diff options
Diffstat (limited to 'fs/xfs/xfs_sync.c')
-rw-r--r-- | fs/xfs/xfs_sync.c | 1065 |
1 files changed, 1065 insertions, 0 deletions
diff --git a/fs/xfs/xfs_sync.c b/fs/xfs/xfs_sync.c new file mode 100644 index 00000000000..4604f90f86a --- /dev/null +++ b/fs/xfs/xfs_sync.c | |||
@@ -0,0 +1,1065 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | ||
3 | * All Rights Reserved. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or | ||
6 | * modify it under the terms of the GNU General Public License as | ||
7 | * published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope that it would be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write the Free Software Foundation, | ||
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
17 | */ | ||
18 | #include "xfs.h" | ||
19 | #include "xfs_fs.h" | ||
20 | #include "xfs_types.h" | ||
21 | #include "xfs_bit.h" | ||
22 | #include "xfs_log.h" | ||
23 | #include "xfs_inum.h" | ||
24 | #include "xfs_trans.h" | ||
25 | #include "xfs_trans_priv.h" | ||
26 | #include "xfs_sb.h" | ||
27 | #include "xfs_ag.h" | ||
28 | #include "xfs_mount.h" | ||
29 | #include "xfs_bmap_btree.h" | ||
30 | #include "xfs_inode.h" | ||
31 | #include "xfs_dinode.h" | ||
32 | #include "xfs_error.h" | ||
33 | #include "xfs_filestream.h" | ||
34 | #include "xfs_vnodeops.h" | ||
35 | #include "xfs_inode_item.h" | ||
36 | #include "xfs_quota.h" | ||
37 | #include "xfs_trace.h" | ||
38 | #include "xfs_fsops.h" | ||
39 | |||
40 | #include <linux/kthread.h> | ||
41 | #include <linux/freezer.h> | ||
42 | |||
43 | struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */ | ||
44 | |||
45 | /* | ||
46 | * The inode lookup is done in batches to keep the amount of lock traffic and | ||
47 | * radix tree lookups to a minimum. The batch size is a trade off between | ||
48 | * lookup reduction and stack usage. This is in the reclaim path, so we can't | ||
49 | * be too greedy. | ||
50 | */ | ||
51 | #define XFS_LOOKUP_BATCH 32 | ||
52 | |||
53 | STATIC int | ||
54 | xfs_inode_ag_walk_grab( | ||
55 | struct xfs_inode *ip) | ||
56 | { | ||
57 | struct inode *inode = VFS_I(ip); | ||
58 | |||
59 | ASSERT(rcu_read_lock_held()); | ||
60 | |||
61 | /* | ||
62 | * check for stale RCU freed inode | ||
63 | * | ||
64 | * If the inode has been reallocated, it doesn't matter if it's not in | ||
65 | * the AG we are walking - we are walking for writeback, so if it | ||
66 | * passes all the "valid inode" checks and is dirty, then we'll write | ||
67 | * it back anyway. If it has been reallocated and still being | ||
68 | * initialised, the XFS_INEW check below will catch it. | ||
69 | */ | ||
70 | spin_lock(&ip->i_flags_lock); | ||
71 | if (!ip->i_ino) | ||
72 | goto out_unlock_noent; | ||
73 | |||
74 | /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ | ||
75 | if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) | ||
76 | goto out_unlock_noent; | ||
77 | spin_unlock(&ip->i_flags_lock); | ||
78 | |||
79 | /* nothing to sync during shutdown */ | ||
80 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | ||
81 | return EFSCORRUPTED; | ||
82 | |||
83 | /* If we can't grab the inode, it must on it's way to reclaim. */ | ||
84 | if (!igrab(inode)) | ||
85 | return ENOENT; | ||
86 | |||
87 | if (is_bad_inode(inode)) { | ||
88 | IRELE(ip); | ||
89 | return ENOENT; | ||
90 | } | ||
91 | |||
92 | /* inode is valid */ | ||
93 | return 0; | ||
94 | |||
95 | out_unlock_noent: | ||
96 | spin_unlock(&ip->i_flags_lock); | ||
97 | return ENOENT; | ||
98 | } | ||
99 | |||
100 | STATIC int | ||
101 | xfs_inode_ag_walk( | ||
102 | struct xfs_mount *mp, | ||
103 | struct xfs_perag *pag, | ||
104 | int (*execute)(struct xfs_inode *ip, | ||
105 | struct xfs_perag *pag, int flags), | ||
106 | int flags) | ||
107 | { | ||
108 | uint32_t first_index; | ||
109 | int last_error = 0; | ||
110 | int skipped; | ||
111 | int done; | ||
112 | int nr_found; | ||
113 | |||
114 | restart: | ||
115 | done = 0; | ||
116 | skipped = 0; | ||
117 | first_index = 0; | ||
118 | nr_found = 0; | ||
119 | do { | ||
120 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | ||
121 | int error = 0; | ||
122 | int i; | ||
123 | |||
124 | rcu_read_lock(); | ||
125 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, | ||
126 | (void **)batch, first_index, | ||
127 | XFS_LOOKUP_BATCH); | ||
128 | if (!nr_found) { | ||
129 | rcu_read_unlock(); | ||
130 | break; | ||
131 | } | ||
132 | |||
133 | /* | ||
134 | * Grab the inodes before we drop the lock. if we found | ||
135 | * nothing, nr == 0 and the loop will be skipped. | ||
136 | */ | ||
137 | for (i = 0; i < nr_found; i++) { | ||
138 | struct xfs_inode *ip = batch[i]; | ||
139 | |||
140 | if (done || xfs_inode_ag_walk_grab(ip)) | ||
141 | batch[i] = NULL; | ||
142 | |||
143 | /* | ||
144 | * Update the index for the next lookup. Catch | ||
145 | * overflows into the next AG range which can occur if | ||
146 | * we have inodes in the last block of the AG and we | ||
147 | * are currently pointing to the last inode. | ||
148 | * | ||
149 | * Because we may see inodes that are from the wrong AG | ||
150 | * due to RCU freeing and reallocation, only update the | ||
151 | * index if it lies in this AG. It was a race that lead | ||
152 | * us to see this inode, so another lookup from the | ||
153 | * same index will not find it again. | ||
154 | */ | ||
155 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) | ||
156 | continue; | ||
157 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | ||
158 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | ||
159 | done = 1; | ||
160 | } | ||
161 | |||
162 | /* unlock now we've grabbed the inodes. */ | ||
163 | rcu_read_unlock(); | ||
164 | |||
165 | for (i = 0; i < nr_found; i++) { | ||
166 | if (!batch[i]) | ||
167 | continue; | ||
168 | error = execute(batch[i], pag, flags); | ||
169 | IRELE(batch[i]); | ||
170 | if (error == EAGAIN) { | ||
171 | skipped++; | ||
172 | continue; | ||
173 | } | ||
174 | if (error && last_error != EFSCORRUPTED) | ||
175 | last_error = error; | ||
176 | } | ||
177 | |||
178 | /* bail out if the filesystem is corrupted. */ | ||
179 | if (error == EFSCORRUPTED) | ||
180 | break; | ||
181 | |||
182 | cond_resched(); | ||
183 | |||
184 | } while (nr_found && !done); | ||
185 | |||
186 | if (skipped) { | ||
187 | delay(1); | ||
188 | goto restart; | ||
189 | } | ||
190 | return last_error; | ||
191 | } | ||
192 | |||
193 | int | ||
194 | xfs_inode_ag_iterator( | ||
195 | struct xfs_mount *mp, | ||
196 | int (*execute)(struct xfs_inode *ip, | ||
197 | struct xfs_perag *pag, int flags), | ||
198 | int flags) | ||
199 | { | ||
200 | struct xfs_perag *pag; | ||
201 | int error = 0; | ||
202 | int last_error = 0; | ||
203 | xfs_agnumber_t ag; | ||
204 | |||
205 | ag = 0; | ||
206 | while ((pag = xfs_perag_get(mp, ag))) { | ||
207 | ag = pag->pag_agno + 1; | ||
208 | error = xfs_inode_ag_walk(mp, pag, execute, flags); | ||
209 | xfs_perag_put(pag); | ||
210 | if (error) { | ||
211 | last_error = error; | ||
212 | if (error == EFSCORRUPTED) | ||
213 | break; | ||
214 | } | ||
215 | } | ||
216 | return XFS_ERROR(last_error); | ||
217 | } | ||
218 | |||
219 | STATIC int | ||
220 | xfs_sync_inode_data( | ||
221 | struct xfs_inode *ip, | ||
222 | struct xfs_perag *pag, | ||
223 | int flags) | ||
224 | { | ||
225 | struct inode *inode = VFS_I(ip); | ||
226 | struct address_space *mapping = inode->i_mapping; | ||
227 | int error = 0; | ||
228 | |||
229 | if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | ||
230 | goto out_wait; | ||
231 | |||
232 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { | ||
233 | if (flags & SYNC_TRYLOCK) | ||
234 | goto out_wait; | ||
235 | xfs_ilock(ip, XFS_IOLOCK_SHARED); | ||
236 | } | ||
237 | |||
238 | error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ? | ||
239 | 0 : XBF_ASYNC, FI_NONE); | ||
240 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | ||
241 | |||
242 | out_wait: | ||
243 | if (flags & SYNC_WAIT) | ||
244 | xfs_ioend_wait(ip); | ||
245 | return error; | ||
246 | } | ||
247 | |||
248 | STATIC int | ||
249 | xfs_sync_inode_attr( | ||
250 | struct xfs_inode *ip, | ||
251 | struct xfs_perag *pag, | ||
252 | int flags) | ||
253 | { | ||
254 | int error = 0; | ||
255 | |||
256 | xfs_ilock(ip, XFS_ILOCK_SHARED); | ||
257 | if (xfs_inode_clean(ip)) | ||
258 | goto out_unlock; | ||
259 | if (!xfs_iflock_nowait(ip)) { | ||
260 | if (!(flags & SYNC_WAIT)) | ||
261 | goto out_unlock; | ||
262 | xfs_iflock(ip); | ||
263 | } | ||
264 | |||
265 | if (xfs_inode_clean(ip)) { | ||
266 | xfs_ifunlock(ip); | ||
267 | goto out_unlock; | ||
268 | } | ||
269 | |||
270 | error = xfs_iflush(ip, flags); | ||
271 | |||
272 | /* | ||
273 | * We don't want to try again on non-blocking flushes that can't run | ||
274 | * again immediately. If an inode really must be written, then that's | ||
275 | * what the SYNC_WAIT flag is for. | ||
276 | */ | ||
277 | if (error == EAGAIN) { | ||
278 | ASSERT(!(flags & SYNC_WAIT)); | ||
279 | error = 0; | ||
280 | } | ||
281 | |||
282 | out_unlock: | ||
283 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | ||
284 | return error; | ||
285 | } | ||
286 | |||
287 | /* | ||
288 | * Write out pagecache data for the whole filesystem. | ||
289 | */ | ||
290 | STATIC int | ||
291 | xfs_sync_data( | ||
292 | struct xfs_mount *mp, | ||
293 | int flags) | ||
294 | { | ||
295 | int error; | ||
296 | |||
297 | ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0); | ||
298 | |||
299 | error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags); | ||
300 | if (error) | ||
301 | return XFS_ERROR(error); | ||
302 | |||
303 | xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0); | ||
304 | return 0; | ||
305 | } | ||
306 | |||
307 | /* | ||
308 | * Write out inode metadata (attributes) for the whole filesystem. | ||
309 | */ | ||
310 | STATIC int | ||
311 | xfs_sync_attr( | ||
312 | struct xfs_mount *mp, | ||
313 | int flags) | ||
314 | { | ||
315 | ASSERT((flags & ~SYNC_WAIT) == 0); | ||
316 | |||
317 | return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags); | ||
318 | } | ||
319 | |||
320 | STATIC int | ||
321 | xfs_sync_fsdata( | ||
322 | struct xfs_mount *mp) | ||
323 | { | ||
324 | struct xfs_buf *bp; | ||
325 | |||
326 | /* | ||
327 | * If the buffer is pinned then push on the log so we won't get stuck | ||
328 | * waiting in the write for someone, maybe ourselves, to flush the log. | ||
329 | * | ||
330 | * Even though we just pushed the log above, we did not have the | ||
331 | * superblock buffer locked at that point so it can become pinned in | ||
332 | * between there and here. | ||
333 | */ | ||
334 | bp = xfs_getsb(mp, 0); | ||
335 | if (xfs_buf_ispinned(bp)) | ||
336 | xfs_log_force(mp, 0); | ||
337 | |||
338 | return xfs_bwrite(mp, bp); | ||
339 | } | ||
340 | |||
341 | /* | ||
342 | * When remounting a filesystem read-only or freezing the filesystem, we have | ||
343 | * two phases to execute. This first phase is syncing the data before we | ||
344 | * quiesce the filesystem, and the second is flushing all the inodes out after | ||
345 | * we've waited for all the transactions created by the first phase to | ||
346 | * complete. The second phase ensures that the inodes are written to their | ||
347 | * location on disk rather than just existing in transactions in the log. This | ||
348 | * means after a quiesce there is no log replay required to write the inodes to | ||
349 | * disk (this is the main difference between a sync and a quiesce). | ||
350 | */ | ||
351 | /* | ||
352 | * First stage of freeze - no writers will make progress now we are here, | ||
353 | * so we flush delwri and delalloc buffers here, then wait for all I/O to | ||
354 | * complete. Data is frozen at that point. Metadata is not frozen, | ||
355 | * transactions can still occur here so don't bother flushing the buftarg | ||
356 | * because it'll just get dirty again. | ||
357 | */ | ||
358 | int | ||
359 | xfs_quiesce_data( | ||
360 | struct xfs_mount *mp) | ||
361 | { | ||
362 | int error, error2 = 0; | ||
363 | |||
364 | xfs_qm_sync(mp, SYNC_TRYLOCK); | ||
365 | xfs_qm_sync(mp, SYNC_WAIT); | ||
366 | |||
367 | /* force out the newly dirtied log buffers */ | ||
368 | xfs_log_force(mp, XFS_LOG_SYNC); | ||
369 | |||
370 | /* write superblock and hoover up shutdown errors */ | ||
371 | error = xfs_sync_fsdata(mp); | ||
372 | |||
373 | /* make sure all delwri buffers are written out */ | ||
374 | xfs_flush_buftarg(mp->m_ddev_targp, 1); | ||
375 | |||
376 | /* mark the log as covered if needed */ | ||
377 | if (xfs_log_need_covered(mp)) | ||
378 | error2 = xfs_fs_log_dummy(mp); | ||
379 | |||
380 | /* flush data-only devices */ | ||
381 | if (mp->m_rtdev_targp) | ||
382 | XFS_bflush(mp->m_rtdev_targp); | ||
383 | |||
384 | return error ? error : error2; | ||
385 | } | ||
386 | |||
387 | STATIC void | ||
388 | xfs_quiesce_fs( | ||
389 | struct xfs_mount *mp) | ||
390 | { | ||
391 | int count = 0, pincount; | ||
392 | |||
393 | xfs_reclaim_inodes(mp, 0); | ||
394 | xfs_flush_buftarg(mp->m_ddev_targp, 0); | ||
395 | |||
396 | /* | ||
397 | * This loop must run at least twice. The first instance of the loop | ||
398 | * will flush most meta data but that will generate more meta data | ||
399 | * (typically directory updates). Which then must be flushed and | ||
400 | * logged before we can write the unmount record. We also so sync | ||
401 | * reclaim of inodes to catch any that the above delwri flush skipped. | ||
402 | */ | ||
403 | do { | ||
404 | xfs_reclaim_inodes(mp, SYNC_WAIT); | ||
405 | xfs_sync_attr(mp, SYNC_WAIT); | ||
406 | pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); | ||
407 | if (!pincount) { | ||
408 | delay(50); | ||
409 | count++; | ||
410 | } | ||
411 | } while (count < 2); | ||
412 | } | ||
413 | |||
414 | /* | ||
415 | * Second stage of a quiesce. The data is already synced, now we have to take | ||
416 | * care of the metadata. New transactions are already blocked, so we need to | ||
417 | * wait for any remaining transactions to drain out before proceeding. | ||
418 | */ | ||
419 | void | ||
420 | xfs_quiesce_attr( | ||
421 | struct xfs_mount *mp) | ||
422 | { | ||
423 | int error = 0; | ||
424 | |||
425 | /* wait for all modifications to complete */ | ||
426 | while (atomic_read(&mp->m_active_trans) > 0) | ||
427 | delay(100); | ||
428 | |||
429 | /* flush inodes and push all remaining buffers out to disk */ | ||
430 | xfs_quiesce_fs(mp); | ||
431 | |||
432 | /* | ||
433 | * Just warn here till VFS can correctly support | ||
434 | * read-only remount without racing. | ||
435 | */ | ||
436 | WARN_ON(atomic_read(&mp->m_active_trans) != 0); | ||
437 | |||
438 | /* Push the superblock and write an unmount record */ | ||
439 | error = xfs_log_sbcount(mp); | ||
440 | if (error) | ||
441 | xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " | ||
442 | "Frozen image may not be consistent."); | ||
443 | xfs_log_unmount_write(mp); | ||
444 | xfs_unmountfs_writesb(mp); | ||
445 | } | ||
446 | |||
447 | static void | ||
448 | xfs_syncd_queue_sync( | ||
449 | struct xfs_mount *mp) | ||
450 | { | ||
451 | queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work, | ||
452 | msecs_to_jiffies(xfs_syncd_centisecs * 10)); | ||
453 | } | ||
454 | |||
455 | /* | ||
456 | * Every sync period we need to unpin all items, reclaim inodes and sync | ||
457 | * disk quotas. We might need to cover the log to indicate that the | ||
458 | * filesystem is idle and not frozen. | ||
459 | */ | ||
460 | STATIC void | ||
461 | xfs_sync_worker( | ||
462 | struct work_struct *work) | ||
463 | { | ||
464 | struct xfs_mount *mp = container_of(to_delayed_work(work), | ||
465 | struct xfs_mount, m_sync_work); | ||
466 | int error; | ||
467 | |||
468 | if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { | ||
469 | /* dgc: errors ignored here */ | ||
470 | if (mp->m_super->s_frozen == SB_UNFROZEN && | ||
471 | xfs_log_need_covered(mp)) | ||
472 | error = xfs_fs_log_dummy(mp); | ||
473 | else | ||
474 | xfs_log_force(mp, 0); | ||
475 | error = xfs_qm_sync(mp, SYNC_TRYLOCK); | ||
476 | |||
477 | /* start pushing all the metadata that is currently dirty */ | ||
478 | xfs_ail_push_all(mp->m_ail); | ||
479 | } | ||
480 | |||
481 | /* queue us up again */ | ||
482 | xfs_syncd_queue_sync(mp); | ||
483 | } | ||
484 | |||
485 | /* | ||
486 | * Queue a new inode reclaim pass if there are reclaimable inodes and there | ||
487 | * isn't a reclaim pass already in progress. By default it runs every 5s based | ||
488 | * on the xfs syncd work default of 30s. Perhaps this should have it's own | ||
489 | * tunable, but that can be done if this method proves to be ineffective or too | ||
490 | * aggressive. | ||
491 | */ | ||
492 | static void | ||
493 | xfs_syncd_queue_reclaim( | ||
494 | struct xfs_mount *mp) | ||
495 | { | ||
496 | |||
497 | /* | ||
498 | * We can have inodes enter reclaim after we've shut down the syncd | ||
499 | * workqueue during unmount, so don't allow reclaim work to be queued | ||
500 | * during unmount. | ||
501 | */ | ||
502 | if (!(mp->m_super->s_flags & MS_ACTIVE)) | ||
503 | return; | ||
504 | |||
505 | rcu_read_lock(); | ||
506 | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { | ||
507 | queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work, | ||
508 | msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); | ||
509 | } | ||
510 | rcu_read_unlock(); | ||
511 | } | ||
512 | |||
513 | /* | ||
514 | * This is a fast pass over the inode cache to try to get reclaim moving on as | ||
515 | * many inodes as possible in a short period of time. It kicks itself every few | ||
516 | * seconds, as well as being kicked by the inode cache shrinker when memory | ||
517 | * goes low. It scans as quickly as possible avoiding locked inodes or those | ||
518 | * already being flushed, and once done schedules a future pass. | ||
519 | */ | ||
520 | STATIC void | ||
521 | xfs_reclaim_worker( | ||
522 | struct work_struct *work) | ||
523 | { | ||
524 | struct xfs_mount *mp = container_of(to_delayed_work(work), | ||
525 | struct xfs_mount, m_reclaim_work); | ||
526 | |||
527 | xfs_reclaim_inodes(mp, SYNC_TRYLOCK); | ||
528 | xfs_syncd_queue_reclaim(mp); | ||
529 | } | ||
530 | |||
531 | /* | ||
532 | * Flush delayed allocate data, attempting to free up reserved space | ||
533 | * from existing allocations. At this point a new allocation attempt | ||
534 | * has failed with ENOSPC and we are in the process of scratching our | ||
535 | * heads, looking about for more room. | ||
536 | * | ||
537 | * Queue a new data flush if there isn't one already in progress and | ||
538 | * wait for completion of the flush. This means that we only ever have one | ||
539 | * inode flush in progress no matter how many ENOSPC events are occurring and | ||
540 | * so will prevent the system from bogging down due to every concurrent | ||
541 | * ENOSPC event scanning all the active inodes in the system for writeback. | ||
542 | */ | ||
543 | void | ||
544 | xfs_flush_inodes( | ||
545 | struct xfs_inode *ip) | ||
546 | { | ||
547 | struct xfs_mount *mp = ip->i_mount; | ||
548 | |||
549 | queue_work(xfs_syncd_wq, &mp->m_flush_work); | ||
550 | flush_work_sync(&mp->m_flush_work); | ||
551 | } | ||
552 | |||
553 | STATIC void | ||
554 | xfs_flush_worker( | ||
555 | struct work_struct *work) | ||
556 | { | ||
557 | struct xfs_mount *mp = container_of(work, | ||
558 | struct xfs_mount, m_flush_work); | ||
559 | |||
560 | xfs_sync_data(mp, SYNC_TRYLOCK); | ||
561 | xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT); | ||
562 | } | ||
563 | |||
564 | int | ||
565 | xfs_syncd_init( | ||
566 | struct xfs_mount *mp) | ||
567 | { | ||
568 | INIT_WORK(&mp->m_flush_work, xfs_flush_worker); | ||
569 | INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker); | ||
570 | INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); | ||
571 | |||
572 | xfs_syncd_queue_sync(mp); | ||
573 | xfs_syncd_queue_reclaim(mp); | ||
574 | |||
575 | return 0; | ||
576 | } | ||
577 | |||
578 | void | ||
579 | xfs_syncd_stop( | ||
580 | struct xfs_mount *mp) | ||
581 | { | ||
582 | cancel_delayed_work_sync(&mp->m_sync_work); | ||
583 | cancel_delayed_work_sync(&mp->m_reclaim_work); | ||
584 | cancel_work_sync(&mp->m_flush_work); | ||
585 | } | ||
586 | |||
587 | void | ||
588 | __xfs_inode_set_reclaim_tag( | ||
589 | struct xfs_perag *pag, | ||
590 | struct xfs_inode *ip) | ||
591 | { | ||
592 | radix_tree_tag_set(&pag->pag_ici_root, | ||
593 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), | ||
594 | XFS_ICI_RECLAIM_TAG); | ||
595 | |||
596 | if (!pag->pag_ici_reclaimable) { | ||
597 | /* propagate the reclaim tag up into the perag radix tree */ | ||
598 | spin_lock(&ip->i_mount->m_perag_lock); | ||
599 | radix_tree_tag_set(&ip->i_mount->m_perag_tree, | ||
600 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | ||
601 | XFS_ICI_RECLAIM_TAG); | ||
602 | spin_unlock(&ip->i_mount->m_perag_lock); | ||
603 | |||
604 | /* schedule periodic background inode reclaim */ | ||
605 | xfs_syncd_queue_reclaim(ip->i_mount); | ||
606 | |||
607 | trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, | ||
608 | -1, _RET_IP_); | ||
609 | } | ||
610 | pag->pag_ici_reclaimable++; | ||
611 | } | ||
612 | |||
613 | /* | ||
614 | * We set the inode flag atomically with the radix tree tag. | ||
615 | * Once we get tag lookups on the radix tree, this inode flag | ||
616 | * can go away. | ||
617 | */ | ||
618 | void | ||
619 | xfs_inode_set_reclaim_tag( | ||
620 | xfs_inode_t *ip) | ||
621 | { | ||
622 | struct xfs_mount *mp = ip->i_mount; | ||
623 | struct xfs_perag *pag; | ||
624 | |||
625 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | ||
626 | spin_lock(&pag->pag_ici_lock); | ||
627 | spin_lock(&ip->i_flags_lock); | ||
628 | __xfs_inode_set_reclaim_tag(pag, ip); | ||
629 | __xfs_iflags_set(ip, XFS_IRECLAIMABLE); | ||
630 | spin_unlock(&ip->i_flags_lock); | ||
631 | spin_unlock(&pag->pag_ici_lock); | ||
632 | xfs_perag_put(pag); | ||
633 | } | ||
634 | |||
635 | STATIC void | ||
636 | __xfs_inode_clear_reclaim( | ||
637 | xfs_perag_t *pag, | ||
638 | xfs_inode_t *ip) | ||
639 | { | ||
640 | pag->pag_ici_reclaimable--; | ||
641 | if (!pag->pag_ici_reclaimable) { | ||
642 | /* clear the reclaim tag from the perag radix tree */ | ||
643 | spin_lock(&ip->i_mount->m_perag_lock); | ||
644 | radix_tree_tag_clear(&ip->i_mount->m_perag_tree, | ||
645 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | ||
646 | XFS_ICI_RECLAIM_TAG); | ||
647 | spin_unlock(&ip->i_mount->m_perag_lock); | ||
648 | trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, | ||
649 | -1, _RET_IP_); | ||
650 | } | ||
651 | } | ||
652 | |||
653 | void | ||
654 | __xfs_inode_clear_reclaim_tag( | ||
655 | xfs_mount_t *mp, | ||
656 | xfs_perag_t *pag, | ||
657 | xfs_inode_t *ip) | ||
658 | { | ||
659 | radix_tree_tag_clear(&pag->pag_ici_root, | ||
660 | XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); | ||
661 | __xfs_inode_clear_reclaim(pag, ip); | ||
662 | } | ||
663 | |||
664 | /* | ||
665 | * Grab the inode for reclaim exclusively. | ||
666 | * Return 0 if we grabbed it, non-zero otherwise. | ||
667 | */ | ||
668 | STATIC int | ||
669 | xfs_reclaim_inode_grab( | ||
670 | struct xfs_inode *ip, | ||
671 | int flags) | ||
672 | { | ||
673 | ASSERT(rcu_read_lock_held()); | ||
674 | |||
675 | /* quick check for stale RCU freed inode */ | ||
676 | if (!ip->i_ino) | ||
677 | return 1; | ||
678 | |||
679 | /* | ||
680 | * do some unlocked checks first to avoid unnecessary lock traffic. | ||
681 | * The first is a flush lock check, the second is a already in reclaim | ||
682 | * check. Only do these checks if we are not going to block on locks. | ||
683 | */ | ||
684 | if ((flags & SYNC_TRYLOCK) && | ||
685 | (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) { | ||
686 | return 1; | ||
687 | } | ||
688 | |||
689 | /* | ||
690 | * The radix tree lock here protects a thread in xfs_iget from racing | ||
691 | * with us starting reclaim on the inode. Once we have the | ||
692 | * XFS_IRECLAIM flag set it will not touch us. | ||
693 | * | ||
694 | * Due to RCU lookup, we may find inodes that have been freed and only | ||
695 | * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that | ||
696 | * aren't candidates for reclaim at all, so we must check the | ||
697 | * XFS_IRECLAIMABLE is set first before proceeding to reclaim. | ||
698 | */ | ||
699 | spin_lock(&ip->i_flags_lock); | ||
700 | if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || | ||
701 | __xfs_iflags_test(ip, XFS_IRECLAIM)) { | ||
702 | /* not a reclaim candidate. */ | ||
703 | spin_unlock(&ip->i_flags_lock); | ||
704 | return 1; | ||
705 | } | ||
706 | __xfs_iflags_set(ip, XFS_IRECLAIM); | ||
707 | spin_unlock(&ip->i_flags_lock); | ||
708 | return 0; | ||
709 | } | ||
710 | |||
711 | /* | ||
712 | * Inodes in different states need to be treated differently, and the return | ||
713 | * value of xfs_iflush is not sufficient to get this right. The following table | ||
714 | * lists the inode states and the reclaim actions necessary for non-blocking | ||
715 | * reclaim: | ||
716 | * | ||
717 | * | ||
718 | * inode state iflush ret required action | ||
719 | * --------------- ---------- --------------- | ||
720 | * bad - reclaim | ||
721 | * shutdown EIO unpin and reclaim | ||
722 | * clean, unpinned 0 reclaim | ||
723 | * stale, unpinned 0 reclaim | ||
724 | * clean, pinned(*) 0 requeue | ||
725 | * stale, pinned EAGAIN requeue | ||
726 | * dirty, delwri ok 0 requeue | ||
727 | * dirty, delwri blocked EAGAIN requeue | ||
728 | * dirty, sync flush 0 reclaim | ||
729 | * | ||
730 | * (*) dgc: I don't think the clean, pinned state is possible but it gets | ||
731 | * handled anyway given the order of checks implemented. | ||
732 | * | ||
733 | * As can be seen from the table, the return value of xfs_iflush() is not | ||
734 | * sufficient to correctly decide the reclaim action here. The checks in | ||
735 | * xfs_iflush() might look like duplicates, but they are not. | ||
736 | * | ||
737 | * Also, because we get the flush lock first, we know that any inode that has | ||
738 | * been flushed delwri has had the flush completed by the time we check that | ||
739 | * the inode is clean. The clean inode check needs to be done before flushing | ||
740 | * the inode delwri otherwise we would loop forever requeuing clean inodes as | ||
741 | * we cannot tell apart a successful delwri flush and a clean inode from the | ||
742 | * return value of xfs_iflush(). | ||
743 | * | ||
744 | * Note that because the inode is flushed delayed write by background | ||
745 | * writeback, the flush lock may already be held here and waiting on it can | ||
746 | * result in very long latencies. Hence for sync reclaims, where we wait on the | ||
747 | * flush lock, the caller should push out delayed write inodes first before | ||
748 | * trying to reclaim them to minimise the amount of time spent waiting. For | ||
749 | * background relaim, we just requeue the inode for the next pass. | ||
750 | * | ||
751 | * Hence the order of actions after gaining the locks should be: | ||
752 | * bad => reclaim | ||
753 | * shutdown => unpin and reclaim | ||
754 | * pinned, delwri => requeue | ||
755 | * pinned, sync => unpin | ||
756 | * stale => reclaim | ||
757 | * clean => reclaim | ||
758 | * dirty, delwri => flush and requeue | ||
759 | * dirty, sync => flush, wait and reclaim | ||
760 | */ | ||
761 | STATIC int | ||
762 | xfs_reclaim_inode( | ||
763 | struct xfs_inode *ip, | ||
764 | struct xfs_perag *pag, | ||
765 | int sync_mode) | ||
766 | { | ||
767 | int error; | ||
768 | |||
769 | restart: | ||
770 | error = 0; | ||
771 | xfs_ilock(ip, XFS_ILOCK_EXCL); | ||
772 | if (!xfs_iflock_nowait(ip)) { | ||
773 | if (!(sync_mode & SYNC_WAIT)) | ||
774 | goto out; | ||
775 | xfs_iflock(ip); | ||
776 | } | ||
777 | |||
778 | if (is_bad_inode(VFS_I(ip))) | ||
779 | goto reclaim; | ||
780 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { | ||
781 | xfs_iunpin_wait(ip); | ||
782 | goto reclaim; | ||
783 | } | ||
784 | if (xfs_ipincount(ip)) { | ||
785 | if (!(sync_mode & SYNC_WAIT)) { | ||
786 | xfs_ifunlock(ip); | ||
787 | goto out; | ||
788 | } | ||
789 | xfs_iunpin_wait(ip); | ||
790 | } | ||
791 | if (xfs_iflags_test(ip, XFS_ISTALE)) | ||
792 | goto reclaim; | ||
793 | if (xfs_inode_clean(ip)) | ||
794 | goto reclaim; | ||
795 | |||
796 | /* | ||
797 | * Now we have an inode that needs flushing. | ||
798 | * | ||
799 | * We do a nonblocking flush here even if we are doing a SYNC_WAIT | ||
800 | * reclaim as we can deadlock with inode cluster removal. | ||
801 | * xfs_ifree_cluster() can lock the inode buffer before it locks the | ||
802 | * ip->i_lock, and we are doing the exact opposite here. As a result, | ||
803 | * doing a blocking xfs_itobp() to get the cluster buffer will result | ||
804 | * in an ABBA deadlock with xfs_ifree_cluster(). | ||
805 | * | ||
806 | * As xfs_ifree_cluser() must gather all inodes that are active in the | ||
807 | * cache to mark them stale, if we hit this case we don't actually want | ||
808 | * to do IO here - we want the inode marked stale so we can simply | ||
809 | * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush, | ||
810 | * just unlock the inode, back off and try again. Hopefully the next | ||
811 | * pass through will see the stale flag set on the inode. | ||
812 | */ | ||
813 | error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode); | ||
814 | if (sync_mode & SYNC_WAIT) { | ||
815 | if (error == EAGAIN) { | ||
816 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
817 | /* backoff longer than in xfs_ifree_cluster */ | ||
818 | delay(2); | ||
819 | goto restart; | ||
820 | } | ||
821 | xfs_iflock(ip); | ||
822 | goto reclaim; | ||
823 | } | ||
824 | |||
825 | /* | ||
826 | * When we have to flush an inode but don't have SYNC_WAIT set, we | ||
827 | * flush the inode out using a delwri buffer and wait for the next | ||
828 | * call into reclaim to find it in a clean state instead of waiting for | ||
829 | * it now. We also don't return errors here - if the error is transient | ||
830 | * then the next reclaim pass will flush the inode, and if the error | ||
831 | * is permanent then the next sync reclaim will reclaim the inode and | ||
832 | * pass on the error. | ||
833 | */ | ||
834 | if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) { | ||
835 | xfs_warn(ip->i_mount, | ||
836 | "inode 0x%llx background reclaim flush failed with %d", | ||
837 | (long long)ip->i_ino, error); | ||
838 | } | ||
839 | out: | ||
840 | xfs_iflags_clear(ip, XFS_IRECLAIM); | ||
841 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
842 | /* | ||
843 | * We could return EAGAIN here to make reclaim rescan the inode tree in | ||
844 | * a short while. However, this just burns CPU time scanning the tree | ||
845 | * waiting for IO to complete and xfssyncd never goes back to the idle | ||
846 | * state. Instead, return 0 to let the next scheduled background reclaim | ||
847 | * attempt to reclaim the inode again. | ||
848 | */ | ||
849 | return 0; | ||
850 | |||
851 | reclaim: | ||
852 | xfs_ifunlock(ip); | ||
853 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
854 | |||
855 | XFS_STATS_INC(xs_ig_reclaims); | ||
856 | /* | ||
857 | * Remove the inode from the per-AG radix tree. | ||
858 | * | ||
859 | * Because radix_tree_delete won't complain even if the item was never | ||
860 | * added to the tree assert that it's been there before to catch | ||
861 | * problems with the inode life time early on. | ||
862 | */ | ||
863 | spin_lock(&pag->pag_ici_lock); | ||
864 | if (!radix_tree_delete(&pag->pag_ici_root, | ||
865 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) | ||
866 | ASSERT(0); | ||
867 | __xfs_inode_clear_reclaim(pag, ip); | ||
868 | spin_unlock(&pag->pag_ici_lock); | ||
869 | |||
870 | /* | ||
871 | * Here we do an (almost) spurious inode lock in order to coordinate | ||
872 | * with inode cache radix tree lookups. This is because the lookup | ||
873 | * can reference the inodes in the cache without taking references. | ||
874 | * | ||
875 | * We make that OK here by ensuring that we wait until the inode is | ||
876 | * unlocked after the lookup before we go ahead and free it. We get | ||
877 | * both the ilock and the iolock because the code may need to drop the | ||
878 | * ilock one but will still hold the iolock. | ||
879 | */ | ||
880 | xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | ||
881 | xfs_qm_dqdetach(ip); | ||
882 | xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | ||
883 | |||
884 | xfs_inode_free(ip); | ||
885 | return error; | ||
886 | |||
887 | } | ||
888 | |||
889 | /* | ||
890 | * Walk the AGs and reclaim the inodes in them. Even if the filesystem is | ||
891 | * corrupted, we still want to try to reclaim all the inodes. If we don't, | ||
892 | * then a shut down during filesystem unmount reclaim walk leak all the | ||
893 | * unreclaimed inodes. | ||
894 | */ | ||
895 | int | ||
896 | xfs_reclaim_inodes_ag( | ||
897 | struct xfs_mount *mp, | ||
898 | int flags, | ||
899 | int *nr_to_scan) | ||
900 | { | ||
901 | struct xfs_perag *pag; | ||
902 | int error = 0; | ||
903 | int last_error = 0; | ||
904 | xfs_agnumber_t ag; | ||
905 | int trylock = flags & SYNC_TRYLOCK; | ||
906 | int skipped; | ||
907 | |||
908 | restart: | ||
909 | ag = 0; | ||
910 | skipped = 0; | ||
911 | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | ||
912 | unsigned long first_index = 0; | ||
913 | int done = 0; | ||
914 | int nr_found = 0; | ||
915 | |||
916 | ag = pag->pag_agno + 1; | ||
917 | |||
918 | if (trylock) { | ||
919 | if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { | ||
920 | skipped++; | ||
921 | xfs_perag_put(pag); | ||
922 | continue; | ||
923 | } | ||
924 | first_index = pag->pag_ici_reclaim_cursor; | ||
925 | } else | ||
926 | mutex_lock(&pag->pag_ici_reclaim_lock); | ||
927 | |||
928 | do { | ||
929 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | ||
930 | int i; | ||
931 | |||
932 | rcu_read_lock(); | ||
933 | nr_found = radix_tree_gang_lookup_tag( | ||
934 | &pag->pag_ici_root, | ||
935 | (void **)batch, first_index, | ||
936 | XFS_LOOKUP_BATCH, | ||
937 | XFS_ICI_RECLAIM_TAG); | ||
938 | if (!nr_found) { | ||
939 | done = 1; | ||
940 | rcu_read_unlock(); | ||
941 | break; | ||
942 | } | ||
943 | |||
944 | /* | ||
945 | * Grab the inodes before we drop the lock. if we found | ||
946 | * nothing, nr == 0 and the loop will be skipped. | ||
947 | */ | ||
948 | for (i = 0; i < nr_found; i++) { | ||
949 | struct xfs_inode *ip = batch[i]; | ||
950 | |||
951 | if (done || xfs_reclaim_inode_grab(ip, flags)) | ||
952 | batch[i] = NULL; | ||
953 | |||
954 | /* | ||
955 | * Update the index for the next lookup. Catch | ||
956 | * overflows into the next AG range which can | ||
957 | * occur if we have inodes in the last block of | ||
958 | * the AG and we are currently pointing to the | ||
959 | * last inode. | ||
960 | * | ||
961 | * Because we may see inodes that are from the | ||
962 | * wrong AG due to RCU freeing and | ||
963 | * reallocation, only update the index if it | ||
964 | * lies in this AG. It was a race that lead us | ||
965 | * to see this inode, so another lookup from | ||
966 | * the same index will not find it again. | ||
967 | */ | ||
968 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != | ||
969 | pag->pag_agno) | ||
970 | continue; | ||
971 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | ||
972 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | ||
973 | done = 1; | ||
974 | } | ||
975 | |||
976 | /* unlock now we've grabbed the inodes. */ | ||
977 | rcu_read_unlock(); | ||
978 | |||
979 | for (i = 0; i < nr_found; i++) { | ||
980 | if (!batch[i]) | ||
981 | continue; | ||
982 | error = xfs_reclaim_inode(batch[i], pag, flags); | ||
983 | if (error && last_error != EFSCORRUPTED) | ||
984 | last_error = error; | ||
985 | } | ||
986 | |||
987 | *nr_to_scan -= XFS_LOOKUP_BATCH; | ||
988 | |||
989 | cond_resched(); | ||
990 | |||
991 | } while (nr_found && !done && *nr_to_scan > 0); | ||
992 | |||
993 | if (trylock && !done) | ||
994 | pag->pag_ici_reclaim_cursor = first_index; | ||
995 | else | ||
996 | pag->pag_ici_reclaim_cursor = 0; | ||
997 | mutex_unlock(&pag->pag_ici_reclaim_lock); | ||
998 | xfs_perag_put(pag); | ||
999 | } | ||
1000 | |||
1001 | /* | ||
1002 | * if we skipped any AG, and we still have scan count remaining, do | ||
1003 | * another pass this time using blocking reclaim semantics (i.e | ||
1004 | * waiting on the reclaim locks and ignoring the reclaim cursors). This | ||
1005 | * ensure that when we get more reclaimers than AGs we block rather | ||
1006 | * than spin trying to execute reclaim. | ||
1007 | */ | ||
1008 | if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { | ||
1009 | trylock = 0; | ||
1010 | goto restart; | ||
1011 | } | ||
1012 | return XFS_ERROR(last_error); | ||
1013 | } | ||
1014 | |||
1015 | int | ||
1016 | xfs_reclaim_inodes( | ||
1017 | xfs_mount_t *mp, | ||
1018 | int mode) | ||
1019 | { | ||
1020 | int nr_to_scan = INT_MAX; | ||
1021 | |||
1022 | return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); | ||
1023 | } | ||
1024 | |||
1025 | /* | ||
1026 | * Scan a certain number of inodes for reclaim. | ||
1027 | * | ||
1028 | * When called we make sure that there is a background (fast) inode reclaim in | ||
1029 | * progress, while we will throttle the speed of reclaim via doing synchronous | ||
1030 | * reclaim of inodes. That means if we come across dirty inodes, we wait for | ||
1031 | * them to be cleaned, which we hope will not be very long due to the | ||
1032 | * background walker having already kicked the IO off on those dirty inodes. | ||
1033 | */ | ||
1034 | void | ||
1035 | xfs_reclaim_inodes_nr( | ||
1036 | struct xfs_mount *mp, | ||
1037 | int nr_to_scan) | ||
1038 | { | ||
1039 | /* kick background reclaimer and push the AIL */ | ||
1040 | xfs_syncd_queue_reclaim(mp); | ||
1041 | xfs_ail_push_all(mp->m_ail); | ||
1042 | |||
1043 | xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); | ||
1044 | } | ||
1045 | |||
1046 | /* | ||
1047 | * Return the number of reclaimable inodes in the filesystem for | ||
1048 | * the shrinker to determine how much to reclaim. | ||
1049 | */ | ||
1050 | int | ||
1051 | xfs_reclaim_inodes_count( | ||
1052 | struct xfs_mount *mp) | ||
1053 | { | ||
1054 | struct xfs_perag *pag; | ||
1055 | xfs_agnumber_t ag = 0; | ||
1056 | int reclaimable = 0; | ||
1057 | |||
1058 | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | ||
1059 | ag = pag->pag_agno + 1; | ||
1060 | reclaimable += pag->pag_ici_reclaimable; | ||
1061 | xfs_perag_put(pag); | ||
1062 | } | ||
1063 | return reclaimable; | ||
1064 | } | ||
1065 | |||