diff options
Diffstat (limited to 'drivers/net/wireless/iwlwifi/iwl-agn-calib.c')
-rw-r--r-- | drivers/net/wireless/iwlwifi/iwl-agn-calib.c | 1083 |
1 files changed, 1083 insertions, 0 deletions
diff --git a/drivers/net/wireless/iwlwifi/iwl-agn-calib.c b/drivers/net/wireless/iwlwifi/iwl-agn-calib.c new file mode 100644 index 00000000000..72d6297602b --- /dev/null +++ b/drivers/net/wireless/iwlwifi/iwl-agn-calib.c | |||
@@ -0,0 +1,1083 @@ | |||
1 | /****************************************************************************** | ||
2 | * | ||
3 | * This file is provided under a dual BSD/GPLv2 license. When using or | ||
4 | * redistributing this file, you may do so under either license. | ||
5 | * | ||
6 | * GPL LICENSE SUMMARY | ||
7 | * | ||
8 | * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of version 2 of the GNU General Public License as | ||
12 | * published by the Free Software Foundation. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, but | ||
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
17 | * General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, | ||
22 | * USA | ||
23 | * | ||
24 | * The full GNU General Public License is included in this distribution | ||
25 | * in the file called LICENSE.GPL. | ||
26 | * | ||
27 | * Contact Information: | ||
28 | * Intel Linux Wireless <ilw@linux.intel.com> | ||
29 | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
30 | * | ||
31 | * BSD LICENSE | ||
32 | * | ||
33 | * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved. | ||
34 | * All rights reserved. | ||
35 | * | ||
36 | * Redistribution and use in source and binary forms, with or without | ||
37 | * modification, are permitted provided that the following conditions | ||
38 | * are met: | ||
39 | * | ||
40 | * * Redistributions of source code must retain the above copyright | ||
41 | * notice, this list of conditions and the following disclaimer. | ||
42 | * * Redistributions in binary form must reproduce the above copyright | ||
43 | * notice, this list of conditions and the following disclaimer in | ||
44 | * the documentation and/or other materials provided with the | ||
45 | * distribution. | ||
46 | * * Neither the name Intel Corporation nor the names of its | ||
47 | * contributors may be used to endorse or promote products derived | ||
48 | * from this software without specific prior written permission. | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
51 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
52 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
53 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
54 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
56 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
57 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
58 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
59 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
60 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
61 | *****************************************************************************/ | ||
62 | |||
63 | #include <linux/slab.h> | ||
64 | #include <net/mac80211.h> | ||
65 | |||
66 | #include "iwl-dev.h" | ||
67 | #include "iwl-core.h" | ||
68 | #include "iwl-agn-calib.h" | ||
69 | #include "iwl-trans.h" | ||
70 | #include "iwl-agn.h" | ||
71 | |||
72 | /***************************************************************************** | ||
73 | * INIT calibrations framework | ||
74 | *****************************************************************************/ | ||
75 | |||
76 | struct statistics_general_data { | ||
77 | u32 beacon_silence_rssi_a; | ||
78 | u32 beacon_silence_rssi_b; | ||
79 | u32 beacon_silence_rssi_c; | ||
80 | u32 beacon_energy_a; | ||
81 | u32 beacon_energy_b; | ||
82 | u32 beacon_energy_c; | ||
83 | }; | ||
84 | |||
85 | int iwl_send_calib_results(struct iwl_priv *priv) | ||
86 | { | ||
87 | int ret = 0; | ||
88 | int i = 0; | ||
89 | |||
90 | struct iwl_host_cmd hcmd = { | ||
91 | .id = REPLY_PHY_CALIBRATION_CMD, | ||
92 | .flags = CMD_SYNC, | ||
93 | }; | ||
94 | |||
95 | for (i = 0; i < IWL_CALIB_MAX; i++) { | ||
96 | if ((BIT(i) & priv->hw_params.calib_init_cfg) && | ||
97 | priv->calib_results[i].buf) { | ||
98 | hcmd.len[0] = priv->calib_results[i].buf_len; | ||
99 | hcmd.data[0] = priv->calib_results[i].buf; | ||
100 | hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY; | ||
101 | ret = trans_send_cmd(&priv->trans, &hcmd); | ||
102 | if (ret) { | ||
103 | IWL_ERR(priv, "Error %d iteration %d\n", | ||
104 | ret, i); | ||
105 | break; | ||
106 | } | ||
107 | } | ||
108 | } | ||
109 | |||
110 | return ret; | ||
111 | } | ||
112 | |||
113 | int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len) | ||
114 | { | ||
115 | if (res->buf_len != len) { | ||
116 | kfree(res->buf); | ||
117 | res->buf = kzalloc(len, GFP_ATOMIC); | ||
118 | } | ||
119 | if (unlikely(res->buf == NULL)) | ||
120 | return -ENOMEM; | ||
121 | |||
122 | res->buf_len = len; | ||
123 | memcpy(res->buf, buf, len); | ||
124 | return 0; | ||
125 | } | ||
126 | |||
127 | void iwl_calib_free_results(struct iwl_priv *priv) | ||
128 | { | ||
129 | int i; | ||
130 | |||
131 | for (i = 0; i < IWL_CALIB_MAX; i++) { | ||
132 | kfree(priv->calib_results[i].buf); | ||
133 | priv->calib_results[i].buf = NULL; | ||
134 | priv->calib_results[i].buf_len = 0; | ||
135 | } | ||
136 | } | ||
137 | |||
138 | /***************************************************************************** | ||
139 | * RUNTIME calibrations framework | ||
140 | *****************************************************************************/ | ||
141 | |||
142 | /* "false alarms" are signals that our DSP tries to lock onto, | ||
143 | * but then determines that they are either noise, or transmissions | ||
144 | * from a distant wireless network (also "noise", really) that get | ||
145 | * "stepped on" by stronger transmissions within our own network. | ||
146 | * This algorithm attempts to set a sensitivity level that is high | ||
147 | * enough to receive all of our own network traffic, but not so | ||
148 | * high that our DSP gets too busy trying to lock onto non-network | ||
149 | * activity/noise. */ | ||
150 | static int iwl_sens_energy_cck(struct iwl_priv *priv, | ||
151 | u32 norm_fa, | ||
152 | u32 rx_enable_time, | ||
153 | struct statistics_general_data *rx_info) | ||
154 | { | ||
155 | u32 max_nrg_cck = 0; | ||
156 | int i = 0; | ||
157 | u8 max_silence_rssi = 0; | ||
158 | u32 silence_ref = 0; | ||
159 | u8 silence_rssi_a = 0; | ||
160 | u8 silence_rssi_b = 0; | ||
161 | u8 silence_rssi_c = 0; | ||
162 | u32 val; | ||
163 | |||
164 | /* "false_alarms" values below are cross-multiplications to assess the | ||
165 | * numbers of false alarms within the measured period of actual Rx | ||
166 | * (Rx is off when we're txing), vs the min/max expected false alarms | ||
167 | * (some should be expected if rx is sensitive enough) in a | ||
168 | * hypothetical listening period of 200 time units (TU), 204.8 msec: | ||
169 | * | ||
170 | * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time | ||
171 | * | ||
172 | * */ | ||
173 | u32 false_alarms = norm_fa * 200 * 1024; | ||
174 | u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; | ||
175 | u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; | ||
176 | struct iwl_sensitivity_data *data = NULL; | ||
177 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
178 | |||
179 | data = &(priv->sensitivity_data); | ||
180 | |||
181 | data->nrg_auto_corr_silence_diff = 0; | ||
182 | |||
183 | /* Find max silence rssi among all 3 receivers. | ||
184 | * This is background noise, which may include transmissions from other | ||
185 | * networks, measured during silence before our network's beacon */ | ||
186 | silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & | ||
187 | ALL_BAND_FILTER) >> 8); | ||
188 | silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & | ||
189 | ALL_BAND_FILTER) >> 8); | ||
190 | silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & | ||
191 | ALL_BAND_FILTER) >> 8); | ||
192 | |||
193 | val = max(silence_rssi_b, silence_rssi_c); | ||
194 | max_silence_rssi = max(silence_rssi_a, (u8) val); | ||
195 | |||
196 | /* Store silence rssi in 20-beacon history table */ | ||
197 | data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; | ||
198 | data->nrg_silence_idx++; | ||
199 | if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) | ||
200 | data->nrg_silence_idx = 0; | ||
201 | |||
202 | /* Find max silence rssi across 20 beacon history */ | ||
203 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { | ||
204 | val = data->nrg_silence_rssi[i]; | ||
205 | silence_ref = max(silence_ref, val); | ||
206 | } | ||
207 | IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n", | ||
208 | silence_rssi_a, silence_rssi_b, silence_rssi_c, | ||
209 | silence_ref); | ||
210 | |||
211 | /* Find max rx energy (min value!) among all 3 receivers, | ||
212 | * measured during beacon frame. | ||
213 | * Save it in 10-beacon history table. */ | ||
214 | i = data->nrg_energy_idx; | ||
215 | val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); | ||
216 | data->nrg_value[i] = min(rx_info->beacon_energy_a, val); | ||
217 | |||
218 | data->nrg_energy_idx++; | ||
219 | if (data->nrg_energy_idx >= 10) | ||
220 | data->nrg_energy_idx = 0; | ||
221 | |||
222 | /* Find min rx energy (max value) across 10 beacon history. | ||
223 | * This is the minimum signal level that we want to receive well. | ||
224 | * Add backoff (margin so we don't miss slightly lower energy frames). | ||
225 | * This establishes an upper bound (min value) for energy threshold. */ | ||
226 | max_nrg_cck = data->nrg_value[0]; | ||
227 | for (i = 1; i < 10; i++) | ||
228 | max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); | ||
229 | max_nrg_cck += 6; | ||
230 | |||
231 | IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", | ||
232 | rx_info->beacon_energy_a, rx_info->beacon_energy_b, | ||
233 | rx_info->beacon_energy_c, max_nrg_cck - 6); | ||
234 | |||
235 | /* Count number of consecutive beacons with fewer-than-desired | ||
236 | * false alarms. */ | ||
237 | if (false_alarms < min_false_alarms) | ||
238 | data->num_in_cck_no_fa++; | ||
239 | else | ||
240 | data->num_in_cck_no_fa = 0; | ||
241 | IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n", | ||
242 | data->num_in_cck_no_fa); | ||
243 | |||
244 | /* If we got too many false alarms this time, reduce sensitivity */ | ||
245 | if ((false_alarms > max_false_alarms) && | ||
246 | (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { | ||
247 | IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n", | ||
248 | false_alarms, max_false_alarms); | ||
249 | IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n"); | ||
250 | data->nrg_curr_state = IWL_FA_TOO_MANY; | ||
251 | /* Store for "fewer than desired" on later beacon */ | ||
252 | data->nrg_silence_ref = silence_ref; | ||
253 | |||
254 | /* increase energy threshold (reduce nrg value) | ||
255 | * to decrease sensitivity */ | ||
256 | data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; | ||
257 | /* Else if we got fewer than desired, increase sensitivity */ | ||
258 | } else if (false_alarms < min_false_alarms) { | ||
259 | data->nrg_curr_state = IWL_FA_TOO_FEW; | ||
260 | |||
261 | /* Compare silence level with silence level for most recent | ||
262 | * healthy number or too many false alarms */ | ||
263 | data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - | ||
264 | (s32)silence_ref; | ||
265 | |||
266 | IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n", | ||
267 | false_alarms, min_false_alarms, | ||
268 | data->nrg_auto_corr_silence_diff); | ||
269 | |||
270 | /* Increase value to increase sensitivity, but only if: | ||
271 | * 1a) previous beacon did *not* have *too many* false alarms | ||
272 | * 1b) AND there's a significant difference in Rx levels | ||
273 | * from a previous beacon with too many, or healthy # FAs | ||
274 | * OR 2) We've seen a lot of beacons (100) with too few | ||
275 | * false alarms */ | ||
276 | if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && | ||
277 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | ||
278 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | ||
279 | |||
280 | IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n"); | ||
281 | /* Increase nrg value to increase sensitivity */ | ||
282 | val = data->nrg_th_cck + NRG_STEP_CCK; | ||
283 | data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); | ||
284 | } else { | ||
285 | IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n"); | ||
286 | } | ||
287 | |||
288 | /* Else we got a healthy number of false alarms, keep status quo */ | ||
289 | } else { | ||
290 | IWL_DEBUG_CALIB(priv, " FA in safe zone\n"); | ||
291 | data->nrg_curr_state = IWL_FA_GOOD_RANGE; | ||
292 | |||
293 | /* Store for use in "fewer than desired" with later beacon */ | ||
294 | data->nrg_silence_ref = silence_ref; | ||
295 | |||
296 | /* If previous beacon had too many false alarms, | ||
297 | * give it some extra margin by reducing sensitivity again | ||
298 | * (but don't go below measured energy of desired Rx) */ | ||
299 | if (IWL_FA_TOO_MANY == data->nrg_prev_state) { | ||
300 | IWL_DEBUG_CALIB(priv, "... increasing margin\n"); | ||
301 | if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) | ||
302 | data->nrg_th_cck -= NRG_MARGIN; | ||
303 | else | ||
304 | data->nrg_th_cck = max_nrg_cck; | ||
305 | } | ||
306 | } | ||
307 | |||
308 | /* Make sure the energy threshold does not go above the measured | ||
309 | * energy of the desired Rx signals (reduced by backoff margin), | ||
310 | * or else we might start missing Rx frames. | ||
311 | * Lower value is higher energy, so we use max()! | ||
312 | */ | ||
313 | data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); | ||
314 | IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck); | ||
315 | |||
316 | data->nrg_prev_state = data->nrg_curr_state; | ||
317 | |||
318 | /* Auto-correlation CCK algorithm */ | ||
319 | if (false_alarms > min_false_alarms) { | ||
320 | |||
321 | /* increase auto_corr values to decrease sensitivity | ||
322 | * so the DSP won't be disturbed by the noise | ||
323 | */ | ||
324 | if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) | ||
325 | data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; | ||
326 | else { | ||
327 | val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; | ||
328 | data->auto_corr_cck = | ||
329 | min((u32)ranges->auto_corr_max_cck, val); | ||
330 | } | ||
331 | val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; | ||
332 | data->auto_corr_cck_mrc = | ||
333 | min((u32)ranges->auto_corr_max_cck_mrc, val); | ||
334 | } else if ((false_alarms < min_false_alarms) && | ||
335 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | ||
336 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | ||
337 | |||
338 | /* Decrease auto_corr values to increase sensitivity */ | ||
339 | val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; | ||
340 | data->auto_corr_cck = | ||
341 | max((u32)ranges->auto_corr_min_cck, val); | ||
342 | val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; | ||
343 | data->auto_corr_cck_mrc = | ||
344 | max((u32)ranges->auto_corr_min_cck_mrc, val); | ||
345 | } | ||
346 | |||
347 | return 0; | ||
348 | } | ||
349 | |||
350 | |||
351 | static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, | ||
352 | u32 norm_fa, | ||
353 | u32 rx_enable_time) | ||
354 | { | ||
355 | u32 val; | ||
356 | u32 false_alarms = norm_fa * 200 * 1024; | ||
357 | u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; | ||
358 | u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; | ||
359 | struct iwl_sensitivity_data *data = NULL; | ||
360 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
361 | |||
362 | data = &(priv->sensitivity_data); | ||
363 | |||
364 | /* If we got too many false alarms this time, reduce sensitivity */ | ||
365 | if (false_alarms > max_false_alarms) { | ||
366 | |||
367 | IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n", | ||
368 | false_alarms, max_false_alarms); | ||
369 | |||
370 | val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; | ||
371 | data->auto_corr_ofdm = | ||
372 | min((u32)ranges->auto_corr_max_ofdm, val); | ||
373 | |||
374 | val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; | ||
375 | data->auto_corr_ofdm_mrc = | ||
376 | min((u32)ranges->auto_corr_max_ofdm_mrc, val); | ||
377 | |||
378 | val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; | ||
379 | data->auto_corr_ofdm_x1 = | ||
380 | min((u32)ranges->auto_corr_max_ofdm_x1, val); | ||
381 | |||
382 | val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; | ||
383 | data->auto_corr_ofdm_mrc_x1 = | ||
384 | min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); | ||
385 | } | ||
386 | |||
387 | /* Else if we got fewer than desired, increase sensitivity */ | ||
388 | else if (false_alarms < min_false_alarms) { | ||
389 | |||
390 | IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n", | ||
391 | false_alarms, min_false_alarms); | ||
392 | |||
393 | val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; | ||
394 | data->auto_corr_ofdm = | ||
395 | max((u32)ranges->auto_corr_min_ofdm, val); | ||
396 | |||
397 | val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; | ||
398 | data->auto_corr_ofdm_mrc = | ||
399 | max((u32)ranges->auto_corr_min_ofdm_mrc, val); | ||
400 | |||
401 | val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; | ||
402 | data->auto_corr_ofdm_x1 = | ||
403 | max((u32)ranges->auto_corr_min_ofdm_x1, val); | ||
404 | |||
405 | val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; | ||
406 | data->auto_corr_ofdm_mrc_x1 = | ||
407 | max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); | ||
408 | } else { | ||
409 | IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n", | ||
410 | min_false_alarms, false_alarms, max_false_alarms); | ||
411 | } | ||
412 | return 0; | ||
413 | } | ||
414 | |||
415 | static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv, | ||
416 | struct iwl_sensitivity_data *data, | ||
417 | __le16 *tbl) | ||
418 | { | ||
419 | tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = | ||
420 | cpu_to_le16((u16)data->auto_corr_ofdm); | ||
421 | tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = | ||
422 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc); | ||
423 | tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = | ||
424 | cpu_to_le16((u16)data->auto_corr_ofdm_x1); | ||
425 | tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = | ||
426 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); | ||
427 | |||
428 | tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = | ||
429 | cpu_to_le16((u16)data->auto_corr_cck); | ||
430 | tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = | ||
431 | cpu_to_le16((u16)data->auto_corr_cck_mrc); | ||
432 | |||
433 | tbl[HD_MIN_ENERGY_CCK_DET_INDEX] = | ||
434 | cpu_to_le16((u16)data->nrg_th_cck); | ||
435 | tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] = | ||
436 | cpu_to_le16((u16)data->nrg_th_ofdm); | ||
437 | |||
438 | tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = | ||
439 | cpu_to_le16(data->barker_corr_th_min); | ||
440 | tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = | ||
441 | cpu_to_le16(data->barker_corr_th_min_mrc); | ||
442 | tbl[HD_OFDM_ENERGY_TH_IN_INDEX] = | ||
443 | cpu_to_le16(data->nrg_th_cca); | ||
444 | |||
445 | IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", | ||
446 | data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, | ||
447 | data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, | ||
448 | data->nrg_th_ofdm); | ||
449 | |||
450 | IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n", | ||
451 | data->auto_corr_cck, data->auto_corr_cck_mrc, | ||
452 | data->nrg_th_cck); | ||
453 | } | ||
454 | |||
455 | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | ||
456 | static int iwl_sensitivity_write(struct iwl_priv *priv) | ||
457 | { | ||
458 | struct iwl_sensitivity_cmd cmd; | ||
459 | struct iwl_sensitivity_data *data = NULL; | ||
460 | struct iwl_host_cmd cmd_out = { | ||
461 | .id = SENSITIVITY_CMD, | ||
462 | .len = { sizeof(struct iwl_sensitivity_cmd), }, | ||
463 | .flags = CMD_ASYNC, | ||
464 | .data = { &cmd, }, | ||
465 | }; | ||
466 | |||
467 | data = &(priv->sensitivity_data); | ||
468 | |||
469 | memset(&cmd, 0, sizeof(cmd)); | ||
470 | |||
471 | iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]); | ||
472 | |||
473 | /* Update uCode's "work" table, and copy it to DSP */ | ||
474 | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | ||
475 | |||
476 | /* Don't send command to uCode if nothing has changed */ | ||
477 | if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), | ||
478 | sizeof(u16)*HD_TABLE_SIZE)) { | ||
479 | IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); | ||
480 | return 0; | ||
481 | } | ||
482 | |||
483 | /* Copy table for comparison next time */ | ||
484 | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), | ||
485 | sizeof(u16)*HD_TABLE_SIZE); | ||
486 | |||
487 | return trans_send_cmd(&priv->trans, &cmd_out); | ||
488 | } | ||
489 | |||
490 | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | ||
491 | static int iwl_enhance_sensitivity_write(struct iwl_priv *priv) | ||
492 | { | ||
493 | struct iwl_enhance_sensitivity_cmd cmd; | ||
494 | struct iwl_sensitivity_data *data = NULL; | ||
495 | struct iwl_host_cmd cmd_out = { | ||
496 | .id = SENSITIVITY_CMD, | ||
497 | .len = { sizeof(struct iwl_enhance_sensitivity_cmd), }, | ||
498 | .flags = CMD_ASYNC, | ||
499 | .data = { &cmd, }, | ||
500 | }; | ||
501 | |||
502 | data = &(priv->sensitivity_data); | ||
503 | |||
504 | memset(&cmd, 0, sizeof(cmd)); | ||
505 | |||
506 | iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]); | ||
507 | |||
508 | cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = | ||
509 | HD_INA_NON_SQUARE_DET_OFDM_DATA; | ||
510 | cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = | ||
511 | HD_INA_NON_SQUARE_DET_CCK_DATA; | ||
512 | cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = | ||
513 | HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA; | ||
514 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | ||
515 | HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA; | ||
516 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | ||
517 | HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA; | ||
518 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = | ||
519 | HD_OFDM_NON_SQUARE_DET_SLOPE_DATA; | ||
520 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = | ||
521 | HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA; | ||
522 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | ||
523 | HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA; | ||
524 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | ||
525 | HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA; | ||
526 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = | ||
527 | HD_CCK_NON_SQUARE_DET_SLOPE_DATA; | ||
528 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = | ||
529 | HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA; | ||
530 | |||
531 | /* Update uCode's "work" table, and copy it to DSP */ | ||
532 | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | ||
533 | |||
534 | /* Don't send command to uCode if nothing has changed */ | ||
535 | if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]), | ||
536 | sizeof(u16)*HD_TABLE_SIZE) && | ||
537 | !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX], | ||
538 | &(priv->enhance_sensitivity_tbl[0]), | ||
539 | sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) { | ||
540 | IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); | ||
541 | return 0; | ||
542 | } | ||
543 | |||
544 | /* Copy table for comparison next time */ | ||
545 | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]), | ||
546 | sizeof(u16)*HD_TABLE_SIZE); | ||
547 | memcpy(&(priv->enhance_sensitivity_tbl[0]), | ||
548 | &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]), | ||
549 | sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES); | ||
550 | |||
551 | return trans_send_cmd(&priv->trans, &cmd_out); | ||
552 | } | ||
553 | |||
554 | void iwl_init_sensitivity(struct iwl_priv *priv) | ||
555 | { | ||
556 | int ret = 0; | ||
557 | int i; | ||
558 | struct iwl_sensitivity_data *data = NULL; | ||
559 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
560 | |||
561 | if (priv->disable_sens_cal) | ||
562 | return; | ||
563 | |||
564 | IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n"); | ||
565 | |||
566 | /* Clear driver's sensitivity algo data */ | ||
567 | data = &(priv->sensitivity_data); | ||
568 | |||
569 | if (ranges == NULL) | ||
570 | return; | ||
571 | |||
572 | memset(data, 0, sizeof(struct iwl_sensitivity_data)); | ||
573 | |||
574 | data->num_in_cck_no_fa = 0; | ||
575 | data->nrg_curr_state = IWL_FA_TOO_MANY; | ||
576 | data->nrg_prev_state = IWL_FA_TOO_MANY; | ||
577 | data->nrg_silence_ref = 0; | ||
578 | data->nrg_silence_idx = 0; | ||
579 | data->nrg_energy_idx = 0; | ||
580 | |||
581 | for (i = 0; i < 10; i++) | ||
582 | data->nrg_value[i] = 0; | ||
583 | |||
584 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) | ||
585 | data->nrg_silence_rssi[i] = 0; | ||
586 | |||
587 | data->auto_corr_ofdm = ranges->auto_corr_min_ofdm; | ||
588 | data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; | ||
589 | data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; | ||
590 | data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; | ||
591 | data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; | ||
592 | data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; | ||
593 | data->nrg_th_cck = ranges->nrg_th_cck; | ||
594 | data->nrg_th_ofdm = ranges->nrg_th_ofdm; | ||
595 | data->barker_corr_th_min = ranges->barker_corr_th_min; | ||
596 | data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; | ||
597 | data->nrg_th_cca = ranges->nrg_th_cca; | ||
598 | |||
599 | data->last_bad_plcp_cnt_ofdm = 0; | ||
600 | data->last_fa_cnt_ofdm = 0; | ||
601 | data->last_bad_plcp_cnt_cck = 0; | ||
602 | data->last_fa_cnt_cck = 0; | ||
603 | |||
604 | if (priv->enhance_sensitivity_table) | ||
605 | ret |= iwl_enhance_sensitivity_write(priv); | ||
606 | else | ||
607 | ret |= iwl_sensitivity_write(priv); | ||
608 | IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret); | ||
609 | } | ||
610 | |||
611 | void iwl_sensitivity_calibration(struct iwl_priv *priv) | ||
612 | { | ||
613 | u32 rx_enable_time; | ||
614 | u32 fa_cck; | ||
615 | u32 fa_ofdm; | ||
616 | u32 bad_plcp_cck; | ||
617 | u32 bad_plcp_ofdm; | ||
618 | u32 norm_fa_ofdm; | ||
619 | u32 norm_fa_cck; | ||
620 | struct iwl_sensitivity_data *data = NULL; | ||
621 | struct statistics_rx_non_phy *rx_info; | ||
622 | struct statistics_rx_phy *ofdm, *cck; | ||
623 | unsigned long flags; | ||
624 | struct statistics_general_data statis; | ||
625 | |||
626 | if (priv->disable_sens_cal) | ||
627 | return; | ||
628 | |||
629 | data = &(priv->sensitivity_data); | ||
630 | |||
631 | if (!iwl_is_any_associated(priv)) { | ||
632 | IWL_DEBUG_CALIB(priv, "<< - not associated\n"); | ||
633 | return; | ||
634 | } | ||
635 | |||
636 | spin_lock_irqsave(&priv->lock, flags); | ||
637 | rx_info = &priv->statistics.rx_non_phy; | ||
638 | ofdm = &priv->statistics.rx_ofdm; | ||
639 | cck = &priv->statistics.rx_cck; | ||
640 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | ||
641 | IWL_DEBUG_CALIB(priv, "<< invalid data.\n"); | ||
642 | spin_unlock_irqrestore(&priv->lock, flags); | ||
643 | return; | ||
644 | } | ||
645 | |||
646 | /* Extract Statistics: */ | ||
647 | rx_enable_time = le32_to_cpu(rx_info->channel_load); | ||
648 | fa_cck = le32_to_cpu(cck->false_alarm_cnt); | ||
649 | fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); | ||
650 | bad_plcp_cck = le32_to_cpu(cck->plcp_err); | ||
651 | bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); | ||
652 | |||
653 | statis.beacon_silence_rssi_a = | ||
654 | le32_to_cpu(rx_info->beacon_silence_rssi_a); | ||
655 | statis.beacon_silence_rssi_b = | ||
656 | le32_to_cpu(rx_info->beacon_silence_rssi_b); | ||
657 | statis.beacon_silence_rssi_c = | ||
658 | le32_to_cpu(rx_info->beacon_silence_rssi_c); | ||
659 | statis.beacon_energy_a = | ||
660 | le32_to_cpu(rx_info->beacon_energy_a); | ||
661 | statis.beacon_energy_b = | ||
662 | le32_to_cpu(rx_info->beacon_energy_b); | ||
663 | statis.beacon_energy_c = | ||
664 | le32_to_cpu(rx_info->beacon_energy_c); | ||
665 | |||
666 | spin_unlock_irqrestore(&priv->lock, flags); | ||
667 | |||
668 | IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time); | ||
669 | |||
670 | if (!rx_enable_time) { | ||
671 | IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n"); | ||
672 | return; | ||
673 | } | ||
674 | |||
675 | /* These statistics increase monotonically, and do not reset | ||
676 | * at each beacon. Calculate difference from last value, or just | ||
677 | * use the new statistics value if it has reset or wrapped around. */ | ||
678 | if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) | ||
679 | data->last_bad_plcp_cnt_cck = bad_plcp_cck; | ||
680 | else { | ||
681 | bad_plcp_cck -= data->last_bad_plcp_cnt_cck; | ||
682 | data->last_bad_plcp_cnt_cck += bad_plcp_cck; | ||
683 | } | ||
684 | |||
685 | if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) | ||
686 | data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; | ||
687 | else { | ||
688 | bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; | ||
689 | data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; | ||
690 | } | ||
691 | |||
692 | if (data->last_fa_cnt_ofdm > fa_ofdm) | ||
693 | data->last_fa_cnt_ofdm = fa_ofdm; | ||
694 | else { | ||
695 | fa_ofdm -= data->last_fa_cnt_ofdm; | ||
696 | data->last_fa_cnt_ofdm += fa_ofdm; | ||
697 | } | ||
698 | |||
699 | if (data->last_fa_cnt_cck > fa_cck) | ||
700 | data->last_fa_cnt_cck = fa_cck; | ||
701 | else { | ||
702 | fa_cck -= data->last_fa_cnt_cck; | ||
703 | data->last_fa_cnt_cck += fa_cck; | ||
704 | } | ||
705 | |||
706 | /* Total aborted signal locks */ | ||
707 | norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; | ||
708 | norm_fa_cck = fa_cck + bad_plcp_cck; | ||
709 | |||
710 | IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, | ||
711 | bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); | ||
712 | |||
713 | iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); | ||
714 | iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); | ||
715 | if (priv->enhance_sensitivity_table) | ||
716 | iwl_enhance_sensitivity_write(priv); | ||
717 | else | ||
718 | iwl_sensitivity_write(priv); | ||
719 | } | ||
720 | |||
721 | static inline u8 find_first_chain(u8 mask) | ||
722 | { | ||
723 | if (mask & ANT_A) | ||
724 | return CHAIN_A; | ||
725 | if (mask & ANT_B) | ||
726 | return CHAIN_B; | ||
727 | return CHAIN_C; | ||
728 | } | ||
729 | |||
730 | /** | ||
731 | * Run disconnected antenna algorithm to find out which antennas are | ||
732 | * disconnected. | ||
733 | */ | ||
734 | static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig, | ||
735 | struct iwl_chain_noise_data *data) | ||
736 | { | ||
737 | u32 active_chains = 0; | ||
738 | u32 max_average_sig; | ||
739 | u16 max_average_sig_antenna_i; | ||
740 | u8 num_tx_chains; | ||
741 | u8 first_chain; | ||
742 | u16 i = 0; | ||
743 | |||
744 | average_sig[0] = data->chain_signal_a / | ||
745 | priv->cfg->base_params->chain_noise_num_beacons; | ||
746 | average_sig[1] = data->chain_signal_b / | ||
747 | priv->cfg->base_params->chain_noise_num_beacons; | ||
748 | average_sig[2] = data->chain_signal_c / | ||
749 | priv->cfg->base_params->chain_noise_num_beacons; | ||
750 | |||
751 | if (average_sig[0] >= average_sig[1]) { | ||
752 | max_average_sig = average_sig[0]; | ||
753 | max_average_sig_antenna_i = 0; | ||
754 | active_chains = (1 << max_average_sig_antenna_i); | ||
755 | } else { | ||
756 | max_average_sig = average_sig[1]; | ||
757 | max_average_sig_antenna_i = 1; | ||
758 | active_chains = (1 << max_average_sig_antenna_i); | ||
759 | } | ||
760 | |||
761 | if (average_sig[2] >= max_average_sig) { | ||
762 | max_average_sig = average_sig[2]; | ||
763 | max_average_sig_antenna_i = 2; | ||
764 | active_chains = (1 << max_average_sig_antenna_i); | ||
765 | } | ||
766 | |||
767 | IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n", | ||
768 | average_sig[0], average_sig[1], average_sig[2]); | ||
769 | IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n", | ||
770 | max_average_sig, max_average_sig_antenna_i); | ||
771 | |||
772 | /* Compare signal strengths for all 3 receivers. */ | ||
773 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
774 | if (i != max_average_sig_antenna_i) { | ||
775 | s32 rssi_delta = (max_average_sig - average_sig[i]); | ||
776 | |||
777 | /* If signal is very weak, compared with | ||
778 | * strongest, mark it as disconnected. */ | ||
779 | if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) | ||
780 | data->disconn_array[i] = 1; | ||
781 | else | ||
782 | active_chains |= (1 << i); | ||
783 | IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d " | ||
784 | "disconn_array[i] = %d\n", | ||
785 | i, rssi_delta, data->disconn_array[i]); | ||
786 | } | ||
787 | } | ||
788 | |||
789 | /* | ||
790 | * The above algorithm sometimes fails when the ucode | ||
791 | * reports 0 for all chains. It's not clear why that | ||
792 | * happens to start with, but it is then causing trouble | ||
793 | * because this can make us enable more chains than the | ||
794 | * hardware really has. | ||
795 | * | ||
796 | * To be safe, simply mask out any chains that we know | ||
797 | * are not on the device. | ||
798 | */ | ||
799 | active_chains &= priv->hw_params.valid_rx_ant; | ||
800 | |||
801 | num_tx_chains = 0; | ||
802 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
803 | /* loops on all the bits of | ||
804 | * priv->hw_setting.valid_tx_ant */ | ||
805 | u8 ant_msk = (1 << i); | ||
806 | if (!(priv->hw_params.valid_tx_ant & ant_msk)) | ||
807 | continue; | ||
808 | |||
809 | num_tx_chains++; | ||
810 | if (data->disconn_array[i] == 0) | ||
811 | /* there is a Tx antenna connected */ | ||
812 | break; | ||
813 | if (num_tx_chains == priv->hw_params.tx_chains_num && | ||
814 | data->disconn_array[i]) { | ||
815 | /* | ||
816 | * If all chains are disconnected | ||
817 | * connect the first valid tx chain | ||
818 | */ | ||
819 | first_chain = | ||
820 | find_first_chain(priv->cfg->valid_tx_ant); | ||
821 | data->disconn_array[first_chain] = 0; | ||
822 | active_chains |= BIT(first_chain); | ||
823 | IWL_DEBUG_CALIB(priv, | ||
824 | "All Tx chains are disconnected W/A - declare %d as connected\n", | ||
825 | first_chain); | ||
826 | break; | ||
827 | } | ||
828 | } | ||
829 | |||
830 | if (active_chains != priv->hw_params.valid_rx_ant && | ||
831 | active_chains != priv->chain_noise_data.active_chains) | ||
832 | IWL_DEBUG_CALIB(priv, | ||
833 | "Detected that not all antennas are connected! " | ||
834 | "Connected: %#x, valid: %#x.\n", | ||
835 | active_chains, priv->hw_params.valid_rx_ant); | ||
836 | |||
837 | /* Save for use within RXON, TX, SCAN commands, etc. */ | ||
838 | data->active_chains = active_chains; | ||
839 | IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n", | ||
840 | active_chains); | ||
841 | } | ||
842 | |||
843 | static void iwlagn_gain_computation(struct iwl_priv *priv, | ||
844 | u32 average_noise[NUM_RX_CHAINS], | ||
845 | u16 min_average_noise_antenna_i, | ||
846 | u32 min_average_noise, | ||
847 | u8 default_chain) | ||
848 | { | ||
849 | int i; | ||
850 | s32 delta_g; | ||
851 | struct iwl_chain_noise_data *data = &priv->chain_noise_data; | ||
852 | |||
853 | /* | ||
854 | * Find Gain Code for the chains based on "default chain" | ||
855 | */ | ||
856 | for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) { | ||
857 | if ((data->disconn_array[i])) { | ||
858 | data->delta_gain_code[i] = 0; | ||
859 | continue; | ||
860 | } | ||
861 | |||
862 | delta_g = (priv->cfg->base_params->chain_noise_scale * | ||
863 | ((s32)average_noise[default_chain] - | ||
864 | (s32)average_noise[i])) / 1500; | ||
865 | |||
866 | /* bound gain by 2 bits value max, 3rd bit is sign */ | ||
867 | data->delta_gain_code[i] = | ||
868 | min(abs(delta_g), | ||
869 | (long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE); | ||
870 | |||
871 | if (delta_g < 0) | ||
872 | /* | ||
873 | * set negative sign ... | ||
874 | * note to Intel developers: This is uCode API format, | ||
875 | * not the format of any internal device registers. | ||
876 | * Do not change this format for e.g. 6050 or similar | ||
877 | * devices. Change format only if more resolution | ||
878 | * (i.e. more than 2 bits magnitude) is needed. | ||
879 | */ | ||
880 | data->delta_gain_code[i] |= (1 << 2); | ||
881 | } | ||
882 | |||
883 | IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n", | ||
884 | data->delta_gain_code[1], data->delta_gain_code[2]); | ||
885 | |||
886 | if (!data->radio_write) { | ||
887 | struct iwl_calib_chain_noise_gain_cmd cmd; | ||
888 | |||
889 | memset(&cmd, 0, sizeof(cmd)); | ||
890 | |||
891 | iwl_set_calib_hdr(&cmd.hdr, | ||
892 | priv->phy_calib_chain_noise_gain_cmd); | ||
893 | cmd.delta_gain_1 = data->delta_gain_code[1]; | ||
894 | cmd.delta_gain_2 = data->delta_gain_code[2]; | ||
895 | trans_send_cmd_pdu(&priv->trans, REPLY_PHY_CALIBRATION_CMD, | ||
896 | CMD_ASYNC, sizeof(cmd), &cmd); | ||
897 | |||
898 | data->radio_write = 1; | ||
899 | data->state = IWL_CHAIN_NOISE_CALIBRATED; | ||
900 | } | ||
901 | } | ||
902 | |||
903 | /* | ||
904 | * Accumulate 16 beacons of signal and noise statistics for each of | ||
905 | * 3 receivers/antennas/rx-chains, then figure out: | ||
906 | * 1) Which antennas are connected. | ||
907 | * 2) Differential rx gain settings to balance the 3 receivers. | ||
908 | */ | ||
909 | void iwl_chain_noise_calibration(struct iwl_priv *priv) | ||
910 | { | ||
911 | struct iwl_chain_noise_data *data = NULL; | ||
912 | |||
913 | u32 chain_noise_a; | ||
914 | u32 chain_noise_b; | ||
915 | u32 chain_noise_c; | ||
916 | u32 chain_sig_a; | ||
917 | u32 chain_sig_b; | ||
918 | u32 chain_sig_c; | ||
919 | u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | ||
920 | u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | ||
921 | u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; | ||
922 | u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; | ||
923 | u16 i = 0; | ||
924 | u16 rxon_chnum = INITIALIZATION_VALUE; | ||
925 | u16 stat_chnum = INITIALIZATION_VALUE; | ||
926 | u8 rxon_band24; | ||
927 | u8 stat_band24; | ||
928 | unsigned long flags; | ||
929 | struct statistics_rx_non_phy *rx_info; | ||
930 | |||
931 | /* | ||
932 | * MULTI-FIXME: | ||
933 | * When we support multiple interfaces on different channels, | ||
934 | * this must be modified/fixed. | ||
935 | */ | ||
936 | struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; | ||
937 | |||
938 | if (priv->disable_chain_noise_cal) | ||
939 | return; | ||
940 | |||
941 | data = &(priv->chain_noise_data); | ||
942 | |||
943 | /* | ||
944 | * Accumulate just the first "chain_noise_num_beacons" after | ||
945 | * the first association, then we're done forever. | ||
946 | */ | ||
947 | if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { | ||
948 | if (data->state == IWL_CHAIN_NOISE_ALIVE) | ||
949 | IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n"); | ||
950 | return; | ||
951 | } | ||
952 | |||
953 | spin_lock_irqsave(&priv->lock, flags); | ||
954 | |||
955 | rx_info = &priv->statistics.rx_non_phy; | ||
956 | |||
957 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | ||
958 | IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n"); | ||
959 | spin_unlock_irqrestore(&priv->lock, flags); | ||
960 | return; | ||
961 | } | ||
962 | |||
963 | rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK); | ||
964 | rxon_chnum = le16_to_cpu(ctx->staging.channel); | ||
965 | stat_band24 = | ||
966 | !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); | ||
967 | stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16; | ||
968 | |||
969 | /* Make sure we accumulate data for just the associated channel | ||
970 | * (even if scanning). */ | ||
971 | if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { | ||
972 | IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n", | ||
973 | rxon_chnum, rxon_band24); | ||
974 | spin_unlock_irqrestore(&priv->lock, flags); | ||
975 | return; | ||
976 | } | ||
977 | |||
978 | /* | ||
979 | * Accumulate beacon statistics values across | ||
980 | * "chain_noise_num_beacons" | ||
981 | */ | ||
982 | chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & | ||
983 | IN_BAND_FILTER; | ||
984 | chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & | ||
985 | IN_BAND_FILTER; | ||
986 | chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & | ||
987 | IN_BAND_FILTER; | ||
988 | |||
989 | chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; | ||
990 | chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; | ||
991 | chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; | ||
992 | |||
993 | spin_unlock_irqrestore(&priv->lock, flags); | ||
994 | |||
995 | data->beacon_count++; | ||
996 | |||
997 | data->chain_noise_a = (chain_noise_a + data->chain_noise_a); | ||
998 | data->chain_noise_b = (chain_noise_b + data->chain_noise_b); | ||
999 | data->chain_noise_c = (chain_noise_c + data->chain_noise_c); | ||
1000 | |||
1001 | data->chain_signal_a = (chain_sig_a + data->chain_signal_a); | ||
1002 | data->chain_signal_b = (chain_sig_b + data->chain_signal_b); | ||
1003 | data->chain_signal_c = (chain_sig_c + data->chain_signal_c); | ||
1004 | |||
1005 | IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n", | ||
1006 | rxon_chnum, rxon_band24, data->beacon_count); | ||
1007 | IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n", | ||
1008 | chain_sig_a, chain_sig_b, chain_sig_c); | ||
1009 | IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n", | ||
1010 | chain_noise_a, chain_noise_b, chain_noise_c); | ||
1011 | |||
1012 | /* If this is the "chain_noise_num_beacons", determine: | ||
1013 | * 1) Disconnected antennas (using signal strengths) | ||
1014 | * 2) Differential gain (using silence noise) to balance receivers */ | ||
1015 | if (data->beacon_count != | ||
1016 | priv->cfg->base_params->chain_noise_num_beacons) | ||
1017 | return; | ||
1018 | |||
1019 | /* Analyze signal for disconnected antenna */ | ||
1020 | if (priv->cfg->bt_params && | ||
1021 | priv->cfg->bt_params->advanced_bt_coexist) { | ||
1022 | /* Disable disconnected antenna algorithm for advanced | ||
1023 | bt coex, assuming valid antennas are connected */ | ||
1024 | data->active_chains = priv->hw_params.valid_rx_ant; | ||
1025 | for (i = 0; i < NUM_RX_CHAINS; i++) | ||
1026 | if (!(data->active_chains & (1<<i))) | ||
1027 | data->disconn_array[i] = 1; | ||
1028 | } else | ||
1029 | iwl_find_disconn_antenna(priv, average_sig, data); | ||
1030 | |||
1031 | /* Analyze noise for rx balance */ | ||
1032 | average_noise[0] = data->chain_noise_a / | ||
1033 | priv->cfg->base_params->chain_noise_num_beacons; | ||
1034 | average_noise[1] = data->chain_noise_b / | ||
1035 | priv->cfg->base_params->chain_noise_num_beacons; | ||
1036 | average_noise[2] = data->chain_noise_c / | ||
1037 | priv->cfg->base_params->chain_noise_num_beacons; | ||
1038 | |||
1039 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
1040 | if (!(data->disconn_array[i]) && | ||
1041 | (average_noise[i] <= min_average_noise)) { | ||
1042 | /* This means that chain i is active and has | ||
1043 | * lower noise values so far: */ | ||
1044 | min_average_noise = average_noise[i]; | ||
1045 | min_average_noise_antenna_i = i; | ||
1046 | } | ||
1047 | } | ||
1048 | |||
1049 | IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n", | ||
1050 | average_noise[0], average_noise[1], | ||
1051 | average_noise[2]); | ||
1052 | |||
1053 | IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n", | ||
1054 | min_average_noise, min_average_noise_antenna_i); | ||
1055 | |||
1056 | iwlagn_gain_computation(priv, average_noise, | ||
1057 | min_average_noise_antenna_i, min_average_noise, | ||
1058 | find_first_chain(priv->cfg->valid_rx_ant)); | ||
1059 | |||
1060 | /* Some power changes may have been made during the calibration. | ||
1061 | * Update and commit the RXON | ||
1062 | */ | ||
1063 | iwl_update_chain_flags(priv); | ||
1064 | |||
1065 | data->state = IWL_CHAIN_NOISE_DONE; | ||
1066 | iwl_power_update_mode(priv, false); | ||
1067 | } | ||
1068 | |||
1069 | void iwl_reset_run_time_calib(struct iwl_priv *priv) | ||
1070 | { | ||
1071 | int i; | ||
1072 | memset(&(priv->sensitivity_data), 0, | ||
1073 | sizeof(struct iwl_sensitivity_data)); | ||
1074 | memset(&(priv->chain_noise_data), 0, | ||
1075 | sizeof(struct iwl_chain_noise_data)); | ||
1076 | for (i = 0; i < NUM_RX_CHAINS; i++) | ||
1077 | priv->chain_noise_data.delta_gain_code[i] = | ||
1078 | CHAIN_NOISE_DELTA_GAIN_INIT_VAL; | ||
1079 | |||
1080 | /* Ask for statistics now, the uCode will send notification | ||
1081 | * periodically after association */ | ||
1082 | iwl_send_statistics_request(priv, CMD_ASYNC, true); | ||
1083 | } | ||