diff options
Diffstat (limited to 'fs/ubifs/lpt_commit.c')
-rw-r--r-- | fs/ubifs/lpt_commit.c | 1648 |
1 files changed, 1648 insertions, 0 deletions
diff --git a/fs/ubifs/lpt_commit.c b/fs/ubifs/lpt_commit.c new file mode 100644 index 00000000000..5f0b83e20af --- /dev/null +++ b/fs/ubifs/lpt_commit.c | |||
@@ -0,0 +1,1648 @@ | |||
1 | /* | ||
2 | * This file is part of UBIFS. | ||
3 | * | ||
4 | * Copyright (C) 2006-2008 Nokia Corporation. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify it | ||
7 | * under the terms of the GNU General Public License version 2 as published by | ||
8 | * the Free Software Foundation. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | * more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License along with | ||
16 | * this program; if not, write to the Free Software Foundation, Inc., 51 | ||
17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
18 | * | ||
19 | * Authors: Adrian Hunter | ||
20 | * Artem Bityutskiy (Битюцкий Артём) | ||
21 | */ | ||
22 | |||
23 | /* | ||
24 | * This file implements commit-related functionality of the LEB properties | ||
25 | * subsystem. | ||
26 | */ | ||
27 | |||
28 | #include <linux/crc16.h> | ||
29 | #include "ubifs.h" | ||
30 | |||
31 | /** | ||
32 | * first_dirty_cnode - find first dirty cnode. | ||
33 | * @c: UBIFS file-system description object | ||
34 | * @nnode: nnode at which to start | ||
35 | * | ||
36 | * This function returns the first dirty cnode or %NULL if there is not one. | ||
37 | */ | ||
38 | static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode) | ||
39 | { | ||
40 | ubifs_assert(nnode); | ||
41 | while (1) { | ||
42 | int i, cont = 0; | ||
43 | |||
44 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | ||
45 | struct ubifs_cnode *cnode; | ||
46 | |||
47 | cnode = nnode->nbranch[i].cnode; | ||
48 | if (cnode && | ||
49 | test_bit(DIRTY_CNODE, &cnode->flags)) { | ||
50 | if (cnode->level == 0) | ||
51 | return cnode; | ||
52 | nnode = (struct ubifs_nnode *)cnode; | ||
53 | cont = 1; | ||
54 | break; | ||
55 | } | ||
56 | } | ||
57 | if (!cont) | ||
58 | return (struct ubifs_cnode *)nnode; | ||
59 | } | ||
60 | } | ||
61 | |||
62 | /** | ||
63 | * next_dirty_cnode - find next dirty cnode. | ||
64 | * @cnode: cnode from which to begin searching | ||
65 | * | ||
66 | * This function returns the next dirty cnode or %NULL if there is not one. | ||
67 | */ | ||
68 | static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode) | ||
69 | { | ||
70 | struct ubifs_nnode *nnode; | ||
71 | int i; | ||
72 | |||
73 | ubifs_assert(cnode); | ||
74 | nnode = cnode->parent; | ||
75 | if (!nnode) | ||
76 | return NULL; | ||
77 | for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) { | ||
78 | cnode = nnode->nbranch[i].cnode; | ||
79 | if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) { | ||
80 | if (cnode->level == 0) | ||
81 | return cnode; /* cnode is a pnode */ | ||
82 | /* cnode is a nnode */ | ||
83 | return first_dirty_cnode((struct ubifs_nnode *)cnode); | ||
84 | } | ||
85 | } | ||
86 | return (struct ubifs_cnode *)nnode; | ||
87 | } | ||
88 | |||
89 | /** | ||
90 | * get_cnodes_to_commit - create list of dirty cnodes to commit. | ||
91 | * @c: UBIFS file-system description object | ||
92 | * | ||
93 | * This function returns the number of cnodes to commit. | ||
94 | */ | ||
95 | static int get_cnodes_to_commit(struct ubifs_info *c) | ||
96 | { | ||
97 | struct ubifs_cnode *cnode, *cnext; | ||
98 | int cnt = 0; | ||
99 | |||
100 | if (!c->nroot) | ||
101 | return 0; | ||
102 | |||
103 | if (!test_bit(DIRTY_CNODE, &c->nroot->flags)) | ||
104 | return 0; | ||
105 | |||
106 | c->lpt_cnext = first_dirty_cnode(c->nroot); | ||
107 | cnode = c->lpt_cnext; | ||
108 | if (!cnode) | ||
109 | return 0; | ||
110 | cnt += 1; | ||
111 | while (1) { | ||
112 | ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags)); | ||
113 | __set_bit(COW_ZNODE, &cnode->flags); | ||
114 | cnext = next_dirty_cnode(cnode); | ||
115 | if (!cnext) { | ||
116 | cnode->cnext = c->lpt_cnext; | ||
117 | break; | ||
118 | } | ||
119 | cnode->cnext = cnext; | ||
120 | cnode = cnext; | ||
121 | cnt += 1; | ||
122 | } | ||
123 | dbg_cmt("committing %d cnodes", cnt); | ||
124 | dbg_lp("committing %d cnodes", cnt); | ||
125 | ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt); | ||
126 | return cnt; | ||
127 | } | ||
128 | |||
129 | /** | ||
130 | * upd_ltab - update LPT LEB properties. | ||
131 | * @c: UBIFS file-system description object | ||
132 | * @lnum: LEB number | ||
133 | * @free: amount of free space | ||
134 | * @dirty: amount of dirty space to add | ||
135 | */ | ||
136 | static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty) | ||
137 | { | ||
138 | dbg_lp("LEB %d free %d dirty %d to %d +%d", | ||
139 | lnum, c->ltab[lnum - c->lpt_first].free, | ||
140 | c->ltab[lnum - c->lpt_first].dirty, free, dirty); | ||
141 | ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); | ||
142 | c->ltab[lnum - c->lpt_first].free = free; | ||
143 | c->ltab[lnum - c->lpt_first].dirty += dirty; | ||
144 | } | ||
145 | |||
146 | /** | ||
147 | * alloc_lpt_leb - allocate an LPT LEB that is empty. | ||
148 | * @c: UBIFS file-system description object | ||
149 | * @lnum: LEB number is passed and returned here | ||
150 | * | ||
151 | * This function finds the next empty LEB in the ltab starting from @lnum. If a | ||
152 | * an empty LEB is found it is returned in @lnum and the function returns %0. | ||
153 | * Otherwise the function returns -ENOSPC. Note however, that LPT is designed | ||
154 | * never to run out of space. | ||
155 | */ | ||
156 | static int alloc_lpt_leb(struct ubifs_info *c, int *lnum) | ||
157 | { | ||
158 | int i, n; | ||
159 | |||
160 | n = *lnum - c->lpt_first + 1; | ||
161 | for (i = n; i < c->lpt_lebs; i++) { | ||
162 | if (c->ltab[i].tgc || c->ltab[i].cmt) | ||
163 | continue; | ||
164 | if (c->ltab[i].free == c->leb_size) { | ||
165 | c->ltab[i].cmt = 1; | ||
166 | *lnum = i + c->lpt_first; | ||
167 | return 0; | ||
168 | } | ||
169 | } | ||
170 | |||
171 | for (i = 0; i < n; i++) { | ||
172 | if (c->ltab[i].tgc || c->ltab[i].cmt) | ||
173 | continue; | ||
174 | if (c->ltab[i].free == c->leb_size) { | ||
175 | c->ltab[i].cmt = 1; | ||
176 | *lnum = i + c->lpt_first; | ||
177 | return 0; | ||
178 | } | ||
179 | } | ||
180 | dbg_err("last LEB %d", *lnum); | ||
181 | dump_stack(); | ||
182 | return -ENOSPC; | ||
183 | } | ||
184 | |||
185 | /** | ||
186 | * layout_cnodes - layout cnodes for commit. | ||
187 | * @c: UBIFS file-system description object | ||
188 | * | ||
189 | * This function returns %0 on success and a negative error code on failure. | ||
190 | */ | ||
191 | static int layout_cnodes(struct ubifs_info *c) | ||
192 | { | ||
193 | int lnum, offs, len, alen, done_lsave, done_ltab, err; | ||
194 | struct ubifs_cnode *cnode; | ||
195 | |||
196 | cnode = c->lpt_cnext; | ||
197 | if (!cnode) | ||
198 | return 0; | ||
199 | lnum = c->nhead_lnum; | ||
200 | offs = c->nhead_offs; | ||
201 | /* Try to place lsave and ltab nicely */ | ||
202 | done_lsave = !c->big_lpt; | ||
203 | done_ltab = 0; | ||
204 | if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { | ||
205 | done_lsave = 1; | ||
206 | c->lsave_lnum = lnum; | ||
207 | c->lsave_offs = offs; | ||
208 | offs += c->lsave_sz; | ||
209 | } | ||
210 | |||
211 | if (offs + c->ltab_sz <= c->leb_size) { | ||
212 | done_ltab = 1; | ||
213 | c->ltab_lnum = lnum; | ||
214 | c->ltab_offs = offs; | ||
215 | offs += c->ltab_sz; | ||
216 | } | ||
217 | |||
218 | do { | ||
219 | if (cnode->level) { | ||
220 | len = c->nnode_sz; | ||
221 | c->dirty_nn_cnt -= 1; | ||
222 | } else { | ||
223 | len = c->pnode_sz; | ||
224 | c->dirty_pn_cnt -= 1; | ||
225 | } | ||
226 | while (offs + len > c->leb_size) { | ||
227 | alen = ALIGN(offs, c->min_io_size); | ||
228 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | ||
229 | err = alloc_lpt_leb(c, &lnum); | ||
230 | if (err) | ||
231 | return err; | ||
232 | offs = 0; | ||
233 | ubifs_assert(lnum >= c->lpt_first && | ||
234 | lnum <= c->lpt_last); | ||
235 | /* Try to place lsave and ltab nicely */ | ||
236 | if (!done_lsave) { | ||
237 | done_lsave = 1; | ||
238 | c->lsave_lnum = lnum; | ||
239 | c->lsave_offs = offs; | ||
240 | offs += c->lsave_sz; | ||
241 | continue; | ||
242 | } | ||
243 | if (!done_ltab) { | ||
244 | done_ltab = 1; | ||
245 | c->ltab_lnum = lnum; | ||
246 | c->ltab_offs = offs; | ||
247 | offs += c->ltab_sz; | ||
248 | continue; | ||
249 | } | ||
250 | break; | ||
251 | } | ||
252 | if (cnode->parent) { | ||
253 | cnode->parent->nbranch[cnode->iip].lnum = lnum; | ||
254 | cnode->parent->nbranch[cnode->iip].offs = offs; | ||
255 | } else { | ||
256 | c->lpt_lnum = lnum; | ||
257 | c->lpt_offs = offs; | ||
258 | } | ||
259 | offs += len; | ||
260 | cnode = cnode->cnext; | ||
261 | } while (cnode && cnode != c->lpt_cnext); | ||
262 | |||
263 | /* Make sure to place LPT's save table */ | ||
264 | if (!done_lsave) { | ||
265 | if (offs + c->lsave_sz > c->leb_size) { | ||
266 | alen = ALIGN(offs, c->min_io_size); | ||
267 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | ||
268 | err = alloc_lpt_leb(c, &lnum); | ||
269 | if (err) | ||
270 | return err; | ||
271 | offs = 0; | ||
272 | ubifs_assert(lnum >= c->lpt_first && | ||
273 | lnum <= c->lpt_last); | ||
274 | } | ||
275 | done_lsave = 1; | ||
276 | c->lsave_lnum = lnum; | ||
277 | c->lsave_offs = offs; | ||
278 | offs += c->lsave_sz; | ||
279 | } | ||
280 | |||
281 | /* Make sure to place LPT's own lprops table */ | ||
282 | if (!done_ltab) { | ||
283 | if (offs + c->ltab_sz > c->leb_size) { | ||
284 | alen = ALIGN(offs, c->min_io_size); | ||
285 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | ||
286 | err = alloc_lpt_leb(c, &lnum); | ||
287 | if (err) | ||
288 | return err; | ||
289 | offs = 0; | ||
290 | ubifs_assert(lnum >= c->lpt_first && | ||
291 | lnum <= c->lpt_last); | ||
292 | } | ||
293 | done_ltab = 1; | ||
294 | c->ltab_lnum = lnum; | ||
295 | c->ltab_offs = offs; | ||
296 | offs += c->ltab_sz; | ||
297 | } | ||
298 | |||
299 | alen = ALIGN(offs, c->min_io_size); | ||
300 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | ||
301 | return 0; | ||
302 | } | ||
303 | |||
304 | /** | ||
305 | * realloc_lpt_leb - allocate an LPT LEB that is empty. | ||
306 | * @c: UBIFS file-system description object | ||
307 | * @lnum: LEB number is passed and returned here | ||
308 | * | ||
309 | * This function duplicates exactly the results of the function alloc_lpt_leb. | ||
310 | * It is used during end commit to reallocate the same LEB numbers that were | ||
311 | * allocated by alloc_lpt_leb during start commit. | ||
312 | * | ||
313 | * This function finds the next LEB that was allocated by the alloc_lpt_leb | ||
314 | * function starting from @lnum. If a LEB is found it is returned in @lnum and | ||
315 | * the function returns %0. Otherwise the function returns -ENOSPC. | ||
316 | * Note however, that LPT is designed never to run out of space. | ||
317 | */ | ||
318 | static int realloc_lpt_leb(struct ubifs_info *c, int *lnum) | ||
319 | { | ||
320 | int i, n; | ||
321 | |||
322 | n = *lnum - c->lpt_first + 1; | ||
323 | for (i = n; i < c->lpt_lebs; i++) | ||
324 | if (c->ltab[i].cmt) { | ||
325 | c->ltab[i].cmt = 0; | ||
326 | *lnum = i + c->lpt_first; | ||
327 | return 0; | ||
328 | } | ||
329 | |||
330 | for (i = 0; i < n; i++) | ||
331 | if (c->ltab[i].cmt) { | ||
332 | c->ltab[i].cmt = 0; | ||
333 | *lnum = i + c->lpt_first; | ||
334 | return 0; | ||
335 | } | ||
336 | dbg_err("last LEB %d", *lnum); | ||
337 | dump_stack(); | ||
338 | return -ENOSPC; | ||
339 | } | ||
340 | |||
341 | /** | ||
342 | * write_cnodes - write cnodes for commit. | ||
343 | * @c: UBIFS file-system description object | ||
344 | * | ||
345 | * This function returns %0 on success and a negative error code on failure. | ||
346 | */ | ||
347 | static int write_cnodes(struct ubifs_info *c) | ||
348 | { | ||
349 | int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave; | ||
350 | struct ubifs_cnode *cnode; | ||
351 | void *buf = c->lpt_buf; | ||
352 | |||
353 | cnode = c->lpt_cnext; | ||
354 | if (!cnode) | ||
355 | return 0; | ||
356 | lnum = c->nhead_lnum; | ||
357 | offs = c->nhead_offs; | ||
358 | from = offs; | ||
359 | /* Ensure empty LEB is unmapped */ | ||
360 | if (offs == 0) { | ||
361 | err = ubifs_leb_unmap(c, lnum); | ||
362 | if (err) | ||
363 | return err; | ||
364 | } | ||
365 | /* Try to place lsave and ltab nicely */ | ||
366 | done_lsave = !c->big_lpt; | ||
367 | done_ltab = 0; | ||
368 | if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { | ||
369 | done_lsave = 1; | ||
370 | ubifs_pack_lsave(c, buf + offs, c->lsave); | ||
371 | offs += c->lsave_sz; | ||
372 | } | ||
373 | |||
374 | if (offs + c->ltab_sz <= c->leb_size) { | ||
375 | done_ltab = 1; | ||
376 | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | ||
377 | offs += c->ltab_sz; | ||
378 | } | ||
379 | |||
380 | /* Loop for each cnode */ | ||
381 | do { | ||
382 | if (cnode->level) | ||
383 | len = c->nnode_sz; | ||
384 | else | ||
385 | len = c->pnode_sz; | ||
386 | while (offs + len > c->leb_size) { | ||
387 | wlen = offs - from; | ||
388 | if (wlen) { | ||
389 | alen = ALIGN(wlen, c->min_io_size); | ||
390 | memset(buf + offs, 0xff, alen - wlen); | ||
391 | err = ubifs_leb_write(c, lnum, buf + from, from, | ||
392 | alen, UBI_SHORTTERM); | ||
393 | if (err) | ||
394 | return err; | ||
395 | } | ||
396 | err = realloc_lpt_leb(c, &lnum); | ||
397 | if (err) | ||
398 | return err; | ||
399 | offs = 0; | ||
400 | from = 0; | ||
401 | ubifs_assert(lnum >= c->lpt_first && | ||
402 | lnum <= c->lpt_last); | ||
403 | err = ubifs_leb_unmap(c, lnum); | ||
404 | if (err) | ||
405 | return err; | ||
406 | /* Try to place lsave and ltab nicely */ | ||
407 | if (!done_lsave) { | ||
408 | done_lsave = 1; | ||
409 | ubifs_pack_lsave(c, buf + offs, c->lsave); | ||
410 | offs += c->lsave_sz; | ||
411 | continue; | ||
412 | } | ||
413 | if (!done_ltab) { | ||
414 | done_ltab = 1; | ||
415 | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | ||
416 | offs += c->ltab_sz; | ||
417 | continue; | ||
418 | } | ||
419 | break; | ||
420 | } | ||
421 | if (cnode->level) | ||
422 | ubifs_pack_nnode(c, buf + offs, | ||
423 | (struct ubifs_nnode *)cnode); | ||
424 | else | ||
425 | ubifs_pack_pnode(c, buf + offs, | ||
426 | (struct ubifs_pnode *)cnode); | ||
427 | /* | ||
428 | * The reason for the barriers is the same as in case of TNC. | ||
429 | * See comment in 'write_index()'. 'dirty_cow_nnode()' and | ||
430 | * 'dirty_cow_pnode()' are the functions for which this is | ||
431 | * important. | ||
432 | */ | ||
433 | clear_bit(DIRTY_CNODE, &cnode->flags); | ||
434 | smp_mb__before_clear_bit(); | ||
435 | clear_bit(COW_ZNODE, &cnode->flags); | ||
436 | smp_mb__after_clear_bit(); | ||
437 | offs += len; | ||
438 | cnode = cnode->cnext; | ||
439 | } while (cnode && cnode != c->lpt_cnext); | ||
440 | |||
441 | /* Make sure to place LPT's save table */ | ||
442 | if (!done_lsave) { | ||
443 | if (offs + c->lsave_sz > c->leb_size) { | ||
444 | wlen = offs - from; | ||
445 | alen = ALIGN(wlen, c->min_io_size); | ||
446 | memset(buf + offs, 0xff, alen - wlen); | ||
447 | err = ubifs_leb_write(c, lnum, buf + from, from, alen, | ||
448 | UBI_SHORTTERM); | ||
449 | if (err) | ||
450 | return err; | ||
451 | err = realloc_lpt_leb(c, &lnum); | ||
452 | if (err) | ||
453 | return err; | ||
454 | offs = 0; | ||
455 | ubifs_assert(lnum >= c->lpt_first && | ||
456 | lnum <= c->lpt_last); | ||
457 | err = ubifs_leb_unmap(c, lnum); | ||
458 | if (err) | ||
459 | return err; | ||
460 | } | ||
461 | done_lsave = 1; | ||
462 | ubifs_pack_lsave(c, buf + offs, c->lsave); | ||
463 | offs += c->lsave_sz; | ||
464 | } | ||
465 | |||
466 | /* Make sure to place LPT's own lprops table */ | ||
467 | if (!done_ltab) { | ||
468 | if (offs + c->ltab_sz > c->leb_size) { | ||
469 | wlen = offs - from; | ||
470 | alen = ALIGN(wlen, c->min_io_size); | ||
471 | memset(buf + offs, 0xff, alen - wlen); | ||
472 | err = ubifs_leb_write(c, lnum, buf + from, from, alen, | ||
473 | UBI_SHORTTERM); | ||
474 | if (err) | ||
475 | return err; | ||
476 | err = realloc_lpt_leb(c, &lnum); | ||
477 | if (err) | ||
478 | return err; | ||
479 | offs = 0; | ||
480 | ubifs_assert(lnum >= c->lpt_first && | ||
481 | lnum <= c->lpt_last); | ||
482 | err = ubifs_leb_unmap(c, lnum); | ||
483 | if (err) | ||
484 | return err; | ||
485 | } | ||
486 | done_ltab = 1; | ||
487 | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | ||
488 | offs += c->ltab_sz; | ||
489 | } | ||
490 | |||
491 | /* Write remaining data in buffer */ | ||
492 | wlen = offs - from; | ||
493 | alen = ALIGN(wlen, c->min_io_size); | ||
494 | memset(buf + offs, 0xff, alen - wlen); | ||
495 | err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM); | ||
496 | if (err) | ||
497 | return err; | ||
498 | c->nhead_lnum = lnum; | ||
499 | c->nhead_offs = ALIGN(offs, c->min_io_size); | ||
500 | |||
501 | dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); | ||
502 | dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); | ||
503 | dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); | ||
504 | if (c->big_lpt) | ||
505 | dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); | ||
506 | return 0; | ||
507 | } | ||
508 | |||
509 | /** | ||
510 | * next_pnode - find next pnode. | ||
511 | * @c: UBIFS file-system description object | ||
512 | * @pnode: pnode | ||
513 | * | ||
514 | * This function returns the next pnode or %NULL if there are no more pnodes. | ||
515 | */ | ||
516 | static struct ubifs_pnode *next_pnode(struct ubifs_info *c, | ||
517 | struct ubifs_pnode *pnode) | ||
518 | { | ||
519 | struct ubifs_nnode *nnode; | ||
520 | int iip; | ||
521 | |||
522 | /* Try to go right */ | ||
523 | nnode = pnode->parent; | ||
524 | iip = pnode->iip + 1; | ||
525 | if (iip < UBIFS_LPT_FANOUT) { | ||
526 | /* We assume here that LEB zero is never an LPT LEB */ | ||
527 | if (nnode->nbranch[iip].lnum) | ||
528 | return ubifs_get_pnode(c, nnode, iip); | ||
529 | else | ||
530 | return NULL; | ||
531 | } | ||
532 | |||
533 | /* Go up while can't go right */ | ||
534 | do { | ||
535 | iip = nnode->iip + 1; | ||
536 | nnode = nnode->parent; | ||
537 | if (!nnode) | ||
538 | return NULL; | ||
539 | /* We assume here that LEB zero is never an LPT LEB */ | ||
540 | } while (iip >= UBIFS_LPT_FANOUT || !nnode->nbranch[iip].lnum); | ||
541 | |||
542 | /* Go right */ | ||
543 | nnode = ubifs_get_nnode(c, nnode, iip); | ||
544 | if (IS_ERR(nnode)) | ||
545 | return (void *)nnode; | ||
546 | |||
547 | /* Go down to level 1 */ | ||
548 | while (nnode->level > 1) { | ||
549 | nnode = ubifs_get_nnode(c, nnode, 0); | ||
550 | if (IS_ERR(nnode)) | ||
551 | return (void *)nnode; | ||
552 | } | ||
553 | |||
554 | return ubifs_get_pnode(c, nnode, 0); | ||
555 | } | ||
556 | |||
557 | /** | ||
558 | * pnode_lookup - lookup a pnode in the LPT. | ||
559 | * @c: UBIFS file-system description object | ||
560 | * @i: pnode number (0 to main_lebs - 1) | ||
561 | * | ||
562 | * This function returns a pointer to the pnode on success or a negative | ||
563 | * error code on failure. | ||
564 | */ | ||
565 | static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i) | ||
566 | { | ||
567 | int err, h, iip, shft; | ||
568 | struct ubifs_nnode *nnode; | ||
569 | |||
570 | if (!c->nroot) { | ||
571 | err = ubifs_read_nnode(c, NULL, 0); | ||
572 | if (err) | ||
573 | return ERR_PTR(err); | ||
574 | } | ||
575 | i <<= UBIFS_LPT_FANOUT_SHIFT; | ||
576 | nnode = c->nroot; | ||
577 | shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; | ||
578 | for (h = 1; h < c->lpt_hght; h++) { | ||
579 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | ||
580 | shft -= UBIFS_LPT_FANOUT_SHIFT; | ||
581 | nnode = ubifs_get_nnode(c, nnode, iip); | ||
582 | if (IS_ERR(nnode)) | ||
583 | return ERR_PTR(PTR_ERR(nnode)); | ||
584 | } | ||
585 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | ||
586 | return ubifs_get_pnode(c, nnode, iip); | ||
587 | } | ||
588 | |||
589 | /** | ||
590 | * add_pnode_dirt - add dirty space to LPT LEB properties. | ||
591 | * @c: UBIFS file-system description object | ||
592 | * @pnode: pnode for which to add dirt | ||
593 | */ | ||
594 | static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) | ||
595 | { | ||
596 | ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, | ||
597 | c->pnode_sz); | ||
598 | } | ||
599 | |||
600 | /** | ||
601 | * do_make_pnode_dirty - mark a pnode dirty. | ||
602 | * @c: UBIFS file-system description object | ||
603 | * @pnode: pnode to mark dirty | ||
604 | */ | ||
605 | static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode) | ||
606 | { | ||
607 | /* Assumes cnext list is empty i.e. not called during commit */ | ||
608 | if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { | ||
609 | struct ubifs_nnode *nnode; | ||
610 | |||
611 | c->dirty_pn_cnt += 1; | ||
612 | add_pnode_dirt(c, pnode); | ||
613 | /* Mark parent and ancestors dirty too */ | ||
614 | nnode = pnode->parent; | ||
615 | while (nnode) { | ||
616 | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | ||
617 | c->dirty_nn_cnt += 1; | ||
618 | ubifs_add_nnode_dirt(c, nnode); | ||
619 | nnode = nnode->parent; | ||
620 | } else | ||
621 | break; | ||
622 | } | ||
623 | } | ||
624 | } | ||
625 | |||
626 | /** | ||
627 | * make_tree_dirty - mark the entire LEB properties tree dirty. | ||
628 | * @c: UBIFS file-system description object | ||
629 | * | ||
630 | * This function is used by the "small" LPT model to cause the entire LEB | ||
631 | * properties tree to be written. The "small" LPT model does not use LPT | ||
632 | * garbage collection because it is more efficient to write the entire tree | ||
633 | * (because it is small). | ||
634 | * | ||
635 | * This function returns %0 on success and a negative error code on failure. | ||
636 | */ | ||
637 | static int make_tree_dirty(struct ubifs_info *c) | ||
638 | { | ||
639 | struct ubifs_pnode *pnode; | ||
640 | |||
641 | pnode = pnode_lookup(c, 0); | ||
642 | while (pnode) { | ||
643 | do_make_pnode_dirty(c, pnode); | ||
644 | pnode = next_pnode(c, pnode); | ||
645 | if (IS_ERR(pnode)) | ||
646 | return PTR_ERR(pnode); | ||
647 | } | ||
648 | return 0; | ||
649 | } | ||
650 | |||
651 | /** | ||
652 | * need_write_all - determine if the LPT area is running out of free space. | ||
653 | * @c: UBIFS file-system description object | ||
654 | * | ||
655 | * This function returns %1 if the LPT area is running out of free space and %0 | ||
656 | * if it is not. | ||
657 | */ | ||
658 | static int need_write_all(struct ubifs_info *c) | ||
659 | { | ||
660 | long long free = 0; | ||
661 | int i; | ||
662 | |||
663 | for (i = 0; i < c->lpt_lebs; i++) { | ||
664 | if (i + c->lpt_first == c->nhead_lnum) | ||
665 | free += c->leb_size - c->nhead_offs; | ||
666 | else if (c->ltab[i].free == c->leb_size) | ||
667 | free += c->leb_size; | ||
668 | else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size) | ||
669 | free += c->leb_size; | ||
670 | } | ||
671 | /* Less than twice the size left */ | ||
672 | if (free <= c->lpt_sz * 2) | ||
673 | return 1; | ||
674 | return 0; | ||
675 | } | ||
676 | |||
677 | /** | ||
678 | * lpt_tgc_start - start trivial garbage collection of LPT LEBs. | ||
679 | * @c: UBIFS file-system description object | ||
680 | * | ||
681 | * LPT trivial garbage collection is where a LPT LEB contains only dirty and | ||
682 | * free space and so may be reused as soon as the next commit is completed. | ||
683 | * This function is called during start commit to mark LPT LEBs for trivial GC. | ||
684 | */ | ||
685 | static void lpt_tgc_start(struct ubifs_info *c) | ||
686 | { | ||
687 | int i; | ||
688 | |||
689 | for (i = 0; i < c->lpt_lebs; i++) { | ||
690 | if (i + c->lpt_first == c->nhead_lnum) | ||
691 | continue; | ||
692 | if (c->ltab[i].dirty > 0 && | ||
693 | c->ltab[i].free + c->ltab[i].dirty == c->leb_size) { | ||
694 | c->ltab[i].tgc = 1; | ||
695 | c->ltab[i].free = c->leb_size; | ||
696 | c->ltab[i].dirty = 0; | ||
697 | dbg_lp("LEB %d", i + c->lpt_first); | ||
698 | } | ||
699 | } | ||
700 | } | ||
701 | |||
702 | /** | ||
703 | * lpt_tgc_end - end trivial garbage collection of LPT LEBs. | ||
704 | * @c: UBIFS file-system description object | ||
705 | * | ||
706 | * LPT trivial garbage collection is where a LPT LEB contains only dirty and | ||
707 | * free space and so may be reused as soon as the next commit is completed. | ||
708 | * This function is called after the commit is completed (master node has been | ||
709 | * written) and unmaps LPT LEBs that were marked for trivial GC. | ||
710 | */ | ||
711 | static int lpt_tgc_end(struct ubifs_info *c) | ||
712 | { | ||
713 | int i, err; | ||
714 | |||
715 | for (i = 0; i < c->lpt_lebs; i++) | ||
716 | if (c->ltab[i].tgc) { | ||
717 | err = ubifs_leb_unmap(c, i + c->lpt_first); | ||
718 | if (err) | ||
719 | return err; | ||
720 | c->ltab[i].tgc = 0; | ||
721 | dbg_lp("LEB %d", i + c->lpt_first); | ||
722 | } | ||
723 | return 0; | ||
724 | } | ||
725 | |||
726 | /** | ||
727 | * populate_lsave - fill the lsave array with important LEB numbers. | ||
728 | * @c: the UBIFS file-system description object | ||
729 | * | ||
730 | * This function is only called for the "big" model. It records a small number | ||
731 | * of LEB numbers of important LEBs. Important LEBs are ones that are (from | ||
732 | * most important to least important): empty, freeable, freeable index, dirty | ||
733 | * index, dirty or free. Upon mount, we read this list of LEB numbers and bring | ||
734 | * their pnodes into memory. That will stop us from having to scan the LPT | ||
735 | * straight away. For the "small" model we assume that scanning the LPT is no | ||
736 | * big deal. | ||
737 | */ | ||
738 | static void populate_lsave(struct ubifs_info *c) | ||
739 | { | ||
740 | struct ubifs_lprops *lprops; | ||
741 | struct ubifs_lpt_heap *heap; | ||
742 | int i, cnt = 0; | ||
743 | |||
744 | ubifs_assert(c->big_lpt); | ||
745 | if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { | ||
746 | c->lpt_drty_flgs |= LSAVE_DIRTY; | ||
747 | ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); | ||
748 | } | ||
749 | list_for_each_entry(lprops, &c->empty_list, list) { | ||
750 | c->lsave[cnt++] = lprops->lnum; | ||
751 | if (cnt >= c->lsave_cnt) | ||
752 | return; | ||
753 | } | ||
754 | list_for_each_entry(lprops, &c->freeable_list, list) { | ||
755 | c->lsave[cnt++] = lprops->lnum; | ||
756 | if (cnt >= c->lsave_cnt) | ||
757 | return; | ||
758 | } | ||
759 | list_for_each_entry(lprops, &c->frdi_idx_list, list) { | ||
760 | c->lsave[cnt++] = lprops->lnum; | ||
761 | if (cnt >= c->lsave_cnt) | ||
762 | return; | ||
763 | } | ||
764 | heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; | ||
765 | for (i = 0; i < heap->cnt; i++) { | ||
766 | c->lsave[cnt++] = heap->arr[i]->lnum; | ||
767 | if (cnt >= c->lsave_cnt) | ||
768 | return; | ||
769 | } | ||
770 | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; | ||
771 | for (i = 0; i < heap->cnt; i++) { | ||
772 | c->lsave[cnt++] = heap->arr[i]->lnum; | ||
773 | if (cnt >= c->lsave_cnt) | ||
774 | return; | ||
775 | } | ||
776 | heap = &c->lpt_heap[LPROPS_FREE - 1]; | ||
777 | for (i = 0; i < heap->cnt; i++) { | ||
778 | c->lsave[cnt++] = heap->arr[i]->lnum; | ||
779 | if (cnt >= c->lsave_cnt) | ||
780 | return; | ||
781 | } | ||
782 | /* Fill it up completely */ | ||
783 | while (cnt < c->lsave_cnt) | ||
784 | c->lsave[cnt++] = c->main_first; | ||
785 | } | ||
786 | |||
787 | /** | ||
788 | * nnode_lookup - lookup a nnode in the LPT. | ||
789 | * @c: UBIFS file-system description object | ||
790 | * @i: nnode number | ||
791 | * | ||
792 | * This function returns a pointer to the nnode on success or a negative | ||
793 | * error code on failure. | ||
794 | */ | ||
795 | static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i) | ||
796 | { | ||
797 | int err, iip; | ||
798 | struct ubifs_nnode *nnode; | ||
799 | |||
800 | if (!c->nroot) { | ||
801 | err = ubifs_read_nnode(c, NULL, 0); | ||
802 | if (err) | ||
803 | return ERR_PTR(err); | ||
804 | } | ||
805 | nnode = c->nroot; | ||
806 | while (1) { | ||
807 | iip = i & (UBIFS_LPT_FANOUT - 1); | ||
808 | i >>= UBIFS_LPT_FANOUT_SHIFT; | ||
809 | if (!i) | ||
810 | break; | ||
811 | nnode = ubifs_get_nnode(c, nnode, iip); | ||
812 | if (IS_ERR(nnode)) | ||
813 | return nnode; | ||
814 | } | ||
815 | return nnode; | ||
816 | } | ||
817 | |||
818 | /** | ||
819 | * make_nnode_dirty - find a nnode and, if found, make it dirty. | ||
820 | * @c: UBIFS file-system description object | ||
821 | * @node_num: nnode number of nnode to make dirty | ||
822 | * @lnum: LEB number where nnode was written | ||
823 | * @offs: offset where nnode was written | ||
824 | * | ||
825 | * This function is used by LPT garbage collection. LPT garbage collection is | ||
826 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | ||
827 | * simply involves marking all the nodes in the LEB being garbage-collected as | ||
828 | * dirty. The dirty nodes are written next commit, after which the LEB is free | ||
829 | * to be reused. | ||
830 | * | ||
831 | * This function returns %0 on success and a negative error code on failure. | ||
832 | */ | ||
833 | static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum, | ||
834 | int offs) | ||
835 | { | ||
836 | struct ubifs_nnode *nnode; | ||
837 | |||
838 | nnode = nnode_lookup(c, node_num); | ||
839 | if (IS_ERR(nnode)) | ||
840 | return PTR_ERR(nnode); | ||
841 | if (nnode->parent) { | ||
842 | struct ubifs_nbranch *branch; | ||
843 | |||
844 | branch = &nnode->parent->nbranch[nnode->iip]; | ||
845 | if (branch->lnum != lnum || branch->offs != offs) | ||
846 | return 0; /* nnode is obsolete */ | ||
847 | } else if (c->lpt_lnum != lnum || c->lpt_offs != offs) | ||
848 | return 0; /* nnode is obsolete */ | ||
849 | /* Assumes cnext list is empty i.e. not called during commit */ | ||
850 | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | ||
851 | c->dirty_nn_cnt += 1; | ||
852 | ubifs_add_nnode_dirt(c, nnode); | ||
853 | /* Mark parent and ancestors dirty too */ | ||
854 | nnode = nnode->parent; | ||
855 | while (nnode) { | ||
856 | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | ||
857 | c->dirty_nn_cnt += 1; | ||
858 | ubifs_add_nnode_dirt(c, nnode); | ||
859 | nnode = nnode->parent; | ||
860 | } else | ||
861 | break; | ||
862 | } | ||
863 | } | ||
864 | return 0; | ||
865 | } | ||
866 | |||
867 | /** | ||
868 | * make_pnode_dirty - find a pnode and, if found, make it dirty. | ||
869 | * @c: UBIFS file-system description object | ||
870 | * @node_num: pnode number of pnode to make dirty | ||
871 | * @lnum: LEB number where pnode was written | ||
872 | * @offs: offset where pnode was written | ||
873 | * | ||
874 | * This function is used by LPT garbage collection. LPT garbage collection is | ||
875 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | ||
876 | * simply involves marking all the nodes in the LEB being garbage-collected as | ||
877 | * dirty. The dirty nodes are written next commit, after which the LEB is free | ||
878 | * to be reused. | ||
879 | * | ||
880 | * This function returns %0 on success and a negative error code on failure. | ||
881 | */ | ||
882 | static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum, | ||
883 | int offs) | ||
884 | { | ||
885 | struct ubifs_pnode *pnode; | ||
886 | struct ubifs_nbranch *branch; | ||
887 | |||
888 | pnode = pnode_lookup(c, node_num); | ||
889 | if (IS_ERR(pnode)) | ||
890 | return PTR_ERR(pnode); | ||
891 | branch = &pnode->parent->nbranch[pnode->iip]; | ||
892 | if (branch->lnum != lnum || branch->offs != offs) | ||
893 | return 0; | ||
894 | do_make_pnode_dirty(c, pnode); | ||
895 | return 0; | ||
896 | } | ||
897 | |||
898 | /** | ||
899 | * make_ltab_dirty - make ltab node dirty. | ||
900 | * @c: UBIFS file-system description object | ||
901 | * @lnum: LEB number where ltab was written | ||
902 | * @offs: offset where ltab was written | ||
903 | * | ||
904 | * This function is used by LPT garbage collection. LPT garbage collection is | ||
905 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | ||
906 | * simply involves marking all the nodes in the LEB being garbage-collected as | ||
907 | * dirty. The dirty nodes are written next commit, after which the LEB is free | ||
908 | * to be reused. | ||
909 | * | ||
910 | * This function returns %0 on success and a negative error code on failure. | ||
911 | */ | ||
912 | static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs) | ||
913 | { | ||
914 | if (lnum != c->ltab_lnum || offs != c->ltab_offs) | ||
915 | return 0; /* This ltab node is obsolete */ | ||
916 | if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { | ||
917 | c->lpt_drty_flgs |= LTAB_DIRTY; | ||
918 | ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); | ||
919 | } | ||
920 | return 0; | ||
921 | } | ||
922 | |||
923 | /** | ||
924 | * make_lsave_dirty - make lsave node dirty. | ||
925 | * @c: UBIFS file-system description object | ||
926 | * @lnum: LEB number where lsave was written | ||
927 | * @offs: offset where lsave was written | ||
928 | * | ||
929 | * This function is used by LPT garbage collection. LPT garbage collection is | ||
930 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | ||
931 | * simply involves marking all the nodes in the LEB being garbage-collected as | ||
932 | * dirty. The dirty nodes are written next commit, after which the LEB is free | ||
933 | * to be reused. | ||
934 | * | ||
935 | * This function returns %0 on success and a negative error code on failure. | ||
936 | */ | ||
937 | static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs) | ||
938 | { | ||
939 | if (lnum != c->lsave_lnum || offs != c->lsave_offs) | ||
940 | return 0; /* This lsave node is obsolete */ | ||
941 | if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { | ||
942 | c->lpt_drty_flgs |= LSAVE_DIRTY; | ||
943 | ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); | ||
944 | } | ||
945 | return 0; | ||
946 | } | ||
947 | |||
948 | /** | ||
949 | * make_node_dirty - make node dirty. | ||
950 | * @c: UBIFS file-system description object | ||
951 | * @node_type: LPT node type | ||
952 | * @node_num: node number | ||
953 | * @lnum: LEB number where node was written | ||
954 | * @offs: offset where node was written | ||
955 | * | ||
956 | * This function is used by LPT garbage collection. LPT garbage collection is | ||
957 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | ||
958 | * simply involves marking all the nodes in the LEB being garbage-collected as | ||
959 | * dirty. The dirty nodes are written next commit, after which the LEB is free | ||
960 | * to be reused. | ||
961 | * | ||
962 | * This function returns %0 on success and a negative error code on failure. | ||
963 | */ | ||
964 | static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num, | ||
965 | int lnum, int offs) | ||
966 | { | ||
967 | switch (node_type) { | ||
968 | case UBIFS_LPT_NNODE: | ||
969 | return make_nnode_dirty(c, node_num, lnum, offs); | ||
970 | case UBIFS_LPT_PNODE: | ||
971 | return make_pnode_dirty(c, node_num, lnum, offs); | ||
972 | case UBIFS_LPT_LTAB: | ||
973 | return make_ltab_dirty(c, lnum, offs); | ||
974 | case UBIFS_LPT_LSAVE: | ||
975 | return make_lsave_dirty(c, lnum, offs); | ||
976 | } | ||
977 | return -EINVAL; | ||
978 | } | ||
979 | |||
980 | /** | ||
981 | * get_lpt_node_len - return the length of a node based on its type. | ||
982 | * @c: UBIFS file-system description object | ||
983 | * @node_type: LPT node type | ||
984 | */ | ||
985 | static int get_lpt_node_len(struct ubifs_info *c, int node_type) | ||
986 | { | ||
987 | switch (node_type) { | ||
988 | case UBIFS_LPT_NNODE: | ||
989 | return c->nnode_sz; | ||
990 | case UBIFS_LPT_PNODE: | ||
991 | return c->pnode_sz; | ||
992 | case UBIFS_LPT_LTAB: | ||
993 | return c->ltab_sz; | ||
994 | case UBIFS_LPT_LSAVE: | ||
995 | return c->lsave_sz; | ||
996 | } | ||
997 | return 0; | ||
998 | } | ||
999 | |||
1000 | /** | ||
1001 | * get_pad_len - return the length of padding in a buffer. | ||
1002 | * @c: UBIFS file-system description object | ||
1003 | * @buf: buffer | ||
1004 | * @len: length of buffer | ||
1005 | */ | ||
1006 | static int get_pad_len(struct ubifs_info *c, uint8_t *buf, int len) | ||
1007 | { | ||
1008 | int offs, pad_len; | ||
1009 | |||
1010 | if (c->min_io_size == 1) | ||
1011 | return 0; | ||
1012 | offs = c->leb_size - len; | ||
1013 | pad_len = ALIGN(offs, c->min_io_size) - offs; | ||
1014 | return pad_len; | ||
1015 | } | ||
1016 | |||
1017 | /** | ||
1018 | * get_lpt_node_type - return type (and node number) of a node in a buffer. | ||
1019 | * @c: UBIFS file-system description object | ||
1020 | * @buf: buffer | ||
1021 | * @node_num: node number is returned here | ||
1022 | */ | ||
1023 | static int get_lpt_node_type(struct ubifs_info *c, uint8_t *buf, int *node_num) | ||
1024 | { | ||
1025 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | ||
1026 | int pos = 0, node_type; | ||
1027 | |||
1028 | node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); | ||
1029 | *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); | ||
1030 | return node_type; | ||
1031 | } | ||
1032 | |||
1033 | /** | ||
1034 | * is_a_node - determine if a buffer contains a node. | ||
1035 | * @c: UBIFS file-system description object | ||
1036 | * @buf: buffer | ||
1037 | * @len: length of buffer | ||
1038 | * | ||
1039 | * This function returns %1 if the buffer contains a node or %0 if it does not. | ||
1040 | */ | ||
1041 | static int is_a_node(struct ubifs_info *c, uint8_t *buf, int len) | ||
1042 | { | ||
1043 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | ||
1044 | int pos = 0, node_type, node_len; | ||
1045 | uint16_t crc, calc_crc; | ||
1046 | |||
1047 | node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); | ||
1048 | if (node_type == UBIFS_LPT_NOT_A_NODE) | ||
1049 | return 0; | ||
1050 | node_len = get_lpt_node_len(c, node_type); | ||
1051 | if (!node_len || node_len > len) | ||
1052 | return 0; | ||
1053 | pos = 0; | ||
1054 | addr = buf; | ||
1055 | crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); | ||
1056 | calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, | ||
1057 | node_len - UBIFS_LPT_CRC_BYTES); | ||
1058 | if (crc != calc_crc) | ||
1059 | return 0; | ||
1060 | return 1; | ||
1061 | } | ||
1062 | |||
1063 | |||
1064 | /** | ||
1065 | * lpt_gc_lnum - garbage collect a LPT LEB. | ||
1066 | * @c: UBIFS file-system description object | ||
1067 | * @lnum: LEB number to garbage collect | ||
1068 | * | ||
1069 | * LPT garbage collection is used only for the "big" LPT model | ||
1070 | * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes | ||
1071 | * in the LEB being garbage-collected as dirty. The dirty nodes are written | ||
1072 | * next commit, after which the LEB is free to be reused. | ||
1073 | * | ||
1074 | * This function returns %0 on success and a negative error code on failure. | ||
1075 | */ | ||
1076 | static int lpt_gc_lnum(struct ubifs_info *c, int lnum) | ||
1077 | { | ||
1078 | int err, len = c->leb_size, node_type, node_num, node_len, offs; | ||
1079 | void *buf = c->lpt_buf; | ||
1080 | |||
1081 | dbg_lp("LEB %d", lnum); | ||
1082 | err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size); | ||
1083 | if (err) { | ||
1084 | ubifs_err("cannot read LEB %d, error %d", lnum, err); | ||
1085 | return err; | ||
1086 | } | ||
1087 | while (1) { | ||
1088 | if (!is_a_node(c, buf, len)) { | ||
1089 | int pad_len; | ||
1090 | |||
1091 | pad_len = get_pad_len(c, buf, len); | ||
1092 | if (pad_len) { | ||
1093 | buf += pad_len; | ||
1094 | len -= pad_len; | ||
1095 | continue; | ||
1096 | } | ||
1097 | return 0; | ||
1098 | } | ||
1099 | node_type = get_lpt_node_type(c, buf, &node_num); | ||
1100 | node_len = get_lpt_node_len(c, node_type); | ||
1101 | offs = c->leb_size - len; | ||
1102 | ubifs_assert(node_len != 0); | ||
1103 | mutex_lock(&c->lp_mutex); | ||
1104 | err = make_node_dirty(c, node_type, node_num, lnum, offs); | ||
1105 | mutex_unlock(&c->lp_mutex); | ||
1106 | if (err) | ||
1107 | return err; | ||
1108 | buf += node_len; | ||
1109 | len -= node_len; | ||
1110 | } | ||
1111 | return 0; | ||
1112 | } | ||
1113 | |||
1114 | /** | ||
1115 | * lpt_gc - LPT garbage collection. | ||
1116 | * @c: UBIFS file-system description object | ||
1117 | * | ||
1118 | * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'. | ||
1119 | * Returns %0 on success and a negative error code on failure. | ||
1120 | */ | ||
1121 | static int lpt_gc(struct ubifs_info *c) | ||
1122 | { | ||
1123 | int i, lnum = -1, dirty = 0; | ||
1124 | |||
1125 | mutex_lock(&c->lp_mutex); | ||
1126 | for (i = 0; i < c->lpt_lebs; i++) { | ||
1127 | ubifs_assert(!c->ltab[i].tgc); | ||
1128 | if (i + c->lpt_first == c->nhead_lnum || | ||
1129 | c->ltab[i].free + c->ltab[i].dirty == c->leb_size) | ||
1130 | continue; | ||
1131 | if (c->ltab[i].dirty > dirty) { | ||
1132 | dirty = c->ltab[i].dirty; | ||
1133 | lnum = i + c->lpt_first; | ||
1134 | } | ||
1135 | } | ||
1136 | mutex_unlock(&c->lp_mutex); | ||
1137 | if (lnum == -1) | ||
1138 | return -ENOSPC; | ||
1139 | return lpt_gc_lnum(c, lnum); | ||
1140 | } | ||
1141 | |||
1142 | /** | ||
1143 | * ubifs_lpt_start_commit - UBIFS commit starts. | ||
1144 | * @c: the UBIFS file-system description object | ||
1145 | * | ||
1146 | * This function has to be called when UBIFS starts the commit operation. | ||
1147 | * This function "freezes" all currently dirty LEB properties and does not | ||
1148 | * change them anymore. Further changes are saved and tracked separately | ||
1149 | * because they are not part of this commit. This function returns zero in case | ||
1150 | * of success and a negative error code in case of failure. | ||
1151 | */ | ||
1152 | int ubifs_lpt_start_commit(struct ubifs_info *c) | ||
1153 | { | ||
1154 | int err, cnt; | ||
1155 | |||
1156 | dbg_lp(""); | ||
1157 | |||
1158 | mutex_lock(&c->lp_mutex); | ||
1159 | err = dbg_check_ltab(c); | ||
1160 | if (err) | ||
1161 | goto out; | ||
1162 | |||
1163 | if (c->check_lpt_free) { | ||
1164 | /* | ||
1165 | * We ensure there is enough free space in | ||
1166 | * ubifs_lpt_post_commit() by marking nodes dirty. That | ||
1167 | * information is lost when we unmount, so we also need | ||
1168 | * to check free space once after mounting also. | ||
1169 | */ | ||
1170 | c->check_lpt_free = 0; | ||
1171 | while (need_write_all(c)) { | ||
1172 | mutex_unlock(&c->lp_mutex); | ||
1173 | err = lpt_gc(c); | ||
1174 | if (err) | ||
1175 | return err; | ||
1176 | mutex_lock(&c->lp_mutex); | ||
1177 | } | ||
1178 | } | ||
1179 | |||
1180 | lpt_tgc_start(c); | ||
1181 | |||
1182 | if (!c->dirty_pn_cnt) { | ||
1183 | dbg_cmt("no cnodes to commit"); | ||
1184 | err = 0; | ||
1185 | goto out; | ||
1186 | } | ||
1187 | |||
1188 | if (!c->big_lpt && need_write_all(c)) { | ||
1189 | /* If needed, write everything */ | ||
1190 | err = make_tree_dirty(c); | ||
1191 | if (err) | ||
1192 | goto out; | ||
1193 | lpt_tgc_start(c); | ||
1194 | } | ||
1195 | |||
1196 | if (c->big_lpt) | ||
1197 | populate_lsave(c); | ||
1198 | |||
1199 | cnt = get_cnodes_to_commit(c); | ||
1200 | ubifs_assert(cnt != 0); | ||
1201 | |||
1202 | err = layout_cnodes(c); | ||
1203 | if (err) | ||
1204 | goto out; | ||
1205 | |||
1206 | /* Copy the LPT's own lprops for end commit to write */ | ||
1207 | memcpy(c->ltab_cmt, c->ltab, | ||
1208 | sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); | ||
1209 | c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY); | ||
1210 | |||
1211 | out: | ||
1212 | mutex_unlock(&c->lp_mutex); | ||
1213 | return err; | ||
1214 | } | ||
1215 | |||
1216 | /** | ||
1217 | * free_obsolete_cnodes - free obsolete cnodes for commit end. | ||
1218 | * @c: UBIFS file-system description object | ||
1219 | */ | ||
1220 | static void free_obsolete_cnodes(struct ubifs_info *c) | ||
1221 | { | ||
1222 | struct ubifs_cnode *cnode, *cnext; | ||
1223 | |||
1224 | cnext = c->lpt_cnext; | ||
1225 | if (!cnext) | ||
1226 | return; | ||
1227 | do { | ||
1228 | cnode = cnext; | ||
1229 | cnext = cnode->cnext; | ||
1230 | if (test_bit(OBSOLETE_CNODE, &cnode->flags)) | ||
1231 | kfree(cnode); | ||
1232 | else | ||
1233 | cnode->cnext = NULL; | ||
1234 | } while (cnext != c->lpt_cnext); | ||
1235 | c->lpt_cnext = NULL; | ||
1236 | } | ||
1237 | |||
1238 | /** | ||
1239 | * ubifs_lpt_end_commit - finish the commit operation. | ||
1240 | * @c: the UBIFS file-system description object | ||
1241 | * | ||
1242 | * This function has to be called when the commit operation finishes. It | ||
1243 | * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to | ||
1244 | * the media. Returns zero in case of success and a negative error code in case | ||
1245 | * of failure. | ||
1246 | */ | ||
1247 | int ubifs_lpt_end_commit(struct ubifs_info *c) | ||
1248 | { | ||
1249 | int err; | ||
1250 | |||
1251 | dbg_lp(""); | ||
1252 | |||
1253 | if (!c->lpt_cnext) | ||
1254 | return 0; | ||
1255 | |||
1256 | err = write_cnodes(c); | ||
1257 | if (err) | ||
1258 | return err; | ||
1259 | |||
1260 | mutex_lock(&c->lp_mutex); | ||
1261 | free_obsolete_cnodes(c); | ||
1262 | mutex_unlock(&c->lp_mutex); | ||
1263 | |||
1264 | return 0; | ||
1265 | } | ||
1266 | |||
1267 | /** | ||
1268 | * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC. | ||
1269 | * @c: UBIFS file-system description object | ||
1270 | * | ||
1271 | * LPT trivial GC is completed after a commit. Also LPT GC is done after a | ||
1272 | * commit for the "big" LPT model. | ||
1273 | */ | ||
1274 | int ubifs_lpt_post_commit(struct ubifs_info *c) | ||
1275 | { | ||
1276 | int err; | ||
1277 | |||
1278 | mutex_lock(&c->lp_mutex); | ||
1279 | err = lpt_tgc_end(c); | ||
1280 | if (err) | ||
1281 | goto out; | ||
1282 | if (c->big_lpt) | ||
1283 | while (need_write_all(c)) { | ||
1284 | mutex_unlock(&c->lp_mutex); | ||
1285 | err = lpt_gc(c); | ||
1286 | if (err) | ||
1287 | return err; | ||
1288 | mutex_lock(&c->lp_mutex); | ||
1289 | } | ||
1290 | out: | ||
1291 | mutex_unlock(&c->lp_mutex); | ||
1292 | return err; | ||
1293 | } | ||
1294 | |||
1295 | /** | ||
1296 | * first_nnode - find the first nnode in memory. | ||
1297 | * @c: UBIFS file-system description object | ||
1298 | * @hght: height of tree where nnode found is returned here | ||
1299 | * | ||
1300 | * This function returns a pointer to the nnode found or %NULL if no nnode is | ||
1301 | * found. This function is a helper to 'ubifs_lpt_free()'. | ||
1302 | */ | ||
1303 | static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght) | ||
1304 | { | ||
1305 | struct ubifs_nnode *nnode; | ||
1306 | int h, i, found; | ||
1307 | |||
1308 | nnode = c->nroot; | ||
1309 | *hght = 0; | ||
1310 | if (!nnode) | ||
1311 | return NULL; | ||
1312 | for (h = 1; h < c->lpt_hght; h++) { | ||
1313 | found = 0; | ||
1314 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | ||
1315 | if (nnode->nbranch[i].nnode) { | ||
1316 | found = 1; | ||
1317 | nnode = nnode->nbranch[i].nnode; | ||
1318 | *hght = h; | ||
1319 | break; | ||
1320 | } | ||
1321 | } | ||
1322 | if (!found) | ||
1323 | break; | ||
1324 | } | ||
1325 | return nnode; | ||
1326 | } | ||
1327 | |||
1328 | /** | ||
1329 | * next_nnode - find the next nnode in memory. | ||
1330 | * @c: UBIFS file-system description object | ||
1331 | * @nnode: nnode from which to start. | ||
1332 | * @hght: height of tree where nnode is, is passed and returned here | ||
1333 | * | ||
1334 | * This function returns a pointer to the nnode found or %NULL if no nnode is | ||
1335 | * found. This function is a helper to 'ubifs_lpt_free()'. | ||
1336 | */ | ||
1337 | static struct ubifs_nnode *next_nnode(struct ubifs_info *c, | ||
1338 | struct ubifs_nnode *nnode, int *hght) | ||
1339 | { | ||
1340 | struct ubifs_nnode *parent; | ||
1341 | int iip, h, i, found; | ||
1342 | |||
1343 | parent = nnode->parent; | ||
1344 | if (!parent) | ||
1345 | return NULL; | ||
1346 | if (nnode->iip == UBIFS_LPT_FANOUT - 1) { | ||
1347 | *hght -= 1; | ||
1348 | return parent; | ||
1349 | } | ||
1350 | for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { | ||
1351 | nnode = parent->nbranch[iip].nnode; | ||
1352 | if (nnode) | ||
1353 | break; | ||
1354 | } | ||
1355 | if (!nnode) { | ||
1356 | *hght -= 1; | ||
1357 | return parent; | ||
1358 | } | ||
1359 | for (h = *hght + 1; h < c->lpt_hght; h++) { | ||
1360 | found = 0; | ||
1361 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | ||
1362 | if (nnode->nbranch[i].nnode) { | ||
1363 | found = 1; | ||
1364 | nnode = nnode->nbranch[i].nnode; | ||
1365 | *hght = h; | ||
1366 | break; | ||
1367 | } | ||
1368 | } | ||
1369 | if (!found) | ||
1370 | break; | ||
1371 | } | ||
1372 | return nnode; | ||
1373 | } | ||
1374 | |||
1375 | /** | ||
1376 | * ubifs_lpt_free - free resources owned by the LPT. | ||
1377 | * @c: UBIFS file-system description object | ||
1378 | * @wr_only: free only resources used for writing | ||
1379 | */ | ||
1380 | void ubifs_lpt_free(struct ubifs_info *c, int wr_only) | ||
1381 | { | ||
1382 | struct ubifs_nnode *nnode; | ||
1383 | int i, hght; | ||
1384 | |||
1385 | /* Free write-only things first */ | ||
1386 | |||
1387 | free_obsolete_cnodes(c); /* Leftover from a failed commit */ | ||
1388 | |||
1389 | vfree(c->ltab_cmt); | ||
1390 | c->ltab_cmt = NULL; | ||
1391 | vfree(c->lpt_buf); | ||
1392 | c->lpt_buf = NULL; | ||
1393 | kfree(c->lsave); | ||
1394 | c->lsave = NULL; | ||
1395 | |||
1396 | if (wr_only) | ||
1397 | return; | ||
1398 | |||
1399 | /* Now free the rest */ | ||
1400 | |||
1401 | nnode = first_nnode(c, &hght); | ||
1402 | while (nnode) { | ||
1403 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) | ||
1404 | kfree(nnode->nbranch[i].nnode); | ||
1405 | nnode = next_nnode(c, nnode, &hght); | ||
1406 | } | ||
1407 | for (i = 0; i < LPROPS_HEAP_CNT; i++) | ||
1408 | kfree(c->lpt_heap[i].arr); | ||
1409 | kfree(c->dirty_idx.arr); | ||
1410 | kfree(c->nroot); | ||
1411 | vfree(c->ltab); | ||
1412 | kfree(c->lpt_nod_buf); | ||
1413 | } | ||
1414 | |||
1415 | #ifdef CONFIG_UBIFS_FS_DEBUG | ||
1416 | |||
1417 | /** | ||
1418 | * dbg_is_all_ff - determine if a buffer contains only 0xff bytes. | ||
1419 | * @buf: buffer | ||
1420 | * @len: buffer length | ||
1421 | */ | ||
1422 | static int dbg_is_all_ff(uint8_t *buf, int len) | ||
1423 | { | ||
1424 | int i; | ||
1425 | |||
1426 | for (i = 0; i < len; i++) | ||
1427 | if (buf[i] != 0xff) | ||
1428 | return 0; | ||
1429 | return 1; | ||
1430 | } | ||
1431 | |||
1432 | /** | ||
1433 | * dbg_is_nnode_dirty - determine if a nnode is dirty. | ||
1434 | * @c: the UBIFS file-system description object | ||
1435 | * @lnum: LEB number where nnode was written | ||
1436 | * @offs: offset where nnode was written | ||
1437 | */ | ||
1438 | static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs) | ||
1439 | { | ||
1440 | struct ubifs_nnode *nnode; | ||
1441 | int hght; | ||
1442 | |||
1443 | /* Entire tree is in memory so first_nnode / next_nnode are ok */ | ||
1444 | nnode = first_nnode(c, &hght); | ||
1445 | for (; nnode; nnode = next_nnode(c, nnode, &hght)) { | ||
1446 | struct ubifs_nbranch *branch; | ||
1447 | |||
1448 | cond_resched(); | ||
1449 | if (nnode->parent) { | ||
1450 | branch = &nnode->parent->nbranch[nnode->iip]; | ||
1451 | if (branch->lnum != lnum || branch->offs != offs) | ||
1452 | continue; | ||
1453 | if (test_bit(DIRTY_CNODE, &nnode->flags)) | ||
1454 | return 1; | ||
1455 | return 0; | ||
1456 | } else { | ||
1457 | if (c->lpt_lnum != lnum || c->lpt_offs != offs) | ||
1458 | continue; | ||
1459 | if (test_bit(DIRTY_CNODE, &nnode->flags)) | ||
1460 | return 1; | ||
1461 | return 0; | ||
1462 | } | ||
1463 | } | ||
1464 | return 1; | ||
1465 | } | ||
1466 | |||
1467 | /** | ||
1468 | * dbg_is_pnode_dirty - determine if a pnode is dirty. | ||
1469 | * @c: the UBIFS file-system description object | ||
1470 | * @lnum: LEB number where pnode was written | ||
1471 | * @offs: offset where pnode was written | ||
1472 | */ | ||
1473 | static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs) | ||
1474 | { | ||
1475 | int i, cnt; | ||
1476 | |||
1477 | cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); | ||
1478 | for (i = 0; i < cnt; i++) { | ||
1479 | struct ubifs_pnode *pnode; | ||
1480 | struct ubifs_nbranch *branch; | ||
1481 | |||
1482 | cond_resched(); | ||
1483 | pnode = pnode_lookup(c, i); | ||
1484 | if (IS_ERR(pnode)) | ||
1485 | return PTR_ERR(pnode); | ||
1486 | branch = &pnode->parent->nbranch[pnode->iip]; | ||
1487 | if (branch->lnum != lnum || branch->offs != offs) | ||
1488 | continue; | ||
1489 | if (test_bit(DIRTY_CNODE, &pnode->flags)) | ||
1490 | return 1; | ||
1491 | return 0; | ||
1492 | } | ||
1493 | return 1; | ||
1494 | } | ||
1495 | |||
1496 | /** | ||
1497 | * dbg_is_ltab_dirty - determine if a ltab node is dirty. | ||
1498 | * @c: the UBIFS file-system description object | ||
1499 | * @lnum: LEB number where ltab node was written | ||
1500 | * @offs: offset where ltab node was written | ||
1501 | */ | ||
1502 | static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs) | ||
1503 | { | ||
1504 | if (lnum != c->ltab_lnum || offs != c->ltab_offs) | ||
1505 | return 1; | ||
1506 | return (c->lpt_drty_flgs & LTAB_DIRTY) != 0; | ||
1507 | } | ||
1508 | |||
1509 | /** | ||
1510 | * dbg_is_lsave_dirty - determine if a lsave node is dirty. | ||
1511 | * @c: the UBIFS file-system description object | ||
1512 | * @lnum: LEB number where lsave node was written | ||
1513 | * @offs: offset where lsave node was written | ||
1514 | */ | ||
1515 | static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs) | ||
1516 | { | ||
1517 | if (lnum != c->lsave_lnum || offs != c->lsave_offs) | ||
1518 | return 1; | ||
1519 | return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0; | ||
1520 | } | ||
1521 | |||
1522 | /** | ||
1523 | * dbg_is_node_dirty - determine if a node is dirty. | ||
1524 | * @c: the UBIFS file-system description object | ||
1525 | * @node_type: node type | ||
1526 | * @lnum: LEB number where node was written | ||
1527 | * @offs: offset where node was written | ||
1528 | */ | ||
1529 | static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum, | ||
1530 | int offs) | ||
1531 | { | ||
1532 | switch (node_type) { | ||
1533 | case UBIFS_LPT_NNODE: | ||
1534 | return dbg_is_nnode_dirty(c, lnum, offs); | ||
1535 | case UBIFS_LPT_PNODE: | ||
1536 | return dbg_is_pnode_dirty(c, lnum, offs); | ||
1537 | case UBIFS_LPT_LTAB: | ||
1538 | return dbg_is_ltab_dirty(c, lnum, offs); | ||
1539 | case UBIFS_LPT_LSAVE: | ||
1540 | return dbg_is_lsave_dirty(c, lnum, offs); | ||
1541 | } | ||
1542 | return 1; | ||
1543 | } | ||
1544 | |||
1545 | /** | ||
1546 | * dbg_check_ltab_lnum - check the ltab for a LPT LEB number. | ||
1547 | * @c: the UBIFS file-system description object | ||
1548 | * @lnum: LEB number where node was written | ||
1549 | * @offs: offset where node was written | ||
1550 | * | ||
1551 | * This function returns %0 on success and a negative error code on failure. | ||
1552 | */ | ||
1553 | static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum) | ||
1554 | { | ||
1555 | int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len; | ||
1556 | int ret; | ||
1557 | void *buf = c->dbg_buf; | ||
1558 | |||
1559 | dbg_lp("LEB %d", lnum); | ||
1560 | err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size); | ||
1561 | if (err) { | ||
1562 | dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err); | ||
1563 | return err; | ||
1564 | } | ||
1565 | while (1) { | ||
1566 | if (!is_a_node(c, buf, len)) { | ||
1567 | int i, pad_len; | ||
1568 | |||
1569 | pad_len = get_pad_len(c, buf, len); | ||
1570 | if (pad_len) { | ||
1571 | buf += pad_len; | ||
1572 | len -= pad_len; | ||
1573 | dirty += pad_len; | ||
1574 | continue; | ||
1575 | } | ||
1576 | if (!dbg_is_all_ff(buf, len)) { | ||
1577 | dbg_msg("invalid empty space in LEB %d at %d", | ||
1578 | lnum, c->leb_size - len); | ||
1579 | err = -EINVAL; | ||
1580 | } | ||
1581 | i = lnum - c->lpt_first; | ||
1582 | if (len != c->ltab[i].free) { | ||
1583 | dbg_msg("invalid free space in LEB %d " | ||
1584 | "(free %d, expected %d)", | ||
1585 | lnum, len, c->ltab[i].free); | ||
1586 | err = -EINVAL; | ||
1587 | } | ||
1588 | if (dirty != c->ltab[i].dirty) { | ||
1589 | dbg_msg("invalid dirty space in LEB %d " | ||
1590 | "(dirty %d, expected %d)", | ||
1591 | lnum, dirty, c->ltab[i].dirty); | ||
1592 | err = -EINVAL; | ||
1593 | } | ||
1594 | return err; | ||
1595 | } | ||
1596 | node_type = get_lpt_node_type(c, buf, &node_num); | ||
1597 | node_len = get_lpt_node_len(c, node_type); | ||
1598 | ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len); | ||
1599 | if (ret == 1) | ||
1600 | dirty += node_len; | ||
1601 | buf += node_len; | ||
1602 | len -= node_len; | ||
1603 | } | ||
1604 | } | ||
1605 | |||
1606 | /** | ||
1607 | * dbg_check_ltab - check the free and dirty space in the ltab. | ||
1608 | * @c: the UBIFS file-system description object | ||
1609 | * | ||
1610 | * This function returns %0 on success and a negative error code on failure. | ||
1611 | */ | ||
1612 | int dbg_check_ltab(struct ubifs_info *c) | ||
1613 | { | ||
1614 | int lnum, err, i, cnt; | ||
1615 | |||
1616 | if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS)) | ||
1617 | return 0; | ||
1618 | |||
1619 | /* Bring the entire tree into memory */ | ||
1620 | cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); | ||
1621 | for (i = 0; i < cnt; i++) { | ||
1622 | struct ubifs_pnode *pnode; | ||
1623 | |||
1624 | pnode = pnode_lookup(c, i); | ||
1625 | if (IS_ERR(pnode)) | ||
1626 | return PTR_ERR(pnode); | ||
1627 | cond_resched(); | ||
1628 | } | ||
1629 | |||
1630 | /* Check nodes */ | ||
1631 | err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0); | ||
1632 | if (err) | ||
1633 | return err; | ||
1634 | |||
1635 | /* Check each LEB */ | ||
1636 | for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { | ||
1637 | err = dbg_check_ltab_lnum(c, lnum); | ||
1638 | if (err) { | ||
1639 | dbg_err("failed at LEB %d", lnum); | ||
1640 | return err; | ||
1641 | } | ||
1642 | } | ||
1643 | |||
1644 | dbg_lp("succeeded"); | ||
1645 | return 0; | ||
1646 | } | ||
1647 | |||
1648 | #endif /* CONFIG_UBIFS_FS_DEBUG */ | ||