1427};
1428
1429/*
1430 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1431 *
1432 * In cases where the weight does not change often, we can use the
1433 * precalculated inverse to speed up arithmetics by turning divisions
1434 * into multiplications:
1435 */
1436static const u32 prio_to_wmult[40] = {
1437 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1438 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1439 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1440 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1441 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1442 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1443 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1444 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1445};
1446
1447/* Time spent by the tasks of the cpu accounting group executing in ... */
1448enum cpuacct_stat_index {
1449 CPUACCT_STAT_USER, /* ... user mode */
1450 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1451
1452 CPUACCT_STAT_NSTATS,
1453};
1454
1455#ifdef CONFIG_CGROUP_CPUACCT
1456static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1457static void cpuacct_update_stats(struct task_struct *tsk,
1458 enum cpuacct_stat_index idx, cputime_t val);
1459#else
1460static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1461static inline void cpuacct_update_stats(struct task_struct *tsk,
1462 enum cpuacct_stat_index idx, cputime_t val) {}
1463#endif
1464
1465static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1466{
1467 update_load_add(&rq->load, load);
1468}
1469
1470static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1471{
1472 update_load_sub(&rq->load, load);
1473}
1474
1475#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1476typedef int (*tg_visitor)(struct task_group *, void *);
1477
1478/*
1479 * Iterate the full tree, calling @down when first entering a node and @up when
1480 * leaving it for the final time.
1481 */
1482static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1483{
1484 struct task_group *parent, *child;
1485 int ret;
1486
1487 rcu_read_lock();
1488 parent = &root_task_group;
1489down:
1490 ret = (*down)(parent, data);
1491 if (ret)
1492 goto out_unlock;
1493 list_for_each_entry_rcu(child, &parent->children, siblings) {
1494 parent = child;
1495 goto down;
1496
1497up:
1498 continue;
1499 }
1500 ret = (*up)(parent, data);
1501 if (ret)
1502 goto out_unlock;
1503
1504 child = parent;
1505 parent = parent->parent;
1506 if (parent)
1507 goto up;
1508out_unlock:
1509 rcu_read_unlock();
1510
1511 return ret;
1512}
1513
1514static int tg_nop(struct task_group *tg, void *data)
1515{
1516 return 0;
1517}
1518#endif
1519
1520#ifdef CONFIG_SMP
1521/* Used instead of source_load when we know the type == 0 */
1522static unsigned long weighted_cpuload(const int cpu)
1523{
1524 return cpu_rq(cpu)->load.weight;
1525}
1526
1527/*
1528 * Return a low guess at the load of a migration-source cpu weighted
1529 * according to the scheduling class and "nice" value.
1530 *
1531 * We want to under-estimate the load of migration sources, to
1532 * balance conservatively.
1533 */
1534static unsigned long source_load(int cpu, int type)
1535{
1536 struct rq *rq = cpu_rq(cpu);
1537 unsigned long total = weighted_cpuload(cpu);
1538
1539 if (type == 0 || !sched_feat(LB_BIAS))
1540 return total;
1541
1542 return min(rq->cpu_load[type-1], total);
1543}
1544
1545/*
1546 * Return a high guess at the load of a migration-target cpu weighted
1547 * according to the scheduling class and "nice" value.
1548 */
1549static unsigned long target_load(int cpu, int type)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552 unsigned long total = weighted_cpuload(cpu);
1553
1554 if (type == 0 || !sched_feat(LB_BIAS))
1555 return total;
1556
1557 return max(rq->cpu_load[type-1], total);
1558}
1559
1560static unsigned long power_of(int cpu)
1561{
1562 return cpu_rq(cpu)->cpu_power;
1563}
1564
1565static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1566
1567static unsigned long cpu_avg_load_per_task(int cpu)
1568{
1569 struct rq *rq = cpu_rq(cpu);
1570 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1571
1572 if (nr_running)
1573 rq->avg_load_per_task = rq->load.weight / nr_running;
1574 else
1575 rq->avg_load_per_task = 0;
1576
1577 return rq->avg_load_per_task;
1578}
1579
1580#ifdef CONFIG_PREEMPT
1581
1582static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1583
1584/*
1585 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1586 * way at the expense of forcing extra atomic operations in all
1587 * invocations. This assures that the double_lock is acquired using the
1588 * same underlying policy as the spinlock_t on this architecture, which
1589 * reduces latency compared to the unfair variant below. However, it
1590 * also adds more overhead and therefore may reduce throughput.
1591 */
1592static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1593 __releases(this_rq->lock)
1594 __acquires(busiest->lock)
1595 __acquires(this_rq->lock)
1596{
1597 raw_spin_unlock(&this_rq->lock);
1598 double_rq_lock(this_rq, busiest);
1599
1600 return 1;
1601}
1602
1603#else
1604/*
1605 * Unfair double_lock_balance: Optimizes throughput at the expense of
1606 * latency by eliminating extra atomic operations when the locks are
1607 * already in proper order on entry. This favors lower cpu-ids and will
1608 * grant the double lock to lower cpus over higher ids under contention,
1609 * regardless of entry order into the function.
1610 */
1611static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1612 __releases(this_rq->lock)
1613 __acquires(busiest->lock)
1614 __acquires(this_rq->lock)
1615{
1616 int ret = 0;
1617
1618 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1619 if (busiest < this_rq) {
1620 raw_spin_unlock(&this_rq->lock);
1621 raw_spin_lock(&busiest->lock);
1622 raw_spin_lock_nested(&this_rq->lock,
1623 SINGLE_DEPTH_NESTING);
1624 ret = 1;
1625 } else
1626 raw_spin_lock_nested(&busiest->lock,
1627 SINGLE_DEPTH_NESTING);
1628 }
1629 return ret;
1630}
1631
1632#endif /* CONFIG_PREEMPT */
1633
1634/*
1635 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1636 */
1637static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1638{
1639 if (unlikely(!irqs_disabled())) {
1640 /* printk() doesn't work good under rq->lock */
1641 raw_spin_unlock(&this_rq->lock);
1642 BUG_ON(1);
1643 }
1644
1645 return _double_lock_balance(this_rq, busiest);
1646}
1647
1648static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1649 __releases(busiest->lock)
1650{
1651 raw_spin_unlock(&busiest->lock);
1652 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1653}
1654
1655/*
1656 * double_rq_lock - safely lock two runqueues
1657 *
1658 * Note this does not disable interrupts like task_rq_lock,
1659 * you need to do so manually before calling.
1660 */
1661static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1662 __acquires(rq1->lock)
1663 __acquires(rq2->lock)
1664{
1665 BUG_ON(!irqs_disabled());
1666 if (rq1 == rq2) {
1667 raw_spin_lock(&rq1->lock);
1668 __acquire(rq2->lock); /* Fake it out ;) */
1669 } else {
1670 if (rq1 < rq2) {
1671 raw_spin_lock(&rq1->lock);
1672 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1673 } else {
1674 raw_spin_lock(&rq2->lock);
1675 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1676 }
1677 }
1678}
1679
1680/*
1681 * double_rq_unlock - safely unlock two runqueues
1682 *
1683 * Note this does not restore interrupts like task_rq_unlock,
1684 * you need to do so manually after calling.
1685 */
1686static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1687 __releases(rq1->lock)
1688 __releases(rq2->lock)
1689{
1690 raw_spin_unlock(&rq1->lock);
1691 if (rq1 != rq2)
1692 raw_spin_unlock(&rq2->lock);
1693 else
1694 __release(rq2->lock);
1695}
1696
1697#else /* CONFIG_SMP */
1698
1699/*
1700 * double_rq_lock - safely lock two runqueues
1701 *
1702 * Note this does not disable interrupts like task_rq_lock,
1703 * you need to do so manually before calling.
1704 */
1705static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1706 __acquires(rq1->lock)
1707 __acquires(rq2->lock)
1708{
1709 BUG_ON(!irqs_disabled());
1710 BUG_ON(rq1 != rq2);
1711 raw_spin_lock(&rq1->lock);
1712 __acquire(rq2->lock); /* Fake it out ;) */
1713}
1714
1715/*
1716 * double_rq_unlock - safely unlock two runqueues
1717 *
1718 * Note this does not restore interrupts like task_rq_unlock,
1719 * you need to do so manually after calling.
1720 */
1721static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1722 __releases(rq1->lock)
1723 __releases(rq2->lock)
1724{
1725 BUG_ON(rq1 != rq2);
1726 raw_spin_unlock(&rq1->lock);
1727 __release(rq2->lock);
1728}
1729
1730#endif
1731
1732static void calc_load_account_idle(struct rq *this_rq);
1733static void update_sysctl(void);
1734static int get_update_sysctl_factor(void);
1735static void update_cpu_load(struct rq *this_rq);
1736
1737static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1738{
1739 set_task_rq(p, cpu);
1740#ifdef CONFIG_SMP
1741 /*
1742 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1743 * successfuly executed on another CPU. We must ensure that updates of
1744 * per-task data have been completed by this moment.
1745 */
1746 smp_wmb();
1747 task_thread_info(p)->cpu = cpu;
1748#endif
1749}
1750
1751static const struct sched_class rt_sched_class;
1752
1753#define sched_class_highest (&stop_sched_class)
1754#define for_each_class(class) \
1755 for (class = sched_class_highest; class; class = class->next)
1756
1757#include "sched_stats.h"
1758
1759static void inc_nr_running(struct rq *rq)
1760{
1761 rq->nr_running++;
1762}
1763
1764static void dec_nr_running(struct rq *rq)
1765{
1766 rq->nr_running--;
1767}
1768
1769static void set_load_weight(struct task_struct *p)
1770{
1771 int prio = p->static_prio - MAX_RT_PRIO;
1772 struct load_weight *load = &p->se.load;
1773
1774 /*
1775 * SCHED_IDLE tasks get minimal weight:
1776 */
1777 if (p->policy == SCHED_IDLE) {
1778 load->weight = scale_load(WEIGHT_IDLEPRIO);
1779 load->inv_weight = WMULT_IDLEPRIO;
1780 return;
1781 }
1782
1783 load->weight = scale_load(prio_to_weight[prio]);
1784 load->inv_weight = prio_to_wmult[prio];
1785}
1786
1787static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1788{
1789 update_rq_clock(rq);
1790 sched_info_queued(p);
1791 p->sched_class->enqueue_task(rq, p, flags);
1792}
1793
1794static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1795{
1796 update_rq_clock(rq);
1797 sched_info_dequeued(p);
1798 p->sched_class->dequeue_task(rq, p, flags);
1799}
1800
1801/*
1802 * activate_task - move a task to the runqueue.
1803 */
1804static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1805{
1806 if (task_contributes_to_load(p))
1807 rq->nr_uninterruptible--;
1808
1809 enqueue_task(rq, p, flags);
1810 inc_nr_running(rq);
1811}
1812
1813/*
1814 * deactivate_task - remove a task from the runqueue.
1815 */
1816static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1817{
1818 if (task_contributes_to_load(p))
1819 rq->nr_uninterruptible++;
1820
1821 dequeue_task(rq, p, flags);
1822 dec_nr_running(rq);
1823}
1824
1825#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1826
1827/*
1828 * There are no locks covering percpu hardirq/softirq time.
1829 * They are only modified in account_system_vtime, on corresponding CPU
1830 * with interrupts disabled. So, writes are safe.
1831 * They are read and saved off onto struct rq in update_rq_clock().
1832 * This may result in other CPU reading this CPU's irq time and can
1833 * race with irq/account_system_vtime on this CPU. We would either get old
1834 * or new value with a side effect of accounting a slice of irq time to wrong
1835 * task when irq is in progress while we read rq->clock. That is a worthy
1836 * compromise in place of having locks on each irq in account_system_time.
1837 */
1838static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1839static DEFINE_PER_CPU(u64, cpu_softirq_time);
1840
1841static DEFINE_PER_CPU(u64, irq_start_time);
1842static int sched_clock_irqtime;
1843
1844void enable_sched_clock_irqtime(void)
1845{
1846 sched_clock_irqtime = 1;
1847}
1848
1849void disable_sched_clock_irqtime(void)
1850{
1851 sched_clock_irqtime = 0;
1852}
1853
1854#ifndef CONFIG_64BIT
1855static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1856
1857static inline void irq_time_write_begin(void)
1858{
1859 __this_cpu_inc(irq_time_seq.sequence);
1860 smp_wmb();
1861}
1862
1863static inline void irq_time_write_end(void)
1864{
1865 smp_wmb();
1866 __this_cpu_inc(irq_time_seq.sequence);
1867}
1868
1869static inline u64 irq_time_read(int cpu)
1870{
1871 u64 irq_time;
1872 unsigned seq;
1873
1874 do {
1875 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1876 irq_time = per_cpu(cpu_softirq_time, cpu) +
1877 per_cpu(cpu_hardirq_time, cpu);
1878 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1879
1880 return irq_time;
1881}
1882#else /* CONFIG_64BIT */
1883static inline void irq_time_write_begin(void)
1884{
1885}
1886
1887static inline void irq_time_write_end(void)
1888{
1889}
1890
1891static inline u64 irq_time_read(int cpu)
1892{
1893 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1894}
1895#endif /* CONFIG_64BIT */
1896
1897/*
1898 * Called before incrementing preempt_count on {soft,}irq_enter
1899 * and before decrementing preempt_count on {soft,}irq_exit.
1900 */
1901void account_system_vtime(struct task_struct *curr)
1902{
1903 unsigned long flags;
1904 s64 delta;
1905 int cpu;
1906
1907 if (!sched_clock_irqtime)
1908 return;
1909
1910 local_irq_save(flags);
1911
1912 cpu = smp_processor_id();
1913 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1914 __this_cpu_add(irq_start_time, delta);
1915
1916 irq_time_write_begin();
1917 /*
1918 * We do not account for softirq time from ksoftirqd here.
1919 * We want to continue accounting softirq time to ksoftirqd thread
1920 * in that case, so as not to confuse scheduler with a special task
1921 * that do not consume any time, but still wants to run.
1922 */
1923 if (hardirq_count())
1924 __this_cpu_add(cpu_hardirq_time, delta);
1925 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1926 __this_cpu_add(cpu_softirq_time, delta);
1927
1928 irq_time_write_end();
1929 local_irq_restore(flags);
1930}
1931EXPORT_SYMBOL_GPL(account_system_vtime);
1932
1933#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1934
1935#ifdef CONFIG_PARAVIRT
1936static inline u64 steal_ticks(u64 steal)
1937{
1938 if (unlikely(steal > NSEC_PER_SEC))
1939 return div_u64(steal, TICK_NSEC);
1940
1941 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1942}
1943#endif
1944
1945static void update_rq_clock_task(struct rq *rq, s64 delta)
1946{
1947/*
1948 * In theory, the compile should just see 0 here, and optimize out the call
1949 * to sched_rt_avg_update. But I don't trust it...
1950 */
1951#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1952 s64 steal = 0, irq_delta = 0;
1953#endif
1954#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1955 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1956
1957 /*
1958 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1959 * this case when a previous update_rq_clock() happened inside a
1960 * {soft,}irq region.
1961 *
1962 * When this happens, we stop ->clock_task and only update the
1963 * prev_irq_time stamp to account for the part that fit, so that a next
1964 * update will consume the rest. This ensures ->clock_task is
1965 * monotonic.
1966 *
1967 * It does however cause some slight miss-attribution of {soft,}irq
1968 * time, a more accurate solution would be to update the irq_time using
1969 * the current rq->clock timestamp, except that would require using
1970 * atomic ops.
1971 */
1972 if (irq_delta > delta)
1973 irq_delta = delta;
1974
1975 rq->prev_irq_time += irq_delta;
1976 delta -= irq_delta;
1977#endif
1978#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1979 if (static_branch((&paravirt_steal_rq_enabled))) {
1980 u64 st;
1981
1982 steal = paravirt_steal_clock(cpu_of(rq));
1983 steal -= rq->prev_steal_time_rq;
1984
1985 if (unlikely(steal > delta))
1986 steal = delta;
1987
1988 st = steal_ticks(steal);
1989 steal = st * TICK_NSEC;
1990
1991 rq->prev_steal_time_rq += steal;
1992
1993 delta -= steal;
1994 }
1995#endif
1996
1997 rq->clock_task += delta;
1998
1999#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2000 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2001 sched_rt_avg_update(rq, irq_delta + steal);
2002#endif
2003}
2004
2005#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2006static int irqtime_account_hi_update(void)
2007{
2008 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2009 unsigned long flags;
2010 u64 latest_ns;
2011 int ret = 0;
2012
2013 local_irq_save(flags);
2014 latest_ns = this_cpu_read(cpu_hardirq_time);
2015 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2016 ret = 1;
2017 local_irq_restore(flags);
2018 return ret;
2019}
2020
2021static int irqtime_account_si_update(void)
2022{
2023 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2024 unsigned long flags;
2025 u64 latest_ns;
2026 int ret = 0;
2027
2028 local_irq_save(flags);
2029 latest_ns = this_cpu_read(cpu_softirq_time);
2030 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2031 ret = 1;
2032 local_irq_restore(flags);
2033 return ret;
2034}
2035
2036#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2037
2038#define sched_clock_irqtime (0)
2039
2040#endif
2041
2042#include "sched_idletask.c"
2043#include "sched_fair.c"
2044#include "sched_rt.c"
2045#include "sched_autogroup.c"
2046#include "sched_stoptask.c"
2047#ifdef CONFIG_SCHED_DEBUG
2048# include "sched_debug.c"
2049#endif
2050
2051void sched_set_stop_task(int cpu, struct task_struct *stop)
2052{
2053 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2054 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2055
2056 if (stop) {
2057 /*
2058 * Make it appear like a SCHED_FIFO task, its something
2059 * userspace knows about and won't get confused about.
2060 *
2061 * Also, it will make PI more or less work without too
2062 * much confusion -- but then, stop work should not
2063 * rely on PI working anyway.
2064 */
2065 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2066
2067 stop->sched_class = &stop_sched_class;
2068 }
2069
2070 cpu_rq(cpu)->stop = stop;
2071
2072 if (old_stop) {
2073 /*
2074 * Reset it back to a normal scheduling class so that
2075 * it can die in pieces.
2076 */
2077 old_stop->sched_class = &rt_sched_class;
2078 }
2079}
2080
2081/*
2082 * __normal_prio - return the priority that is based on the static prio
2083 */
2084static inline int __normal_prio(struct task_struct *p)
2085{
2086 return p->static_prio;
2087}
2088
2089/*
2090 * Calculate the expected normal priority: i.e. priority
2091 * without taking RT-inheritance into account. Might be
2092 * boosted by interactivity modifiers. Changes upon fork,
2093 * setprio syscalls, and whenever the interactivity
2094 * estimator recalculates.
2095 */
2096static inline int normal_prio(struct task_struct *p)
2097{
2098 int prio;
2099
2100 if (task_has_rt_policy(p))
2101 prio = MAX_RT_PRIO-1 - p->rt_priority;
2102 else
2103 prio = __normal_prio(p);
2104 return prio;
2105}
2106
2107/*
2108 * Calculate the current priority, i.e. the priority
2109 * taken into account by the scheduler. This value might
2110 * be boosted by RT tasks, or might be boosted by
2111 * interactivity modifiers. Will be RT if the task got
2112 * RT-boosted. If not then it returns p->normal_prio.
2113 */
2114static int effective_prio(struct task_struct *p)
2115{
2116 p->normal_prio = normal_prio(p);
2117 /*
2118 * If we are RT tasks or we were boosted to RT priority,
2119 * keep the priority unchanged. Otherwise, update priority
2120 * to the normal priority:
2121 */
2122 if (!rt_prio(p->prio))
2123 return p->normal_prio;
2124 return p->prio;
2125}
2126
2127/**
2128 * task_curr - is this task currently executing on a CPU?
2129 * @p: the task in question.
2130 */
2131inline int task_curr(const struct task_struct *p)
2132{
2133 return cpu_curr(task_cpu(p)) == p;
2134}
2135
2136static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2137 const struct sched_class *prev_class,
2138 int oldprio)
2139{
2140 if (prev_class != p->sched_class) {
2141 if (prev_class->switched_from)
2142 prev_class->switched_from(rq, p);
2143 p->sched_class->switched_to(rq, p);
2144 } else if (oldprio != p->prio)
2145 p->sched_class->prio_changed(rq, p, oldprio);
2146}
2147
2148static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2149{
2150 const struct sched_class *class;
2151
2152 if (p->sched_class == rq->curr->sched_class) {
2153 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2154 } else {
2155 for_each_class(class) {
2156 if (class == rq->curr->sched_class)
2157 break;
2158 if (class == p->sched_class) {
2159 resched_task(rq->curr);
2160 break;
2161 }
2162 }
2163 }
2164
2165 /*
2166 * A queue event has occurred, and we're going to schedule. In
2167 * this case, we can save a useless back to back clock update.
2168 */
2169 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2170 rq->skip_clock_update = 1;
2171}
2172
2173#ifdef CONFIG_SMP
2174/*
2175 * Is this task likely cache-hot:
2176 */
2177static int
2178task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2179{
2180 s64 delta;
2181
2182 if (p->sched_class != &fair_sched_class)
2183 return 0;
2184
2185 if (unlikely(p->policy == SCHED_IDLE))
2186 return 0;
2187
2188 /*
2189 * Buddy candidates are cache hot:
2190 */
2191 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2192 (&p->se == cfs_rq_of(&p->se)->next ||
2193 &p->se == cfs_rq_of(&p->se)->last))
2194 return 1;
2195
2196 if (sysctl_sched_migration_cost == -1)
2197 return 1;
2198 if (sysctl_sched_migration_cost == 0)
2199 return 0;
2200
2201 delta = now - p->se.exec_start;
2202
2203 return delta < (s64)sysctl_sched_migration_cost;
2204}
2205
2206void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2207{
2208#ifdef CONFIG_SCHED_DEBUG
2209 /*
2210 * We should never call set_task_cpu() on a blocked task,
2211 * ttwu() will sort out the placement.
2212 */
2213 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2214 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2215
2216#ifdef CONFIG_LOCKDEP
2217 /*
2218 * The caller should hold either p->pi_lock or rq->lock, when changing
2219 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2220 *
2221 * sched_move_task() holds both and thus holding either pins the cgroup,
2222 * see set_task_rq().
2223 *
2224 * Furthermore, all task_rq users should acquire both locks, see
2225 * task_rq_lock().
2226 */
2227 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2228 lockdep_is_held(&task_rq(p)->lock)));
2229#endif
2230#endif
2231
2232 trace_sched_migrate_task(p, new_cpu);
2233
2234 if (task_cpu(p) != new_cpu) {
2235 p->se.nr_migrations++;
2236 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2237 }
2238
2239 __set_task_cpu(p, new_cpu);
2240}
2241
2242struct migration_arg {
2243 struct task_struct *task;
2244 int dest_cpu;
2245};
2246
2247static int migration_cpu_stop(void *data);
2248
2249/*
2250 * wait_task_inactive - wait for a thread to unschedule.
2251 *
2252 * If @match_state is nonzero, it's the @p->state value just checked and
2253 * not expected to change. If it changes, i.e. @p might have woken up,
2254 * then return zero. When we succeed in waiting for @p to be off its CPU,
2255 * we return a positive number (its total switch count). If a second call
2256 * a short while later returns the same number, the caller can be sure that
2257 * @p has remained unscheduled the whole time.
2258 *
2259 * The caller must ensure that the task *will* unschedule sometime soon,
2260 * else this function might spin for a *long* time. This function can't
2261 * be called with interrupts off, or it may introduce deadlock with
2262 * smp_call_function() if an IPI is sent by the same process we are
2263 * waiting to become inactive.
2264 */
2265unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2266{
2267 unsigned long flags;
2268 int running, on_rq;
2269 unsigned long ncsw;
2270 struct rq *rq;
2271
2272 for (;;) {
2273 /*
2274 * We do the initial early heuristics without holding
2275 * any task-queue locks at all. We'll only try to get
2276 * the runqueue lock when things look like they will
2277 * work out!
2278 */
2279 rq = task_rq(p);
2280
2281 /*
2282 * If the task is actively running on another CPU
2283 * still, just relax and busy-wait without holding
2284 * any locks.
2285 *
2286 * NOTE! Since we don't hold any locks, it's not
2287 * even sure that "rq" stays as the right runqueue!
2288 * But we don't care, since "task_running()" will
2289 * return false if the runqueue has changed and p
2290 * is actually now running somewhere else!
2291 */
2292 while (task_running(rq, p)) {
2293 if (match_state && unlikely(p->state != match_state))
2294 return 0;
2295 cpu_relax();
2296 }
2297
2298 /*
2299 * Ok, time to look more closely! We need the rq
2300 * lock now, to be *sure*. If we're wrong, we'll
2301 * just go back and repeat.
2302 */
2303 rq = task_rq_lock(p, &flags);
2304 trace_sched_wait_task(p);
2305 running = task_running(rq, p);
2306 on_rq = p->on_rq;
2307 ncsw = 0;
2308 if (!match_state || p->state == match_state)
2309 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2310 task_rq_unlock(rq, p, &flags);
2311
2312 /*
2313 * If it changed from the expected state, bail out now.
2314 */
2315 if (unlikely(!ncsw))
2316 break;
2317
2318 /*
2319 * Was it really running after all now that we
2320 * checked with the proper locks actually held?
2321 *
2322 * Oops. Go back and try again..
2323 */
2324 if (unlikely(running)) {
2325 cpu_relax();
2326 continue;
2327 }
2328
2329 /*
2330 * It's not enough that it's not actively running,
2331 * it must be off the runqueue _entirely_, and not
2332 * preempted!
2333 *
2334 * So if it was still runnable (but just not actively
2335 * running right now), it's preempted, and we should
2336 * yield - it could be a while.
2337 */
2338 if (unlikely(on_rq)) {
2339 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2340
2341 set_current_state(TASK_UNINTERRUPTIBLE);
2342 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2343 continue;
2344 }
2345
2346 /*
2347 * Ahh, all good. It wasn't running, and it wasn't
2348 * runnable, which means that it will never become
2349 * running in the future either. We're all done!
2350 */
2351 break;
2352 }
2353
2354 return ncsw;
2355}
2356
2357/***
2358 * kick_process - kick a running thread to enter/exit the kernel
2359 * @p: the to-be-kicked thread
2360 *
2361 * Cause a process which is running on another CPU to enter
2362 * kernel-mode, without any delay. (to get signals handled.)
2363 *
2364 * NOTE: this function doesn't have to take the runqueue lock,
2365 * because all it wants to ensure is that the remote task enters
2366 * the kernel. If the IPI races and the task has been migrated
2367 * to another CPU then no harm is done and the purpose has been
2368 * achieved as well.
2369 */
2370void kick_process(struct task_struct *p)
2371{
2372 int cpu;
2373
2374 preempt_disable();
2375 cpu = task_cpu(p);
2376 if ((cpu != smp_processor_id()) && task_curr(p))
2377 smp_send_reschedule(cpu);
2378 preempt_enable();
2379}
2380EXPORT_SYMBOL_GPL(kick_process);
2381#endif /* CONFIG_SMP */
2382
2383#ifdef CONFIG_SMP
2384/*
2385 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2386 */
2387static int select_fallback_rq(int cpu, struct task_struct *p)
2388{
2389 int dest_cpu;
2390 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2391
2392 /* Look for allowed, online CPU in same node. */
2393 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2394 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2395 return dest_cpu;
2396
2397 /* Any allowed, online CPU? */
2398 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2399 if (dest_cpu < nr_cpu_ids)
2400 return dest_cpu;
2401
2402 /* No more Mr. Nice Guy. */
2403 dest_cpu = cpuset_cpus_allowed_fallback(p);
2404 /*
2405 * Don't tell them about moving exiting tasks or
2406 * kernel threads (both mm NULL), since they never
2407 * leave kernel.
2408 */
2409 if (p->mm && printk_ratelimit()) {
2410 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2411 task_pid_nr(p), p->comm, cpu);
2412 }
2413
2414 return dest_cpu;
2415}
2416
2417/*
2418 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2419 */
2420static inline
2421int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2422{
2423 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2424
2425 /*
2426 * In order not to call set_task_cpu() on a blocking task we need
2427 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2428 * cpu.
2429 *
2430 * Since this is common to all placement strategies, this lives here.
2431 *
2432 * [ this allows ->select_task() to simply return task_cpu(p) and
2433 * not worry about this generic constraint ]
2434 */
2435 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2436 !cpu_online(cpu)))
2437 cpu = select_fallback_rq(task_cpu(p), p);
2438
2439 return cpu;
2440}
2441
2442static void update_avg(u64 *avg, u64 sample)
2443{
2444 s64 diff = sample - *avg;
2445 *avg += diff >> 3;
2446}
2447#endif
2448
2449static void
2450ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2451{
2452#ifdef CONFIG_SCHEDSTATS
2453 struct rq *rq = this_rq();
2454
2455#ifdef CONFIG_SMP
2456 int this_cpu = smp_processor_id();
2457
2458 if (cpu == this_cpu) {
2459 schedstat_inc(rq, ttwu_local);
2460 schedstat_inc(p, se.statistics.nr_wakeups_local);
2461 } else {
2462 struct sched_domain *sd;
2463
2464 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2465 rcu_read_lock();
2466 for_each_domain(this_cpu, sd) {
2467 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2468 schedstat_inc(sd, ttwu_wake_remote);
2469 break;
2470 }
2471 }
2472 rcu_read_unlock();
2473 }
2474
2475 if (wake_flags & WF_MIGRATED)
2476 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2477
2478#endif /* CONFIG_SMP */
2479
2480 schedstat_inc(rq, ttwu_count);
2481 schedstat_inc(p, se.statistics.nr_wakeups);
2482
2483 if (wake_flags & WF_SYNC)
2484 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2485
2486#endif /* CONFIG_SCHEDSTATS */
2487}
2488
2489static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2490{
2491 activate_task(rq, p, en_flags);
2492 p->on_rq = 1;
2493
2494 /* if a worker is waking up, notify workqueue */
2495 if (p->flags & PF_WQ_WORKER)
2496 wq_worker_waking_up(p, cpu_of(rq));
2497}
2498
2499/*
2500 * Mark the task runnable and perform wakeup-preemption.
2501 */
2502static void
2503ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2504{
2505 trace_sched_wakeup(p, true);
2506 check_preempt_curr(rq, p, wake_flags);
2507
2508 p->state = TASK_RUNNING;
2509#ifdef CONFIG_SMP
2510 if (p->sched_class->task_woken)
2511 p->sched_class->task_woken(rq, p);
2512
2513 if (rq->idle_stamp) {
2514 u64 delta = rq->clock - rq->idle_stamp;
2515 u64 max = 2*sysctl_sched_migration_cost;
2516
2517 if (delta > max)
2518 rq->avg_idle = max;
2519 else
2520 update_avg(&rq->avg_idle, delta);
2521 rq->idle_stamp = 0;
2522 }
2523#endif
2524}
2525
2526static void
2527ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2528{
2529#ifdef CONFIG_SMP
2530 if (p->sched_contributes_to_load)
2531 rq->nr_uninterruptible--;
2532#endif
2533
2534 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2535 ttwu_do_wakeup(rq, p, wake_flags);
2536}
2537
2538/*
2539 * Called in case the task @p isn't fully descheduled from its runqueue,
2540 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2541 * since all we need to do is flip p->state to TASK_RUNNING, since
2542 * the task is still ->on_rq.
2543 */
2544static int ttwu_remote(struct task_struct *p, int wake_flags)
2545{
2546 struct rq *rq;
2547 int ret = 0;
2548
2549 rq = __task_rq_lock(p);
2550 if (p->on_rq) {
2551 ttwu_do_wakeup(rq, p, wake_flags);
2552 ret = 1;
2553 }
2554 __task_rq_unlock(rq);
2555
2556 return ret;
2557}
2558
2559#ifdef CONFIG_SMP
2560static void sched_ttwu_do_pending(struct task_struct *list)
2561{
2562 struct rq *rq = this_rq();
2563
2564 raw_spin_lock(&rq->lock);
2565
2566 while (list) {
2567 struct task_struct *p = list;
2568 list = list->wake_entry;
2569 ttwu_do_activate(rq, p, 0);
2570 }
2571
2572 raw_spin_unlock(&rq->lock);
2573}
2574
2575#ifdef CONFIG_HOTPLUG_CPU
2576
2577static void sched_ttwu_pending(void)
2578{
2579 struct rq *rq = this_rq();
2580 struct task_struct *list = xchg(&rq->wake_list, NULL);
2581
2582 if (!list)
2583 return;
2584
2585 sched_ttwu_do_pending(list);
2586}
2587
2588#endif /* CONFIG_HOTPLUG_CPU */
2589
2590void scheduler_ipi(void)
2591{
2592 struct rq *rq = this_rq();
2593 struct task_struct *list = xchg(&rq->wake_list, NULL);
2594
2595 if (!list)
2596 return;
2597
2598 /*
2599 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2600 * traditionally all their work was done from the interrupt return
2601 * path. Now that we actually do some work, we need to make sure
2602 * we do call them.
2603 *
2604 * Some archs already do call them, luckily irq_enter/exit nest
2605 * properly.
2606 *
2607 * Arguably we should visit all archs and update all handlers,
2608 * however a fair share of IPIs are still resched only so this would
2609 * somewhat pessimize the simple resched case.
2610 */
2611 irq_enter();
2612 sched_ttwu_do_pending(list);
2613 irq_exit();
2614}
2615
2616static void ttwu_queue_remote(struct task_struct *p, int cpu)
2617{
2618 struct rq *rq = cpu_rq(cpu);
2619 struct task_struct *next = rq->wake_list;
2620
2621 for (;;) {
2622 struct task_struct *old = next;
2623
2624 p->wake_entry = next;
2625 next = cmpxchg(&rq->wake_list, old, p);
2626 if (next == old)
2627 break;
2628 }
2629
2630 if (!next)
2631 smp_send_reschedule(cpu);
2632}
2633
2634#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2635static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2636{
2637 struct rq *rq;
2638 int ret = 0;
2639
2640 rq = __task_rq_lock(p);
2641 if (p->on_cpu) {
2642 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2643 ttwu_do_wakeup(rq, p, wake_flags);
2644 ret = 1;
2645 }
2646 __task_rq_unlock(rq);
2647
2648 return ret;
2649
2650}
2651#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2652#endif /* CONFIG_SMP */
2653
2654static void ttwu_queue(struct task_struct *p, int cpu)
2655{
2656 struct rq *rq = cpu_rq(cpu);
2657
2658#if defined(CONFIG_SMP)
2659 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2660 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2661 ttwu_queue_remote(p, cpu);
2662 return;
2663 }
2664#endif
2665
2666 raw_spin_lock(&rq->lock);
2667 ttwu_do_activate(rq, p, 0);
2668 raw_spin_unlock(&rq->lock);
2669}
2670
2671/**
2672 * try_to_wake_up - wake up a thread
2673 * @p: the thread to be awakened
2674 * @state: the mask of task states that can be woken
2675 * @wake_flags: wake modifier flags (WF_*)
2676 *
2677 * Put it on the run-queue if it's not already there. The "current"
2678 * thread is always on the run-queue (except when the actual
2679 * re-schedule is in progress), and as such you're allowed to do
2680 * the simpler "current->state = TASK_RUNNING" to mark yourself
2681 * runnable without the overhead of this.
2682 *
2683 * Returns %true if @p was woken up, %false if it was already running
2684 * or @state didn't match @p's state.
2685 */
2686static int
2687try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2688{
2689 unsigned long flags;
2690 int cpu, success = 0;
2691
2692 smp_wmb();
2693 raw_spin_lock_irqsave(&p->pi_lock, flags);
2694 if (!(p->state & state))
2695 goto out;
2696
2697 success = 1; /* we're going to change ->state */
2698 cpu = task_cpu(p);
2699
2700 if (p->on_rq && ttwu_remote(p, wake_flags))
2701 goto stat;
2702
2703#ifdef CONFIG_SMP
2704 /*
2705 * If the owning (remote) cpu is still in the middle of schedule() with
2706 * this task as prev, wait until its done referencing the task.
2707 */
2708 while (p->on_cpu) {
2709#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2710 /*
2711 * In case the architecture enables interrupts in
2712 * context_switch(), we cannot busy wait, since that
2713 * would lead to deadlocks when an interrupt hits and
2714 * tries to wake up @prev. So bail and do a complete
2715 * remote wakeup.
2716 */
2717 if (ttwu_activate_remote(p, wake_flags))
2718 goto stat;
2719#else
2720 cpu_relax();
2721#endif
2722 }
2723 /*
2724 * Pairs with the smp_wmb() in finish_lock_switch().
2725 */
2726 smp_rmb();
2727
2728 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2729 p->state = TASK_WAKING;
2730
2731 if (p->sched_class->task_waking)
2732 p->sched_class->task_waking(p);
2733
2734 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2735 if (task_cpu(p) != cpu) {
2736 wake_flags |= WF_MIGRATED;
2737 set_task_cpu(p, cpu);
2738 }
2739#endif /* CONFIG_SMP */
2740
2741 ttwu_queue(p, cpu);
2742stat:
2743 ttwu_stat(p, cpu, wake_flags);
2744out:
2745 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746
2747 return success;
2748}
2749
2750/**
2751 * try_to_wake_up_local - try to wake up a local task with rq lock held
2752 * @p: the thread to be awakened
2753 *
2754 * Put @p on the run-queue if it's not already there. The caller must
2755 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2756 * the current task.
2757 */
2758static void try_to_wake_up_local(struct task_struct *p)
2759{
2760 struct rq *rq = task_rq(p);
2761
2762 BUG_ON(rq != this_rq());
2763 BUG_ON(p == current);
2764 lockdep_assert_held(&rq->lock);
2765
2766 if (!raw_spin_trylock(&p->pi_lock)) {
2767 raw_spin_unlock(&rq->lock);
2768 raw_spin_lock(&p->pi_lock);
2769 raw_spin_lock(&rq->lock);
2770 }
2771
2772 if (!(p->state & TASK_NORMAL))
2773 goto out;
2774
2775 if (!p->on_rq)
2776 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2777
2778 ttwu_do_wakeup(rq, p, 0);
2779 ttwu_stat(p, smp_processor_id(), 0);
2780out:
2781 raw_spin_unlock(&p->pi_lock);
2782}
2783
2784/**
2785 * wake_up_process - Wake up a specific process
2786 * @p: The process to be woken up.
2787 *
2788 * Attempt to wake up the nominated process and move it to the set of runnable
2789 * processes. Returns 1 if the process was woken up, 0 if it was already
2790 * running.
2791 *
2792 * It may be assumed that this function implies a write memory barrier before
2793 * changing the task state if and only if any tasks are woken up.
2794 */
2795int wake_up_process(struct task_struct *p)
2796{
2797 return try_to_wake_up(p, TASK_ALL, 0);
2798}
2799EXPORT_SYMBOL(wake_up_process);
2800
2801int wake_up_state(struct task_struct *p, unsigned int state)
2802{
2803 return try_to_wake_up(p, state, 0);
2804}
2805
2806/*
2807 * Perform scheduler related setup for a newly forked process p.
2808 * p is forked by current.
2809 *
2810 * __sched_fork() is basic setup used by init_idle() too:
2811 */
2812static void __sched_fork(struct task_struct *p)
2813{
2814 p->on_rq = 0;
2815
2816 p->se.on_rq = 0;
2817 p->se.exec_start = 0;
2818 p->se.sum_exec_runtime = 0;
2819 p->se.prev_sum_exec_runtime = 0;
2820 p->se.nr_migrations = 0;
2821 p->se.vruntime = 0;
2822 INIT_LIST_HEAD(&p->se.group_node);
2823
2824#ifdef CONFIG_SCHEDSTATS
2825 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2826#endif
2827
2828 INIT_LIST_HEAD(&p->rt.run_list);
2829
2830#ifdef CONFIG_PREEMPT_NOTIFIERS
2831 INIT_HLIST_HEAD(&p->preempt_notifiers);
2832#endif
2833}
2834
2835/*
2836 * fork()/clone()-time setup:
2837 */
2838void sched_fork(struct task_struct *p)
2839{
2840 unsigned long flags;
2841 int cpu = get_cpu();
2842
2843 __sched_fork(p);
2844 /*
2845 * We mark the process as running here. This guarantees that
2846 * nobody will actually run it, and a signal or other external
2847 * event cannot wake it up and insert it on the runqueue either.
2848 */
2849 p->state = TASK_RUNNING;
2850
2851 /*
2852 * Revert to default priority/policy on fork if requested.
2853 */
2854 if (unlikely(p->sched_reset_on_fork)) {
2855 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2856 p->policy = SCHED_NORMAL;
2857 p->normal_prio = p->static_prio;
2858 }
2859
2860 if (PRIO_TO_NICE(p->static_prio) < 0) {
2861 p->static_prio = NICE_TO_PRIO(0);
2862 p->normal_prio = p->static_prio;
2863 set_load_weight(p);
2864 }
2865
2866 /*
2867 * We don't need the reset flag anymore after the fork. It has
2868 * fulfilled its duty:
2869 */
2870 p->sched_reset_on_fork = 0;
2871 }
2872
2873 /*
2874 * Make sure we do not leak PI boosting priority to the child.
2875 */
2876 p->prio = current->normal_prio;
2877
2878 if (!rt_prio(p->prio))
2879 p->sched_class = &fair_sched_class;
2880
2881 if (p->sched_class->task_fork)
2882 p->sched_class->task_fork(p);
2883
2884 /*
2885 * The child is not yet in the pid-hash so no cgroup attach races,
2886 * and the cgroup is pinned to this child due to cgroup_fork()
2887 * is ran before sched_fork().
2888 *
2889 * Silence PROVE_RCU.
2890 */
2891 raw_spin_lock_irqsave(&p->pi_lock, flags);
2892 set_task_cpu(p, cpu);
2893 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2894
2895#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2896 if (likely(sched_info_on()))
2897 memset(&p->sched_info, 0, sizeof(p->sched_info));
2898#endif
2899#if defined(CONFIG_SMP)
2900 p->on_cpu = 0;
2901#endif
2902#ifdef CONFIG_PREEMPT_COUNT
2903 /* Want to start with kernel preemption disabled. */
2904 task_thread_info(p)->preempt_count = 1;
2905#endif
2906#ifdef CONFIG_SMP
2907 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2908#endif
2909
2910 put_cpu();
2911}
2912
2913/*
2914 * wake_up_new_task - wake up a newly created task for the first time.
2915 *
2916 * This function will do some initial scheduler statistics housekeeping
2917 * that must be done for every newly created context, then puts the task
2918 * on the runqueue and wakes it.
2919 */
2920void wake_up_new_task(struct task_struct *p)
2921{
2922 unsigned long flags;
2923 struct rq *rq;
2924
2925 raw_spin_lock_irqsave(&p->pi_lock, flags);
2926#ifdef CONFIG_SMP
2927 /*
2928 * Fork balancing, do it here and not earlier because:
2929 * - cpus_allowed can change in the fork path
2930 * - any previously selected cpu might disappear through hotplug
2931 */
2932 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2933#endif
2934
2935 rq = __task_rq_lock(p);
2936 activate_task(rq, p, 0);
2937 p->on_rq = 1;
2938 trace_sched_wakeup_new(p, true);
2939 check_preempt_curr(rq, p, WF_FORK);
2940#ifdef CONFIG_SMP
2941 if (p->sched_class->task_woken)
2942 p->sched_class->task_woken(rq, p);
2943#endif
2944 task_rq_unlock(rq, p, &flags);
2945}
2946
2947#ifdef CONFIG_PREEMPT_NOTIFIERS
2948
2949/**
2950 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2951 * @notifier: notifier struct to register
2952 */
2953void preempt_notifier_register(struct preempt_notifier *notifier)
2954{
2955 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2956}
2957EXPORT_SYMBOL_GPL(preempt_notifier_register);
2958
2959/**
2960 * preempt_notifier_unregister - no longer interested in preemption notifications
2961 * @notifier: notifier struct to unregister
2962 *
2963 * This is safe to call from within a preemption notifier.
2964 */
2965void preempt_notifier_unregister(struct preempt_notifier *notifier)
2966{
2967 hlist_del(&notifier->link);
2968}
2969EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2970
2971static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2972{
2973 struct preempt_notifier *notifier;
2974 struct hlist_node *node;
2975
2976 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2977 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2978}
2979
2980static void
2981fire_sched_out_preempt_notifiers(struct task_struct *curr,
2982 struct task_struct *next)
2983{
2984 struct preempt_notifier *notifier;
2985 struct hlist_node *node;
2986
2987 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2988 notifier->ops->sched_out(notifier, next);
2989}
2990
2991#else /* !CONFIG_PREEMPT_NOTIFIERS */
2992
2993static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2994{
2995}
2996
2997static void
2998fire_sched_out_preempt_notifiers(struct task_struct *curr,
2999 struct task_struct *next)
3000{
3001}
3002
3003#endif /* CONFIG_PREEMPT_NOTIFIERS */
3004
3005/**
3006 * prepare_task_switch - prepare to switch tasks
3007 * @rq: the runqueue preparing to switch
3008 * @prev: the current task that is being switched out
3009 * @next: the task we are going to switch to.
3010 *
3011 * This is called with the rq lock held and interrupts off. It must
3012 * be paired with a subsequent finish_task_switch after the context
3013 * switch.
3014 *
3015 * prepare_task_switch sets up locking and calls architecture specific
3016 * hooks.
3017 */
3018static inline void
3019prepare_task_switch(struct rq *rq, struct task_struct *prev,
3020 struct task_struct *next)
3021{
3022 sched_info_switch(prev, next);
3023 perf_event_task_sched_out(prev, next);
3024 fire_sched_out_preempt_notifiers(prev, next);
3025 prepare_lock_switch(rq, next);
3026 prepare_arch_switch(next);
3027 trace_sched_switch(prev, next);
3028}
3029
3030/**
3031 * finish_task_switch - clean up after a task-switch
3032 * @rq: runqueue associated with task-switch
3033 * @prev: the thread we just switched away from.
3034 *
3035 * finish_task_switch must be called after the context switch, paired
3036 * with a prepare_task_switch call before the context switch.
3037 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3038 * and do any other architecture-specific cleanup actions.
3039 *
3040 * Note that we may have delayed dropping an mm in context_switch(). If
3041 * so, we finish that here outside of the runqueue lock. (Doing it
3042 * with the lock held can cause deadlocks; see schedule() for
3043 * details.)
3044 */
3045static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3046 __releases(rq->lock)
3047{
3048 struct mm_struct *mm = rq->prev_mm;
3049 long prev_state;
3050
3051 rq->prev_mm = NULL;
3052
3053 /*
3054 * A task struct has one reference for the use as "current".
3055 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3056 * schedule one last time. The schedule call will never return, and
3057 * the scheduled task must drop that reference.
3058 * The test for TASK_DEAD must occur while the runqueue locks are
3059 * still held, otherwise prev could be scheduled on another cpu, die
3060 * there before we look at prev->state, and then the reference would
3061 * be dropped twice.
3062 * Manfred Spraul <manfred@colorfullife.com>
3063 */
3064 prev_state = prev->state;
3065 finish_arch_switch(prev);
3066#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3067 local_irq_disable();
3068#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3069 perf_event_task_sched_in(prev, current);
3070#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3071 local_irq_enable();
3072#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3073 finish_lock_switch(rq, prev);
3074
3075 fire_sched_in_preempt_notifiers(current);
3076 if (mm)
3077 mmdrop(mm);
3078 if (unlikely(prev_state == TASK_DEAD)) {
3079 /*
3080 * Remove function-return probe instances associated with this
3081 * task and put them back on the free list.
3082 */
3083 kprobe_flush_task(prev);
3084 put_task_struct(prev);
3085 }
3086}
3087
3088#ifdef CONFIG_SMP
3089
3090/* assumes rq->lock is held */
3091static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3092{
3093 if (prev->sched_class->pre_schedule)
3094 prev->sched_class->pre_schedule(rq, prev);
3095}
3096
3097/* rq->lock is NOT held, but preemption is disabled */
3098static inline void post_schedule(struct rq *rq)
3099{
3100 if (rq->post_schedule) {
3101 unsigned long flags;
3102
3103 raw_spin_lock_irqsave(&rq->lock, flags);
3104 if (rq->curr->sched_class->post_schedule)
3105 rq->curr->sched_class->post_schedule(rq);
3106 raw_spin_unlock_irqrestore(&rq->lock, flags);
3107
3108 rq->post_schedule = 0;
3109 }
3110}
3111
3112#else
3113
3114static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3115{
3116}
3117
3118static inline void post_schedule(struct rq *rq)
3119{
3120}
3121
3122#endif
3123
3124/**
3125 * schedule_tail - first thing a freshly forked thread must call.
3126 * @prev: the thread we just switched away from.
3127 */
3128asmlinkage void schedule_tail(struct task_struct *prev)
3129 __releases(rq->lock)
3130{
3131 struct rq *rq = this_rq();
3132
3133 finish_task_switch(rq, prev);
3134
3135 /*
3136 * FIXME: do we need to worry about rq being invalidated by the
3137 * task_switch?
3138 */
3139 post_schedule(rq);
3140
3141#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3142 /* In this case, finish_task_switch does not reenable preemption */
3143 preempt_enable();
3144#endif
3145 if (current->set_child_tid)
3146 put_user(task_pid_vnr(current), current->set_child_tid);
3147}
3148
3149/*
3150 * context_switch - switch to the new MM and the new
3151 * thread's register state.
3152 */
3153static inline void
3154context_switch(struct rq *rq, struct task_struct *prev,
3155 struct task_struct *next)
3156{
3157 struct mm_struct *mm, *oldmm;
3158
3159 prepare_task_switch(rq, prev, next);
3160
3161 mm = next->mm;
3162 oldmm = prev->active_mm;
3163 /*
3164 * For paravirt, this is coupled with an exit in switch_to to
3165 * combine the page table reload and the switch backend into
3166 * one hypercall.
3167 */
3168 arch_start_context_switch(prev);
3169
3170 if (!mm) {
3171 next->active_mm = oldmm;
3172 atomic_inc(&oldmm->mm_count);
3173 enter_lazy_tlb(oldmm, next);
3174 } else
3175 switch_mm(oldmm, mm, next);
3176
3177 if (!prev->mm) {
3178 prev->active_mm = NULL;
3179 rq->prev_mm = oldmm;
3180 }
3181 /*
3182 * Since the runqueue lock will be released by the next
3183 * task (which is an invalid locking op but in the case
3184 * of the scheduler it's an obvious special-case), so we
3185 * do an early lockdep release here:
3186 */
3187#ifndef __ARCH_WANT_UNLOCKED_CTXSW
3188 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3189#endif
3190
3191 /* Here we just switch the register state and the stack. */
3192 switch_to(prev, next, prev);
3193
3194 barrier();
3195 /*
3196 * this_rq must be evaluated again because prev may have moved
3197 * CPUs since it called schedule(), thus the 'rq' on its stack
3198 * frame will be invalid.
3199 */
3200 finish_task_switch(this_rq(), prev);
3201}
3202
3203/*
3204 * nr_running, nr_uninterruptible and nr_context_switches:
3205 *
3206 * externally visible scheduler statistics: current number of runnable
3207 * threads, current number of uninterruptible-sleeping threads, total
3208 * number of context switches performed since bootup.
3209 */
3210unsigned long nr_running(void)
3211{
3212 unsigned long i, sum = 0;
3213
3214 for_each_online_cpu(i)
3215 sum += cpu_rq(i)->nr_running;
3216
3217 return sum;
3218}
3219
3220unsigned long nr_uninterruptible(void)
3221{
3222 unsigned long i, sum = 0;
3223
3224 for_each_possible_cpu(i)
3225 sum += cpu_rq(i)->nr_uninterruptible;
3226
3227 /*
3228 * Since we read the counters lockless, it might be slightly
3229 * inaccurate. Do not allow it to go below zero though:
3230 */
3231 if (unlikely((long)sum < 0))
3232 sum = 0;
3233
3234 return sum;
3235}
3236
3237unsigned long long nr_context_switches(void)
3238{
3239 int i;
3240 unsigned long long sum = 0;
3241
3242 for_each_possible_cpu(i)
3243 sum += cpu_rq(i)->nr_switches;
3244
3245 return sum;
3246}
3247
3248unsigned long nr_iowait(void)
3249{
3250 unsigned long i, sum = 0;
3251
3252 for_each_possible_cpu(i)
3253 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3254
3255 return sum;
3256}
3257
3258unsigned long nr_iowait_cpu(int cpu)
3259{
3260 struct rq *this = cpu_rq(cpu);
3261 return atomic_read(&this->nr_iowait);
3262}
3263
3264unsigned long this_cpu_load(void)
3265{
3266 struct rq *this = this_rq();
3267 return this->cpu_load[0];
3268}
3269
3270
3271/* Variables and functions for calc_load */
3272static atomic_long_t calc_load_tasks;
3273static unsigned long calc_load_update;
3274unsigned long avenrun[3];
3275EXPORT_SYMBOL(avenrun);
3276
3277static long calc_load_fold_active(struct rq *this_rq)
3278{
3279 long nr_active, delta = 0;
3280
3281 nr_active = this_rq->nr_running;
3282 nr_active += (long) this_rq->nr_uninterruptible;
3283
3284 if (nr_active != this_rq->calc_load_active) {
3285 delta = nr_active - this_rq->calc_load_active;
3286 this_rq->calc_load_active = nr_active;
3287 }
3288
3289 return delta;
3290}
3291
3292static unsigned long
3293calc_load(unsigned long load, unsigned long exp, unsigned long active)
3294{
3295 load *= exp;
3296 load += active * (FIXED_1 - exp);
3297 load += 1UL << (FSHIFT - 1);
3298 return load >> FSHIFT;
3299}
3300
3301#ifdef CONFIG_NO_HZ
3302/*
3303 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3304 *
3305 * When making the ILB scale, we should try to pull this in as well.
3306 */
3307static atomic_long_t calc_load_tasks_idle;
3308
3309static void calc_load_account_idle(struct rq *this_rq)
3310{
3311 long delta;
3312
3313 delta = calc_load_fold_active(this_rq);
3314 if (delta)
3315 atomic_long_add(delta, &calc_load_tasks_idle);
3316}
3317
3318static long calc_load_fold_idle(void)
3319{
3320 long delta = 0;
3321
3322 /*
3323 * Its got a race, we don't care...
3324 */
3325 if (atomic_long_read(&calc_load_tasks_idle))
3326 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3327
3328 return delta;
3329}
3330
3331/**
3332 * fixed_power_int - compute: x^n, in O(log n) time
3333 *
3334 * @x: base of the power
3335 * @frac_bits: fractional bits of @x
3336 * @n: power to raise @x to.
3337 *
3338 * By exploiting the relation between the definition of the natural power
3339 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3340 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3341 * (where: n_i \elem {0, 1}, the binary vector representing n),
3342 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3343 * of course trivially computable in O(log_2 n), the length of our binary
3344 * vector.
3345 */
3346static unsigned long
3347fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3348{
3349 unsigned long result = 1UL << frac_bits;
3350
3351 if (n) for (;;) {
3352 if (n & 1) {
3353 result *= x;
3354 result += 1UL << (frac_bits - 1);
3355 result >>= frac_bits;
3356 }
3357 n >>= 1;
3358 if (!n)
3359 break;
3360 x *= x;
3361 x += 1UL << (frac_bits - 1);
3362 x >>= frac_bits;
3363 }
3364
3365 return result;
3366}
3367
3368/*
3369 * a1 = a0 * e + a * (1 - e)
3370 *
3371 * a2 = a1 * e + a * (1 - e)
3372 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3373 * = a0 * e^2 + a * (1 - e) * (1 + e)
3374 *
3375 * a3 = a2 * e + a * (1 - e)
3376 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3377 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3378 *
3379 * ...
3380 *
3381 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3382 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3383 * = a0 * e^n + a * (1 - e^n)
3384 *
3385 * [1] application of the geometric series:
3386 *
3387 * n 1 - x^(n+1)
3388 * S_n := \Sum x^i = -------------
3389 * i=0 1 - x
3390 */
3391static unsigned long
3392calc_load_n(unsigned long load, unsigned long exp,
3393 unsigned long active, unsigned int n)
3394{
3395
3396 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3397}
3398
3399/*
3400 * NO_HZ can leave us missing all per-cpu ticks calling
3401 * calc_load_account_active(), but since an idle CPU folds its delta into
3402 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3403 * in the pending idle delta if our idle period crossed a load cycle boundary.
3404 *
3405 * Once we've updated the global active value, we need to apply the exponential
3406 * weights adjusted to the number of cycles missed.
3407 */
3408static void calc_global_nohz(unsigned long ticks)
3409{
3410 long delta, active, n;
3411
3412 if (time_before(jiffies, calc_load_update))
3413 return;
3414
3415 /*
3416 * If we crossed a calc_load_update boundary, make sure to fold
3417 * any pending idle changes, the respective CPUs might have
3418 * missed the tick driven calc_load_account_active() update
3419 * due to NO_HZ.
3420 */
3421 delta = calc_load_fold_idle();
3422 if (delta)
3423 atomic_long_add(delta, &calc_load_tasks);
3424
3425 /*
3426 * If we were idle for multiple load cycles, apply them.
3427 */
3428 if (ticks >= LOAD_FREQ) {
3429 n = ticks / LOAD_FREQ;
3430
3431 active = atomic_long_read(&calc_load_tasks);
3432 active = active > 0 ? active * FIXED_1 : 0;
3433
3434 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3435 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3436 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3437
3438 calc_load_update += n * LOAD_FREQ;
3439 }
3440
3441 /*
3442 * Its possible the remainder of the above division also crosses
3443 * a LOAD_FREQ period, the regular check in calc_global_load()
3444 * which comes after this will take care of that.
3445 *
3446 * Consider us being 11 ticks before a cycle completion, and us
3447 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3448 * age us 4 cycles, and the test in calc_global_load() will
3449 * pick up the final one.
3450 */
3451}
3452#else
3453static void calc_load_account_idle(struct rq *this_rq)
3454{
3455}
3456
3457static inline long calc_load_fold_idle(void)
3458{
3459 return 0;
3460}
3461
3462static void calc_global_nohz(unsigned long ticks)
3463{
3464}
3465#endif
3466
3467/**
3468 * get_avenrun - get the load average array
3469 * @loads: pointer to dest load array
3470 * @offset: offset to add
3471 * @shift: shift count to shift the result left
3472 *
3473 * These values are estimates at best, so no need for locking.
3474 */
3475void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3476{
3477 loads[0] = (avenrun[0] + offset) << shift;
3478 loads[1] = (avenrun[1] + offset) << shift;
3479 loads[2] = (avenrun[2] + offset) << shift;
3480}
3481
3482/*
3483 * calc_load - update the avenrun load estimates 10 ticks after the
3484 * CPUs have updated calc_load_tasks.
3485 */
3486void calc_global_load(unsigned long ticks)
3487{
3488 long active;
3489
3490 calc_global_nohz(ticks);
3491
3492 if (time_before(jiffies, calc_load_update + 10))
3493 return;
3494
3495 active = atomic_long_read(&calc_load_tasks);
3496 active = active > 0 ? active * FIXED_1 : 0;
3497
3498 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3499 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3500 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3501
3502 calc_load_update += LOAD_FREQ;
3503}
3504
3505/*
3506 * Called from update_cpu_load() to periodically update this CPU's
3507 * active count.
3508 */
3509static void calc_load_account_active(struct rq *this_rq)
3510{
3511 long delta;
3512
3513 if (time_before(jiffies, this_rq->calc_load_update))
3514 return;
3515
3516 delta = calc_load_fold_active(this_rq);
3517 delta += calc_load_fold_idle();
3518 if (delta)
3519 atomic_long_add(delta, &calc_load_tasks);
3520
3521 this_rq->calc_load_update += LOAD_FREQ;
3522}
3523
3524/*
3525 * The exact cpuload at various idx values, calculated at every tick would be
3526 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3527 *
3528 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3529 * on nth tick when cpu may be busy, then we have:
3530 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3531 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3532 *
3533 * decay_load_missed() below does efficient calculation of
3534 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3535 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3536 *
3537 * The calculation is approximated on a 128 point scale.
3538 * degrade_zero_ticks is the number of ticks after which load at any
3539 * particular idx is approximated to be zero.
3540 * degrade_factor is a precomputed table, a row for each load idx.
3541 * Each column corresponds to degradation factor for a power of two ticks,
3542 * based on 128 point scale.
3543 * Example:
3544 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3545 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3546 *
3547 * With this power of 2 load factors, we can degrade the load n times
3548 * by looking at 1 bits in n and doing as many mult/shift instead of
3549 * n mult/shifts needed by the exact degradation.
3550 */
3551#define DEGRADE_SHIFT 7
3552static const unsigned char
3553 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3554static const unsigned char
3555 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3556 {0, 0, 0, 0, 0, 0, 0, 0},
3557 {64, 32, 8, 0, 0, 0, 0, 0},
3558 {96, 72, 40, 12, 1, 0, 0},
3559 {112, 98, 75, 43, 15, 1, 0},
3560 {120, 112, 98, 76, 45, 16, 2} };
3561
3562/*
3563 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3564 * would be when CPU is idle and so we just decay the old load without
3565 * adding any new load.
3566 */
3567static unsigned long
3568decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3569{
3570 int j = 0;
3571
3572 if (!missed_updates)
3573 return load;
3574
3575 if (missed_updates >= degrade_zero_ticks[idx])
3576 return 0;
3577
3578 if (idx == 1)
3579 return load >> missed_updates;
3580
3581 while (missed_updates) {
3582 if (missed_updates % 2)
3583 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3584
3585 missed_updates >>= 1;
3586 j++;
3587 }
3588 return load;
3589}
3590
3591/*
3592 * Update rq->cpu_load[] statistics. This function is usually called every
3593 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3594 * every tick. We fix it up based on jiffies.
3595 */
3596static void update_cpu_load(struct rq *this_rq)
3597{
3598 unsigned long this_load = this_rq->load.weight;
3599 unsigned long curr_jiffies = jiffies;
3600 unsigned long pending_updates;
3601 int i, scale;
3602
3603 this_rq->nr_load_updates++;
3604
3605 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3606 if (curr_jiffies == this_rq->last_load_update_tick)
3607 return;
3608
3609 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3610 this_rq->last_load_update_tick = curr_jiffies;
3611
3612 /* Update our load: */
3613 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3614 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3615 unsigned long old_load, new_load;
3616
3617 /* scale is effectively 1 << i now, and >> i divides by scale */
3618
3619 old_load = this_rq->cpu_load[i];
3620 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3621 new_load = this_load;
3622 /*
3623 * Round up the averaging division if load is increasing. This
3624 * prevents us from getting stuck on 9 if the load is 10, for
3625 * example.
3626 */
3627 if (new_load > old_load)
3628 new_load += scale - 1;
3629
3630 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3631 }
3632
3633 sched_avg_update(this_rq);
3634}
3635
3636static void update_cpu_load_active(struct rq *this_rq)
3637{
3638 update_cpu_load(this_rq);
3639
3640 calc_load_account_active(this_rq);
3641}
3642
3643#ifdef CONFIG_SMP
3644
3645/*
3646 * sched_exec - execve() is a valuable balancing opportunity, because at
3647 * this point the task has the smallest effective memory and cache footprint.
3648 */
3649void sched_exec(void)
3650{
3651 struct task_struct *p = current;
3652 unsigned long flags;
3653 int dest_cpu;
3654
3655 raw_spin_lock_irqsave(&p->pi_lock, flags);
3656 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3657 if (dest_cpu == smp_processor_id())
3658 goto unlock;
3659
3660 if (likely(cpu_active(dest_cpu))) {
3661 struct migration_arg arg = { p, dest_cpu };
3662
3663 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3664 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3665 return;
3666 }
3667unlock:
3668 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3669}
3670
3671#endif
3672
3673DEFINE_PER_CPU(struct kernel_stat, kstat);
3674
3675EXPORT_PER_CPU_SYMBOL(kstat);
3676
3677/*
3678 * Return any ns on the sched_clock that have not yet been accounted in
3679 * @p in case that task is currently running.
3680 *
3681 * Called with task_rq_lock() held on @rq.
3682 */
3683static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3684{
3685 u64 ns = 0;
3686
3687 if (task_current(rq, p)) {
3688 update_rq_clock(rq);
3689 ns = rq->clock_task - p->se.exec_start;
3690 if ((s64)ns < 0)
3691 ns = 0;
3692 }
3693
3694 return ns;
3695}
3696
3697unsigned long long task_delta_exec(struct task_struct *p)
3698{
3699 unsigned long flags;
3700 struct rq *rq;
3701 u64 ns = 0;
3702
3703 rq = task_rq_lock(p, &flags);
3704 ns = do_task_delta_exec(p, rq);
3705 task_rq_unlock(rq, p, &flags);
3706
3707 return ns;
3708}
3709
3710/*
3711 * Return accounted runtime for the task.
3712 * In case the task is currently running, return the runtime plus current's
3713 * pending runtime that have not been accounted yet.
3714 */
3715unsigned long long task_sched_runtime(struct task_struct *p)
3716{
3717 unsigned long flags;
3718 struct rq *rq;
3719 u64 ns = 0;
3720
3721 rq = task_rq_lock(p, &flags);
3722 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3723 task_rq_unlock(rq, p, &flags);
3724
3725 return ns;
3726}
3727
3728/*
3729 * Account user cpu time to a process.
3730 * @p: the process that the cpu time gets accounted to
3731 * @cputime: the cpu time spent in user space since the last update
3732 * @cputime_scaled: cputime scaled by cpu frequency
3733 */
3734void account_user_time(struct task_struct *p, cputime_t cputime,
3735 cputime_t cputime_scaled)
3736{
3737 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3738 cputime64_t tmp;
3739
3740 /* Add user time to process. */
3741 p->utime = cputime_add(p->utime, cputime);
3742 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3743 account_group_user_time(p, cputime);
3744
3745 /* Add user time to cpustat. */
3746 tmp = cputime_to_cputime64(cputime);
3747 if (TASK_NICE(p) > 0)
3748 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3749 else
3750 cpustat->user = cputime64_add(cpustat->user, tmp);
3751
3752 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3753 /* Account for user time used */
3754 acct_update_integrals(p);
3755}
3756
3757/*
3758 * Account guest cpu time to a process.
3759 * @p: the process that the cpu time gets accounted to
3760 * @cputime: the cpu time spent in virtual machine since the last update
3761 * @cputime_scaled: cputime scaled by cpu frequency
3762 */
3763static void account_guest_time(struct task_struct *p, cputime_t cputime,
3764 cputime_t cputime_scaled)
3765{
3766 cputime64_t tmp;
3767 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3768
3769 tmp = cputime_to_cputime64(cputime);
3770
3771 /* Add guest time to process. */
3772 p->utime = cputime_add(p->utime, cputime);
3773 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3774 account_group_user_time(p, cputime);
3775 p->gtime = cputime_add(p->gtime, cputime);
3776
3777 /* Add guest time to cpustat. */
3778 if (TASK_NICE(p) > 0) {
3779 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3780 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3781 } else {
3782 cpustat->user = cputime64_add(cpustat->user, tmp);
3783 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3784 }
3785}
3786
3787/*
3788 * Account system cpu time to a process and desired cpustat field
3789 * @p: the process that the cpu time gets accounted to
3790 * @cputime: the cpu time spent in kernel space since the last update
3791 * @cputime_scaled: cputime scaled by cpu frequency
3792 * @target_cputime64: pointer to cpustat field that has to be updated
3793 */
3794static inline
3795void __account_system_time(struct task_struct *p, cputime_t cputime,
3796 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3797{
3798 cputime64_t tmp = cputime_to_cputime64(cputime);
3799
3800 /* Add system time to process. */
3801 p->stime = cputime_add(p->stime, cputime);
3802 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3803 account_group_system_time(p, cputime);
3804
3805 /* Add system time to cpustat. */
3806 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3807 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3808
3809 /* Account for system time used */
3810 acct_update_integrals(p);
3811}
3812
3813/*
3814 * Account system cpu time to a process.
3815 * @p: the process that the cpu time gets accounted to
3816 * @hardirq_offset: the offset to subtract from hardirq_count()
3817 * @cputime: the cpu time spent in kernel space since the last update
3818 * @cputime_scaled: cputime scaled by cpu frequency
3819 */
3820void account_system_time(struct task_struct *p, int hardirq_offset,
3821 cputime_t cputime, cputime_t cputime_scaled)
3822{
3823 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3824 cputime64_t *target_cputime64;
3825
3826 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3827 account_guest_time(p, cputime, cputime_scaled);
3828 return;
3829 }
3830
3831 if (hardirq_count() - hardirq_offset)
3832 target_cputime64 = &cpustat->irq;
3833 else if (in_serving_softirq())
3834 target_cputime64 = &cpustat->softirq;
3835 else
3836 target_cputime64 = &cpustat->system;
3837
3838 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3839}
3840
3841/*
3842 * Account for involuntary wait time.
3843 * @cputime: the cpu time spent in involuntary wait
3844 */
3845void account_steal_time(cputime_t cputime)
3846{
3847 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3848 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3849
3850 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3851}
3852
3853/*
3854 * Account for idle time.
3855 * @cputime: the cpu time spent in idle wait
3856 */
3857void account_idle_time(cputime_t cputime)
3858{
3859 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3860 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3861 struct rq *rq = this_rq();
3862
3863 if (atomic_read(&rq->nr_iowait) > 0)
3864 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3865 else
3866 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3867}
3868
3869static __always_inline bool steal_account_process_tick(void)
3870{
3871#ifdef CONFIG_PARAVIRT
3872 if (static_branch(&paravirt_steal_enabled)) {
3873 u64 steal, st = 0;
3874
3875 steal = paravirt_steal_clock(smp_processor_id());
3876 steal -= this_rq()->prev_steal_time;
3877
3878 st = steal_ticks(steal);
3879 this_rq()->prev_steal_time += st * TICK_NSEC;
3880
3881 account_steal_time(st);
3882 return st;
3883 }
3884#endif
3885 return false;
3886}
3887
3888#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3889
3890#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3891/*
3892 * Account a tick to a process and cpustat
3893 * @p: the process that the cpu time gets accounted to
3894 * @user_tick: is the tick from userspace
3895 * @rq: the pointer to rq
3896 *
3897 * Tick demultiplexing follows the order
3898 * - pending hardirq update
3899 * - pending softirq update
3900 * - user_time
3901 * - idle_time
3902 * - system time
3903 * - check for guest_time
3904 * - else account as system_time
3905 *
3906 * Check for hardirq is done both for system and user time as there is
3907 * no timer going off while we are on hardirq and hence we may never get an
3908 * opportunity to update it solely in system time.
3909 * p->stime and friends are only updated on system time and not on irq
3910 * softirq as those do not count in task exec_runtime any more.
3911 */
3912static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3913 struct rq *rq)
3914{
3915 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3916 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3917 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3918
3919 if (steal_account_process_tick())
3920 return;
3921
3922 if (irqtime_account_hi_update()) {
3923 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3924 } else if (irqtime_account_si_update()) {
3925 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3926 } else if (this_cpu_ksoftirqd() == p) {
3927 /*
3928 * ksoftirqd time do not get accounted in cpu_softirq_time.
3929 * So, we have to handle it separately here.
3930 * Also, p->stime needs to be updated for ksoftirqd.
3931 */
3932 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3933 &cpustat->softirq);
3934 } else if (user_tick) {
3935 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3936 } else if (p == rq->idle) {
3937 account_idle_time(cputime_one_jiffy);
3938 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3939 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3940 } else {
3941 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3942 &cpustat->system);
3943 }
3944}
3945
3946static void irqtime_account_idle_ticks(int ticks)
3947{
3948 int i;
3949 struct rq *rq = this_rq();
3950
3951 for (i = 0; i < ticks; i++)
3952 irqtime_account_process_tick(current, 0, rq);
3953}
3954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3955static void irqtime_account_idle_ticks(int ticks) {}
3956static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3957 struct rq *rq) {}
3958#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3959
3960/*
3961 * Account a single tick of cpu time.
3962 * @p: the process that the cpu time gets accounted to
3963 * @user_tick: indicates if the tick is a user or a system tick
3964 */
3965void account_process_tick(struct task_struct *p, int user_tick)
3966{
3967 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3968 struct rq *rq = this_rq();
3969
3970 if (sched_clock_irqtime) {
3971 irqtime_account_process_tick(p, user_tick, rq);
3972 return;
3973 }
3974
3975 if (steal_account_process_tick())
3976 return;
3977
3978 if (user_tick)
3979 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3980 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3981 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3982 one_jiffy_scaled);
3983 else
3984 account_idle_time(cputime_one_jiffy);
3985}
3986
3987/*
3988 * Account multiple ticks of steal time.
3989 * @p: the process from which the cpu time has been stolen
3990 * @ticks: number of stolen ticks
3991 */
3992void account_steal_ticks(unsigned long ticks)
3993{
3994 account_steal_time(jiffies_to_cputime(ticks));
3995}
3996
3997/*
3998 * Account multiple ticks of idle time.
3999 * @ticks: number of stolen ticks
4000 */
4001void account_idle_ticks(unsigned long ticks)
4002{
4003
4004 if (sched_clock_irqtime) {
4005 irqtime_account_idle_ticks(ticks);
4006 return;
4007 }
4008
4009 account_idle_time(jiffies_to_cputime(ticks));
4010}
4011
4012#endif
4013
4014/*
4015 * Use precise platform statistics if available:
4016 */
4017#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4018void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4019{
4020 *ut = p->utime;
4021 *st = p->stime;
4022}
4023
4024void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4025{
4026 struct task_cputime cputime;
4027
4028 thread_group_cputime(p, &cputime);
4029
4030 *ut = cputime.utime;
4031 *st = cputime.stime;
4032}
4033#else
4034
4035#ifndef nsecs_to_cputime
4036# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4037#endif
4038
4039void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4040{
4041 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4042
4043 /*
4044 * Use CFS's precise accounting:
4045 */
4046 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4047
4048 if (total) {
4049 u64 temp = rtime;
4050
4051 temp *= utime;
4052 do_div(temp, total);
4053 utime = (cputime_t)temp;
4054 } else
4055 utime = rtime;
4056
4057 /*
4058 * Compare with previous values, to keep monotonicity:
4059 */
4060 p->prev_utime = max(p->prev_utime, utime);
4061 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4062
4063 *ut = p->prev_utime;
4064 *st = p->prev_stime;
4065}
4066
4067/*
4068 * Must be called with siglock held.
4069 */
4070void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4071{
4072 struct signal_struct *sig = p->signal;
4073 struct task_cputime cputime;
4074 cputime_t rtime, utime, total;
4075
4076 thread_group_cputime(p, &cputime);
4077
4078 total = cputime_add(cputime.utime, cputime.stime);
4079 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4080
4081 if (total) {
4082 u64 temp = rtime;
4083
4084 temp *= cputime.utime;
4085 do_div(temp, total);
4086 utime = (cputime_t)temp;
4087 } else
4088 utime = rtime;
4089
4090 sig->prev_utime = max(sig->prev_utime, utime);
4091 sig->prev_stime = max(sig->prev_stime,
4092 cputime_sub(rtime, sig->prev_utime));
4093
4094 *ut = sig->prev_utime;
4095 *st = sig->prev_stime;
4096}
4097#endif
4098
4099/*
4100 * This function gets called by the timer code, with HZ frequency.
4101 * We call it with interrupts disabled.
4102 */
4103void scheduler_tick(void)
4104{
4105 int cpu = smp_processor_id();
4106 struct rq *rq = cpu_rq(cpu);
4107 struct task_struct *curr = rq->curr;
4108
4109 sched_clock_tick();
4110
4111 raw_spin_lock(&rq->lock);
4112 update_rq_clock(rq);
4113 update_cpu_load_active(rq);
4114 curr->sched_class->task_tick(rq, curr, 0);
4115 raw_spin_unlock(&rq->lock);
4116
4117 perf_event_task_tick();
4118
4119#ifdef CONFIG_SMP
4120 rq->idle_at_tick = idle_cpu(cpu);
4121 trigger_load_balance(rq, cpu);
4122#endif
4123}
4124
4125notrace unsigned long get_parent_ip(unsigned long addr)
4126{
4127 if (in_lock_functions(addr)) {
4128 addr = CALLER_ADDR2;
4129 if (in_lock_functions(addr))
4130 addr = CALLER_ADDR3;
4131 }
4132 return addr;
4133}
4134
4135#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4136 defined(CONFIG_PREEMPT_TRACER))
4137
4138void __kprobes add_preempt_count(int val)
4139{
4140#ifdef CONFIG_DEBUG_PREEMPT
4141 /*
4142 * Underflow?
4143 */
4144 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4145 return;
4146#endif
4147 preempt_count() += val;
4148#ifdef CONFIG_DEBUG_PREEMPT
4149 /*
4150 * Spinlock count overflowing soon?
4151 */
4152 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4153 PREEMPT_MASK - 10);
4154#endif
4155 if (preempt_count() == val)
4156 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4157}
4158EXPORT_SYMBOL(add_preempt_count);
4159
4160void __kprobes sub_preempt_count(int val)
4161{
4162#ifdef CONFIG_DEBUG_PREEMPT
4163 /*
4164 * Underflow?
4165 */
4166 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4167 return;
4168 /*
4169 * Is the spinlock portion underflowing?
4170 */
4171 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4172 !(preempt_count() & PREEMPT_MASK)))
4173 return;
4174#endif
4175
4176 if (preempt_count() == val)
4177 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4178 preempt_count() -= val;
4179}
4180EXPORT_SYMBOL(sub_preempt_count);
4181
4182#endif
4183
4184/*
4185 * Print scheduling while atomic bug:
4186 */
4187static noinline void __schedule_bug(struct task_struct *prev)
4188{
4189 struct pt_regs *regs = get_irq_regs();
4190
4191 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4192 prev->comm, prev->pid, preempt_count());
4193
4194 debug_show_held_locks(prev);
4195 print_modules();
4196 if (irqs_disabled())
4197 print_irqtrace_events(prev);
4198
4199 if (regs)
4200 show_regs(regs);
4201 else
4202 dump_stack();
4203}
4204
4205/*
4206 * Various schedule()-time debugging checks and statistics:
4207 */
4208static inline void schedule_debug(struct task_struct *prev)
4209{
4210 /*
4211 * Test if we are atomic. Since do_exit() needs to call into
4212 * schedule() atomically, we ignore that path for now.
4213 * Otherwise, whine if we are scheduling when we should not be.
4214 */
4215 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4216 __schedule_bug(prev);
4217
4218 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4219
4220 schedstat_inc(this_rq(), sched_count);
4221}
4222
4223static void put_prev_task(struct rq *rq, struct task_struct *prev)
4224{
4225 if (prev->on_rq || rq->skip_clock_update < 0)
4226 update_rq_clock(rq);
4227 prev->sched_class->put_prev_task(rq, prev);
4228}
4229
4230/*
4231 * Pick up the highest-prio task:
4232 */
4233static inline struct task_struct *
4234pick_next_task(struct rq *rq)
4235{
4236 const struct sched_class *class;
4237 struct task_struct *p;
4238
4239 /*
4240 * Optimization: we know that if all tasks are in
4241 * the fair class we can call that function directly:
4242 */
4243 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4244 p = fair_sched_class.pick_next_task(rq);
4245 if (likely(p))
4246 return p;
4247 }
4248
4249 for_each_class(class) {
4250 p = class->pick_next_task(rq);
4251 if (p)
4252 return p;
4253 }
4254
4255 BUG(); /* the idle class will always have a runnable task */
4256}
4257
4258/*
4259 * __schedule() is the main scheduler function.
4260 */
4261static void __sched __schedule(void)
4262{
4263 struct task_struct *prev, *next;
4264 unsigned long *switch_count;
4265 struct rq *rq;
4266 int cpu;
4267
4268need_resched:
4269 preempt_disable();
4270 cpu = smp_processor_id();
4271 rq = cpu_rq(cpu);
4272 rcu_note_context_switch(cpu);
4273 prev = rq->curr;
4274
4275 schedule_debug(prev);
4276
4277 if (sched_feat(HRTICK))
4278 hrtick_clear(rq);
4279
4280 raw_spin_lock_irq(&rq->lock);
4281
4282 switch_count = &prev->nivcsw;
4283 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4284 if (unlikely(signal_pending_state(prev->state, prev))) {
4285 prev->state = TASK_RUNNING;
4286 } else {
4287 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4288 prev->on_rq = 0;
4289
4290 /*
4291 * If a worker went to sleep, notify and ask workqueue
4292 * whether it wants to wake up a task to maintain
4293 * concurrency.
4294 */
4295 if (prev->flags & PF_WQ_WORKER) {
4296 struct task_struct *to_wakeup;
4297
4298 to_wakeup = wq_worker_sleeping(prev, cpu);
4299 if (to_wakeup)
4300 try_to_wake_up_local(to_wakeup);
4301 }
4302 }
4303 switch_count = &prev->nvcsw;
4304 }
4305
4306 pre_schedule(rq, prev);
4307
4308 if (unlikely(!rq->nr_running))
4309 idle_balance(cpu, rq);
4310
4311 put_prev_task(rq, prev);
4312 next = pick_next_task(rq);
4313 clear_tsk_need_resched(prev);
4314 rq->skip_clock_update = 0;
4315
4316 if (likely(prev != next)) {
4317 rq->nr_switches++;
4318 rq->curr = next;
4319 ++*switch_count;
4320
4321 context_switch(rq, prev, next); /* unlocks the rq */
4322 /*
4323 * The context switch have flipped the stack from under us
4324 * and restored the local variables which were saved when
4325 * this task called schedule() in the past. prev == current
4326 * is still correct, but it can be moved to another cpu/rq.
4327 */
4328 cpu = smp_processor_id();
4329 rq = cpu_rq(cpu);
4330 } else
4331 raw_spin_unlock_irq(&rq->lock);
4332
4333 post_schedule(rq);
4334
4335 preempt_enable_no_resched();
4336 if (need_resched())
4337 goto need_resched;
4338}
4339
4340static inline void sched_submit_work(struct task_struct *tsk)
4341{
4342 if (!tsk->state)
4343 return;
4344 /*
4345 * If we are going to sleep and we have plugged IO queued,
4346 * make sure to submit it to avoid deadlocks.
4347 */
4348 if (blk_needs_flush_plug(tsk))
4349 blk_schedule_flush_plug(tsk);
4350}
4351
4352asmlinkage void __sched schedule(void)
4353{
4354 struct task_struct *tsk = current;
4355
4356 sched_submit_work(tsk);
4357 __schedule();
4358}
4359EXPORT_SYMBOL(schedule);
4360
4361#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4362
4363static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4364{
4365 if (lock->owner != owner)
4366 return false;
4367
4368 /*
4369 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4370 * lock->owner still matches owner, if that fails, owner might
4371 * point to free()d memory, if it still matches, the rcu_read_lock()
4372 * ensures the memory stays valid.
4373 */
4374 barrier();
4375
4376 return owner->on_cpu;
4377}
4378
4379/*
4380 * Look out! "owner" is an entirely speculative pointer
4381 * access and not reliable.
4382 */
4383int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4384{
4385 if (!sched_feat(OWNER_SPIN))
4386 return 0;
4387
4388 rcu_read_lock();
4389 while (owner_running(lock, owner)) {
4390 if (need_resched())
4391 break;
4392
4393 arch_mutex_cpu_relax();
4394 }
4395 rcu_read_unlock();
4396
4397 /*
4398 * We break out the loop above on need_resched() and when the
4399 * owner changed, which is a sign for heavy contention. Return
4400 * success only when lock->owner is NULL.
4401 */
4402 return lock->owner == NULL;
4403}
4404#endif
4405
4406#ifdef CONFIG_PREEMPT
4407/*
4408 * this is the entry point to schedule() from in-kernel preemption
4409 * off of preempt_enable. Kernel preemptions off return from interrupt
4410 * occur there and call schedule directly.
4411 */
4412asmlinkage void __sched notrace preempt_schedule(void)
4413{
4414 struct thread_info *ti = current_thread_info();
4415
4416 /*
4417 * If there is a non-zero preempt_count or interrupts are disabled,
4418 * we do not want to preempt the current task. Just return..
4419 */
4420 if (likely(ti->preempt_count || irqs_disabled()))
4421 return;
4422
4423 do {
4424 add_preempt_count_notrace(PREEMPT_ACTIVE);
4425 __schedule();
4426 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4427
4428 /*
4429 * Check again in case we missed a preemption opportunity
4430 * between schedule and now.
4431 */
4432 barrier();
4433 } while (need_resched());
4434}
4435EXPORT_SYMBOL(preempt_schedule);
4436
4437/*
4438 * this is the entry point to schedule() from kernel preemption
4439 * off of irq context.
4440 * Note, that this is called and return with irqs disabled. This will
4441 * protect us against recursive calling from irq.
4442 */
4443asmlinkage void __sched preempt_schedule_irq(void)
4444{
4445 struct thread_info *ti = current_thread_info();
4446
4447 /* Catch callers which need to be fixed */
4448 BUG_ON(ti->preempt_count || !irqs_disabled());
4449
4450 do {
4451 add_preempt_count(PREEMPT_ACTIVE);
4452 local_irq_enable();
4453 __schedule();
4454 local_irq_disable();
4455 sub_preempt_count(PREEMPT_ACTIVE);
4456
4457 /*
4458 * Check again in case we missed a preemption opportunity
4459 * between schedule and now.
4460 */
4461 barrier();
4462 } while (need_resched());
4463}
4464
4465#endif /* CONFIG_PREEMPT */
4466
4467int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4468 void *key)
4469{
4470 return try_to_wake_up(curr->private, mode, wake_flags);
4471}
4472EXPORT_SYMBOL(default_wake_function);
4473
4474/*
4475 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4476 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4477 * number) then we wake all the non-exclusive tasks and one exclusive task.
4478 *
4479 * There are circumstances in which we can try to wake a task which has already
4480 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4481 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4482 */
4483static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4484 int nr_exclusive, int wake_flags, void *key)
4485{
4486 wait_queue_t *curr, *next;
4487
4488 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4489 unsigned flags = curr->flags;
4490
4491 if (curr->func(curr, mode, wake_flags, key) &&
4492 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4493 break;
4494 }
4495}
4496
4497/**
4498 * __wake_up - wake up threads blocked on a waitqueue.
4499 * @q: the waitqueue
4500 * @mode: which threads
4501 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4502 * @key: is directly passed to the wakeup function
4503 *
4504 * It may be assumed that this function implies a write memory barrier before
4505 * changing the task state if and only if any tasks are woken up.
4506 */
4507void __wake_up(wait_queue_head_t *q, unsigned int mode,
4508 int nr_exclusive, void *key)
4509{
4510 unsigned long flags;
4511
4512 spin_lock_irqsave(&q->lock, flags);
4513 __wake_up_common(q, mode, nr_exclusive, 0, key);
4514 spin_unlock_irqrestore(&q->lock, flags);
4515}
4516EXPORT_SYMBOL(__wake_up);
4517
4518/*
4519 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4520 */
4521void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4522{
4523 __wake_up_common(q, mode, 1, 0, NULL);
4524}
4525EXPORT_SYMBOL_GPL(__wake_up_locked);
4526
4527void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4528{
4529 __wake_up_common(q, mode, 1, 0, key);
4530}
4531EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4532
4533/**
4534 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4535 * @q: the waitqueue
4536 * @mode: which threads
4537 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4538 * @key: opaque value to be passed to wakeup targets
4539 *
4540 * The sync wakeup differs that the waker knows that it will schedule
4541 * away soon, so while the target thread will be woken up, it will not
4542 * be migrated to another CPU - ie. the two threads are 'synchronized'
4543 * with each other. This can prevent needless bouncing between CPUs.
4544 *
4545 * On UP it can prevent extra preemption.
4546 *
4547 * It may be assumed that this function implies a write memory barrier before
4548 * changing the task state if and only if any tasks are woken up.
4549 */
4550void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4551 int nr_exclusive, void *key)
4552{
4553 unsigned long flags;
4554 int wake_flags = WF_SYNC;
4555
4556 if (unlikely(!q))
4557 return;
4558
4559 if (unlikely(!nr_exclusive))
4560 wake_flags = 0;
4561
4562 spin_lock_irqsave(&q->lock, flags);
4563 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4564 spin_unlock_irqrestore(&q->lock, flags);
4565}
4566EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4567
4568/*
4569 * __wake_up_sync - see __wake_up_sync_key()
4570 */
4571void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4572{
4573 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4574}
4575EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4576
4577/**
4578 * complete: - signals a single thread waiting on this completion
4579 * @x: holds the state of this particular completion
4580 *
4581 * This will wake up a single thread waiting on this completion. Threads will be
4582 * awakened in the same order in which they were queued.
4583 *
4584 * See also complete_all(), wait_for_completion() and related routines.
4585 *
4586 * It may be assumed that this function implies a write memory barrier before
4587 * changing the task state if and only if any tasks are woken up.
4588 */
4589void complete(struct completion *x)
4590{
4591 unsigned long flags;
4592
4593 spin_lock_irqsave(&x->wait.lock, flags);
4594 x->done++;
4595 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4596 spin_unlock_irqrestore(&x->wait.lock, flags);
4597}
4598EXPORT_SYMBOL(complete);
4599
4600/**
4601 * complete_all: - signals all threads waiting on this completion
4602 * @x: holds the state of this particular completion
4603 *
4604 * This will wake up all threads waiting on this particular completion event.
4605 *
4606 * It may be assumed that this function implies a write memory barrier before
4607 * changing the task state if and only if any tasks are woken up.
4608 */
4609void complete_all(struct completion *x)
4610{
4611 unsigned long flags;
4612
4613 spin_lock_irqsave(&x->wait.lock, flags);
4614 x->done += UINT_MAX/2;
4615 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4616 spin_unlock_irqrestore(&x->wait.lock, flags);
4617}
4618EXPORT_SYMBOL(complete_all);
4619
4620static inline long __sched
4621do_wait_for_common(struct completion *x, long timeout, int state)
4622{
4623 if (!x->done) {
4624 DECLARE_WAITQUEUE(wait, current);
4625
4626 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4627 do {
4628 if (signal_pending_state(state, current)) {
4629 timeout = -ERESTARTSYS;
4630 break;
4631 }
4632 __set_current_state(state);
4633 spin_unlock_irq(&x->wait.lock);
4634 timeout = schedule_timeout(timeout);
4635 spin_lock_irq(&x->wait.lock);
4636 } while (!x->done && timeout);
4637 __remove_wait_queue(&x->wait, &wait);
4638 if (!x->done)
4639 return timeout;
4640 }
4641 x->done--;
4642 return timeout ?: 1;
4643}
4644
4645static long __sched
4646wait_for_common(struct completion *x, long timeout, int state)
4647{
4648 might_sleep();
4649
4650 spin_lock_irq(&x->wait.lock);
4651 timeout = do_wait_for_common(x, timeout, state);
4652 spin_unlock_irq(&x->wait.lock);
4653 return timeout;
4654}
4655
4656/**
4657 * wait_for_completion: - waits for completion of a task
4658 * @x: holds the state of this particular completion
4659 *
4660 * This waits to be signaled for completion of a specific task. It is NOT
4661 * interruptible and there is no timeout.
4662 *
4663 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4664 * and interrupt capability. Also see complete().
4665 */
4666void __sched wait_for_completion(struct completion *x)
4667{
4668 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4669}
4670EXPORT_SYMBOL(wait_for_completion);
4671
4672/**
4673 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4674 * @x: holds the state of this particular completion
4675 * @timeout: timeout value in jiffies
4676 *
4677 * This waits for either a completion of a specific task to be signaled or for a
4678 * specified timeout to expire. The timeout is in jiffies. It is not
4679 * interruptible.
4680 */
4681unsigned long __sched
4682wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4683{
4684 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4685}
4686EXPORT_SYMBOL(wait_for_completion_timeout);
4687
4688/**
4689 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4690 * @x: holds the state of this particular completion
4691 *
4692 * This waits for completion of a specific task to be signaled. It is
4693 * interruptible.
4694 */
4695int __sched wait_for_completion_interruptible(struct completion *x)
4696{
4697 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4698 if (t == -ERESTARTSYS)
4699 return t;
4700 return 0;
4701}
4702EXPORT_SYMBOL(wait_for_completion_interruptible);
4703
4704/**
4705 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4706 * @x: holds the state of this particular completion
4707 * @timeout: timeout value in jiffies
4708 *
4709 * This waits for either a completion of a specific task to be signaled or for a
4710 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4711 */
4712long __sched
4713wait_for_completion_interruptible_timeout(struct completion *x,
4714 unsigned long timeout)
4715{
4716 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4717}
4718EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4719
4720/**
4721 * wait_for_completion_killable: - waits for completion of a task (killable)
4722 * @x: holds the state of this particular completion
4723 *
4724 * This waits to be signaled for completion of a specific task. It can be
4725 * interrupted by a kill signal.
4726 */
4727int __sched wait_for_completion_killable(struct completion *x)
4728{
4729 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4730 if (t == -ERESTARTSYS)
4731 return t;
4732 return 0;
4733}
4734EXPORT_SYMBOL(wait_for_completion_killable);
4735
4736/**
4737 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4738 * @x: holds the state of this particular completion
4739 * @timeout: timeout value in jiffies
4740 *
4741 * This waits for either a completion of a specific task to be
4742 * signaled or for a specified timeout to expire. It can be
4743 * interrupted by a kill signal. The timeout is in jiffies.
4744 */
4745long __sched
4746wait_for_completion_killable_timeout(struct completion *x,
4747 unsigned long timeout)
4748{
4749 return wait_for_common(x, timeout, TASK_KILLABLE);
4750}
4751EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4752
4753/**
4754 * try_wait_for_completion - try to decrement a completion without blocking
4755 * @x: completion structure
4756 *
4757 * Returns: 0 if a decrement cannot be done without blocking
4758 * 1 if a decrement succeeded.
4759 *
4760 * If a completion is being used as a counting completion,
4761 * attempt to decrement the counter without blocking. This
4762 * enables us to avoid waiting if the resource the completion
4763 * is protecting is not available.
4764 */
4765bool try_wait_for_completion(struct completion *x)
4766{
4767 unsigned long flags;
4768 int ret = 1;
4769
4770 spin_lock_irqsave(&x->wait.lock, flags);
4771 if (!x->done)
4772 ret = 0;
4773 else
4774 x->done--;
4775 spin_unlock_irqrestore(&x->wait.lock, flags);
4776 return ret;
4777}
4778EXPORT_SYMBOL(try_wait_for_completion);
4779
4780/**
4781 * completion_done - Test to see if a completion has any waiters
4782 * @x: completion structure
4783 *
4784 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4785 * 1 if there are no waiters.
4786 *
4787 */
4788bool completion_done(struct completion *x)
4789{
4790 unsigned long flags;
4791 int ret = 1;
4792
4793 spin_lock_irqsave(&x->wait.lock, flags);
4794 if (!x->done)
4795 ret = 0;
4796 spin_unlock_irqrestore(&x->wait.lock, flags);
4797 return ret;
4798}
4799EXPORT_SYMBOL(completion_done);
4800
4801static long __sched
4802sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4803{
4804 unsigned long flags;
4805 wait_queue_t wait;
4806
4807 init_waitqueue_entry(&wait, current);
4808
4809 __set_current_state(state);
4810
4811 spin_lock_irqsave(&q->lock, flags);
4812 __add_wait_queue(q, &wait);
4813 spin_unlock(&q->lock);
4814 timeout = schedule_timeout(timeout);
4815 spin_lock_irq(&q->lock);
4816 __remove_wait_queue(q, &wait);
4817 spin_unlock_irqrestore(&q->lock, flags);
4818
4819 return timeout;
4820}
4821
4822void __sched interruptible_sleep_on(wait_queue_head_t *q)
4823{
4824 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4825}
4826EXPORT_SYMBOL(interruptible_sleep_on);
4827
4828long __sched
4829interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4830{
4831 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4832}
4833EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4834
4835void __sched sleep_on(wait_queue_head_t *q)
4836{
4837 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4838}
4839EXPORT_SYMBOL(sleep_on);
4840
4841long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4842{
4843 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4844}
4845EXPORT_SYMBOL(sleep_on_timeout);
4846
4847#ifdef CONFIG_RT_MUTEXES
4848
4849/*
4850 * rt_mutex_setprio - set the current priority of a task
4851 * @p: task
4852 * @prio: prio value (kernel-internal form)
4853 *
4854 * This function changes the 'effective' priority of a task. It does
4855 * not touch ->normal_prio like __setscheduler().
4856 *
4857 * Used by the rt_mutex code to implement priority inheritance logic.
4858 */
4859void rt_mutex_setprio(struct task_struct *p, int prio)
4860{
4861 int oldprio, on_rq, running;
4862 struct rq *rq;
4863 const struct sched_class *prev_class;
4864
4865 BUG_ON(prio < 0 || prio > MAX_PRIO);
4866
4867 rq = __task_rq_lock(p);
4868
4869 trace_sched_pi_setprio(p, prio);
4870 oldprio = p->prio;
4871 prev_class = p->sched_class;
4872 on_rq = p->on_rq;
4873 running = task_current(rq, p);
4874 if (on_rq)
4875 dequeue_task(rq, p, 0);
4876 if (running)
4877 p->sched_class->put_prev_task(rq, p);
4878
4879 if (rt_prio(prio))
4880 p->sched_class = &rt_sched_class;
4881 else
4882 p->sched_class = &fair_sched_class;
4883
4884 p->prio = prio;
4885
4886 if (running)
4887 p->sched_class->set_curr_task(rq);
4888 if (on_rq)
4889 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4890
4891 check_class_changed(rq, p, prev_class, oldprio);
4892 __task_rq_unlock(rq);
4893}
4894
4895#endif
4896
4897void set_user_nice(struct task_struct *p, long nice)
4898{
4899 int old_prio, delta, on_rq;
4900 unsigned long flags;
4901 struct rq *rq;
4902
4903 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4904 return;
4905 /*
4906 * We have to be careful, if called from sys_setpriority(),
4907 * the task might be in the middle of scheduling on another CPU.
4908 */
4909 rq = task_rq_lock(p, &flags);
4910 /*
4911 * The RT priorities are set via sched_setscheduler(), but we still
4912 * allow the 'normal' nice value to be set - but as expected
4913 * it wont have any effect on scheduling until the task is
4914 * SCHED_FIFO/SCHED_RR:
4915 */
4916 if (task_has_rt_policy(p)) {
4917 p->static_prio = NICE_TO_PRIO(nice);
4918 goto out_unlock;
4919 }
4920 on_rq = p->on_rq;
4921 if (on_rq)
4922 dequeue_task(rq, p, 0);
4923
4924 p->static_prio = NICE_TO_PRIO(nice);
4925 set_load_weight(p);
4926 old_prio = p->prio;
4927 p->prio = effective_prio(p);
4928 delta = p->prio - old_prio;
4929
4930 if (on_rq) {
4931 enqueue_task(rq, p, 0);
4932 /*
4933 * If the task increased its priority or is running and
4934 * lowered its priority, then reschedule its CPU:
4935 */
4936 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4937 resched_task(rq->curr);
4938 }
4939out_unlock:
4940 task_rq_unlock(rq, p, &flags);
4941}
4942EXPORT_SYMBOL(set_user_nice);
4943
4944/*
4945 * can_nice - check if a task can reduce its nice value
4946 * @p: task
4947 * @nice: nice value
4948 */
4949int can_nice(const struct task_struct *p, const int nice)
4950{
4951 /* convert nice value [19,-20] to rlimit style value [1,40] */
4952 int nice_rlim = 20 - nice;
4953
4954 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4955 capable(CAP_SYS_NICE));
4956}
4957
4958#ifdef __ARCH_WANT_SYS_NICE
4959
4960/*
4961 * sys_nice - change the priority of the current process.
4962 * @increment: priority increment
4963 *
4964 * sys_setpriority is a more generic, but much slower function that
4965 * does similar things.
4966 */
4967SYSCALL_DEFINE1(nice, int, increment)
4968{
4969 long nice, retval;
4970
4971 /*
4972 * Setpriority might change our priority at the same moment.
4973 * We don't have to worry. Conceptually one call occurs first
4974 * and we have a single winner.
4975 */
4976 if (increment < -40)
4977 increment = -40;
4978 if (increment > 40)
4979 increment = 40;
4980
4981 nice = TASK_NICE(current) + increment;
4982 if (nice < -20)
4983 nice = -20;
4984 if (nice > 19)
4985 nice = 19;
4986
4987 if (increment < 0 && !can_nice(current, nice))
4988 return -EPERM;
4989
4990 retval = security_task_setnice(current, nice);
4991 if (retval)
4992 return retval;
4993
4994 set_user_nice(current, nice);
4995 return 0;
4996}
4997
4998#endif
4999
5000/**
5001 * task_prio - return the priority value of a given task.
5002 * @p: the task in question.
5003 *
5004 * This is the priority value as seen by users in /proc.
5005 * RT tasks are offset by -200. Normal tasks are centered
5006 * around 0, value goes from -16 to +15.
5007 */
5008int task_prio(const struct task_struct *p)
5009{
5010 return p->prio - MAX_RT_PRIO;
5011}
5012
5013/**
5014 * task_nice - return the nice value of a given task.
5015 * @p: the task in question.
5016 */
5017int task_nice(const struct task_struct *p)
5018{
5019 return TASK_NICE(p);
5020}
5021EXPORT_SYMBOL(task_nice);
5022
5023/**
5024 * idle_cpu - is a given cpu idle currently?
5025 * @cpu: the processor in question.
5026 */
5027int idle_cpu(int cpu)
5028{
5029 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5030}
5031
5032/**
5033 * idle_task - return the idle task for a given cpu.
5034 * @cpu: the processor in question.
5035 */
5036struct task_struct *idle_task(int cpu)
5037{
5038 return cpu_rq(cpu)->idle;
5039}
5040
5041/**
5042 * find_process_by_pid - find a process with a matching PID value.
5043 * @pid: the pid in question.
5044 */
5045static struct task_struct *find_process_by_pid(pid_t pid)
5046{
5047 return pid ? find_task_by_vpid(pid) : current;
5048}
5049
5050/* Actually do priority change: must hold rq lock. */
5051static void
5052__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5053{
5054 p->policy = policy;
5055 p->rt_priority = prio;
5056 p->normal_prio = normal_prio(p);
5057 /* we are holding p->pi_lock already */
5058 p->prio = rt_mutex_getprio(p);
5059 if (rt_prio(p->prio))
5060 p->sched_class = &rt_sched_class;
5061 else
5062 p->sched_class = &fair_sched_class;
5063 set_load_weight(p);
5064}
5065
5066/*
5067 * check the target process has a UID that matches the current process's
5068 */
5069static bool check_same_owner(struct task_struct *p)
5070{
5071 const struct cred *cred = current_cred(), *pcred;
5072 bool match;
5073
5074 rcu_read_lock();
5075 pcred = __task_cred(p);
5076 if (cred->user->user_ns == pcred->user->user_ns)
5077 match = (cred->euid == pcred->euid ||
5078 cred->euid == pcred->uid);
5079 else
5080 match = false;
5081 rcu_read_unlock();
5082 return match;
5083}
5084
5085static int __sched_setscheduler(struct task_struct *p, int policy,
5086 const struct sched_param *param, bool user)
5087{
5088 int retval, oldprio, oldpolicy = -1, on_rq, running;
5089 unsigned long flags;
5090 const struct sched_class *prev_class;
5091 struct rq *rq;
5092 int reset_on_fork;
5093
5094 /* may grab non-irq protected spin_locks */
5095 BUG_ON(in_interrupt());
5096recheck:
5097 /* double check policy once rq lock held */
5098 if (policy < 0) {
5099 reset_on_fork = p->sched_reset_on_fork;
5100 policy = oldpolicy = p->policy;
5101 } else {
5102 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5103 policy &= ~SCHED_RESET_ON_FORK;
5104
5105 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5106 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5107 policy != SCHED_IDLE)
5108 return -EINVAL;
5109 }
5110
5111 /*
5112 * Valid priorities for SCHED_FIFO and SCHED_RR are
5113 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5114 * SCHED_BATCH and SCHED_IDLE is 0.
5115 */
5116 if (param->sched_priority < 0 ||
5117 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5118 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5119 return -EINVAL;
5120 if (rt_policy(policy) != (param->sched_priority != 0))
5121 return -EINVAL;
5122
5123 /*
5124 * Allow unprivileged RT tasks to decrease priority:
5125 */
5126 if (user && !capable(CAP_SYS_NICE)) {
5127 if (rt_policy(policy)) {
5128 unsigned long rlim_rtprio =
5129 task_rlimit(p, RLIMIT_RTPRIO);
5130
5131 /* can't set/change the rt policy */
5132 if (policy != p->policy && !rlim_rtprio)
5133 return -EPERM;
5134
5135 /* can't increase priority */
5136 if (param->sched_priority > p->rt_priority &&
5137 param->sched_priority > rlim_rtprio)
5138 return -EPERM;
5139 }
5140
5141 /*
5142 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5143 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5144 */
5145 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5146 if (!can_nice(p, TASK_NICE(p)))
5147 return -EPERM;
5148 }
5149
5150 /* can't change other user's priorities */
5151 if (!check_same_owner(p))
5152 return -EPERM;
5153
5154 /* Normal users shall not reset the sched_reset_on_fork flag */
5155 if (p->sched_reset_on_fork && !reset_on_fork)
5156 return -EPERM;
5157 }
5158
5159 if (user) {
5160 retval = security_task_setscheduler(p);
5161 if (retval)
5162 return retval;
5163 }
5164
5165 /*
5166 * make sure no PI-waiters arrive (or leave) while we are
5167 * changing the priority of the task:
5168 *
5169 * To be able to change p->policy safely, the appropriate
5170 * runqueue lock must be held.
5171 */
5172 rq = task_rq_lock(p, &flags);
5173
5174 /*
5175 * Changing the policy of the stop threads its a very bad idea
5176 */
5177 if (p == rq->stop) {
5178 task_rq_unlock(rq, p, &flags);
5179 return -EINVAL;
5180 }
5181
5182 /*
5183 * If not changing anything there's no need to proceed further:
5184 */
5185 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5186 param->sched_priority == p->rt_priority))) {
5187
5188 __task_rq_unlock(rq);
5189 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5190 return 0;
5191 }
5192
5193#ifdef CONFIG_RT_GROUP_SCHED
5194 if (user) {
5195 /*
5196 * Do not allow realtime tasks into groups that have no runtime
5197 * assigned.
5198 */
5199 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5200 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5201 !task_group_is_autogroup(task_group(p))) {
5202 task_rq_unlock(rq, p, &flags);
5203 return -EPERM;
5204 }
5205 }
5206#endif
5207
5208 /* recheck policy now with rq lock held */
5209 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5210 policy = oldpolicy = -1;
5211 task_rq_unlock(rq, p, &flags);
5212 goto recheck;
5213 }
5214 on_rq = p->on_rq;
5215 running = task_current(rq, p);
5216 if (on_rq)
5217 deactivate_task(rq, p, 0);
5218 if (running)
5219 p->sched_class->put_prev_task(rq, p);
5220
5221 p->sched_reset_on_fork = reset_on_fork;
5222
5223 oldprio = p->prio;
5224 prev_class = p->sched_class;
5225 __setscheduler(rq, p, policy, param->sched_priority);
5226
5227 if (running)
5228 p->sched_class->set_curr_task(rq);
5229 if (on_rq)
5230 activate_task(rq, p, 0);
5231
5232 check_class_changed(rq, p, prev_class, oldprio);
5233 task_rq_unlock(rq, p, &flags);
5234
5235 rt_mutex_adjust_pi(p);
5236
5237 return 0;
5238}
5239
5240/**
5241 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5242 * @p: the task in question.
5243 * @policy: new policy.
5244 * @param: structure containing the new RT priority.
5245 *
5246 * NOTE that the task may be already dead.
5247 */
5248int sched_setscheduler(struct task_struct *p, int policy,
5249 const struct sched_param *param)
5250{
5251 return __sched_setscheduler(p, policy, param, true);
5252}
5253EXPORT_SYMBOL_GPL(sched_setscheduler);
5254
5255/**
5256 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5257 * @p: the task in question.
5258 * @policy: new policy.
5259 * @param: structure containing the new RT priority.
5260 *
5261 * Just like sched_setscheduler, only don't bother checking if the
5262 * current context has permission. For example, this is needed in
5263 * stop_machine(): we create temporary high priority worker threads,
5264 * but our caller might not have that capability.
5265 */
5266int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5267 const struct sched_param *param)
5268{
5269 return __sched_setscheduler(p, policy, param, false);
5270}
5271
5272static int
5273do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5274{
5275 struct sched_param lparam;
5276 struct task_struct *p;
5277 int retval;
5278
5279 if (!param || pid < 0)
5280 return -EINVAL;
5281 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5282 return -EFAULT;
5283
5284 rcu_read_lock();
5285 retval = -ESRCH;
5286 p = find_process_by_pid(pid);
5287 if (p != NULL)
5288 retval = sched_setscheduler(p, policy, &lparam);
5289 rcu_read_unlock();
5290
5291 return retval;
5292}
5293
5294/**
5295 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5296 * @pid: the pid in question.
5297 * @policy: new policy.
5298 * @param: structure containing the new RT priority.
5299 */
5300SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5301 struct sched_param __user *, param)
5302{
5303 /* negative values for policy are not valid */
5304 if (policy < 0)
5305 return -EINVAL;
5306
5307 return do_sched_setscheduler(pid, policy, param);
5308}
5309
5310/**
5311 * sys_sched_setparam - set/change the RT priority of a thread
5312 * @pid: the pid in question.
5313 * @param: structure containing the new RT priority.
5314 */
5315SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5316{
5317 return do_sched_setscheduler(pid, -1, param);
5318}
5319
5320/**
5321 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5322 * @pid: the pid in question.
5323 */
5324SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5325{
5326 struct task_struct *p;
5327 int retval;
5328
5329 if (pid < 0)
5330 return -EINVAL;
5331
5332 retval = -ESRCH;
5333 rcu_read_lock();
5334 p = find_process_by_pid(pid);
5335 if (p) {
5336 retval = security_task_getscheduler(p);
5337 if (!retval)
5338 retval = p->policy
5339 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5340 }
5341 rcu_read_unlock();
5342 return retval;
5343}
5344
5345/**
5346 * sys_sched_getparam - get the RT priority of a thread
5347 * @pid: the pid in question.
5348 * @param: structure containing the RT priority.
5349 */
5350SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5351{
5352 struct sched_param lp;
5353 struct task_struct *p;
5354 int retval;
5355
5356 if (!param || pid < 0)
5357 return -EINVAL;
5358
5359 rcu_read_lock();
5360 p = find_process_by_pid(pid);
5361 retval = -ESRCH;
5362 if (!p)
5363 goto out_unlock;
5364
5365 retval = security_task_getscheduler(p);
5366 if (retval)
5367 goto out_unlock;
5368
5369 lp.sched_priority = p->rt_priority;
5370 rcu_read_unlock();
5371
5372 /*
5373 * This one might sleep, we cannot do it with a spinlock held ...
5374 */
5375 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5376
5377 return retval;
5378
5379out_unlock:
5380 rcu_read_unlock();
5381 return retval;
5382}
5383
5384long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5385{
5386 cpumask_var_t cpus_allowed, new_mask;
5387 struct task_struct *p;
5388 int retval;
5389
5390 get_online_cpus();
5391 rcu_read_lock();
5392
5393 p = find_process_by_pid(pid);
5394 if (!p) {
5395 rcu_read_unlock();
5396 put_online_cpus();
5397 return -ESRCH;
5398 }
5399
5400 /* Prevent p going away */
5401 get_task_struct(p);
5402 rcu_read_unlock();
5403
5404 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5405 retval = -ENOMEM;
5406 goto out_put_task;
5407 }
5408 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5409 retval = -ENOMEM;
5410 goto out_free_cpus_allowed;
5411 }
5412 retval = -EPERM;
5413 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5414 goto out_unlock;
5415
5416 retval = security_task_setscheduler(p);
5417 if (retval)
5418 goto out_unlock;
5419
5420 cpuset_cpus_allowed(p, cpus_allowed);
5421 cpumask_and(new_mask, in_mask, cpus_allowed);
5422again:
5423 retval = set_cpus_allowed_ptr(p, new_mask);
5424
5425 if (!retval) {
5426 cpuset_cpus_allowed(p, cpus_allowed);
5427 if (!cpumask_subset(new_mask, cpus_allowed)) {
5428 /*
5429 * We must have raced with a concurrent cpuset
5430 * update. Just reset the cpus_allowed to the
5431 * cpuset's cpus_allowed
5432 */
5433 cpumask_copy(new_mask, cpus_allowed);
5434 goto again;
5435 }
5436 }
5437out_unlock:
5438 free_cpumask_var(new_mask);
5439out_free_cpus_allowed:
5440 free_cpumask_var(cpus_allowed);
5441out_put_task:
5442 put_task_struct(p);
5443 put_online_cpus();
5444 return retval;
5445}
5446
5447static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5448 struct cpumask *new_mask)
5449{
5450 if (len < cpumask_size())
5451 cpumask_clear(new_mask);
5452 else if (len > cpumask_size())
5453 len = cpumask_size();
5454
5455 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5456}
5457
5458/**
5459 * sys_sched_setaffinity - set the cpu affinity of a process
5460 * @pid: pid of the process
5461 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5462 * @user_mask_ptr: user-space pointer to the new cpu mask
5463 */
5464SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5465 unsigned long __user *, user_mask_ptr)
5466{
5467 cpumask_var_t new_mask;
5468 int retval;
5469
5470 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5471 return -ENOMEM;
5472
5473 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5474 if (retval == 0)
5475 retval = sched_setaffinity(pid, new_mask);
5476 free_cpumask_var(new_mask);
5477 return retval;
5478}
5479
5480long sched_getaffinity(pid_t pid, struct cpumask *mask)
5481{
5482 struct task_struct *p;
5483 unsigned long flags;
5484 int retval;
5485
5486 get_online_cpus();
5487 rcu_read_lock();
5488
5489 retval = -ESRCH;
5490 p = find_process_by_pid(pid);
5491 if (!p)
5492 goto out_unlock;
5493
5494 retval = security_task_getscheduler(p);
5495 if (retval)
5496 goto out_unlock;
5497
5498 raw_spin_lock_irqsave(&p->pi_lock, flags);
5499 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5500 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5501
5502out_unlock:
5503 rcu_read_unlock();
5504 put_online_cpus();
5505
5506 return retval;
5507}
5508
5509/**
5510 * sys_sched_getaffinity - get the cpu affinity of a process
5511 * @pid: pid of the process
5512 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5513 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5514 */
5515SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5516 unsigned long __user *, user_mask_ptr)
5517{
5518 int ret;
5519 cpumask_var_t mask;
5520
5521 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5522 return -EINVAL;
5523 if (len & (sizeof(unsigned long)-1))
5524 return -EINVAL;
5525
5526 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5527 return -ENOMEM;
5528
5529 ret = sched_getaffinity(pid, mask);
5530 if (ret == 0) {
5531 size_t retlen = min_t(size_t, len, cpumask_size());
5532
5533 if (copy_to_user(user_mask_ptr, mask, retlen))
5534 ret = -EFAULT;
5535 else
5536 ret = retlen;
5537 }
5538 free_cpumask_var(mask);
5539
5540 return ret;
5541}
5542
5543/**
5544 * sys_sched_yield - yield the current processor to other threads.
5545 *
5546 * This function yields the current CPU to other tasks. If there are no
5547 * other threads running on this CPU then this function will return.
5548 */
5549SYSCALL_DEFINE0(sched_yield)
5550{
5551 struct rq *rq = this_rq_lock();
5552
5553 schedstat_inc(rq, yld_count);
5554 current->sched_class->yield_task(rq);
5555
5556 /*
5557 * Since we are going to call schedule() anyway, there's
5558 * no need to preempt or enable interrupts:
5559 */
5560 __release(rq->lock);
5561 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5562 do_raw_spin_unlock(&rq->lock);
5563 preempt_enable_no_resched();
5564
5565 schedule();
5566
5567 return 0;
5568}
5569
5570static inline int should_resched(void)
5571{
5572 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5573}
5574
5575static void __cond_resched(void)
5576{
5577 add_preempt_count(PREEMPT_ACTIVE);
5578 __schedule();
5579 sub_preempt_count(PREEMPT_ACTIVE);
5580}
5581
5582int __sched _cond_resched(void)
5583{
5584 if (should_resched()) {
5585 __cond_resched();
5586 return 1;
5587 }
5588 return 0;
5589}
5590EXPORT_SYMBOL(_cond_resched);
5591
5592/*
5593 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5594 * call schedule, and on return reacquire the lock.
5595 *
5596 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5597 * operations here to prevent schedule() from being called twice (once via
5598 * spin_unlock(), once by hand).
5599 */
5600int __cond_resched_lock(spinlock_t *lock)
5601{
5602 int resched = should_resched();
5603 int ret = 0;
5604
5605 lockdep_assert_held(lock);
5606
5607 if (spin_needbreak(lock) || resched) {
5608 spin_unlock(lock);
5609 if (resched)
5610 __cond_resched();
5611 else
5612 cpu_relax();
5613 ret = 1;
5614 spin_lock(lock);
5615 }
5616 return ret;
5617}
5618EXPORT_SYMBOL(__cond_resched_lock);
5619
5620int __sched __cond_resched_softirq(void)
5621{
5622 BUG_ON(!in_softirq());
5623
5624 if (should_resched()) {
5625 local_bh_enable();
5626 __cond_resched();
5627 local_bh_disable();
5628 return 1;
5629 }
5630 return 0;
5631}
5632EXPORT_SYMBOL(__cond_resched_softirq);
5633
5634/**
5635 * yield - yield the current processor to other threads.
5636 *
5637 * This is a shortcut for kernel-space yielding - it marks the
5638 * thread runnable and calls sys_sched_yield().
5639 */
5640void __sched yield(void)
5641{
5642 set_current_state(TASK_RUNNING);
5643 sys_sched_yield();
5644}
5645EXPORT_SYMBOL(yield);
5646
5647/**
5648 * yield_to - yield the current processor to another thread in
5649 * your thread group, or accelerate that thread toward the
5650 * processor it's on.
5651 * @p: target task
5652 * @preempt: whether task preemption is allowed or not
5653 *
5654 * It's the caller's job to ensure that the target task struct
5655 * can't go away on us before we can do any checks.
5656 *
5657 * Returns true if we indeed boosted the target task.
5658 */
5659bool __sched yield_to(struct task_struct *p, bool preempt)
5660{
5661 struct task_struct *curr = current;
5662 struct rq *rq, *p_rq;
5663 unsigned long flags;
5664 bool yielded = 0;
5665
5666 local_irq_save(flags);
5667 rq = this_rq();
5668
5669again:
5670 p_rq = task_rq(p);
5671 double_rq_lock(rq, p_rq);
5672 while (task_rq(p) != p_rq) {
5673 double_rq_unlock(rq, p_rq);
5674 goto again;
5675 }
5676
5677 if (!curr->sched_class->yield_to_task)
5678 goto out;
5679
5680 if (curr->sched_class != p->sched_class)
5681 goto out;
5682
5683 if (task_running(p_rq, p) || p->state)
5684 goto out;
5685
5686 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5687 if (yielded) {
5688 schedstat_inc(rq, yld_count);
5689 /*
5690 * Make p's CPU reschedule; pick_next_entity takes care of
5691 * fairness.
5692 */
5693 if (preempt && rq != p_rq)
5694 resched_task(p_rq->curr);
5695 }
5696
5697out:
5698 double_rq_unlock(rq, p_rq);
5699 local_irq_restore(flags);
5700
5701 if (yielded)
5702 schedule();
5703
5704 return yielded;
5705}
5706EXPORT_SYMBOL_GPL(yield_to);
5707
5708/*
5709 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5710 * that process accounting knows that this is a task in IO wait state.
5711 */
5712void __sched io_schedule(void)
5713{
5714 struct rq *rq = raw_rq();
5715
5716 delayacct_blkio_start();
5717 atomic_inc(&rq->nr_iowait);
5718 blk_flush_plug(current);
5719 current->in_iowait = 1;
5720 schedule();
5721 current->in_iowait = 0;
5722 atomic_dec(&rq->nr_iowait);
5723 delayacct_blkio_end();
5724}
5725EXPORT_SYMBOL(io_schedule);
5726
5727long __sched io_schedule_timeout(long timeout)
5728{
5729 struct rq *rq = raw_rq();
5730 long ret;
5731
5732 delayacct_blkio_start();
5733 atomic_inc(&rq->nr_iowait);
5734 blk_flush_plug(current);
5735 current->in_iowait = 1;
5736 ret = schedule_timeout(timeout);
5737 current->in_iowait = 0;
5738 atomic_dec(&rq->nr_iowait);
5739 delayacct_blkio_end();
5740 return ret;
5741}
5742
5743/**
5744 * sys_sched_get_priority_max - return maximum RT priority.
5745 * @policy: scheduling class.
5746 *
5747 * this syscall returns the maximum rt_priority that can be used
5748 * by a given scheduling class.
5749 */
5750SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5751{
5752 int ret = -EINVAL;
5753
5754 switch (policy) {
5755 case SCHED_FIFO:
5756 case SCHED_RR:
5757 ret = MAX_USER_RT_PRIO-1;
5758 break;
5759 case SCHED_NORMAL:
5760 case SCHED_BATCH:
5761 case SCHED_IDLE:
5762 ret = 0;
5763 break;
5764 }
5765 return ret;
5766}
5767
5768/**
5769 * sys_sched_get_priority_min - return minimum RT priority.
5770 * @policy: scheduling class.
5771 *
5772 * this syscall returns the minimum rt_priority that can be used
5773 * by a given scheduling class.
5774 */
5775SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5776{
5777 int ret = -EINVAL;
5778
5779 switch (policy) {
5780 case SCHED_FIFO:
5781 case SCHED_RR:
5782 ret = 1;
5783 break;
5784 case SCHED_NORMAL:
5785 case SCHED_BATCH:
5786 case SCHED_IDLE:
5787 ret = 0;
5788 }
5789 return ret;
5790}
5791
5792/**
5793 * sys_sched_rr_get_interval - return the default timeslice of a process.
5794 * @pid: pid of the process.
5795 * @interval: userspace pointer to the timeslice value.
5796 *
5797 * this syscall writes the default timeslice value of a given process
5798 * into the user-space timespec buffer. A value of '0' means infinity.
5799 */
5800SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5801 struct timespec __user *, interval)
5802{
5803 struct task_struct *p;
5804 unsigned int time_slice;
5805 unsigned long flags;
5806 struct rq *rq;
5807 int retval;
5808 struct timespec t;
5809
5810 if (pid < 0)
5811 return -EINVAL;
5812
5813 retval = -ESRCH;
5814 rcu_read_lock();
5815 p = find_process_by_pid(pid);
5816 if (!p)
5817 goto out_unlock;
5818
5819 retval = security_task_getscheduler(p);
5820 if (retval)
5821 goto out_unlock;
5822
5823 rq = task_rq_lock(p, &flags);
5824 time_slice = p->sched_class->get_rr_interval(rq, p);
5825 task_rq_unlock(rq, p, &flags);
5826
5827 rcu_read_unlock();
5828 jiffies_to_timespec(time_slice, &t);
5829 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5830 return retval;
5831
5832out_unlock:
5833 rcu_read_unlock();
5834 return retval;
5835}
5836
5837static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5838
5839void sched_show_task(struct task_struct *p)
5840{
5841 unsigned long free = 0;
5842 unsigned state;
5843
5844 state = p->state ? __ffs(p->state) + 1 : 0;
5845 printk(KERN_INFO "%-15.15s %c", p->comm,
5846 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5847#if BITS_PER_LONG == 32
5848 if (state == TASK_RUNNING)
5849 printk(KERN_CONT " running ");
5850 else
5851 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5852#else
5853 if (state == TASK_RUNNING)
5854 printk(KERN_CONT " running task ");
5855 else
5856 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5857#endif
5858#ifdef CONFIG_DEBUG_STACK_USAGE
5859 free = stack_not_used(p);
5860#endif
5861 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5862 task_pid_nr(p), task_pid_nr(p->real_parent),
5863 (unsigned long)task_thread_info(p)->flags);
5864
5865 show_stack(p, NULL);
5866}
5867
5868void show_state_filter(unsigned long state_filter)
5869{
5870 struct task_struct *g, *p;
5871
5872#if BITS_PER_LONG == 32
5873 printk(KERN_INFO
5874 " task PC stack pid father\n");
5875#else
5876 printk(KERN_INFO
5877 " task PC stack pid father\n");
5878#endif
5879 read_lock(&tasklist_lock);
5880 do_each_thread(g, p) {
5881 /*
5882 * reset the NMI-timeout, listing all files on a slow
5883 * console might take a lot of time:
5884 */
5885 touch_nmi_watchdog();
5886 if (!state_filter || (p->state & state_filter))
5887 sched_show_task(p);
5888 } while_each_thread(g, p);
5889
5890 touch_all_softlockup_watchdogs();
5891
5892#ifdef CONFIG_SCHED_DEBUG
5893 sysrq_sched_debug_show();
5894#endif
5895 read_unlock(&tasklist_lock);
5896 /*
5897 * Only show locks if all tasks are dumped:
5898 */
5899 if (!state_filter)
5900 debug_show_all_locks();
5901}
5902
5903void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5904{
5905 idle->sched_class = &idle_sched_class;
5906}
5907
5908/**
5909 * init_idle - set up an idle thread for a given CPU
5910 * @idle: task in question
5911 * @cpu: cpu the idle task belongs to
5912 *
5913 * NOTE: this function does not set the idle thread's NEED_RESCHED
5914 * flag, to make booting more robust.
5915 */
5916void __cpuinit init_idle(struct task_struct *idle, int cpu)
5917{
5918 struct rq *rq = cpu_rq(cpu);
5919 unsigned long flags;
5920
5921 raw_spin_lock_irqsave(&rq->lock, flags);
5922
5923 __sched_fork(idle);
5924 idle->state = TASK_RUNNING;
5925 idle->se.exec_start = sched_clock();
5926
5927 do_set_cpus_allowed(idle, cpumask_of(cpu));
5928 /*
5929 * We're having a chicken and egg problem, even though we are
5930 * holding rq->lock, the cpu isn't yet set to this cpu so the
5931 * lockdep check in task_group() will fail.
5932 *
5933 * Similar case to sched_fork(). / Alternatively we could
5934 * use task_rq_lock() here and obtain the other rq->lock.
5935 *
5936 * Silence PROVE_RCU
5937 */
5938 rcu_read_lock();
5939 __set_task_cpu(idle, cpu);
5940 rcu_read_unlock();
5941
5942 rq->curr = rq->idle = idle;
5943#if defined(CONFIG_SMP)
5944 idle->on_cpu = 1;
5945#endif
5946 raw_spin_unlock_irqrestore(&rq->lock, flags);
5947
5948 /* Set the preempt count _outside_ the spinlocks! */
5949 task_thread_info(idle)->preempt_count = 0;
5950
5951 /*
5952 * The idle tasks have their own, simple scheduling class:
5953 */
5954 idle->sched_class = &idle_sched_class;
5955 ftrace_graph_init_idle_task(idle, cpu);
5956}
5957
5958/*
5959 * In a system that switches off the HZ timer nohz_cpu_mask
5960 * indicates which cpus entered this state. This is used
5961 * in the rcu update to wait only for active cpus. For system
5962 * which do not switch off the HZ timer nohz_cpu_mask should
5963 * always be CPU_BITS_NONE.
5964 */
5965cpumask_var_t nohz_cpu_mask;
5966
5967/*
5968 * Increase the granularity value when there are more CPUs,
5969 * because with more CPUs the 'effective latency' as visible
5970 * to users decreases. But the relationship is not linear,
5971 * so pick a second-best guess by going with the log2 of the
5972 * number of CPUs.
5973 *
5974 * This idea comes from the SD scheduler of Con Kolivas:
5975 */
5976static int get_update_sysctl_factor(void)
5977{
5978 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5979 unsigned int factor;
5980
5981 switch (sysctl_sched_tunable_scaling) {
5982 case SCHED_TUNABLESCALING_NONE:
5983 factor = 1;
5984 break;
5985 case SCHED_TUNABLESCALING_LINEAR:
5986 factor = cpus;
5987 break;
5988 case SCHED_TUNABLESCALING_LOG:
5989 default:
5990 factor = 1 + ilog2(cpus);
5991 break;
5992 }
5993
5994 return factor;
5995}
5996
5997static void update_sysctl(void)
5998{
5999 unsigned int factor = get_update_sysctl_factor();
6000
6001#define SET_SYSCTL(name) \
6002 (sysctl_##name = (factor) * normalized_sysctl_##name)
6003 SET_SYSCTL(sched_min_granularity);
6004 SET_SYSCTL(sched_latency);
6005 SET_SYSCTL(sched_wakeup_granularity);
6006#undef SET_SYSCTL
6007}
6008
6009static inline void sched_init_granularity(void)
6010{
6011 update_sysctl();
6012}
6013
6014#ifdef CONFIG_SMP
6015void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6016{
6017 if (p->sched_class && p->sched_class->set_cpus_allowed)
6018 p->sched_class->set_cpus_allowed(p, new_mask);
6019 else {
6020 cpumask_copy(&p->cpus_allowed, new_mask);
6021 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6022 }
6023}
6024
6025/*
6026 * This is how migration works:
6027 *
6028 * 1) we invoke migration_cpu_stop() on the target CPU using
6029 * stop_one_cpu().
6030 * 2) stopper starts to run (implicitly forcing the migrated thread
6031 * off the CPU)
6032 * 3) it checks whether the migrated task is still in the wrong runqueue.
6033 * 4) if it's in the wrong runqueue then the migration thread removes
6034 * it and puts it into the right queue.
6035 * 5) stopper completes and stop_one_cpu() returns and the migration
6036 * is done.
6037 */
6038
6039/*
6040 * Change a given task's CPU affinity. Migrate the thread to a
6041 * proper CPU and schedule it away if the CPU it's executing on
6042 * is removed from the allowed bitmask.
6043 *
6044 * NOTE: the caller must have a valid reference to the task, the
6045 * task must not exit() & deallocate itself prematurely. The
6046 * call is not atomic; no spinlocks may be held.
6047 */
6048int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6049{
6050 unsigned long flags;
6051 struct rq *rq;
6052 unsigned int dest_cpu;
6053 int ret = 0;
6054
6055 rq = task_rq_lock(p, &flags);
6056
6057 if (cpumask_equal(&p->cpus_allowed, new_mask))
6058 goto out;
6059
6060 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6061 ret = -EINVAL;
6062 goto out;
6063 }
6064
6065 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6066 ret = -EINVAL;
6067 goto out;
6068 }
6069
6070 do_set_cpus_allowed(p, new_mask);
6071
6072 /* Can the task run on the task's current CPU? If so, we're done */
6073 if (cpumask_test_cpu(task_cpu(p), new_mask))
6074 goto out;
6075
6076 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6077 if (p->on_rq) {
6078 struct migration_arg arg = { p, dest_cpu };
6079 /* Need help from migration thread: drop lock and wait. */
6080 task_rq_unlock(rq, p, &flags);
6081 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6082 tlb_migrate_finish(p->mm);
6083 return 0;
6084 }
6085out:
6086 task_rq_unlock(rq, p, &flags);
6087
6088 return ret;
6089}
6090EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6091
6092/*
6093 * Move (not current) task off this cpu, onto dest cpu. We're doing
6094 * this because either it can't run here any more (set_cpus_allowed()
6095 * away from this CPU, or CPU going down), or because we're
6096 * attempting to rebalance this task on exec (sched_exec).
6097 *
6098 * So we race with normal scheduler movements, but that's OK, as long
6099 * as the task is no longer on this CPU.
6100 *
6101 * Returns non-zero if task was successfully migrated.
6102 */
6103static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6104{
6105 struct rq *rq_dest, *rq_src;
6106 int ret = 0;
6107
6108 if (unlikely(!cpu_active(dest_cpu)))
6109 return ret;
6110
6111 rq_src = cpu_rq(src_cpu);
6112 rq_dest = cpu_rq(dest_cpu);
6113
6114 raw_spin_lock(&p->pi_lock);
6115 double_rq_lock(rq_src, rq_dest);
6116 /* Already moved. */
6117 if (task_cpu(p) != src_cpu)
6118 goto done;
6119 /* Affinity changed (again). */
6120 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6121 goto fail;
6122
6123 /*
6124 * If we're not on a rq, the next wake-up will ensure we're
6125 * placed properly.
6126 */
6127 if (p->on_rq) {
6128 deactivate_task(rq_src, p, 0);
6129 set_task_cpu(p, dest_cpu);
6130 activate_task(rq_dest, p, 0);
6131 check_preempt_curr(rq_dest, p, 0);
6132 }
6133done:
6134 ret = 1;
6135fail:
6136 double_rq_unlock(rq_src, rq_dest);
6137 raw_spin_unlock(&p->pi_lock);
6138 return ret;
6139}
6140
6141/*
6142 * migration_cpu_stop - this will be executed by a highprio stopper thread
6143 * and performs thread migration by bumping thread off CPU then
6144 * 'pushing' onto another runqueue.
6145 */
6146static int migration_cpu_stop(void *data)
6147{
6148 struct migration_arg *arg = data;
6149
6150 /*
6151 * The original target cpu might have gone down and we might
6152 * be on another cpu but it doesn't matter.
6153 */
6154 local_irq_disable();
6155 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6156 local_irq_enable();
6157 return 0;
6158}
6159
6160#ifdef CONFIG_HOTPLUG_CPU
6161
6162/*
6163 * Ensures that the idle task is using init_mm right before its cpu goes
6164 * offline.
6165 */
6166void idle_task_exit(void)
6167{
6168 struct mm_struct *mm = current->active_mm;
6169
6170 BUG_ON(cpu_online(smp_processor_id()));
6171
6172 if (mm != &init_mm)
6173 switch_mm(mm, &init_mm, current);
6174 mmdrop(mm);
6175}
6176
6177/*
6178 * While a dead CPU has no uninterruptible tasks queued at this point,
6179 * it might still have a nonzero ->nr_uninterruptible counter, because
6180 * for performance reasons the counter is not stricly tracking tasks to
6181 * their home CPUs. So we just add the counter to another CPU's counter,
6182 * to keep the global sum constant after CPU-down:
6183 */
6184static void migrate_nr_uninterruptible(struct rq *rq_src)
6185{
6186 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6187
6188 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6189 rq_src->nr_uninterruptible = 0;
6190}
6191
6192/*
6193 * remove the tasks which were accounted by rq from calc_load_tasks.
6194 */
6195static void calc_global_load_remove(struct rq *rq)
6196{
6197 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6198 rq->calc_load_active = 0;
6199}
6200
6201/*
6202 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6203 * try_to_wake_up()->select_task_rq().
6204 *
6205 * Called with rq->lock held even though we'er in stop_machine() and
6206 * there's no concurrency possible, we hold the required locks anyway
6207 * because of lock validation efforts.
6208 */
6209static void migrate_tasks(unsigned int dead_cpu)
6210{
6211 struct rq *rq = cpu_rq(dead_cpu);
6212 struct task_struct *next, *stop = rq->stop;
6213 int dest_cpu;
6214
6215 /*
6216 * Fudge the rq selection such that the below task selection loop
6217 * doesn't get stuck on the currently eligible stop task.
6218 *
6219 * We're currently inside stop_machine() and the rq is either stuck
6220 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6221 * either way we should never end up calling schedule() until we're
6222 * done here.
6223 */
6224 rq->stop = NULL;
6225
6226 for ( ; ; ) {
6227 /*
6228 * There's this thread running, bail when that's the only
6229 * remaining thread.
6230 */
6231 if (rq->nr_running == 1)
6232 break;
6233
6234 next = pick_next_task(rq);
6235 BUG_ON(!next);
6236 next->sched_class->put_prev_task(rq, next);
6237
6238 /* Find suitable destination for @next, with force if needed. */
6239 dest_cpu = select_fallback_rq(dead_cpu, next);
6240 raw_spin_unlock(&rq->lock);
6241
6242 __migrate_task(next, dead_cpu, dest_cpu);
6243
6244 raw_spin_lock(&rq->lock);
6245 }
6246
6247 rq->stop = stop;
6248}
6249
6250#endif /* CONFIG_HOTPLUG_CPU */
6251
6252#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6253
6254static struct ctl_table sd_ctl_dir[] = {
6255 {
6256 .procname = "sched_domain",
6257 .mode = 0555,
6258 },
6259 {}
6260};
6261
6262static struct ctl_table sd_ctl_root[] = {
6263 {
6264 .procname = "kernel",
6265 .mode = 0555,
6266 .child = sd_ctl_dir,
6267 },
6268 {}
6269};
6270
6271static struct ctl_table *sd_alloc_ctl_entry(int n)
6272{
6273 struct ctl_table *entry =
6274 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6275
6276 return entry;
6277}
6278
6279static void sd_free_ctl_entry(struct ctl_table **tablep)
6280{
6281 struct ctl_table *entry;
6282
6283 /*
6284 * In the intermediate directories, both the child directory and
6285 * procname are dynamically allocated and could fail but the mode
6286 * will always be set. In the lowest directory the names are
6287 * static strings and all have proc handlers.
6288 */
6289 for (entry = *tablep; entry->mode; entry++) {
6290 if (entry->child)
6291 sd_free_ctl_entry(&entry->child);
6292 if (entry->proc_handler == NULL)
6293 kfree(entry->procname);
6294 }
6295
6296 kfree(*tablep);
6297 *tablep = NULL;
6298}
6299
6300static void
6301set_table_entry(struct ctl_table *entry,
6302 const char *procname, void *data, int maxlen,
6303 mode_t mode, proc_handler *proc_handler)
6304{
6305 entry->procname = procname;
6306 entry->data = data;
6307 entry->maxlen = maxlen;
6308 entry->mode = mode;
6309 entry->proc_handler = proc_handler;
6310}
6311
6312static struct ctl_table *
6313sd_alloc_ctl_domain_table(struct sched_domain *sd)
6314{
6315 struct ctl_table *table = sd_alloc_ctl_entry(13);
6316
6317 if (table == NULL)
6318 return NULL;
6319
6320 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6321 sizeof(long), 0644, proc_doulongvec_minmax);
6322 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6323 sizeof(long), 0644, proc_doulongvec_minmax);
6324 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6325 sizeof(int), 0644, proc_dointvec_minmax);
6326 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6327 sizeof(int), 0644, proc_dointvec_minmax);
6328 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6329 sizeof(int), 0644, proc_dointvec_minmax);
6330 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6331 sizeof(int), 0644, proc_dointvec_minmax);
6332 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6333 sizeof(int), 0644, proc_dointvec_minmax);
6334 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6335 sizeof(int), 0644, proc_dointvec_minmax);
6336 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6337 sizeof(int), 0644, proc_dointvec_minmax);
6338 set_table_entry(&table[9], "cache_nice_tries",
6339 &sd->cache_nice_tries,
6340 sizeof(int), 0644, proc_dointvec_minmax);
6341 set_table_entry(&table[10], "flags", &sd->flags,
6342 sizeof(int), 0644, proc_dointvec_minmax);
6343 set_table_entry(&table[11], "name", sd->name,
6344 CORENAME_MAX_SIZE, 0444, proc_dostring);
6345 /* &table[12] is terminator */
6346
6347 return table;
6348}
6349
6350static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6351{
6352 struct ctl_table *entry, *table;
6353 struct sched_domain *sd;
6354 int domain_num = 0, i;
6355 char buf[32];
6356
6357 for_each_domain(cpu, sd)
6358 domain_num++;
6359 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6360 if (table == NULL)
6361 return NULL;
6362
6363 i = 0;
6364 for_each_domain(cpu, sd) {
6365 snprintf(buf, 32, "domain%d", i);
6366 entry->procname = kstrdup(buf, GFP_KERNEL);
6367 entry->mode = 0555;
6368 entry->child = sd_alloc_ctl_domain_table(sd);
6369 entry++;
6370 i++;
6371 }
6372 return table;
6373}
6374
6375static struct ctl_table_header *sd_sysctl_header;
6376static void register_sched_domain_sysctl(void)
6377{
6378 int i, cpu_num = num_possible_cpus();
6379 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6380 char buf[32];
6381
6382 WARN_ON(sd_ctl_dir[0].child);
6383 sd_ctl_dir[0].child = entry;
6384
6385 if (entry == NULL)
6386 return;
6387
6388 for_each_possible_cpu(i) {
6389 snprintf(buf, 32, "cpu%d", i);
6390 entry->procname = kstrdup(buf, GFP_KERNEL);
6391 entry->mode = 0555;
6392 entry->child = sd_alloc_ctl_cpu_table(i);
6393 entry++;
6394 }
6395
6396 WARN_ON(sd_sysctl_header);
6397 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6398}
6399
6400/* may be called multiple times per register */
6401static void unregister_sched_domain_sysctl(void)
6402{
6403 if (sd_sysctl_header)
6404 unregister_sysctl_table(sd_sysctl_header);
6405 sd_sysctl_header = NULL;
6406 if (sd_ctl_dir[0].child)
6407 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6408}
6409#else
6410static void register_sched_domain_sysctl(void)
6411{
6412}
6413static void unregister_sched_domain_sysctl(void)
6414{
6415}
6416#endif
6417
6418static void set_rq_online(struct rq *rq)
6419{
6420 if (!rq->online) {
6421 const struct sched_class *class;
6422
6423 cpumask_set_cpu(rq->cpu, rq->rd->online);
6424 rq->online = 1;
6425
6426 for_each_class(class) {
6427 if (class->rq_online)
6428 class->rq_online(rq);
6429 }
6430 }
6431}
6432
6433static void set_rq_offline(struct rq *rq)
6434{
6435 if (rq->online) {
6436 const struct sched_class *class;
6437
6438 for_each_class(class) {
6439 if (class->rq_offline)
6440 class->rq_offline(rq);
6441 }
6442
6443 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6444 rq->online = 0;
6445 }
6446}
6447
6448/*
6449 * migration_call - callback that gets triggered when a CPU is added.
6450 * Here we can start up the necessary migration thread for the new CPU.
6451 */
6452static int __cpuinit
6453migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6454{
6455 int cpu = (long)hcpu;
6456 unsigned long flags;
6457 struct rq *rq = cpu_rq(cpu);
6458
6459 switch (action & ~CPU_TASKS_FROZEN) {
6460
6461 case CPU_UP_PREPARE:
6462 rq->calc_load_update = calc_load_update;
6463 break;
6464
6465 case CPU_ONLINE:
6466 /* Update our root-domain */
6467 raw_spin_lock_irqsave(&rq->lock, flags);
6468 if (rq->rd) {
6469 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6470
6471 set_rq_online(rq);
6472 }
6473 raw_spin_unlock_irqrestore(&rq->lock, flags);
6474 break;
6475
6476#ifdef CONFIG_HOTPLUG_CPU
6477 case CPU_DYING:
6478 sched_ttwu_pending();
6479 /* Update our root-domain */
6480 raw_spin_lock_irqsave(&rq->lock, flags);
6481 if (rq->rd) {
6482 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6483 set_rq_offline(rq);
6484 }
6485 migrate_tasks(cpu);
6486 BUG_ON(rq->nr_running != 1); /* the migration thread */
6487 raw_spin_unlock_irqrestore(&rq->lock, flags);
6488
6489 migrate_nr_uninterruptible(rq);
6490 calc_global_load_remove(rq);
6491 break;
6492#endif
6493 }
6494
6495 update_max_interval();
6496
6497 return NOTIFY_OK;
6498}
6499
6500/*
6501 * Register at high priority so that task migration (migrate_all_tasks)
6502 * happens before everything else. This has to be lower priority than
6503 * the notifier in the perf_event subsystem, though.
6504 */
6505static struct notifier_block __cpuinitdata migration_notifier = {
6506 .notifier_call = migration_call,
6507 .priority = CPU_PRI_MIGRATION,
6508};
6509
6510static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6511 unsigned long action, void *hcpu)
6512{
6513 switch (action & ~CPU_TASKS_FROZEN) {
6514 case CPU_STARTING:
6515 case CPU_DOWN_FAILED:
6516 set_cpu_active((long)hcpu, true);
6517 return NOTIFY_OK;
6518 default:
6519 return NOTIFY_DONE;
6520 }
6521}
6522
6523static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6524 unsigned long action, void *hcpu)
6525{
6526 switch (action & ~CPU_TASKS_FROZEN) {
6527 case CPU_DOWN_PREPARE:
6528 set_cpu_active((long)hcpu, false);
6529 return NOTIFY_OK;
6530 default:
6531 return NOTIFY_DONE;
6532 }
6533}
6534
6535static int __init migration_init(void)
6536{
6537 void *cpu = (void *)(long)smp_processor_id();
6538 int err;
6539
6540 /* Initialize migration for the boot CPU */
6541 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6542 BUG_ON(err == NOTIFY_BAD);
6543 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6544 register_cpu_notifier(&migration_notifier);
6545
6546 /* Register cpu active notifiers */
6547 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6548 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6549
6550 return 0;
6551}
6552early_initcall(migration_init);
6553#endif
6554
6555#ifdef CONFIG_SMP
6556
6557static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6558
6559#ifdef CONFIG_SCHED_DEBUG
6560
6561static __read_mostly int sched_domain_debug_enabled;
6562
6563static int __init sched_domain_debug_setup(char *str)
6564{
6565 sched_domain_debug_enabled = 1;
6566
6567 return 0;
6568}
6569early_param("sched_debug", sched_domain_debug_setup);
6570
6571static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6572 struct cpumask *groupmask)
6573{
6574 struct sched_group *group = sd->groups;
6575 char str[256];
6576
6577 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6578 cpumask_clear(groupmask);
6579
6580 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6581
6582 if (!(sd->flags & SD_LOAD_BALANCE)) {
6583 printk("does not load-balance\n");
6584 if (sd->parent)
6585 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6586 " has parent");
6587 return -1;
6588 }
6589
6590 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6591
6592 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6593 printk(KERN_ERR "ERROR: domain->span does not contain "
6594 "CPU%d\n", cpu);
6595 }
6596 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6597 printk(KERN_ERR "ERROR: domain->groups does not contain"
6598 " CPU%d\n", cpu);
6599 }
6600
6601 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6602 do {
6603 if (!group) {
6604 printk("\n");
6605 printk(KERN_ERR "ERROR: group is NULL\n");
6606 break;
6607 }
6608
6609 if (!group->sgp->power) {
6610 printk(KERN_CONT "\n");
6611 printk(KERN_ERR "ERROR: domain->cpu_power not "
6612 "set\n");
6613 break;
6614 }
6615
6616 if (!cpumask_weight(sched_group_cpus(group))) {
6617 printk(KERN_CONT "\n");
6618 printk(KERN_ERR "ERROR: empty group\n");
6619 break;
6620 }
6621
6622 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6623 printk(KERN_CONT "\n");
6624 printk(KERN_ERR "ERROR: repeated CPUs\n");
6625 break;
6626 }
6627
6628 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6629
6630 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6631
6632 printk(KERN_CONT " %s", str);
6633 if (group->sgp->power != SCHED_POWER_SCALE) {
6634 printk(KERN_CONT " (cpu_power = %d)",
6635 group->sgp->power);
6636 }
6637
6638 group = group->next;
6639 } while (group != sd->groups);
6640 printk(KERN_CONT "\n");
6641
6642 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6643 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6644
6645 if (sd->parent &&
6646 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6647 printk(KERN_ERR "ERROR: parent span is not a superset "
6648 "of domain->span\n");
6649 return 0;
6650}
6651
6652static void sched_domain_debug(struct sched_domain *sd, int cpu)
6653{
6654 int level = 0;
6655
6656 if (!sched_domain_debug_enabled)
6657 return;
6658
6659 if (!sd) {
6660 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6661 return;
6662 }
6663
6664 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6665
6666 for (;;) {
6667 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6668 break;
6669 level++;
6670 sd = sd->parent;
6671 if (!sd)
6672 break;
6673 }
6674}
6675#else /* !CONFIG_SCHED_DEBUG */
6676# define sched_domain_debug(sd, cpu) do { } while (0)
6677#endif /* CONFIG_SCHED_DEBUG */
6678
6679static int sd_degenerate(struct sched_domain *sd)
6680{
6681 if (cpumask_weight(sched_domain_span(sd)) == 1)
6682 return 1;
6683
6684 /* Following flags need at least 2 groups */
6685 if (sd->flags & (SD_LOAD_BALANCE |
6686 SD_BALANCE_NEWIDLE |
6687 SD_BALANCE_FORK |
6688 SD_BALANCE_EXEC |
6689 SD_SHARE_CPUPOWER |
6690 SD_SHARE_PKG_RESOURCES)) {
6691 if (sd->groups != sd->groups->next)
6692 return 0;
6693 }
6694
6695 /* Following flags don't use groups */
6696 if (sd->flags & (SD_WAKE_AFFINE))
6697 return 0;
6698
6699 return 1;
6700}
6701
6702static int
6703sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6704{
6705 unsigned long cflags = sd->flags, pflags = parent->flags;
6706
6707 if (sd_degenerate(parent))
6708 return 1;
6709
6710 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6711 return 0;
6712
6713 /* Flags needing groups don't count if only 1 group in parent */
6714 if (parent->groups == parent->groups->next) {
6715 pflags &= ~(SD_LOAD_BALANCE |
6716 SD_BALANCE_NEWIDLE |
6717 SD_BALANCE_FORK |
6718 SD_BALANCE_EXEC |
6719 SD_SHARE_CPUPOWER |
6720 SD_SHARE_PKG_RESOURCES);
6721 if (nr_node_ids == 1)
6722 pflags &= ~SD_SERIALIZE;
6723 }
6724 if (~cflags & pflags)
6725 return 0;
6726
6727 return 1;
6728}
6729
6730static void free_rootdomain(struct rcu_head *rcu)
6731{
6732 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6733
6734 cpupri_cleanup(&rd->cpupri);
6735 free_cpumask_var(rd->rto_mask);
6736 free_cpumask_var(rd->online);
6737 free_cpumask_var(rd->span);
6738 kfree(rd);
6739}
6740
6741static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6742{
6743 struct root_domain *old_rd = NULL;
6744 unsigned long flags;
6745
6746 raw_spin_lock_irqsave(&rq->lock, flags);
6747
6748 if (rq->rd) {
6749 old_rd = rq->rd;
6750
6751 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6752 set_rq_offline(rq);
6753
6754 cpumask_clear_cpu(rq->cpu, old_rd->span);
6755
6756 /*
6757 * If we dont want to free the old_rt yet then
6758 * set old_rd to NULL to skip the freeing later
6759 * in this function:
6760 */
6761 if (!atomic_dec_and_test(&old_rd->refcount))
6762 old_rd = NULL;
6763 }
6764
6765 atomic_inc(&rd->refcount);
6766 rq->rd = rd;
6767
6768 cpumask_set_cpu(rq->cpu, rd->span);
6769 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6770 set_rq_online(rq);
6771
6772 raw_spin_unlock_irqrestore(&rq->lock, flags);
6773
6774 if (old_rd)
6775 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6776}
6777
6778static int init_rootdomain(struct root_domain *rd)
6779{
6780 memset(rd, 0, sizeof(*rd));
6781
6782 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6783 goto out;
6784 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6785 goto free_span;
6786 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6787 goto free_online;
6788
6789 if (cpupri_init(&rd->cpupri) != 0)
6790 goto free_rto_mask;
6791 return 0;
6792
6793free_rto_mask:
6794 free_cpumask_var(rd->rto_mask);
6795free_online:
6796 free_cpumask_var(rd->online);
6797free_span:
6798 free_cpumask_var(rd->span);
6799out:
6800 return -ENOMEM;
6801}
6802
6803static void init_defrootdomain(void)
6804{
6805 init_rootdomain(&def_root_domain);
6806
6807 atomic_set(&def_root_domain.refcount, 1);
6808}
6809
6810static struct root_domain *alloc_rootdomain(void)
6811{
6812 struct root_domain *rd;
6813
6814 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6815 if (!rd)
6816 return NULL;
6817
6818 if (init_rootdomain(rd) != 0) {
6819 kfree(rd);
6820 return NULL;
6821 }
6822
6823 return rd;
6824}
6825
6826static void free_sched_groups(struct sched_group *sg, int free_sgp)
6827{
6828 struct sched_group *tmp, *first;
6829
6830 if (!sg)
6831 return;
6832
6833 first = sg;
6834 do {
6835 tmp = sg->next;
6836
6837 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6838 kfree(sg->sgp);
6839
6840 kfree(sg);
6841 sg = tmp;
6842 } while (sg != first);
6843}
6844
6845static void free_sched_domain(struct rcu_head *rcu)
6846{
6847 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6848
6849 /*
6850 * If its an overlapping domain it has private groups, iterate and
6851 * nuke them all.
6852 */
6853 if (sd->flags & SD_OVERLAP) {
6854 free_sched_groups(sd->groups, 1);
6855 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6856 kfree(sd->groups->sgp);
6857 kfree(sd->groups);
6858 }
6859 kfree(sd);
6860}
6861
6862static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6863{
6864 call_rcu(&sd->rcu, free_sched_domain);
6865}
6866
6867static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6868{
6869 for (; sd; sd = sd->parent)
6870 destroy_sched_domain(sd, cpu);
6871}
6872
6873/*
6874 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6875 * hold the hotplug lock.
6876 */
6877static void
6878cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6879{
6880 struct rq *rq = cpu_rq(cpu);
6881 struct sched_domain *tmp;
6882
6883 /* Remove the sched domains which do not contribute to scheduling. */
6884 for (tmp = sd; tmp; ) {
6885 struct sched_domain *parent = tmp->parent;
6886 if (!parent)
6887 break;
6888
6889 if (sd_parent_degenerate(tmp, parent)) {
6890 tmp->parent = parent->parent;
6891 if (parent->parent)
6892 parent->parent->child = tmp;
6893 destroy_sched_domain(parent, cpu);
6894 } else
6895 tmp = tmp->parent;
6896 }
6897
6898 if (sd && sd_degenerate(sd)) {
6899 tmp = sd;
6900 sd = sd->parent;
6901 destroy_sched_domain(tmp, cpu);
6902 if (sd)
6903 sd->child = NULL;
6904 }
6905
6906 sched_domain_debug(sd, cpu);
6907
6908 rq_attach_root(rq, rd);
6909 tmp = rq->sd;
6910 rcu_assign_pointer(rq->sd, sd);
6911 destroy_sched_domains(tmp, cpu);
6912}
6913
6914/* cpus with isolated domains */
6915static cpumask_var_t cpu_isolated_map;
6916
6917/* Setup the mask of cpus configured for isolated domains */
6918static int __init isolated_cpu_setup(char *str)
6919{
6920 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6921 cpulist_parse(str, cpu_isolated_map);
6922 return 1;
6923}
6924
6925__setup("isolcpus=", isolated_cpu_setup);
6926
6927#define SD_NODES_PER_DOMAIN 16
6928
6929#ifdef CONFIG_NUMA
6930
6931/**
6932 * find_next_best_node - find the next node to include in a sched_domain
6933 * @node: node whose sched_domain we're building
6934 * @used_nodes: nodes already in the sched_domain
6935 *
6936 * Find the next node to include in a given scheduling domain. Simply
6937 * finds the closest node not already in the @used_nodes map.
6938 *
6939 * Should use nodemask_t.
6940 */
6941static int find_next_best_node(int node, nodemask_t *used_nodes)
6942{
6943 int i, n, val, min_val, best_node = -1;
6944
6945 min_val = INT_MAX;
6946
6947 for (i = 0; i < nr_node_ids; i++) {
6948 /* Start at @node */
6949 n = (node + i) % nr_node_ids;
6950
6951 if (!nr_cpus_node(n))
6952 continue;
6953
6954 /* Skip already used nodes */
6955 if (node_isset(n, *used_nodes))
6956 continue;
6957
6958 /* Simple min distance search */
6959 val = node_distance(node, n);
6960
6961 if (val < min_val) {
6962 min_val = val;
6963 best_node = n;
6964 }
6965 }
6966
6967 if (best_node != -1)
6968 node_set(best_node, *used_nodes);
6969 return best_node;
6970}
6971
6972/**
6973 * sched_domain_node_span - get a cpumask for a node's sched_domain
6974 * @node: node whose cpumask we're constructing
6975 * @span: resulting cpumask
6976 *
6977 * Given a node, construct a good cpumask for its sched_domain to span. It
6978 * should be one that prevents unnecessary balancing, but also spreads tasks
6979 * out optimally.
6980 */
6981static void sched_domain_node_span(int node, struct cpumask *span)
6982{
6983 nodemask_t used_nodes;
6984 int i;
6985
6986 cpumask_clear(span);
6987 nodes_clear(used_nodes);
6988
6989 cpumask_or(span, span, cpumask_of_node(node));
6990 node_set(node, used_nodes);
6991
6992 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6993 int next_node = find_next_best_node(node, &used_nodes);
6994 if (next_node < 0)
6995 break;
6996 cpumask_or(span, span, cpumask_of_node(next_node));
6997 }
6998}
6999
7000static const struct cpumask *cpu_node_mask(int cpu)
7001{
7002 lockdep_assert_held(&sched_domains_mutex);
7003
7004 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7005
7006 return sched_domains_tmpmask;
7007}
7008
7009static const struct cpumask *cpu_allnodes_mask(int cpu)
7010{
7011 return cpu_possible_mask;
7012}
7013#endif /* CONFIG_NUMA */
7014
7015static const struct cpumask *cpu_cpu_mask(int cpu)
7016{
7017 return cpumask_of_node(cpu_to_node(cpu));
7018}
7019
7020int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7021
7022struct sd_data {
7023 struct sched_domain **__percpu sd;
7024 struct sched_group **__percpu sg;
7025 struct sched_group_power **__percpu sgp;
7026};
7027
7028struct s_data {
7029 struct sched_domain ** __percpu sd;
7030 struct root_domain *rd;
7031};
7032
7033enum s_alloc {
7034 sa_rootdomain,
7035 sa_sd,
7036 sa_sd_storage,
7037 sa_none,
7038};
7039
7040struct sched_domain_topology_level;
7041
7042typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7043typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7044
7045#define SDTL_OVERLAP 0x01
7046
7047struct sched_domain_topology_level {
7048 sched_domain_init_f init;
7049 sched_domain_mask_f mask;
7050 int flags;
7051 struct sd_data data;
7052};
7053
7054static int
7055build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7056{
7057 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7058 const struct cpumask *span = sched_domain_span(sd);
7059 struct cpumask *covered = sched_domains_tmpmask;
7060 struct sd_data *sdd = sd->private;
7061 struct sched_domain *child;
7062 int i;
7063
7064 cpumask_clear(covered);
7065
7066 for_each_cpu(i, span) {
7067 struct cpumask *sg_span;
7068
7069 if (cpumask_test_cpu(i, covered))
7070 continue;
7071
7072 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7073 GFP_KERNEL, cpu_to_node(i));
7074
7075 if (!sg)
7076 goto fail;
7077
7078 sg_span = sched_group_cpus(sg);
7079
7080 child = *per_cpu_ptr(sdd->sd, i);
7081 if (child->child) {
7082 child = child->child;
7083 cpumask_copy(sg_span, sched_domain_span(child));
7084 } else
7085 cpumask_set_cpu(i, sg_span);
7086
7087 cpumask_or(covered, covered, sg_span);
7088
7089 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7090 atomic_inc(&sg->sgp->ref);
7091
7092 if (cpumask_test_cpu(cpu, sg_span))
7093 groups = sg;
7094
7095 if (!first)
7096 first = sg;
7097 if (last)
7098 last->next = sg;
7099 last = sg;
7100 last->next = first;
7101 }
7102 sd->groups = groups;
7103
7104 return 0;
7105
7106fail:
7107 free_sched_groups(first, 0);
7108
7109 return -ENOMEM;
7110}
7111
7112static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7113{
7114 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7115 struct sched_domain *child = sd->child;
7116
7117 if (child)
7118 cpu = cpumask_first(sched_domain_span(child));
7119
7120 if (sg) {
7121 *sg = *per_cpu_ptr(sdd->sg, cpu);
7122 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7123 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7124 }
7125
7126 return cpu;
7127}
7128
7129/*
7130 * build_sched_groups will build a circular linked list of the groups
7131 * covered by the given span, and will set each group's ->cpumask correctly,
7132 * and ->cpu_power to 0.
7133 *
7134 * Assumes the sched_domain tree is fully constructed
7135 */
7136static int
7137build_sched_groups(struct sched_domain *sd, int cpu)
7138{
7139 struct sched_group *first = NULL, *last = NULL;
7140 struct sd_data *sdd = sd->private;
7141 const struct cpumask *span = sched_domain_span(sd);
7142 struct cpumask *covered;
7143 int i;
7144
7145 get_group(cpu, sdd, &sd->groups);
7146 atomic_inc(&sd->groups->ref);
7147
7148 if (cpu != cpumask_first(sched_domain_span(sd)))
7149 return 0;
7150
7151 lockdep_assert_held(&sched_domains_mutex);
7152 covered = sched_domains_tmpmask;
7153
7154 cpumask_clear(covered);
7155
7156 for_each_cpu(i, span) {
7157 struct sched_group *sg;
7158 int group = get_group(i, sdd, &sg);
7159 int j;
7160
7161 if (cpumask_test_cpu(i, covered))
7162 continue;
7163
7164 cpumask_clear(sched_group_cpus(sg));
7165 sg->sgp->power = 0;
7166
7167 for_each_cpu(j, span) {
7168 if (get_group(j, sdd, NULL) != group)
7169 continue;
7170
7171 cpumask_set_cpu(j, covered);
7172 cpumask_set_cpu(j, sched_group_cpus(sg));
7173 }
7174
7175 if (!first)
7176 first = sg;
7177 if (last)
7178 last->next = sg;
7179 last = sg;
7180 }
7181 last->next = first;
7182
7183 return 0;
7184}
7185
7186/*
7187 * Initialize sched groups cpu_power.
7188 *
7189 * cpu_power indicates the capacity of sched group, which is used while
7190 * distributing the load between different sched groups in a sched domain.
7191 * Typically cpu_power for all the groups in a sched domain will be same unless
7192 * there are asymmetries in the topology. If there are asymmetries, group
7193 * having more cpu_power will pickup more load compared to the group having
7194 * less cpu_power.
7195 */
7196static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7197{
7198 struct sched_group *sg = sd->groups;
7199
7200 WARN_ON(!sd || !sg);
7201
7202 do {
7203 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7204 sg = sg->next;
7205 } while (sg != sd->groups);
7206
7207 if (cpu != group_first_cpu(sg))
7208 return;
7209
7210 update_group_power(sd, cpu);
7211}
7212
7213/*
7214 * Initializers for schedule domains
7215 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7216 */
7217
7218#ifdef CONFIG_SCHED_DEBUG
7219# define SD_INIT_NAME(sd, type) sd->name = #type
7220#else
7221# define SD_INIT_NAME(sd, type) do { } while (0)
7222#endif
7223
7224#define SD_INIT_FUNC(type) \
7225static noinline struct sched_domain * \
7226sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7227{ \
7228 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7229 *sd = SD_##type##_INIT; \
7230 SD_INIT_NAME(sd, type); \
7231 sd->private = &tl->data; \
7232 return sd; \
7233}
7234
7235SD_INIT_FUNC(CPU)
7236#ifdef CONFIG_NUMA
7237 SD_INIT_FUNC(ALLNODES)
7238 SD_INIT_FUNC(NODE)
7239#endif
7240#ifdef CONFIG_SCHED_SMT
7241 SD_INIT_FUNC(SIBLING)
7242#endif
7243#ifdef CONFIG_SCHED_MC
7244 SD_INIT_FUNC(MC)
7245#endif
7246#ifdef CONFIG_SCHED_BOOK
7247 SD_INIT_FUNC(BOOK)
7248#endif
7249
7250static int default_relax_domain_level = -1;
7251int sched_domain_level_max;
7252
7253static int __init setup_relax_domain_level(char *str)
7254{
7255 unsigned long val;
7256
7257 val = simple_strtoul(str, NULL, 0);
7258 if (val < sched_domain_level_max)
7259 default_relax_domain_level = val;
7260
7261 return 1;
7262}
7263__setup("relax_domain_level=", setup_relax_domain_level);
7264
7265static void set_domain_attribute(struct sched_domain *sd,
7266 struct sched_domain_attr *attr)
7267{
7268 int request;
7269
7270 if (!attr || attr->relax_domain_level < 0) {
7271 if (default_relax_domain_level < 0)
7272 return;
7273 else
7274 request = default_relax_domain_level;
7275 } else
7276 request = attr->relax_domain_level;
7277 if (request < sd->level) {
7278 /* turn off idle balance on this domain */
7279 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7280 } else {
7281 /* turn on idle balance on this domain */
7282 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7283 }
7284}
7285
7286static void __sdt_free(const struct cpumask *cpu_map);
7287static int __sdt_alloc(const struct cpumask *cpu_map);
7288
7289static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7290 const struct cpumask *cpu_map)
7291{
7292 switch (what) {
7293 case sa_rootdomain:
7294 if (!atomic_read(&d->rd->refcount))
7295 free_rootdomain(&d->rd->rcu); /* fall through */
7296 case sa_sd:
7297 free_percpu(d->sd); /* fall through */
7298 case sa_sd_storage:
7299 __sdt_free(cpu_map); /* fall through */
7300 case sa_none:
7301 break;
7302 }
7303}
7304
7305static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7306 const struct cpumask *cpu_map)
7307{
7308 memset(d, 0, sizeof(*d));
7309
7310 if (__sdt_alloc(cpu_map))
7311 return sa_sd_storage;
7312 d->sd = alloc_percpu(struct sched_domain *);
7313 if (!d->sd)
7314 return sa_sd_storage;
7315 d->rd = alloc_rootdomain();
7316 if (!d->rd)
7317 return sa_sd;
7318 return sa_rootdomain;
7319}
7320
7321/*
7322 * NULL the sd_data elements we've used to build the sched_domain and
7323 * sched_group structure so that the subsequent __free_domain_allocs()
7324 * will not free the data we're using.
7325 */
7326static void claim_allocations(int cpu, struct sched_domain *sd)
7327{
7328 struct sd_data *sdd = sd->private;
7329
7330 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7331 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7332
7333 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7334 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7335
7336 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7337 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7338}
7339
7340#ifdef CONFIG_SCHED_SMT
7341static const struct cpumask *cpu_smt_mask(int cpu)
7342{
7343 return topology_thread_cpumask(cpu);
7344}
7345#endif
7346
7347/*
7348 * Topology list, bottom-up.
7349 */
7350static struct sched_domain_topology_level default_topology[] = {
7351#ifdef CONFIG_SCHED_SMT
7352 { sd_init_SIBLING, cpu_smt_mask, },
7353#endif
7354#ifdef CONFIG_SCHED_MC
7355 { sd_init_MC, cpu_coregroup_mask, },
7356#endif
7357#ifdef CONFIG_SCHED_BOOK
7358 { sd_init_BOOK, cpu_book_mask, },
7359#endif
7360 { sd_init_CPU, cpu_cpu_mask, },
7361#ifdef CONFIG_NUMA
7362 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7363 { sd_init_ALLNODES, cpu_allnodes_mask, },
7364#endif
7365 { NULL, },
7366};
7367
7368static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7369
7370static int __sdt_alloc(const struct cpumask *cpu_map)
7371{
7372 struct sched_domain_topology_level *tl;
7373 int j;
7374
7375 for (tl = sched_domain_topology; tl->init; tl++) {
7376 struct sd_data *sdd = &tl->data;
7377
7378 sdd->sd = alloc_percpu(struct sched_domain *);
7379 if (!sdd->sd)
7380 return -ENOMEM;
7381
7382 sdd->sg = alloc_percpu(struct sched_group *);
7383 if (!sdd->sg)
7384 return -ENOMEM;
7385
7386 sdd->sgp = alloc_percpu(struct sched_group_power *);
7387 if (!sdd->sgp)
7388 return -ENOMEM;
7389
7390 for_each_cpu(j, cpu_map) {
7391 struct sched_domain *sd;
7392 struct sched_group *sg;
7393 struct sched_group_power *sgp;
7394
7395 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7396 GFP_KERNEL, cpu_to_node(j));
7397 if (!sd)
7398 return -ENOMEM;
7399
7400 *per_cpu_ptr(sdd->sd, j) = sd;
7401
7402 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7403 GFP_KERNEL, cpu_to_node(j));
7404 if (!sg)
7405 return -ENOMEM;
7406
7407 *per_cpu_ptr(sdd->sg, j) = sg;
7408
7409 sgp = kzalloc_node(sizeof(struct sched_group_power),
7410 GFP_KERNEL, cpu_to_node(j));
7411 if (!sgp)
7412 return -ENOMEM;
7413
7414 *per_cpu_ptr(sdd->sgp, j) = sgp;
7415 }
7416 }
7417
7418 return 0;
7419}
7420
7421static void __sdt_free(const struct cpumask *cpu_map)
7422{
7423 struct sched_domain_topology_level *tl;
7424 int j;
7425
7426 for (tl = sched_domain_topology; tl->init; tl++) {
7427 struct sd_data *sdd = &tl->data;
7428
7429 for_each_cpu(j, cpu_map) {
7430 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7431 if (sd && (sd->flags & SD_OVERLAP))
7432 free_sched_groups(sd->groups, 0);
7433 kfree(*per_cpu_ptr(sdd->sd, j));
7434 kfree(*per_cpu_ptr(sdd->sg, j));
7435 kfree(*per_cpu_ptr(sdd->sgp, j));
7436 }
7437 free_percpu(sdd->sd);
7438 free_percpu(sdd->sg);
7439 free_percpu(sdd->sgp);
7440 }
7441}
7442
7443struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7444 struct s_data *d, const struct cpumask *cpu_map,
7445 struct sched_domain_attr *attr, struct sched_domain *child,
7446 int cpu)
7447{
7448 struct sched_domain *sd = tl->init(tl, cpu);
7449 if (!sd)
7450 return child;
7451
7452 set_domain_attribute(sd, attr);
7453 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7454 if (child) {
7455 sd->level = child->level + 1;
7456 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7457 child->parent = sd;
7458 }
7459 sd->child = child;
7460
7461 return sd;
7462}
7463
7464/*
7465 * Build sched domains for a given set of cpus and attach the sched domains
7466 * to the individual cpus
7467 */
7468static int build_sched_domains(const struct cpumask *cpu_map,
7469 struct sched_domain_attr *attr)
7470{
7471 enum s_alloc alloc_state = sa_none;
7472 struct sched_domain *sd;
7473 struct s_data d;
7474 int i, ret = -ENOMEM;
7475
7476 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7477 if (alloc_state != sa_rootdomain)
7478 goto error;
7479
7480 /* Set up domains for cpus specified by the cpu_map. */
7481 for_each_cpu(i, cpu_map) {
7482 struct sched_domain_topology_level *tl;
7483
7484 sd = NULL;
7485 for (tl = sched_domain_topology; tl->init; tl++) {
7486 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7487 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7488 sd->flags |= SD_OVERLAP;
7489 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7490 break;
7491 }
7492
7493 while (sd->child)
7494 sd = sd->child;
7495
7496 *per_cpu_ptr(d.sd, i) = sd;
7497 }
7498
7499 /* Build the groups for the domains */
7500 for_each_cpu(i, cpu_map) {
7501 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7502 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7503 if (sd->flags & SD_OVERLAP) {
7504 if (build_overlap_sched_groups(sd, i))
7505 goto error;
7506 } else {
7507 if (build_sched_groups(sd, i))
7508 goto error;
7509 }
7510 }
7511 }
7512
7513 /* Calculate CPU power for physical packages and nodes */
7514 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7515 if (!cpumask_test_cpu(i, cpu_map))
7516 continue;
7517
7518 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7519 claim_allocations(i, sd);
7520 init_sched_groups_power(i, sd);
7521 }
7522 }
7523
7524 /* Attach the domains */
7525 rcu_read_lock();
7526 for_each_cpu(i, cpu_map) {
7527 sd = *per_cpu_ptr(d.sd, i);
7528 cpu_attach_domain(sd, d.rd, i);
7529 }
7530 rcu_read_unlock();
7531
7532 ret = 0;
7533error:
7534 __free_domain_allocs(&d, alloc_state, cpu_map);
7535 return ret;
7536}
7537
7538static cpumask_var_t *doms_cur; /* current sched domains */
7539static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7540static struct sched_domain_attr *dattr_cur;
7541 /* attribues of custom domains in 'doms_cur' */
7542
7543/*
7544 * Special case: If a kmalloc of a doms_cur partition (array of
7545 * cpumask) fails, then fallback to a single sched domain,
7546 * as determined by the single cpumask fallback_doms.
7547 */
7548static cpumask_var_t fallback_doms;
7549
7550/*
7551 * arch_update_cpu_topology lets virtualized architectures update the
7552 * cpu core maps. It is supposed to return 1 if the topology changed
7553 * or 0 if it stayed the same.
7554 */
7555int __attribute__((weak)) arch_update_cpu_topology(void)
7556{
7557 return 0;
7558}
7559
7560cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7561{
7562 int i;
7563 cpumask_var_t *doms;
7564
7565 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7566 if (!doms)
7567 return NULL;
7568 for (i = 0; i < ndoms; i++) {
7569 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7570 free_sched_domains(doms, i);
7571 return NULL;
7572 }
7573 }
7574 return doms;
7575}
7576
7577void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7578{
7579 unsigned int i;
7580 for (i = 0; i < ndoms; i++)
7581 free_cpumask_var(doms[i]);
7582 kfree(doms);
7583}
7584
7585/*
7586 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7587 * For now this just excludes isolated cpus, but could be used to
7588 * exclude other special cases in the future.
7589 */
7590static int init_sched_domains(const struct cpumask *cpu_map)
7591{
7592 int err;
7593
7594 arch_update_cpu_topology();
7595 ndoms_cur = 1;
7596 doms_cur = alloc_sched_domains(ndoms_cur);
7597 if (!doms_cur)
7598 doms_cur = &fallback_doms;
7599 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7600 dattr_cur = NULL;
7601 err = build_sched_domains(doms_cur[0], NULL);
7602 register_sched_domain_sysctl();
7603
7604 return err;
7605}
7606
7607/*
7608 * Detach sched domains from a group of cpus specified in cpu_map
7609 * These cpus will now be attached to the NULL domain
7610 */
7611static void detach_destroy_domains(const struct cpumask *cpu_map)
7612{
7613 int i;
7614
7615 rcu_read_lock();
7616 for_each_cpu(i, cpu_map)
7617 cpu_attach_domain(NULL, &def_root_domain, i);
7618 rcu_read_unlock();
7619}
7620
7621/* handle null as "default" */
7622static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7623 struct sched_domain_attr *new, int idx_new)
7624{
7625 struct sched_domain_attr tmp;
7626
7627 /* fast path */
7628 if (!new && !cur)
7629 return 1;
7630
7631 tmp = SD_ATTR_INIT;
7632 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7633 new ? (new + idx_new) : &tmp,
7634 sizeof(struct sched_domain_attr));
7635}
7636
7637/*
7638 * Partition sched domains as specified by the 'ndoms_new'
7639 * cpumasks in the array doms_new[] of cpumasks. This compares
7640 * doms_new[] to the current sched domain partitioning, doms_cur[].
7641 * It destroys each deleted domain and builds each new domain.
7642 *
7643 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7644 * The masks don't intersect (don't overlap.) We should setup one
7645 * sched domain for each mask. CPUs not in any of the cpumasks will
7646 * not be load balanced. If the same cpumask appears both in the
7647 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7648 * it as it is.
7649 *
7650 * The passed in 'doms_new' should be allocated using
7651 * alloc_sched_domains. This routine takes ownership of it and will
7652 * free_sched_domains it when done with it. If the caller failed the
7653 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7654 * and partition_sched_domains() will fallback to the single partition
7655 * 'fallback_doms', it also forces the domains to be rebuilt.
7656 *
7657 * If doms_new == NULL it will be replaced with cpu_online_mask.
7658 * ndoms_new == 0 is a special case for destroying existing domains,
7659 * and it will not create the default domain.
7660 *
7661 * Call with hotplug lock held
7662 */
7663void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7664 struct sched_domain_attr *dattr_new)
7665{
7666 int i, j, n;
7667 int new_topology;
7668
7669 mutex_lock(&sched_domains_mutex);
7670
7671 /* always unregister in case we don't destroy any domains */
7672 unregister_sched_domain_sysctl();
7673
7674 /* Let architecture update cpu core mappings. */
7675 new_topology = arch_update_cpu_topology();
7676
7677 n = doms_new ? ndoms_new : 0;
7678
7679 /* Destroy deleted domains */
7680 for (i = 0; i < ndoms_cur; i++) {
7681 for (j = 0; j < n && !new_topology; j++) {
7682 if (cpumask_equal(doms_cur[i], doms_new[j])
7683 && dattrs_equal(dattr_cur, i, dattr_new, j))
7684 goto match1;
7685 }
7686 /* no match - a current sched domain not in new doms_new[] */
7687 detach_destroy_domains(doms_cur[i]);
7688match1:
7689 ;
7690 }
7691
7692 if (doms_new == NULL) {
7693 ndoms_cur = 0;
7694 doms_new = &fallback_doms;
7695 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7696 WARN_ON_ONCE(dattr_new);
7697 }
7698
7699 /* Build new domains */
7700 for (i = 0; i < ndoms_new; i++) {
7701 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7702 if (cpumask_equal(doms_new[i], doms_cur[j])
7703 && dattrs_equal(dattr_new, i, dattr_cur, j))
7704 goto match2;
7705 }
7706 /* no match - add a new doms_new */
7707 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7708match2:
7709 ;
7710 }
7711
7712 /* Remember the new sched domains */
7713 if (doms_cur != &fallback_doms)
7714 free_sched_domains(doms_cur, ndoms_cur);
7715 kfree(dattr_cur); /* kfree(NULL) is safe */
7716 doms_cur = doms_new;
7717 dattr_cur = dattr_new;
7718 ndoms_cur = ndoms_new;
7719
7720 register_sched_domain_sysctl();
7721
7722 mutex_unlock(&sched_domains_mutex);
7723}
7724
7725#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7726static void reinit_sched_domains(void)
7727{
7728 get_online_cpus();
7729
7730 /* Destroy domains first to force the rebuild */
7731 partition_sched_domains(0, NULL, NULL);
7732
7733 rebuild_sched_domains();
7734 put_online_cpus();
7735}
7736
7737static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7738{
7739 unsigned int level = 0;
7740
7741 if (sscanf(buf, "%u", &level) != 1)
7742 return -EINVAL;
7743
7744 /*
7745 * level is always be positive so don't check for
7746 * level < POWERSAVINGS_BALANCE_NONE which is 0
7747 * What happens on 0 or 1 byte write,
7748 * need to check for count as well?
7749 */
7750
7751 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7752 return -EINVAL;
7753
7754 if (smt)
7755 sched_smt_power_savings = level;
7756 else
7757 sched_mc_power_savings = level;
7758
7759 reinit_sched_domains();
7760
7761 return count;
7762}
7763
7764#ifdef CONFIG_SCHED_MC
7765static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7766 struct sysdev_class_attribute *attr,
7767 char *page)
7768{
7769 return sprintf(page, "%u\n", sched_mc_power_savings);
7770}
7771static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7772 struct sysdev_class_attribute *attr,
7773 const char *buf, size_t count)
7774{
7775 return sched_power_savings_store(buf, count, 0);
7776}
7777static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7778 sched_mc_power_savings_show,
7779 sched_mc_power_savings_store);
7780#endif
7781
7782#ifdef CONFIG_SCHED_SMT
7783static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7784 struct sysdev_class_attribute *attr,
7785 char *page)
7786{
7787 return sprintf(page, "%u\n", sched_smt_power_savings);
7788}
7789static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7790 struct sysdev_class_attribute *attr,
7791 const char *buf, size_t count)
7792{
7793 return sched_power_savings_store(buf, count, 1);
7794}
7795static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7796 sched_smt_power_savings_show,
7797 sched_smt_power_savings_store);
7798#endif
7799
7800int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7801{
7802 int err = 0;
7803
7804#ifdef CONFIG_SCHED_SMT
7805 if (smt_capable())
7806 err = sysfs_create_file(&cls->kset.kobj,
7807 &attr_sched_smt_power_savings.attr);
7808#endif
7809#ifdef CONFIG_SCHED_MC
7810 if (!err && mc_capable())
7811 err = sysfs_create_file(&cls->kset.kobj,
7812 &attr_sched_mc_power_savings.attr);
7813#endif
7814 return err;
7815}
7816#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7817
7818/*
7819 * Update cpusets according to cpu_active mask. If cpusets are
7820 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7821 * around partition_sched_domains().
7822 */
7823static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7824 void *hcpu)
7825{
7826 switch (action & ~CPU_TASKS_FROZEN) {
7827 case CPU_ONLINE:
7828 case CPU_DOWN_FAILED:
7829 cpuset_update_active_cpus();
7830 return NOTIFY_OK;
7831 default:
7832 return NOTIFY_DONE;
7833 }
7834}
7835
7836static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7837 void *hcpu)
7838{
7839 switch (action & ~CPU_TASKS_FROZEN) {
7840 case CPU_DOWN_PREPARE:
7841 cpuset_update_active_cpus();
7842 return NOTIFY_OK;
7843 default:
7844 return NOTIFY_DONE;
7845 }
7846}
7847
7848static int update_runtime(struct notifier_block *nfb,
7849 unsigned long action, void *hcpu)
7850{
7851 int cpu = (int)(long)hcpu;
7852
7853 switch (action) {
7854 case CPU_DOWN_PREPARE:
7855 case CPU_DOWN_PREPARE_FROZEN:
7856 disable_runtime(cpu_rq(cpu));
7857 return NOTIFY_OK;
7858
7859 case CPU_DOWN_FAILED:
7860 case CPU_DOWN_FAILED_FROZEN:
7861 case CPU_ONLINE:
7862 case CPU_ONLINE_FROZEN:
7863 enable_runtime(cpu_rq(cpu));
7864 return NOTIFY_OK;
7865
7866 default:
7867 return NOTIFY_DONE;
7868 }
7869}
7870
7871void __init sched_init_smp(void)
7872{
7873 cpumask_var_t non_isolated_cpus;
7874
7875 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7876 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7877
7878 get_online_cpus();
7879 mutex_lock(&sched_domains_mutex);
7880 init_sched_domains(cpu_active_mask);
7881 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7882 if (cpumask_empty(non_isolated_cpus))
7883 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7884 mutex_unlock(&sched_domains_mutex);
7885 put_online_cpus();
7886
7887 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7888 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7889
7890 /* RT runtime code needs to handle some hotplug events */
7891 hotcpu_notifier(update_runtime, 0);
7892
7893 init_hrtick();
7894
7895 /* Move init over to a non-isolated CPU */
7896 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7897 BUG();
7898 sched_init_granularity();
7899 free_cpumask_var(non_isolated_cpus);
7900
7901 init_sched_rt_class();
7902}
7903#else
7904void __init sched_init_smp(void)
7905{
7906 sched_init_granularity();
7907}
7908#endif /* CONFIG_SMP */
7909
7910const_debug unsigned int sysctl_timer_migration = 1;
7911
7912int in_sched_functions(unsigned long addr)
7913{
7914 return in_lock_functions(addr) ||
7915 (addr >= (unsigned long)__sched_text_start
7916 && addr < (unsigned long)__sched_text_end);
7917}
7918
7919static void init_cfs_rq(struct cfs_rq *cfs_rq)
7920{
7921 cfs_rq->tasks_timeline = RB_ROOT;
7922 INIT_LIST_HEAD(&cfs_rq->tasks);
7923 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7924#ifndef CONFIG_64BIT
7925 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7926#endif
7927}
7928
7929static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7930{
7931 struct rt_prio_array *array;
7932 int i;
7933
7934 array = &rt_rq->active;
7935 for (i = 0; i < MAX_RT_PRIO; i++) {
7936 INIT_LIST_HEAD(array->queue + i);
7937 __clear_bit(i, array->bitmap);
7938 }
7939 /* delimiter for bitsearch: */
7940 __set_bit(MAX_RT_PRIO, array->bitmap);
7941
7942#if defined CONFIG_SMP
7943 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7944 rt_rq->highest_prio.next = MAX_RT_PRIO;
7945 rt_rq->rt_nr_migratory = 0;
7946 rt_rq->overloaded = 0;
7947 plist_head_init(&rt_rq->pushable_tasks);
7948#endif
7949
7950 rt_rq->rt_time = 0;
7951 rt_rq->rt_throttled = 0;
7952 rt_rq->rt_runtime = 0;
7953 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7954}
7955
7956#ifdef CONFIG_FAIR_GROUP_SCHED
7957static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7958 struct sched_entity *se, int cpu,
7959 struct sched_entity *parent)
7960{
7961 struct rq *rq = cpu_rq(cpu);
7962
7963 cfs_rq->tg = tg;
7964 cfs_rq->rq = rq;
7965#ifdef CONFIG_SMP
7966 /* allow initial update_cfs_load() to truncate */
7967 cfs_rq->load_stamp = 1;
7968#endif
7969
7970 tg->cfs_rq[cpu] = cfs_rq;
7971 tg->se[cpu] = se;
7972
7973 /* se could be NULL for root_task_group */
7974 if (!se)
7975 return;
7976
7977 if (!parent)
7978 se->cfs_rq = &rq->cfs;
7979 else
7980 se->cfs_rq = parent->my_q;
7981
7982 se->my_q = cfs_rq;
7983 update_load_set(&se->load, 0);
7984 se->parent = parent;
7985}
7986#endif
7987
7988#ifdef CONFIG_RT_GROUP_SCHED
7989static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7990 struct sched_rt_entity *rt_se, int cpu,
7991 struct sched_rt_entity *parent)
7992{
7993 struct rq *rq = cpu_rq(cpu);
7994
7995 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7996 rt_rq->rt_nr_boosted = 0;
7997 rt_rq->rq = rq;
7998 rt_rq->tg = tg;
7999
8000 tg->rt_rq[cpu] = rt_rq;
8001 tg->rt_se[cpu] = rt_se;
8002
8003 if (!rt_se)
8004 return;
8005
8006 if (!parent)
8007 rt_se->rt_rq = &rq->rt;
8008 else
8009 rt_se->rt_rq = parent->my_q;
8010
8011 rt_se->my_q = rt_rq;
8012 rt_se->parent = parent;
8013 INIT_LIST_HEAD(&rt_se->run_list);
8014}
8015#endif
8016
8017void __init sched_init(void)
8018{
8019 int i, j;
8020 unsigned long alloc_size = 0, ptr;
8021
8022#ifdef CONFIG_FAIR_GROUP_SCHED
8023 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8024#endif
8025#ifdef CONFIG_RT_GROUP_SCHED
8026 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8027#endif
8028#ifdef CONFIG_CPUMASK_OFFSTACK
8029 alloc_size += num_possible_cpus() * cpumask_size();
8030#endif
8031 if (alloc_size) {
8032 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8033
8034#ifdef CONFIG_FAIR_GROUP_SCHED
8035 root_task_group.se = (struct sched_entity **)ptr;
8036 ptr += nr_cpu_ids * sizeof(void **);
8037
8038 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8039 ptr += nr_cpu_ids * sizeof(void **);
8040
8041#endif /* CONFIG_FAIR_GROUP_SCHED */
8042#ifdef CONFIG_RT_GROUP_SCHED
8043 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8044 ptr += nr_cpu_ids * sizeof(void **);
8045
8046 root_task_group.rt_rq = (struct rt_rq **)ptr;
8047 ptr += nr_cpu_ids * sizeof(void **);
8048
8049#endif /* CONFIG_RT_GROUP_SCHED */
8050#ifdef CONFIG_CPUMASK_OFFSTACK
8051 for_each_possible_cpu(i) {
8052 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8053 ptr += cpumask_size();
8054 }
8055#endif /* CONFIG_CPUMASK_OFFSTACK */
8056 }
8057
8058#ifdef CONFIG_SMP
8059 init_defrootdomain();
8060#endif
8061
8062 init_rt_bandwidth(&def_rt_bandwidth,
8063 global_rt_period(), global_rt_runtime());
8064
8065#ifdef CONFIG_RT_GROUP_SCHED
8066 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8067 global_rt_period(), global_rt_runtime());
8068#endif /* CONFIG_RT_GROUP_SCHED */
8069
8070#ifdef CONFIG_CGROUP_SCHED
8071 list_add(&root_task_group.list, &task_groups);
8072 INIT_LIST_HEAD(&root_task_group.children);
8073 autogroup_init(&init_task);
8074#endif /* CONFIG_CGROUP_SCHED */
8075
8076 for_each_possible_cpu(i) {
8077 struct rq *rq;
8078
8079 rq = cpu_rq(i);
8080 raw_spin_lock_init(&rq->lock);
8081 rq->nr_running = 0;
8082 rq->calc_load_active = 0;
8083 rq->calc_load_update = jiffies + LOAD_FREQ;
8084 init_cfs_rq(&rq->cfs);
8085 init_rt_rq(&rq->rt, rq);
8086#ifdef CONFIG_FAIR_GROUP_SCHED
8087 root_task_group.shares = root_task_group_load;
8088 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8089 /*
8090 * How much cpu bandwidth does root_task_group get?
8091 *
8092 * In case of task-groups formed thr' the cgroup filesystem, it
8093 * gets 100% of the cpu resources in the system. This overall
8094 * system cpu resource is divided among the tasks of
8095 * root_task_group and its child task-groups in a fair manner,
8096 * based on each entity's (task or task-group's) weight
8097 * (se->load.weight).
8098 *
8099 * In other words, if root_task_group has 10 tasks of weight
8100 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8101 * then A0's share of the cpu resource is:
8102 *
8103 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8104 *
8105 * We achieve this by letting root_task_group's tasks sit
8106 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8107 */
8108 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8109#endif /* CONFIG_FAIR_GROUP_SCHED */
8110
8111 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8112#ifdef CONFIG_RT_GROUP_SCHED
8113 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8114 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8115#endif
8116
8117 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8118 rq->cpu_load[j] = 0;
8119
8120 rq->last_load_update_tick = jiffies;
8121
8122#ifdef CONFIG_SMP
8123 rq->sd = NULL;
8124 rq->rd = NULL;
8125 rq->cpu_power = SCHED_POWER_SCALE;
8126 rq->post_schedule = 0;
8127 rq->active_balance = 0;
8128 rq->next_balance = jiffies;
8129 rq->push_cpu = 0;
8130 rq->cpu = i;
8131 rq->online = 0;
8132 rq->idle_stamp = 0;
8133 rq->avg_idle = 2*sysctl_sched_migration_cost;
8134 rq_attach_root(rq, &def_root_domain);
8135#ifdef CONFIG_NO_HZ
8136 rq->nohz_balance_kick = 0;
8137 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8138#endif
8139#endif
8140 init_rq_hrtick(rq);
8141 atomic_set(&rq->nr_iowait, 0);
8142 }
8143
8144 set_load_weight(&init_task);
8145
8146#ifdef CONFIG_PREEMPT_NOTIFIERS
8147 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8148#endif
8149
8150#ifdef CONFIG_SMP
8151 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8152#endif
8153
8154#ifdef CONFIG_RT_MUTEXES
8155 plist_head_init(&init_task.pi_waiters);
8156#endif
8157
8158 /*
8159 * The boot idle thread does lazy MMU switching as well:
8160 */
8161 atomic_inc(&init_mm.mm_count);
8162 enter_lazy_tlb(&init_mm, current);
8163
8164 /*
8165 * Make us the idle thread. Technically, schedule() should not be
8166 * called from this thread, however somewhere below it might be,
8167 * but because we are the idle thread, we just pick up running again
8168 * when this runqueue becomes "idle".
8169 */
8170 init_idle(current, smp_processor_id());
8171
8172 calc_load_update = jiffies + LOAD_FREQ;
8173
8174 /*
8175 * During early bootup we pretend to be a normal task:
8176 */
8177 current->sched_class = &fair_sched_class;
8178
8179 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8180 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8181#ifdef CONFIG_SMP
8182 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8183#ifdef CONFIG_NO_HZ
8184 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8185 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8186 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8187 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8188 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8189 nohz.next_balance = jiffies;
8190#endif
8191 /* May be allocated at isolcpus cmdline parse time */
8192 if (cpu_isolated_map == NULL)
8193 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8194#endif /* SMP */
8195
8196 scheduler_running = 1;
8197}
8198
8199#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8200static inline int preempt_count_equals(int preempt_offset)
8201{
8202 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8203
8204 return (nested == preempt_offset);
8205}
8206
8207static int __might_sleep_init_called;
8208int __init __might_sleep_init(void)
8209{
8210 __might_sleep_init_called = 1;
8211 return 0;
8212}
8213early_initcall(__might_sleep_init);
8214
8215void __might_sleep(const char *file, int line, int preempt_offset)
8216{
8217 static unsigned long prev_jiffy; /* ratelimiting */
8218
8219 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8220 oops_in_progress)
8221 return;
8222 if (system_state != SYSTEM_RUNNING &&
8223 (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
8224 return;
8225 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8226 return;
8227 prev_jiffy = jiffies;
8228
8229 printk(KERN_ERR
8230 "BUG: sleeping function called from invalid context at %s:%d\n",
8231 file, line);
8232 printk(KERN_ERR
8233 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8234 in_atomic(), irqs_disabled(),
8235 current->pid, current->comm);
8236
8237 debug_show_held_locks(current);
8238 if (irqs_disabled())
8239 print_irqtrace_events(current);
8240 dump_stack();
8241}
8242EXPORT_SYMBOL(__might_sleep);
8243#endif
8244
8245#ifdef CONFIG_MAGIC_SYSRQ
8246static void normalize_task(struct rq *rq, struct task_struct *p)
8247{
8248 const struct sched_class *prev_class = p->sched_class;
8249 int old_prio = p->prio;
8250 int on_rq;
8251
8252 on_rq = p->on_rq;
8253 if (on_rq)
8254 deactivate_task(rq, p, 0);
8255 __setscheduler(rq, p, SCHED_NORMAL, 0);
8256 if (on_rq) {
8257 activate_task(rq, p, 0);
8258 resched_task(rq->curr);
8259 }
8260
8261 check_class_changed(rq, p, prev_class, old_prio);
8262}
8263
8264void normalize_rt_tasks(void)
8265{
8266 struct task_struct *g, *p;
8267 unsigned long flags;
8268 struct rq *rq;
8269
8270 read_lock_irqsave(&tasklist_lock, flags);
8271 do_each_thread(g, p) {
8272 /*
8273 * Only normalize user tasks:
8274 */
8275 if (!p->mm)
8276 continue;
8277
8278 p->se.exec_start = 0;
8279#ifdef CONFIG_SCHEDSTATS
8280 p->se.statistics.wait_start = 0;
8281 p->se.statistics.sleep_start = 0;
8282 p->se.statistics.block_start = 0;
8283#endif
8284
8285 if (!rt_task(p)) {
8286 /*
8287 * Renice negative nice level userspace
8288 * tasks back to 0:
8289 */
8290 if (TASK_NICE(p) < 0 && p->mm)
8291 set_user_nice(p, 0);
8292 continue;
8293 }
8294
8295 raw_spin_lock(&p->pi_lock);
8296 rq = __task_rq_lock(p);
8297
8298 normalize_task(rq, p);
8299
8300 __task_rq_unlock(rq);
8301 raw_spin_unlock(&p->pi_lock);
8302 } while_each_thread(g, p);
8303
8304 read_unlock_irqrestore(&tasklist_lock, flags);
8305}
8306
8307#endif /* CONFIG_MAGIC_SYSRQ */
8308
8309#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8310/*
8311 * These functions are only useful for the IA64 MCA handling, or kdb.
8312 *
8313 * They can only be called when the whole system has been
8314 * stopped - every CPU needs to be quiescent, and no scheduling
8315 * activity can take place. Using them for anything else would
8316 * be a serious bug, and as a result, they aren't even visible
8317 * under any other configuration.
8318 */
8319
8320/**
8321 * curr_task - return the current task for a given cpu.
8322 * @cpu: the processor in question.
8323 *
8324 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8325 */
8326struct task_struct *curr_task(int cpu)
8327{
8328 return cpu_curr(cpu);
8329}
8330
8331#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8332
8333#ifdef CONFIG_IA64
8334/**
8335 * set_curr_task - set the current task for a given cpu.
8336 * @cpu: the processor in question.
8337 * @p: the task pointer to set.
8338 *
8339 * Description: This function must only be used when non-maskable interrupts
8340 * are serviced on a separate stack. It allows the architecture to switch the
8341 * notion of the current task on a cpu in a non-blocking manner. This function
8342 * must be called with all CPU's synchronized, and interrupts disabled, the
8343 * and caller must save the original value of the current task (see
8344 * curr_task() above) and restore that value before reenabling interrupts and
8345 * re-starting the system.
8346 *
8347 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8348 */
8349void set_curr_task(int cpu, struct task_struct *p)
8350{
8351 cpu_curr(cpu) = p;
8352}
8353
8354#endif
8355
8356#ifdef CONFIG_FAIR_GROUP_SCHED
8357static void free_fair_sched_group(struct task_group *tg)
8358{
8359 int i;
8360
8361 for_each_possible_cpu(i) {
8362 if (tg->cfs_rq)
8363 kfree(tg->cfs_rq[i]);
8364 if (tg->se)
8365 kfree(tg->se[i]);
8366 }
8367
8368 kfree(tg->cfs_rq);
8369 kfree(tg->se);
8370}
8371
8372static
8373int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8374{
8375 struct cfs_rq *cfs_rq;
8376 struct sched_entity *se;
8377 int i;
8378
8379 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8380 if (!tg->cfs_rq)
8381 goto err;
8382 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8383 if (!tg->se)
8384 goto err;
8385
8386 tg->shares = NICE_0_LOAD;
8387
8388 for_each_possible_cpu(i) {
8389 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8390 GFP_KERNEL, cpu_to_node(i));
8391 if (!cfs_rq)
8392 goto err;
8393
8394 se = kzalloc_node(sizeof(struct sched_entity),
8395 GFP_KERNEL, cpu_to_node(i));
8396 if (!se)
8397 goto err_free_rq;
8398
8399 init_cfs_rq(cfs_rq);
8400 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8401 }
8402
8403 return 1;
8404
8405err_free_rq:
8406 kfree(cfs_rq);
8407err:
8408 return 0;
8409}
8410
8411static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8412{
8413 struct rq *rq = cpu_rq(cpu);
8414 unsigned long flags;
8415
8416 /*
8417 * Only empty task groups can be destroyed; so we can speculatively
8418 * check on_list without danger of it being re-added.
8419 */
8420 if (!tg->cfs_rq[cpu]->on_list)
8421 return;
8422
8423 raw_spin_lock_irqsave(&rq->lock, flags);
8424 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8425 raw_spin_unlock_irqrestore(&rq->lock, flags);
8426}
8427#else /* !CONFIG_FAIR_GROUP_SCHED */
8428static inline void free_fair_sched_group(struct task_group *tg)
8429{
8430}
8431
8432static inline
8433int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8434{
8435 return 1;
8436}
8437
8438static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8439{
8440}
8441#endif /* CONFIG_FAIR_GROUP_SCHED */
8442
8443#ifdef CONFIG_RT_GROUP_SCHED
8444static void free_rt_sched_group(struct task_group *tg)
8445{
8446 int i;
8447
8448 if (tg->rt_se)
8449 destroy_rt_bandwidth(&tg->rt_bandwidth);
8450
8451 for_each_possible_cpu(i) {
8452 if (tg->rt_rq)
8453 kfree(tg->rt_rq[i]);
8454 if (tg->rt_se)
8455 kfree(tg->rt_se[i]);
8456 }
8457
8458 kfree(tg->rt_rq);
8459 kfree(tg->rt_se);
8460}
8461
8462static
8463int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8464{
8465 struct rt_rq *rt_rq;
8466 struct sched_rt_entity *rt_se;
8467 int i;
8468
8469 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8470 if (!tg->rt_rq)
8471 goto err;
8472 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8473 if (!tg->rt_se)
8474 goto err;
8475
8476 init_rt_bandwidth(&tg->rt_bandwidth,
8477 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8478
8479 for_each_possible_cpu(i) {
8480 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8481 GFP_KERNEL, cpu_to_node(i));
8482 if (!rt_rq)
8483 goto err;
8484
8485 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8486 GFP_KERNEL, cpu_to_node(i));
8487 if (!rt_se)
8488 goto err_free_rq;
8489
8490 init_rt_rq(rt_rq, cpu_rq(i));
8491 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8492 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8493 }
8494
8495 return 1;
8496
8497err_free_rq:
8498 kfree(rt_rq);
8499err:
8500 return 0;
8501}
8502#else /* !CONFIG_RT_GROUP_SCHED */
8503static inline void free_rt_sched_group(struct task_group *tg)
8504{
8505}
8506
8507static inline
8508int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8509{
8510 return 1;
8511}
8512#endif /* CONFIG_RT_GROUP_SCHED */
8513
8514#ifdef CONFIG_CGROUP_SCHED
8515static void free_sched_group(struct task_group *tg)
8516{
8517 free_fair_sched_group(tg);
8518 free_rt_sched_group(tg);
8519 autogroup_free(tg);
8520 kfree(tg);
8521}
8522
8523/* allocate runqueue etc for a new task group */
8524struct task_group *sched_create_group(struct task_group *parent)
8525{
8526 struct task_group *tg;
8527 unsigned long flags;
8528
8529 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8530 if (!tg)
8531 return ERR_PTR(-ENOMEM);
8532
8533 if (!alloc_fair_sched_group(tg, parent))
8534 goto err;
8535
8536 if (!alloc_rt_sched_group(tg, parent))
8537 goto err;
8538
8539 spin_lock_irqsave(&task_group_lock, flags);
8540 list_add_rcu(&tg->list, &task_groups);
8541
8542 WARN_ON(!parent); /* root should already exist */
8543
8544 tg->parent = parent;
8545 INIT_LIST_HEAD(&tg->children);
8546 list_add_rcu(&tg->siblings, &parent->children);
8547 spin_unlock_irqrestore(&task_group_lock, flags);
8548
8549 return tg;
8550
8551err:
8552 free_sched_group(tg);
8553 return ERR_PTR(-ENOMEM);
8554}
8555
8556/* rcu callback to free various structures associated with a task group */
8557static void free_sched_group_rcu(struct rcu_head *rhp)
8558{
8559 /* now it should be safe to free those cfs_rqs */
8560 free_sched_group(container_of(rhp, struct task_group, rcu));
8561}
8562
8563/* Destroy runqueue etc associated with a task group */
8564void sched_destroy_group(struct task_group *tg)
8565{
8566 unsigned long flags;
8567 int i;
8568
8569 /* end participation in shares distribution */
8570 for_each_possible_cpu(i)
8571 unregister_fair_sched_group(tg, i);
8572
8573 spin_lock_irqsave(&task_group_lock, flags);
8574 list_del_rcu(&tg->list);
8575 list_del_rcu(&tg->siblings);
8576 spin_unlock_irqrestore(&task_group_lock, flags);
8577
8578 /* wait for possible concurrent references to cfs_rqs complete */
8579 call_rcu(&tg->rcu, free_sched_group_rcu);
8580}
8581
8582/* change task's runqueue when it moves between groups.
8583 * The caller of this function should have put the task in its new group
8584 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8585 * reflect its new group.
8586 */
8587void sched_move_task(struct task_struct *tsk)
8588{
8589 int on_rq, running;
8590 unsigned long flags;
8591 struct rq *rq;
8592
8593 rq = task_rq_lock(tsk, &flags);
8594
8595 running = task_current(rq, tsk);
8596 on_rq = tsk->on_rq;
8597
8598 if (on_rq)
8599 dequeue_task(rq, tsk, 0);
8600 if (unlikely(running))
8601 tsk->sched_class->put_prev_task(rq, tsk);
8602
8603#ifdef CONFIG_FAIR_GROUP_SCHED
8604 if (tsk->sched_class->task_move_group)
8605 tsk->sched_class->task_move_group(tsk, on_rq);
8606 else
8607#endif
8608 set_task_rq(tsk, task_cpu(tsk));
8609
8610 if (unlikely(running))
8611 tsk->sched_class->set_curr_task(rq);
8612 if (on_rq)
8613 enqueue_task(rq, tsk, 0);
8614
8615 task_rq_unlock(rq, tsk, &flags);
8616}
8617#endif /* CONFIG_CGROUP_SCHED */
8618
8619#ifdef CONFIG_FAIR_GROUP_SCHED
8620static DEFINE_MUTEX(shares_mutex);
8621
8622int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8623{
8624 int i;
8625 unsigned long flags;
8626
8627 /*
8628 * We can't change the weight of the root cgroup.
8629 */
8630 if (!tg->se[0])
8631 return -EINVAL;
8632
8633 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8634
8635 mutex_lock(&shares_mutex);
8636 if (tg->shares == shares)
8637 goto done;
8638
8639 tg->shares = shares;
8640 for_each_possible_cpu(i) {
8641 struct rq *rq = cpu_rq(i);
8642 struct sched_entity *se;
8643
8644 se = tg->se[i];
8645 /* Propagate contribution to hierarchy */
8646 raw_spin_lock_irqsave(&rq->lock, flags);
8647 for_each_sched_entity(se)
8648 update_cfs_shares(group_cfs_rq(se));
8649 raw_spin_unlock_irqrestore(&rq->lock, flags);
8650 }
8651
8652done:
8653 mutex_unlock(&shares_mutex);
8654 return 0;
8655}
8656
8657unsigned long sched_group_shares(struct task_group *tg)
8658{
8659 return tg->shares;
8660}
8661#endif
8662
8663#ifdef CONFIG_RT_GROUP_SCHED
8664/*
8665 * Ensure that the real time constraints are schedulable.
8666 */
8667static DEFINE_MUTEX(rt_constraints_mutex);
8668
8669static unsigned long to_ratio(u64 period, u64 runtime)
8670{
8671 if (runtime == RUNTIME_INF)
8672 return 1ULL << 20;
8673
8674 return div64_u64(runtime << 20, period);
8675}
8676
8677/* Must be called with tasklist_lock held */
8678static inline int tg_has_rt_tasks(struct task_group *tg)
8679{
8680 struct task_struct *g, *p;
8681
8682 do_each_thread(g, p) {
8683 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8684 return 1;
8685 } while_each_thread(g, p);
8686
8687 return 0;
8688}
8689
8690struct rt_schedulable_data {
8691 struct task_group *tg;
8692 u64 rt_period;
8693 u64 rt_runtime;
8694};
8695
8696static int tg_schedulable(struct task_group *tg, void *data)
8697{
8698 struct rt_schedulable_data *d = data;
8699 struct task_group *child;
8700 unsigned long total, sum = 0;
8701 u64 period, runtime;
8702
8703 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8704 runtime = tg->rt_bandwidth.rt_runtime;
8705
8706 if (tg == d->tg) {
8707 period = d->rt_period;
8708 runtime = d->rt_runtime;
8709 }
8710
8711 /*
8712 * Cannot have more runtime than the period.
8713 */
8714 if (runtime > period && runtime != RUNTIME_INF)
8715 return -EINVAL;
8716
8717 /*
8718 * Ensure we don't starve existing RT tasks.
8719 */
8720 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8721 return -EBUSY;
8722
8723 total = to_ratio(period, runtime);
8724
8725 /*
8726 * Nobody can have more than the global setting allows.
8727 */
8728 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8729 return -EINVAL;
8730
8731 /*
8732 * The sum of our children's runtime should not exceed our own.
8733 */
8734 list_for_each_entry_rcu(child, &tg->children, siblings) {
8735 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8736 runtime = child->rt_bandwidth.rt_runtime;
8737
8738 if (child == d->tg) {
8739 period = d->rt_period;
8740 runtime = d->rt_runtime;
8741 }
8742
8743 sum += to_ratio(period, runtime);
8744 }
8745
8746 if (sum > total)
8747 return -EINVAL;
8748
8749 return 0;
8750}
8751
8752static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8753{
8754 struct rt_schedulable_data data = {
8755 .tg = tg,
8756 .rt_period = period,
8757 .rt_runtime = runtime,
8758 };
8759
8760 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8761}
8762
8763static int tg_set_bandwidth(struct task_group *tg,
8764 u64 rt_period, u64 rt_runtime)
8765{
8766 int i, err = 0;
8767
8768 mutex_lock(&rt_constraints_mutex);
8769 read_lock(&tasklist_lock);
8770 err = __rt_schedulable(tg, rt_period, rt_runtime);
8771 if (err)
8772 goto unlock;
8773
8774 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8775 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8776 tg->rt_bandwidth.rt_runtime = rt_runtime;
8777
8778 for_each_possible_cpu(i) {
8779 struct rt_rq *rt_rq = tg->rt_rq[i];
8780
8781 raw_spin_lock(&rt_rq->rt_runtime_lock);
8782 rt_rq->rt_runtime = rt_runtime;
8783 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8784 }
8785 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8786unlock:
8787 read_unlock(&tasklist_lock);
8788 mutex_unlock(&rt_constraints_mutex);
8789
8790 return err;
8791}
8792
8793int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8794{
8795 u64 rt_runtime, rt_period;
8796
8797 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8798 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8799 if (rt_runtime_us < 0)
8800 rt_runtime = RUNTIME_INF;
8801
8802 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8803}
8804
8805long sched_group_rt_runtime(struct task_group *tg)
8806{
8807 u64 rt_runtime_us;
8808
8809 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8810 return -1;
8811
8812 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8813 do_div(rt_runtime_us, NSEC_PER_USEC);
8814 return rt_runtime_us;
8815}
8816
8817int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8818{
8819 u64 rt_runtime, rt_period;
8820
8821 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8822 rt_runtime = tg->rt_bandwidth.rt_runtime;
8823
8824 if (rt_period == 0)
8825 return -EINVAL;
8826
8827 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8828}
8829
8830long sched_group_rt_period(struct task_group *tg)
8831{
8832 u64 rt_period_us;
8833
8834 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8835 do_div(rt_period_us, NSEC_PER_USEC);
8836 return rt_period_us;
8837}
8838
8839static int sched_rt_global_constraints(void)
8840{
8841 u64 runtime, period;
8842 int ret = 0;
8843
8844 if (sysctl_sched_rt_period <= 0)
8845 return -EINVAL;
8846
8847 runtime = global_rt_runtime();
8848 period = global_rt_period();
8849
8850 /*
8851 * Sanity check on the sysctl variables.
8852 */
8853 if (runtime > period && runtime != RUNTIME_INF)
8854 return -EINVAL;
8855
8856 mutex_lock(&rt_constraints_mutex);
8857 read_lock(&tasklist_lock);
8858 ret = __rt_schedulable(NULL, 0, 0);
8859 read_unlock(&tasklist_lock);
8860 mutex_unlock(&rt_constraints_mutex);
8861
8862 return ret;
8863}
8864
8865int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8866{
8867 /* Don't accept realtime tasks when there is no way for them to run */
8868 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8869 return 0;
8870
8871 return 1;
8872}
8873
8874#else /* !CONFIG_RT_GROUP_SCHED */
8875static int sched_rt_global_constraints(void)
8876{
8877 unsigned long flags;
8878 int i;
8879
8880 if (sysctl_sched_rt_period <= 0)
8881 return -EINVAL;
8882
8883 /*
8884 * There's always some RT tasks in the root group
8885 * -- migration, kstopmachine etc..
8886 */
8887 if (sysctl_sched_rt_runtime == 0)
8888 return -EBUSY;
8889
8890 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8891 for_each_possible_cpu(i) {
8892 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8893
8894 raw_spin_lock(&rt_rq->rt_runtime_lock);
8895 rt_rq->rt_runtime = global_rt_runtime();
8896 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8897 }
8898 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8899
8900 return 0;
8901}
8902#endif /* CONFIG_RT_GROUP_SCHED */
8903
8904int sched_rt_handler(struct ctl_table *table, int write,
8905 void __user *buffer, size_t *lenp,
8906 loff_t *ppos)
8907{
8908 int ret;
8909 int old_period, old_runtime;
8910 static DEFINE_MUTEX(mutex);
8911
8912 mutex_lock(&mutex);
8913 old_period = sysctl_sched_rt_period;
8914 old_runtime = sysctl_sched_rt_runtime;
8915
8916 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8917
8918 if (!ret && write) {
8919 ret = sched_rt_global_constraints();
8920 if (ret) {
8921 sysctl_sched_rt_period = old_period;
8922 sysctl_sched_rt_runtime = old_runtime;
8923 } else {
8924 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8925 def_rt_bandwidth.rt_period =
8926 ns_to_ktime(global_rt_period());
8927 }
8928 }
8929 mutex_unlock(&mutex);
8930
8931 return ret;
8932}
8933
8934#ifdef CONFIG_CGROUP_SCHED
8935
8936/* return corresponding task_group object of a cgroup */
8937static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8938{
8939 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8940 struct task_group, css);
8941}
8942
8943static struct cgroup_subsys_state *
8944cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8945{
8946 struct task_group *tg, *parent;
8947
8948 if (!cgrp->parent) {
8949 /* This is early initialization for the top cgroup */
8950 return &root_task_group.css;
8951 }
8952
8953 parent = cgroup_tg(cgrp->parent);
8954 tg = sched_create_group(parent);
8955 if (IS_ERR(tg))
8956 return ERR_PTR(-ENOMEM);
8957
8958 return &tg->css;
8959}
8960
8961static void
8962cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8963{
8964 struct task_group *tg = cgroup_tg(cgrp);
8965
8966 sched_destroy_group(tg);
8967}
8968
8969static int
8970cpu_cgroup_allow_attach(struct cgroup *cgrp, struct task_struct *tsk)
8971{
8972 const struct cred *cred = current_cred(), *tcred;
8973
8974 tcred = __task_cred(tsk);
8975
8976 if ((current != tsk) && !capable(CAP_SYS_NICE) &&
8977 cred->euid != tcred->uid && cred->euid != tcred->suid)
8978 return -EACCES;
8979
8980 return 0;
8981}
8982
8983static int
8984cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8985{
8986#ifdef CONFIG_RT_GROUP_SCHED
8987 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8988 return -EINVAL;
8989#else
8990 /* We don't support RT-tasks being in separate groups */
8991 if (tsk->sched_class != &fair_sched_class)
8992 return -EINVAL;
8993#endif
8994 return 0;
8995}
8996
8997static void
8998cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8999{
9000 sched_move_task(tsk);
9001}
9002
9003static void
9004cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9005 struct cgroup *old_cgrp, struct task_struct *task)
9006{
9007 /*
9008 * cgroup_exit() is called in the copy_process() failure path.
9009 * Ignore this case since the task hasn't ran yet, this avoids
9010 * trying to poke a half freed task state from generic code.
9011 */
9012 if (!(task->flags & PF_EXITING))
9013 return;
9014
9015 sched_move_task(task);
9016}
9017
9018#ifdef CONFIG_FAIR_GROUP_SCHED
9019static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9020 u64 shareval)
9021{
9022 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9023}
9024
9025static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9026{
9027 struct task_group *tg = cgroup_tg(cgrp);
9028
9029 return (u64) scale_load_down(tg->shares);
9030}
9031#endif /* CONFIG_FAIR_GROUP_SCHED */
9032
9033#ifdef CONFIG_RT_GROUP_SCHED
9034static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9035 s64 val)
9036{
9037 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9038}
9039
9040static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9041{
9042 return sched_group_rt_runtime(cgroup_tg(cgrp));
9043}
9044
9045static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9046 u64 rt_period_us)
9047{
9048 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9049}
9050
9051static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9052{
9053 return sched_group_rt_period(cgroup_tg(cgrp));
9054}
9055#endif /* CONFIG_RT_GROUP_SCHED */
9056
9057static struct cftype cpu_files[] = {
9058#ifdef CONFIG_FAIR_GROUP_SCHED
9059 {
9060 .name = "shares",
9061 .read_u64 = cpu_shares_read_u64,
9062 .write_u64 = cpu_shares_write_u64,
9063 },
9064#endif
9065#ifdef CONFIG_RT_GROUP_SCHED
9066 {
9067 .name = "rt_runtime_us",
9068 .read_s64 = cpu_rt_runtime_read,
9069 .write_s64 = cpu_rt_runtime_write,
9070 },
9071 {
9072 .name = "rt_period_us",
9073 .read_u64 = cpu_rt_period_read_uint,
9074 .write_u64 = cpu_rt_period_write_uint,
9075 },
9076#endif
9077};
9078
9079static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9080{
9081 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9082}
9083
9084struct cgroup_subsys cpu_cgroup_subsys = {
9085 .name = "cpu",
9086 .create = cpu_cgroup_create,
9087 .destroy = cpu_cgroup_destroy,
9088 .allow_attach = cpu_cgroup_allow_attach,
9089 .can_attach_task = cpu_cgroup_can_attach_task,
9090 .attach_task = cpu_cgroup_attach_task,
9091 .exit = cpu_cgroup_exit,
9092 .populate = cpu_cgroup_populate,
9093 .subsys_id = cpu_cgroup_subsys_id,
9094 .early_init = 1,
9095};
9096
9097#endif /* CONFIG_CGROUP_SCHED */
9098
9099#ifdef CONFIG_CGROUP_CPUACCT
9100
9101/*
9102 * CPU accounting code for task groups.
9103 *
9104 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9105 * (balbir@in.ibm.com).
9106 */
9107
9108/* track cpu usage of a group of tasks and its child groups */
9109struct cpuacct {
9110 struct cgroup_subsys_state css;
9111 /* cpuusage holds pointer to a u64-type object on every cpu */
9112 u64 __percpu *cpuusage;
9113 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9114 struct cpuacct *parent;
9115 struct cpuacct_charge_calls *cpufreq_fn;
9116 void *cpuacct_data;
9117};
9118
9119static struct cpuacct *cpuacct_root;
9120
9121/* Default calls for cpufreq accounting */
9122static struct cpuacct_charge_calls *cpuacct_cpufreq;
9123int cpuacct_register_cpufreq(struct cpuacct_charge_calls *fn)
9124{
9125 cpuacct_cpufreq = fn;
9126
9127 /*
9128 * Root node is created before platform can register callbacks,
9129 * initalize here.
9130 */
9131 if (cpuacct_root && fn) {
9132 cpuacct_root->cpufreq_fn = fn;
9133 if (fn->init)
9134 fn->init(&cpuacct_root->cpuacct_data);
9135 }
9136 return 0;
9137}
9138
9139struct cgroup_subsys cpuacct_subsys;
9140
9141/* return cpu accounting group corresponding to this container */
9142static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9143{
9144 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9145 struct cpuacct, css);
9146}
9147
9148/* return cpu accounting group to which this task belongs */
9149static inline struct cpuacct *task_ca(struct task_struct *tsk)
9150{
9151 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9152 struct cpuacct, css);
9153}
9154
9155/* create a new cpu accounting group */
9156static struct cgroup_subsys_state *cpuacct_create(
9157 struct cgroup_subsys *ss, struct cgroup *cgrp)
9158{
9159 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9160 int i;
9161
9162 if (!ca)
9163 goto out;
9164
9165 ca->cpuusage = alloc_percpu(u64);
9166 if (!ca->cpuusage)
9167 goto out_free_ca;
9168
9169 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9170 if (percpu_counter_init(&ca->cpustat[i], 0))
9171 goto out_free_counters;
9172
9173 ca->cpufreq_fn = cpuacct_cpufreq;
9174
9175 /* If available, have platform code initalize cpu frequency table */
9176 if (ca->cpufreq_fn && ca->cpufreq_fn->init)
9177 ca->cpufreq_fn->init(&ca->cpuacct_data);
9178
9179 if (cgrp->parent)
9180 ca->parent = cgroup_ca(cgrp->parent);
9181 else
9182 cpuacct_root = ca;
9183
9184 return &ca->css;
9185
9186out_free_counters:
9187 while (--i >= 0)
9188 percpu_counter_destroy(&ca->cpustat[i]);
9189 free_percpu(ca->cpuusage);
9190out_free_ca:
9191 kfree(ca);
9192out:
9193 return ERR_PTR(-ENOMEM);
9194}
9195
9196/* destroy an existing cpu accounting group */
9197static void
9198cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9199{
9200 struct cpuacct *ca = cgroup_ca(cgrp);
9201 int i;
9202
9203 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9204 percpu_counter_destroy(&ca->cpustat[i]);
9205 free_percpu(ca->cpuusage);
9206 kfree(ca);
9207}
9208
9209static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9210{
9211 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9212 u64 data;
9213
9214#ifndef CONFIG_64BIT
9215 /*
9216 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9217 */
9218 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9219 data = *cpuusage;
9220 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9221#else
9222 data = *cpuusage;
9223#endif
9224
9225 return data;
9226}
9227
9228static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9229{
9230 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9231
9232#ifndef CONFIG_64BIT
9233 /*
9234 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9235 */
9236 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9237 *cpuusage = val;
9238 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9239#else
9240 *cpuusage = val;
9241#endif
9242}
9243
9244/* return total cpu usage (in nanoseconds) of a group */
9245static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9246{
9247 struct cpuacct *ca = cgroup_ca(cgrp);
9248 u64 totalcpuusage = 0;
9249 int i;
9250
9251 for_each_present_cpu(i)
9252 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9253
9254 return totalcpuusage;
9255}
9256
9257static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9258 u64 reset)
9259{
9260 struct cpuacct *ca = cgroup_ca(cgrp);
9261 int err = 0;
9262 int i;
9263
9264 if (reset) {
9265 err = -EINVAL;
9266 goto out;
9267 }
9268
9269 for_each_present_cpu(i)
9270 cpuacct_cpuusage_write(ca, i, 0);
9271
9272out:
9273 return err;
9274}
9275
9276static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9277 struct seq_file *m)
9278{
9279 struct cpuacct *ca = cgroup_ca(cgroup);
9280 u64 percpu;
9281 int i;
9282
9283 for_each_present_cpu(i) {
9284 percpu = cpuacct_cpuusage_read(ca, i);
9285 seq_printf(m, "%llu ", (unsigned long long) percpu);
9286 }
9287 seq_printf(m, "\n");
9288 return 0;
9289}
9290
9291static const char *cpuacct_stat_desc[] = {
9292 [CPUACCT_STAT_USER] = "user",
9293 [CPUACCT_STAT_SYSTEM] = "system",
9294};
9295
9296static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9297 struct cgroup_map_cb *cb)
9298{
9299 struct cpuacct *ca = cgroup_ca(cgrp);
9300 int i;
9301
9302 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9303 s64 val = percpu_counter_read(&ca->cpustat[i]);
9304 val = cputime64_to_clock_t(val);
9305 cb->fill(cb, cpuacct_stat_desc[i], val);
9306 }
9307 return 0;
9308}
9309
9310static int cpuacct_cpufreq_show(struct cgroup *cgrp, struct cftype *cft,
9311 struct cgroup_map_cb *cb)
9312{
9313 struct cpuacct *ca = cgroup_ca(cgrp);
9314 if (ca->cpufreq_fn && ca->cpufreq_fn->cpufreq_show)
9315 ca->cpufreq_fn->cpufreq_show(ca->cpuacct_data, cb);
9316
9317 return 0;
9318}
9319
9320/* return total cpu power usage (milliWatt second) of a group */
9321static u64 cpuacct_powerusage_read(struct cgroup *cgrp, struct cftype *cft)
9322{
9323 int i;
9324 struct cpuacct *ca = cgroup_ca(cgrp);
9325 u64 totalpower = 0;
9326
9327 if (ca->cpufreq_fn && ca->cpufreq_fn->power_usage)
9328 for_each_present_cpu(i) {
9329 totalpower += ca->cpufreq_fn->power_usage(
9330 ca->cpuacct_data);
9331 }
9332
9333 return totalpower;
9334}
9335
9336static struct cftype files[] = {
9337 {
9338 .name = "usage",
9339 .read_u64 = cpuusage_read,
9340 .write_u64 = cpuusage_write,
9341 },
9342 {
9343 .name = "usage_percpu",
9344 .read_seq_string = cpuacct_percpu_seq_read,
9345 },
9346 {
9347 .name = "stat",
9348 .read_map = cpuacct_stats_show,
9349 },
9350 {
9351 .name = "cpufreq",
9352 .read_map = cpuacct_cpufreq_show,
9353 },
9354 {
9355 .name = "power",
9356 .read_u64 = cpuacct_powerusage_read
9357 },
9358};
9359
9360static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9361{
9362 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9363}
9364
9365/*
9366 * charge this task's execution time to its accounting group.
9367 *
9368 * called with rq->lock held.
9369 */
9370static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9371{
9372 struct cpuacct *ca;
9373 int cpu;
9374
9375 if (unlikely(!cpuacct_subsys.active))
9376 return;
9377
9378 cpu = task_cpu(tsk);
9379
9380 rcu_read_lock();
9381
9382 ca = task_ca(tsk);
9383
9384 for (; ca; ca = ca->parent) {
9385 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9386 *cpuusage += cputime;
9387
9388 /* Call back into platform code to account for CPU speeds */
9389 if (ca->cpufreq_fn && ca->cpufreq_fn->charge)
9390 ca->cpufreq_fn->charge(ca->cpuacct_data, cputime, cpu);
9391 }
9392
9393 rcu_read_unlock();
9394}
9395
9396/*
9397 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9398 * in cputime_t units. As a result, cpuacct_update_stats calls
9399 * percpu_counter_add with values large enough to always overflow the
9400 * per cpu batch limit causing bad SMP scalability.
9401 *
9402 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9403 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9404 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9405 */
9406#ifdef CONFIG_SMP
9407#define CPUACCT_BATCH \
9408 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9409#else
9410#define CPUACCT_BATCH 0
9411#endif
9412
9413/*
9414 * Charge the system/user time to the task's accounting group.
9415 */
9416static void cpuacct_update_stats(struct task_struct *tsk,
9417 enum cpuacct_stat_index idx, cputime_t val)
9418{
9419 struct cpuacct *ca;
9420 int batch = CPUACCT_BATCH;
9421
9422 if (unlikely(!cpuacct_subsys.active))
9423 return;
9424
9425 rcu_read_lock();
9426 ca = task_ca(tsk);
9427
9428 do {
9429 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9430 ca = ca->parent;
9431 } while (ca);
9432 rcu_read_unlock();
9433}
9434
9435struct cgroup_subsys cpuacct_subsys = {
9436 .name = "cpuacct",
9437 .create = cpuacct_create,
9438 .destroy = cpuacct_destroy,
9439 .populate = cpuacct_populate,
9440 .subsys_id = cpuacct_subsys_id,
9441};
9442#endif /* CONFIG_CGROUP_CPUACCT */
9443