diff options
Diffstat (limited to 'drivers/net/wireless/bcmdhd/sbutils.c')
-rw-r--r-- | drivers/net/wireless/bcmdhd/sbutils.c | 992 |
1 files changed, 992 insertions, 0 deletions
diff --git a/drivers/net/wireless/bcmdhd/sbutils.c b/drivers/net/wireless/bcmdhd/sbutils.c new file mode 100644 index 00000000000..02d1bc0a79d --- /dev/null +++ b/drivers/net/wireless/bcmdhd/sbutils.c | |||
@@ -0,0 +1,992 @@ | |||
1 | /* | ||
2 | * Misc utility routines for accessing chip-specific features | ||
3 | * of the SiliconBackplane-based Broadcom chips. | ||
4 | * | ||
5 | * Copyright (C) 1999-2011, Broadcom Corporation | ||
6 | * | ||
7 | * Unless you and Broadcom execute a separate written software license | ||
8 | * agreement governing use of this software, this software is licensed to you | ||
9 | * under the terms of the GNU General Public License version 2 (the "GPL"), | ||
10 | * available at http://www.broadcom.com/licenses/GPLv2.php, with the | ||
11 | * following added to such license: | ||
12 | * | ||
13 | * As a special exception, the copyright holders of this software give you | ||
14 | * permission to link this software with independent modules, and to copy and | ||
15 | * distribute the resulting executable under terms of your choice, provided that | ||
16 | * you also meet, for each linked independent module, the terms and conditions of | ||
17 | * the license of that module. An independent module is a module which is not | ||
18 | * derived from this software. The special exception does not apply to any | ||
19 | * modifications of the software. | ||
20 | * | ||
21 | * Notwithstanding the above, under no circumstances may you combine this | ||
22 | * software in any way with any other Broadcom software provided under a license | ||
23 | * other than the GPL, without Broadcom's express prior written consent. | ||
24 | * | ||
25 | * $Id: sbutils.c,v 1.687.2.1 2010-11-29 20:21:56 Exp $ | ||
26 | */ | ||
27 | |||
28 | #include <typedefs.h> | ||
29 | #include <bcmdefs.h> | ||
30 | #include <osl.h> | ||
31 | #include <bcmutils.h> | ||
32 | #include <siutils.h> | ||
33 | #include <bcmdevs.h> | ||
34 | #include <hndsoc.h> | ||
35 | #include <sbchipc.h> | ||
36 | #include <pcicfg.h> | ||
37 | #include <sbpcmcia.h> | ||
38 | |||
39 | #include "siutils_priv.h" | ||
40 | |||
41 | |||
42 | /* local prototypes */ | ||
43 | static uint _sb_coreidx(si_info_t *sii, uint32 sba); | ||
44 | static uint _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, | ||
45 | uint ncores); | ||
46 | static uint32 _sb_coresba(si_info_t *sii); | ||
47 | static void *_sb_setcoreidx(si_info_t *sii, uint coreidx); | ||
48 | |||
49 | #define SET_SBREG(sii, r, mask, val) \ | ||
50 | W_SBREG((sii), (r), ((R_SBREG((sii), (r)) & ~(mask)) | (val))) | ||
51 | #define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF) | ||
52 | |||
53 | /* sonicsrev */ | ||
54 | #define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT) | ||
55 | #define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT) | ||
56 | |||
57 | #define R_SBREG(sii, sbr) sb_read_sbreg((sii), (sbr)) | ||
58 | #define W_SBREG(sii, sbr, v) sb_write_sbreg((sii), (sbr), (v)) | ||
59 | #define AND_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) & (v))) | ||
60 | #define OR_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) | (v))) | ||
61 | |||
62 | static uint32 | ||
63 | sb_read_sbreg(si_info_t *sii, volatile uint32 *sbr) | ||
64 | { | ||
65 | uint8 tmp; | ||
66 | uint32 val, intr_val = 0; | ||
67 | |||
68 | |||
69 | /* | ||
70 | * compact flash only has 11 bits address, while we needs 12 bits address. | ||
71 | * MEM_SEG will be OR'd with other 11 bits address in hardware, | ||
72 | * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). | ||
73 | * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special | ||
74 | */ | ||
75 | if (PCMCIA(sii)) { | ||
76 | INTR_OFF(sii, intr_val); | ||
77 | tmp = 1; | ||
78 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | ||
79 | sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ | ||
80 | } | ||
81 | |||
82 | val = R_REG(sii->osh, sbr); | ||
83 | |||
84 | if (PCMCIA(sii)) { | ||
85 | tmp = 0; | ||
86 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | ||
87 | INTR_RESTORE(sii, intr_val); | ||
88 | } | ||
89 | |||
90 | return (val); | ||
91 | } | ||
92 | |||
93 | static void | ||
94 | sb_write_sbreg(si_info_t *sii, volatile uint32 *sbr, uint32 v) | ||
95 | { | ||
96 | uint8 tmp; | ||
97 | volatile uint32 dummy; | ||
98 | uint32 intr_val = 0; | ||
99 | |||
100 | |||
101 | /* | ||
102 | * compact flash only has 11 bits address, while we needs 12 bits address. | ||
103 | * MEM_SEG will be OR'd with other 11 bits address in hardware, | ||
104 | * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). | ||
105 | * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special | ||
106 | */ | ||
107 | if (PCMCIA(sii)) { | ||
108 | INTR_OFF(sii, intr_val); | ||
109 | tmp = 1; | ||
110 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | ||
111 | sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ | ||
112 | } | ||
113 | |||
114 | if (BUSTYPE(sii->pub.bustype) == PCMCIA_BUS) { | ||
115 | dummy = R_REG(sii->osh, sbr); | ||
116 | W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff)); | ||
117 | dummy = R_REG(sii->osh, sbr); | ||
118 | W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff)); | ||
119 | } else | ||
120 | W_REG(sii->osh, sbr, v); | ||
121 | |||
122 | if (PCMCIA(sii)) { | ||
123 | tmp = 0; | ||
124 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | ||
125 | INTR_RESTORE(sii, intr_val); | ||
126 | } | ||
127 | } | ||
128 | |||
129 | uint | ||
130 | sb_coreid(si_t *sih) | ||
131 | { | ||
132 | si_info_t *sii; | ||
133 | sbconfig_t *sb; | ||
134 | |||
135 | sii = SI_INFO(sih); | ||
136 | sb = REGS2SB(sii->curmap); | ||
137 | |||
138 | return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT); | ||
139 | } | ||
140 | |||
141 | uint | ||
142 | sb_intflag(si_t *sih) | ||
143 | { | ||
144 | si_info_t *sii; | ||
145 | void *corereg; | ||
146 | sbconfig_t *sb; | ||
147 | uint origidx, intflag, intr_val = 0; | ||
148 | |||
149 | sii = SI_INFO(sih); | ||
150 | |||
151 | INTR_OFF(sii, intr_val); | ||
152 | origidx = si_coreidx(sih); | ||
153 | corereg = si_setcore(sih, CC_CORE_ID, 0); | ||
154 | ASSERT(corereg != NULL); | ||
155 | sb = REGS2SB(corereg); | ||
156 | intflag = R_SBREG(sii, &sb->sbflagst); | ||
157 | sb_setcoreidx(sih, origidx); | ||
158 | INTR_RESTORE(sii, intr_val); | ||
159 | |||
160 | return intflag; | ||
161 | } | ||
162 | |||
163 | uint | ||
164 | sb_flag(si_t *sih) | ||
165 | { | ||
166 | si_info_t *sii; | ||
167 | sbconfig_t *sb; | ||
168 | |||
169 | sii = SI_INFO(sih); | ||
170 | sb = REGS2SB(sii->curmap); | ||
171 | |||
172 | return R_SBREG(sii, &sb->sbtpsflag) & SBTPS_NUM0_MASK; | ||
173 | } | ||
174 | |||
175 | void | ||
176 | sb_setint(si_t *sih, int siflag) | ||
177 | { | ||
178 | si_info_t *sii; | ||
179 | sbconfig_t *sb; | ||
180 | uint32 vec; | ||
181 | |||
182 | sii = SI_INFO(sih); | ||
183 | sb = REGS2SB(sii->curmap); | ||
184 | |||
185 | if (siflag == -1) | ||
186 | vec = 0; | ||
187 | else | ||
188 | vec = 1 << siflag; | ||
189 | W_SBREG(sii, &sb->sbintvec, vec); | ||
190 | } | ||
191 | |||
192 | /* return core index of the core with address 'sba' */ | ||
193 | static uint | ||
194 | _sb_coreidx(si_info_t *sii, uint32 sba) | ||
195 | { | ||
196 | uint i; | ||
197 | |||
198 | for (i = 0; i < sii->numcores; i ++) | ||
199 | if (sba == sii->coresba[i]) | ||
200 | return i; | ||
201 | return BADIDX; | ||
202 | } | ||
203 | |||
204 | /* return core address of the current core */ | ||
205 | static uint32 | ||
206 | _sb_coresba(si_info_t *sii) | ||
207 | { | ||
208 | uint32 sbaddr; | ||
209 | |||
210 | |||
211 | switch (BUSTYPE(sii->pub.bustype)) { | ||
212 | case SI_BUS: { | ||
213 | sbconfig_t *sb = REGS2SB(sii->curmap); | ||
214 | sbaddr = sb_base(R_SBREG(sii, &sb->sbadmatch0)); | ||
215 | break; | ||
216 | } | ||
217 | |||
218 | case PCI_BUS: | ||
219 | sbaddr = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32)); | ||
220 | break; | ||
221 | |||
222 | case PCMCIA_BUS: { | ||
223 | uint8 tmp = 0; | ||
224 | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); | ||
225 | sbaddr = (uint32)tmp << 12; | ||
226 | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); | ||
227 | sbaddr |= (uint32)tmp << 16; | ||
228 | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); | ||
229 | sbaddr |= (uint32)tmp << 24; | ||
230 | break; | ||
231 | } | ||
232 | |||
233 | case SPI_BUS: | ||
234 | case SDIO_BUS: | ||
235 | sbaddr = (uint32)(uintptr)sii->curmap; | ||
236 | break; | ||
237 | |||
238 | |||
239 | default: | ||
240 | sbaddr = BADCOREADDR; | ||
241 | break; | ||
242 | } | ||
243 | |||
244 | return sbaddr; | ||
245 | } | ||
246 | |||
247 | uint | ||
248 | sb_corevendor(si_t *sih) | ||
249 | { | ||
250 | si_info_t *sii; | ||
251 | sbconfig_t *sb; | ||
252 | |||
253 | sii = SI_INFO(sih); | ||
254 | sb = REGS2SB(sii->curmap); | ||
255 | |||
256 | return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT); | ||
257 | } | ||
258 | |||
259 | uint | ||
260 | sb_corerev(si_t *sih) | ||
261 | { | ||
262 | si_info_t *sii; | ||
263 | sbconfig_t *sb; | ||
264 | uint sbidh; | ||
265 | |||
266 | sii = SI_INFO(sih); | ||
267 | sb = REGS2SB(sii->curmap); | ||
268 | sbidh = R_SBREG(sii, &sb->sbidhigh); | ||
269 | |||
270 | return (SBCOREREV(sbidh)); | ||
271 | } | ||
272 | |||
273 | /* set core-specific control flags */ | ||
274 | void | ||
275 | sb_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) | ||
276 | { | ||
277 | si_info_t *sii; | ||
278 | sbconfig_t *sb; | ||
279 | uint32 w; | ||
280 | |||
281 | sii = SI_INFO(sih); | ||
282 | sb = REGS2SB(sii->curmap); | ||
283 | |||
284 | ASSERT((val & ~mask) == 0); | ||
285 | |||
286 | /* mask and set */ | ||
287 | w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | | ||
288 | (val << SBTML_SICF_SHIFT); | ||
289 | W_SBREG(sii, &sb->sbtmstatelow, w); | ||
290 | } | ||
291 | |||
292 | /* set/clear core-specific control flags */ | ||
293 | uint32 | ||
294 | sb_core_cflags(si_t *sih, uint32 mask, uint32 val) | ||
295 | { | ||
296 | si_info_t *sii; | ||
297 | sbconfig_t *sb; | ||
298 | uint32 w; | ||
299 | |||
300 | sii = SI_INFO(sih); | ||
301 | sb = REGS2SB(sii->curmap); | ||
302 | |||
303 | ASSERT((val & ~mask) == 0); | ||
304 | |||
305 | /* mask and set */ | ||
306 | if (mask || val) { | ||
307 | w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | | ||
308 | (val << SBTML_SICF_SHIFT); | ||
309 | W_SBREG(sii, &sb->sbtmstatelow, w); | ||
310 | } | ||
311 | |||
312 | /* return the new value | ||
313 | * for write operation, the following readback ensures the completion of write opration. | ||
314 | */ | ||
315 | return (R_SBREG(sii, &sb->sbtmstatelow) >> SBTML_SICF_SHIFT); | ||
316 | } | ||
317 | |||
318 | /* set/clear core-specific status flags */ | ||
319 | uint32 | ||
320 | sb_core_sflags(si_t *sih, uint32 mask, uint32 val) | ||
321 | { | ||
322 | si_info_t *sii; | ||
323 | sbconfig_t *sb; | ||
324 | uint32 w; | ||
325 | |||
326 | sii = SI_INFO(sih); | ||
327 | sb = REGS2SB(sii->curmap); | ||
328 | |||
329 | ASSERT((val & ~mask) == 0); | ||
330 | ASSERT((mask & ~SISF_CORE_BITS) == 0); | ||
331 | |||
332 | /* mask and set */ | ||
333 | if (mask || val) { | ||
334 | w = (R_SBREG(sii, &sb->sbtmstatehigh) & ~(mask << SBTMH_SISF_SHIFT)) | | ||
335 | (val << SBTMH_SISF_SHIFT); | ||
336 | W_SBREG(sii, &sb->sbtmstatehigh, w); | ||
337 | } | ||
338 | |||
339 | /* return the new value */ | ||
340 | return (R_SBREG(sii, &sb->sbtmstatehigh) >> SBTMH_SISF_SHIFT); | ||
341 | } | ||
342 | |||
343 | bool | ||
344 | sb_iscoreup(si_t *sih) | ||
345 | { | ||
346 | si_info_t *sii; | ||
347 | sbconfig_t *sb; | ||
348 | |||
349 | sii = SI_INFO(sih); | ||
350 | sb = REGS2SB(sii->curmap); | ||
351 | |||
352 | return ((R_SBREG(sii, &sb->sbtmstatelow) & | ||
353 | (SBTML_RESET | SBTML_REJ_MASK | (SICF_CLOCK_EN << SBTML_SICF_SHIFT))) == | ||
354 | (SICF_CLOCK_EN << SBTML_SICF_SHIFT)); | ||
355 | } | ||
356 | |||
357 | /* | ||
358 | * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, | ||
359 | * switch back to the original core, and return the new value. | ||
360 | * | ||
361 | * When using the silicon backplane, no fidleing with interrupts or core switches are needed. | ||
362 | * | ||
363 | * Also, when using pci/pcie, we can optimize away the core switching for pci registers | ||
364 | * and (on newer pci cores) chipcommon registers. | ||
365 | */ | ||
366 | uint | ||
367 | sb_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) | ||
368 | { | ||
369 | uint origidx = 0; | ||
370 | uint32 *r = NULL; | ||
371 | uint w; | ||
372 | uint intr_val = 0; | ||
373 | bool fast = FALSE; | ||
374 | si_info_t *sii; | ||
375 | |||
376 | sii = SI_INFO(sih); | ||
377 | |||
378 | ASSERT(GOODIDX(coreidx)); | ||
379 | ASSERT(regoff < SI_CORE_SIZE); | ||
380 | ASSERT((val & ~mask) == 0); | ||
381 | |||
382 | if (coreidx >= SI_MAXCORES) | ||
383 | return 0; | ||
384 | |||
385 | if (BUSTYPE(sii->pub.bustype) == SI_BUS) { | ||
386 | /* If internal bus, we can always get at everything */ | ||
387 | fast = TRUE; | ||
388 | /* map if does not exist */ | ||
389 | if (!sii->regs[coreidx]) { | ||
390 | sii->regs[coreidx] = REG_MAP(sii->coresba[coreidx], | ||
391 | SI_CORE_SIZE); | ||
392 | ASSERT(GOODREGS(sii->regs[coreidx])); | ||
393 | } | ||
394 | r = (uint32 *)((uchar *)sii->regs[coreidx] + regoff); | ||
395 | } else if (BUSTYPE(sii->pub.bustype) == PCI_BUS) { | ||
396 | /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ | ||
397 | |||
398 | if ((sii->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { | ||
399 | /* Chipc registers are mapped at 12KB */ | ||
400 | |||
401 | fast = TRUE; | ||
402 | r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); | ||
403 | } else if (sii->pub.buscoreidx == coreidx) { | ||
404 | /* pci registers are at either in the last 2KB of an 8KB window | ||
405 | * or, in pcie and pci rev 13 at 8KB | ||
406 | */ | ||
407 | fast = TRUE; | ||
408 | if (SI_FAST(sii)) | ||
409 | r = (uint32 *)((char *)sii->curmap + | ||
410 | PCI_16KB0_PCIREGS_OFFSET + regoff); | ||
411 | else | ||
412 | r = (uint32 *)((char *)sii->curmap + | ||
413 | ((regoff >= SBCONFIGOFF) ? | ||
414 | PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + | ||
415 | regoff); | ||
416 | } | ||
417 | } | ||
418 | |||
419 | if (!fast) { | ||
420 | INTR_OFF(sii, intr_val); | ||
421 | |||
422 | /* save current core index */ | ||
423 | origidx = si_coreidx(&sii->pub); | ||
424 | |||
425 | /* switch core */ | ||
426 | r = (uint32*) ((uchar*)sb_setcoreidx(&sii->pub, coreidx) + regoff); | ||
427 | } | ||
428 | ASSERT(r != NULL); | ||
429 | |||
430 | /* mask and set */ | ||
431 | if (mask || val) { | ||
432 | if (regoff >= SBCONFIGOFF) { | ||
433 | w = (R_SBREG(sii, r) & ~mask) | val; | ||
434 | W_SBREG(sii, r, w); | ||
435 | } else { | ||
436 | w = (R_REG(sii->osh, r) & ~mask) | val; | ||
437 | W_REG(sii->osh, r, w); | ||
438 | } | ||
439 | } | ||
440 | |||
441 | /* readback */ | ||
442 | if (regoff >= SBCONFIGOFF) | ||
443 | w = R_SBREG(sii, r); | ||
444 | else { | ||
445 | if ((CHIPID(sii->pub.chip) == BCM5354_CHIP_ID) && | ||
446 | (coreidx == SI_CC_IDX) && | ||
447 | (regoff == OFFSETOF(chipcregs_t, watchdog))) { | ||
448 | w = val; | ||
449 | } else | ||
450 | w = R_REG(sii->osh, r); | ||
451 | } | ||
452 | |||
453 | if (!fast) { | ||
454 | /* restore core index */ | ||
455 | if (origidx != coreidx) | ||
456 | sb_setcoreidx(&sii->pub, origidx); | ||
457 | |||
458 | INTR_RESTORE(sii, intr_val); | ||
459 | } | ||
460 | |||
461 | return (w); | ||
462 | } | ||
463 | |||
464 | /* Scan the enumeration space to find all cores starting from the given | ||
465 | * bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba' | ||
466 | * is the default core address at chip POR time and 'regs' is the virtual | ||
467 | * address that the default core is mapped at. 'ncores' is the number of | ||
468 | * cores expected on bus 'sbba'. It returns the total number of cores | ||
469 | * starting from bus 'sbba', inclusive. | ||
470 | */ | ||
471 | #define SB_MAXBUSES 2 | ||
472 | static uint | ||
473 | _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, uint numcores) | ||
474 | { | ||
475 | uint next; | ||
476 | uint ncc = 0; | ||
477 | uint i; | ||
478 | |||
479 | if (bus >= SB_MAXBUSES) { | ||
480 | SI_ERROR(("_sb_scan: bus 0x%08x at level %d is too deep to scan\n", sbba, bus)); | ||
481 | return 0; | ||
482 | } | ||
483 | SI_MSG(("_sb_scan: scan bus 0x%08x assume %u cores\n", sbba, numcores)); | ||
484 | |||
485 | /* Scan all cores on the bus starting from core 0. | ||
486 | * Core addresses must be contiguous on each bus. | ||
487 | */ | ||
488 | for (i = 0, next = sii->numcores; i < numcores && next < SB_BUS_MAXCORES; i++, next++) { | ||
489 | sii->coresba[next] = sbba + (i * SI_CORE_SIZE); | ||
490 | |||
491 | /* keep and reuse the initial register mapping */ | ||
492 | if ((BUSTYPE(sii->pub.bustype) == SI_BUS) && (sii->coresba[next] == sba)) { | ||
493 | SI_VMSG(("_sb_scan: reuse mapped regs %p for core %u\n", regs, next)); | ||
494 | sii->regs[next] = regs; | ||
495 | } | ||
496 | |||
497 | /* change core to 'next' and read its coreid */ | ||
498 | sii->curmap = _sb_setcoreidx(sii, next); | ||
499 | sii->curidx = next; | ||
500 | |||
501 | sii->coreid[next] = sb_coreid(&sii->pub); | ||
502 | |||
503 | /* core specific processing... */ | ||
504 | /* chipc provides # cores */ | ||
505 | if (sii->coreid[next] == CC_CORE_ID) { | ||
506 | chipcregs_t *cc = (chipcregs_t *)sii->curmap; | ||
507 | uint32 ccrev = sb_corerev(&sii->pub); | ||
508 | |||
509 | /* determine numcores - this is the total # cores in the chip */ | ||
510 | if (((ccrev == 4) || (ccrev >= 6))) | ||
511 | numcores = (R_REG(sii->osh, &cc->chipid) & CID_CC_MASK) >> | ||
512 | CID_CC_SHIFT; | ||
513 | else { | ||
514 | /* Older chips */ | ||
515 | uint chip = CHIPID(sii->pub.chip); | ||
516 | |||
517 | if (chip == BCM4306_CHIP_ID) /* < 4306c0 */ | ||
518 | numcores = 6; | ||
519 | else if (chip == BCM4704_CHIP_ID) | ||
520 | numcores = 9; | ||
521 | else if (chip == BCM5365_CHIP_ID) | ||
522 | numcores = 7; | ||
523 | else { | ||
524 | SI_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", | ||
525 | chip)); | ||
526 | ASSERT(0); | ||
527 | numcores = 1; | ||
528 | } | ||
529 | } | ||
530 | SI_VMSG(("_sb_scan: there are %u cores in the chip %s\n", numcores, | ||
531 | sii->pub.issim ? "QT" : "")); | ||
532 | } | ||
533 | /* scan bridged SB(s) and add results to the end of the list */ | ||
534 | else if (sii->coreid[next] == OCP_CORE_ID) { | ||
535 | sbconfig_t *sb = REGS2SB(sii->curmap); | ||
536 | uint32 nsbba = R_SBREG(sii, &sb->sbadmatch1); | ||
537 | uint nsbcc; | ||
538 | |||
539 | sii->numcores = next + 1; | ||
540 | |||
541 | if ((nsbba & 0xfff00000) != SI_ENUM_BASE) | ||
542 | continue; | ||
543 | nsbba &= 0xfffff000; | ||
544 | if (_sb_coreidx(sii, nsbba) != BADIDX) | ||
545 | continue; | ||
546 | |||
547 | nsbcc = (R_SBREG(sii, &sb->sbtmstatehigh) & 0x000f0000) >> 16; | ||
548 | nsbcc = _sb_scan(sii, sba, regs, bus + 1, nsbba, nsbcc); | ||
549 | if (sbba == SI_ENUM_BASE) | ||
550 | numcores -= nsbcc; | ||
551 | ncc += nsbcc; | ||
552 | } | ||
553 | } | ||
554 | |||
555 | SI_MSG(("_sb_scan: found %u cores on bus 0x%08x\n", i, sbba)); | ||
556 | |||
557 | sii->numcores = i + ncc; | ||
558 | return sii->numcores; | ||
559 | } | ||
560 | |||
561 | /* scan the sb enumerated space to identify all cores */ | ||
562 | void | ||
563 | sb_scan(si_t *sih, void *regs, uint devid) | ||
564 | { | ||
565 | si_info_t *sii; | ||
566 | uint32 origsba; | ||
567 | sbconfig_t *sb; | ||
568 | |||
569 | sii = SI_INFO(sih); | ||
570 | sb = REGS2SB(sii->curmap); | ||
571 | |||
572 | sii->pub.socirev = (R_SBREG(sii, &sb->sbidlow) & SBIDL_RV_MASK) >> SBIDL_RV_SHIFT; | ||
573 | |||
574 | /* Save the current core info and validate it later till we know | ||
575 | * for sure what is good and what is bad. | ||
576 | */ | ||
577 | origsba = _sb_coresba(sii); | ||
578 | |||
579 | /* scan all SB(s) starting from SI_ENUM_BASE */ | ||
580 | sii->numcores = _sb_scan(sii, origsba, regs, 0, SI_ENUM_BASE, 1); | ||
581 | } | ||
582 | |||
583 | /* | ||
584 | * This function changes logical "focus" to the indicated core; | ||
585 | * must be called with interrupts off. | ||
586 | * Moreover, callers should keep interrupts off during switching out of and back to d11 core | ||
587 | */ | ||
588 | void * | ||
589 | sb_setcoreidx(si_t *sih, uint coreidx) | ||
590 | { | ||
591 | si_info_t *sii; | ||
592 | |||
593 | sii = SI_INFO(sih); | ||
594 | |||
595 | if (coreidx >= sii->numcores) | ||
596 | return (NULL); | ||
597 | |||
598 | /* | ||
599 | * If the user has provided an interrupt mask enabled function, | ||
600 | * then assert interrupts are disabled before switching the core. | ||
601 | */ | ||
602 | ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg)); | ||
603 | |||
604 | sii->curmap = _sb_setcoreidx(sii, coreidx); | ||
605 | sii->curidx = coreidx; | ||
606 | |||
607 | return (sii->curmap); | ||
608 | } | ||
609 | |||
610 | /* This function changes the logical "focus" to the indicated core. | ||
611 | * Return the current core's virtual address. | ||
612 | */ | ||
613 | static void * | ||
614 | _sb_setcoreidx(si_info_t *sii, uint coreidx) | ||
615 | { | ||
616 | uint32 sbaddr = sii->coresba[coreidx]; | ||
617 | void *regs; | ||
618 | |||
619 | switch (BUSTYPE(sii->pub.bustype)) { | ||
620 | case SI_BUS: | ||
621 | /* map new one */ | ||
622 | if (!sii->regs[coreidx]) { | ||
623 | sii->regs[coreidx] = REG_MAP(sbaddr, SI_CORE_SIZE); | ||
624 | ASSERT(GOODREGS(sii->regs[coreidx])); | ||
625 | } | ||
626 | regs = sii->regs[coreidx]; | ||
627 | break; | ||
628 | |||
629 | case PCI_BUS: | ||
630 | /* point bar0 window */ | ||
631 | OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, sbaddr); | ||
632 | regs = sii->curmap; | ||
633 | break; | ||
634 | |||
635 | case PCMCIA_BUS: { | ||
636 | uint8 tmp = (sbaddr >> 12) & 0x0f; | ||
637 | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); | ||
638 | tmp = (sbaddr >> 16) & 0xff; | ||
639 | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); | ||
640 | tmp = (sbaddr >> 24) & 0xff; | ||
641 | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); | ||
642 | regs = sii->curmap; | ||
643 | break; | ||
644 | } | ||
645 | case SPI_BUS: | ||
646 | case SDIO_BUS: | ||
647 | /* map new one */ | ||
648 | if (!sii->regs[coreidx]) { | ||
649 | sii->regs[coreidx] = (void *)(uintptr)sbaddr; | ||
650 | ASSERT(GOODREGS(sii->regs[coreidx])); | ||
651 | } | ||
652 | regs = sii->regs[coreidx]; | ||
653 | break; | ||
654 | |||
655 | |||
656 | default: | ||
657 | ASSERT(0); | ||
658 | regs = NULL; | ||
659 | break; | ||
660 | } | ||
661 | |||
662 | return regs; | ||
663 | } | ||
664 | |||
665 | /* Return the address of sbadmatch0/1/2/3 register */ | ||
666 | static volatile uint32 * | ||
667 | sb_admatch(si_info_t *sii, uint asidx) | ||
668 | { | ||
669 | sbconfig_t *sb; | ||
670 | volatile uint32 *addrm; | ||
671 | |||
672 | sb = REGS2SB(sii->curmap); | ||
673 | |||
674 | switch (asidx) { | ||
675 | case 0: | ||
676 | addrm = &sb->sbadmatch0; | ||
677 | break; | ||
678 | |||
679 | case 1: | ||
680 | addrm = &sb->sbadmatch1; | ||
681 | break; | ||
682 | |||
683 | case 2: | ||
684 | addrm = &sb->sbadmatch2; | ||
685 | break; | ||
686 | |||
687 | case 3: | ||
688 | addrm = &sb->sbadmatch3; | ||
689 | break; | ||
690 | |||
691 | default: | ||
692 | SI_ERROR(("%s: Address space index (%d) out of range\n", __FUNCTION__, asidx)); | ||
693 | return 0; | ||
694 | } | ||
695 | |||
696 | return (addrm); | ||
697 | } | ||
698 | |||
699 | /* Return the number of address spaces in current core */ | ||
700 | int | ||
701 | sb_numaddrspaces(si_t *sih) | ||
702 | { | ||
703 | si_info_t *sii; | ||
704 | sbconfig_t *sb; | ||
705 | |||
706 | sii = SI_INFO(sih); | ||
707 | sb = REGS2SB(sii->curmap); | ||
708 | |||
709 | /* + 1 because of enumeration space */ | ||
710 | return ((R_SBREG(sii, &sb->sbidlow) & SBIDL_AR_MASK) >> SBIDL_AR_SHIFT) + 1; | ||
711 | } | ||
712 | |||
713 | /* Return the address of the nth address space in the current core */ | ||
714 | uint32 | ||
715 | sb_addrspace(si_t *sih, uint asidx) | ||
716 | { | ||
717 | si_info_t *sii; | ||
718 | |||
719 | sii = SI_INFO(sih); | ||
720 | |||
721 | return (sb_base(R_SBREG(sii, sb_admatch(sii, asidx)))); | ||
722 | } | ||
723 | |||
724 | /* Return the size of the nth address space in the current core */ | ||
725 | uint32 | ||
726 | sb_addrspacesize(si_t *sih, uint asidx) | ||
727 | { | ||
728 | si_info_t *sii; | ||
729 | |||
730 | sii = SI_INFO(sih); | ||
731 | |||
732 | return (sb_size(R_SBREG(sii, sb_admatch(sii, asidx)))); | ||
733 | } | ||
734 | |||
735 | |||
736 | /* do buffered registers update */ | ||
737 | void | ||
738 | sb_commit(si_t *sih) | ||
739 | { | ||
740 | si_info_t *sii; | ||
741 | uint origidx; | ||
742 | uint intr_val = 0; | ||
743 | |||
744 | sii = SI_INFO(sih); | ||
745 | |||
746 | origidx = sii->curidx; | ||
747 | ASSERT(GOODIDX(origidx)); | ||
748 | |||
749 | INTR_OFF(sii, intr_val); | ||
750 | |||
751 | /* switch over to chipcommon core if there is one, else use pci */ | ||
752 | if (sii->pub.ccrev != NOREV) { | ||
753 | chipcregs_t *ccregs = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0); | ||
754 | ASSERT(ccregs != NULL); | ||
755 | |||
756 | /* do the buffer registers update */ | ||
757 | W_REG(sii->osh, &ccregs->broadcastaddress, SB_COMMIT); | ||
758 | W_REG(sii->osh, &ccregs->broadcastdata, 0x0); | ||
759 | } else | ||
760 | ASSERT(0); | ||
761 | |||
762 | /* restore core index */ | ||
763 | sb_setcoreidx(sih, origidx); | ||
764 | INTR_RESTORE(sii, intr_val); | ||
765 | } | ||
766 | |||
767 | void | ||
768 | sb_core_disable(si_t *sih, uint32 bits) | ||
769 | { | ||
770 | si_info_t *sii; | ||
771 | volatile uint32 dummy; | ||
772 | sbconfig_t *sb; | ||
773 | |||
774 | sii = SI_INFO(sih); | ||
775 | |||
776 | ASSERT(GOODREGS(sii->curmap)); | ||
777 | sb = REGS2SB(sii->curmap); | ||
778 | |||
779 | /* if core is already in reset, just return */ | ||
780 | if (R_SBREG(sii, &sb->sbtmstatelow) & SBTML_RESET) | ||
781 | return; | ||
782 | |||
783 | /* if clocks are not enabled, put into reset and return */ | ||
784 | if ((R_SBREG(sii, &sb->sbtmstatelow) & (SICF_CLOCK_EN << SBTML_SICF_SHIFT)) == 0) | ||
785 | goto disable; | ||
786 | |||
787 | /* set target reject and spin until busy is clear (preserve core-specific bits) */ | ||
788 | OR_SBREG(sii, &sb->sbtmstatelow, SBTML_REJ); | ||
789 | dummy = R_SBREG(sii, &sb->sbtmstatelow); | ||
790 | OSL_DELAY(1); | ||
791 | SPINWAIT((R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000); | ||
792 | if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY) | ||
793 | SI_ERROR(("%s: target state still busy\n", __FUNCTION__)); | ||
794 | |||
795 | if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) { | ||
796 | OR_SBREG(sii, &sb->sbimstate, SBIM_RJ); | ||
797 | dummy = R_SBREG(sii, &sb->sbimstate); | ||
798 | OSL_DELAY(1); | ||
799 | SPINWAIT((R_SBREG(sii, &sb->sbimstate) & SBIM_BY), 100000); | ||
800 | } | ||
801 | |||
802 | /* set reset and reject while enabling the clocks */ | ||
803 | W_SBREG(sii, &sb->sbtmstatelow, | ||
804 | (((bits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | | ||
805 | SBTML_REJ | SBTML_RESET)); | ||
806 | dummy = R_SBREG(sii, &sb->sbtmstatelow); | ||
807 | OSL_DELAY(10); | ||
808 | |||
809 | /* don't forget to clear the initiator reject bit */ | ||
810 | if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) | ||
811 | AND_SBREG(sii, &sb->sbimstate, ~SBIM_RJ); | ||
812 | |||
813 | disable: | ||
814 | /* leave reset and reject asserted */ | ||
815 | W_SBREG(sii, &sb->sbtmstatelow, ((bits << SBTML_SICF_SHIFT) | SBTML_REJ | SBTML_RESET)); | ||
816 | OSL_DELAY(1); | ||
817 | } | ||
818 | |||
819 | /* reset and re-enable a core | ||
820 | * inputs: | ||
821 | * bits - core specific bits that are set during and after reset sequence | ||
822 | * resetbits - core specific bits that are set only during reset sequence | ||
823 | */ | ||
824 | void | ||
825 | sb_core_reset(si_t *sih, uint32 bits, uint32 resetbits) | ||
826 | { | ||
827 | si_info_t *sii; | ||
828 | sbconfig_t *sb; | ||
829 | volatile uint32 dummy; | ||
830 | |||
831 | sii = SI_INFO(sih); | ||
832 | ASSERT(GOODREGS(sii->curmap)); | ||
833 | sb = REGS2SB(sii->curmap); | ||
834 | |||
835 | /* | ||
836 | * Must do the disable sequence first to work for arbitrary current core state. | ||
837 | */ | ||
838 | sb_core_disable(sih, (bits | resetbits)); | ||
839 | |||
840 | /* | ||
841 | * Now do the initialization sequence. | ||
842 | */ | ||
843 | |||
844 | /* set reset while enabling the clock and forcing them on throughout the core */ | ||
845 | W_SBREG(sii, &sb->sbtmstatelow, | ||
846 | (((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | | ||
847 | SBTML_RESET)); | ||
848 | dummy = R_SBREG(sii, &sb->sbtmstatelow); | ||
849 | OSL_DELAY(1); | ||
850 | |||
851 | if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_SERR) { | ||
852 | W_SBREG(sii, &sb->sbtmstatehigh, 0); | ||
853 | } | ||
854 | if ((dummy = R_SBREG(sii, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) { | ||
855 | AND_SBREG(sii, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO)); | ||
856 | } | ||
857 | |||
858 | /* clear reset and allow it to propagate throughout the core */ | ||
859 | W_SBREG(sii, &sb->sbtmstatelow, | ||
860 | ((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); | ||
861 | dummy = R_SBREG(sii, &sb->sbtmstatelow); | ||
862 | OSL_DELAY(1); | ||
863 | |||
864 | /* leave clock enabled */ | ||
865 | W_SBREG(sii, &sb->sbtmstatelow, ((bits | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); | ||
866 | dummy = R_SBREG(sii, &sb->sbtmstatelow); | ||
867 | OSL_DELAY(1); | ||
868 | } | ||
869 | |||
870 | /* | ||
871 | * Set the initiator timeout for the "master core". | ||
872 | * The master core is defined to be the core in control | ||
873 | * of the chip and so it issues accesses to non-memory | ||
874 | * locations (Because of dma *any* core can access memeory). | ||
875 | * | ||
876 | * The routine uses the bus to decide who is the master: | ||
877 | * SI_BUS => mips | ||
878 | * JTAG_BUS => chipc | ||
879 | * PCI_BUS => pci or pcie | ||
880 | * PCMCIA_BUS => pcmcia | ||
881 | * SDIO_BUS => pcmcia | ||
882 | * | ||
883 | * This routine exists so callers can disable initiator | ||
884 | * timeouts so accesses to very slow devices like otp | ||
885 | * won't cause an abort. The routine allows arbitrary | ||
886 | * settings of the service and request timeouts, though. | ||
887 | * | ||
888 | * Returns the timeout state before changing it or -1 | ||
889 | * on error. | ||
890 | */ | ||
891 | |||
892 | #define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK) | ||
893 | |||
894 | uint32 | ||
895 | sb_set_initiator_to(si_t *sih, uint32 to, uint idx) | ||
896 | { | ||
897 | si_info_t *sii; | ||
898 | uint origidx; | ||
899 | uint intr_val = 0; | ||
900 | uint32 tmp, ret = 0xffffffff; | ||
901 | sbconfig_t *sb; | ||
902 | |||
903 | sii = SI_INFO(sih); | ||
904 | |||
905 | if ((to & ~TO_MASK) != 0) | ||
906 | return ret; | ||
907 | |||
908 | /* Figure out the master core */ | ||
909 | if (idx == BADIDX) { | ||
910 | switch (BUSTYPE(sii->pub.bustype)) { | ||
911 | case PCI_BUS: | ||
912 | idx = sii->pub.buscoreidx; | ||
913 | break; | ||
914 | case JTAG_BUS: | ||
915 | idx = SI_CC_IDX; | ||
916 | break; | ||
917 | case PCMCIA_BUS: | ||
918 | case SDIO_BUS: | ||
919 | idx = si_findcoreidx(sih, PCMCIA_CORE_ID, 0); | ||
920 | break; | ||
921 | case SI_BUS: | ||
922 | idx = si_findcoreidx(sih, MIPS33_CORE_ID, 0); | ||
923 | break; | ||
924 | default: | ||
925 | ASSERT(0); | ||
926 | } | ||
927 | if (idx == BADIDX) | ||
928 | return ret; | ||
929 | } | ||
930 | |||
931 | INTR_OFF(sii, intr_val); | ||
932 | origidx = si_coreidx(sih); | ||
933 | |||
934 | sb = REGS2SB(sb_setcoreidx(sih, idx)); | ||
935 | |||
936 | tmp = R_SBREG(sii, &sb->sbimconfiglow); | ||
937 | ret = tmp & TO_MASK; | ||
938 | W_SBREG(sii, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to); | ||
939 | |||
940 | sb_commit(sih); | ||
941 | sb_setcoreidx(sih, origidx); | ||
942 | INTR_RESTORE(sii, intr_val); | ||
943 | return ret; | ||
944 | } | ||
945 | |||
946 | uint32 | ||
947 | sb_base(uint32 admatch) | ||
948 | { | ||
949 | uint32 base; | ||
950 | uint type; | ||
951 | |||
952 | type = admatch & SBAM_TYPE_MASK; | ||
953 | ASSERT(type < 3); | ||
954 | |||
955 | base = 0; | ||
956 | |||
957 | if (type == 0) { | ||
958 | base = admatch & SBAM_BASE0_MASK; | ||
959 | } else if (type == 1) { | ||
960 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ | ||
961 | base = admatch & SBAM_BASE1_MASK; | ||
962 | } else if (type == 2) { | ||
963 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ | ||
964 | base = admatch & SBAM_BASE2_MASK; | ||
965 | } | ||
966 | |||
967 | return (base); | ||
968 | } | ||
969 | |||
970 | uint32 | ||
971 | sb_size(uint32 admatch) | ||
972 | { | ||
973 | uint32 size; | ||
974 | uint type; | ||
975 | |||
976 | type = admatch & SBAM_TYPE_MASK; | ||
977 | ASSERT(type < 3); | ||
978 | |||
979 | size = 0; | ||
980 | |||
981 | if (type == 0) { | ||
982 | size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1); | ||
983 | } else if (type == 1) { | ||
984 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ | ||
985 | size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1); | ||
986 | } else if (type == 2) { | ||
987 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ | ||
988 | size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1); | ||
989 | } | ||
990 | |||
991 | return (size); | ||
992 | } | ||