diff options
Diffstat (limited to 'drivers/net/wireless/bcm4329/sbutils.c')
-rw-r--r-- | drivers/net/wireless/bcm4329/sbutils.c | 1004 |
1 files changed, 1004 insertions, 0 deletions
diff --git a/drivers/net/wireless/bcm4329/sbutils.c b/drivers/net/wireless/bcm4329/sbutils.c new file mode 100644 index 00000000000..46cd51010b7 --- /dev/null +++ b/drivers/net/wireless/bcm4329/sbutils.c | |||
@@ -0,0 +1,1004 @@ | |||
1 | /* | ||
2 | * Misc utility routines for accessing chip-specific features | ||
3 | * of the SiliconBackplane-based Broadcom chips. | ||
4 | * | ||
5 | * Copyright (C) 1999-2010, Broadcom Corporation | ||
6 | * | ||
7 | * Unless you and Broadcom execute a separate written software license | ||
8 | * agreement governing use of this software, this software is licensed to you | ||
9 | * under the terms of the GNU General Public License version 2 (the "GPL"), | ||
10 | * available at http://www.broadcom.com/licenses/GPLv2.php, with the | ||
11 | * following added to such license: | ||
12 | * | ||
13 | * As a special exception, the copyright holders of this software give you | ||
14 | * permission to link this software with independent modules, and to copy and | ||
15 | * distribute the resulting executable under terms of your choice, provided that | ||
16 | * you also meet, for each linked independent module, the terms and conditions of | ||
17 | * the license of that module. An independent module is a module which is not | ||
18 | * derived from this software. The special exception does not apply to any | ||
19 | * modifications of the software. | ||
20 | * | ||
21 | * Notwithstanding the above, under no circumstances may you combine this | ||
22 | * software in any way with any other Broadcom software provided under a license | ||
23 | * other than the GPL, without Broadcom's express prior written consent. | ||
24 | * | ||
25 | * $Id: sbutils.c,v 1.662.4.10.2.7.4.2 2010/04/19 05:48:48 Exp $ | ||
26 | */ | ||
27 | |||
28 | #include <typedefs.h> | ||
29 | #include <bcmdefs.h> | ||
30 | #include <osl.h> | ||
31 | #include <bcmutils.h> | ||
32 | #include <siutils.h> | ||
33 | #include <bcmdevs.h> | ||
34 | #include <hndsoc.h> | ||
35 | #include <sbchipc.h> | ||
36 | #include <pcicfg.h> | ||
37 | #include <sbpcmcia.h> | ||
38 | |||
39 | #include "siutils_priv.h" | ||
40 | |||
41 | /* local prototypes */ | ||
42 | static uint _sb_coreidx(si_info_t *sii, uint32 sba); | ||
43 | static uint _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, | ||
44 | uint ncores); | ||
45 | static uint32 _sb_coresba(si_info_t *sii); | ||
46 | static void *_sb_setcoreidx(si_info_t *sii, uint coreidx); | ||
47 | |||
48 | #define SET_SBREG(sii, r, mask, val) \ | ||
49 | W_SBREG((sii), (r), ((R_SBREG((sii), (r)) & ~(mask)) | (val))) | ||
50 | #define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF) | ||
51 | |||
52 | /* sonicsrev */ | ||
53 | #define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT) | ||
54 | #define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT) | ||
55 | |||
56 | #define R_SBREG(sii, sbr) sb_read_sbreg((sii), (sbr)) | ||
57 | #define W_SBREG(sii, sbr, v) sb_write_sbreg((sii), (sbr), (v)) | ||
58 | #define AND_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) & (v))) | ||
59 | #define OR_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) | (v))) | ||
60 | |||
61 | static uint32 | ||
62 | sb_read_sbreg(si_info_t *sii, volatile uint32 *sbr) | ||
63 | { | ||
64 | uint8 tmp; | ||
65 | uint32 val, intr_val = 0; | ||
66 | |||
67 | |||
68 | /* | ||
69 | * compact flash only has 11 bits address, while we needs 12 bits address. | ||
70 | * MEM_SEG will be OR'd with other 11 bits address in hardware, | ||
71 | * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). | ||
72 | * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special | ||
73 | */ | ||
74 | if (PCMCIA(sii)) { | ||
75 | INTR_OFF(sii, intr_val); | ||
76 | tmp = 1; | ||
77 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | ||
78 | sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ | ||
79 | } | ||
80 | |||
81 | val = R_REG(sii->osh, sbr); | ||
82 | |||
83 | if (PCMCIA(sii)) { | ||
84 | tmp = 0; | ||
85 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | ||
86 | INTR_RESTORE(sii, intr_val); | ||
87 | } | ||
88 | |||
89 | return (val); | ||
90 | } | ||
91 | |||
92 | static void | ||
93 | sb_write_sbreg(si_info_t *sii, volatile uint32 *sbr, uint32 v) | ||
94 | { | ||
95 | uint8 tmp; | ||
96 | volatile uint32 dummy; | ||
97 | uint32 intr_val = 0; | ||
98 | |||
99 | |||
100 | /* | ||
101 | * compact flash only has 11 bits address, while we needs 12 bits address. | ||
102 | * MEM_SEG will be OR'd with other 11 bits address in hardware, | ||
103 | * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). | ||
104 | * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special | ||
105 | */ | ||
106 | if (PCMCIA(sii)) { | ||
107 | INTR_OFF(sii, intr_val); | ||
108 | tmp = 1; | ||
109 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | ||
110 | sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ | ||
111 | } | ||
112 | |||
113 | if (BUSTYPE(sii->pub.bustype) == PCMCIA_BUS) { | ||
114 | #ifdef IL_BIGENDIAN | ||
115 | dummy = R_REG(sii->osh, sbr); | ||
116 | W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff)); | ||
117 | dummy = R_REG(sii->osh, sbr); | ||
118 | W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff)); | ||
119 | #else | ||
120 | dummy = R_REG(sii->osh, sbr); | ||
121 | W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff)); | ||
122 | dummy = R_REG(sii->osh, sbr); | ||
123 | W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff)); | ||
124 | #endif /* IL_BIGENDIAN */ | ||
125 | } else | ||
126 | W_REG(sii->osh, sbr, v); | ||
127 | |||
128 | if (PCMCIA(sii)) { | ||
129 | tmp = 0; | ||
130 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | ||
131 | INTR_RESTORE(sii, intr_val); | ||
132 | } | ||
133 | } | ||
134 | |||
135 | uint | ||
136 | sb_coreid(si_t *sih) | ||
137 | { | ||
138 | si_info_t *sii; | ||
139 | sbconfig_t *sb; | ||
140 | |||
141 | sii = SI_INFO(sih); | ||
142 | sb = REGS2SB(sii->curmap); | ||
143 | |||
144 | return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT); | ||
145 | } | ||
146 | |||
147 | uint | ||
148 | sb_flag(si_t *sih) | ||
149 | { | ||
150 | si_info_t *sii; | ||
151 | sbconfig_t *sb; | ||
152 | |||
153 | sii = SI_INFO(sih); | ||
154 | sb = REGS2SB(sii->curmap); | ||
155 | |||
156 | return R_SBREG(sii, &sb->sbtpsflag) & SBTPS_NUM0_MASK; | ||
157 | } | ||
158 | |||
159 | void | ||
160 | sb_setint(si_t *sih, int siflag) | ||
161 | { | ||
162 | si_info_t *sii; | ||
163 | sbconfig_t *sb; | ||
164 | uint32 vec; | ||
165 | |||
166 | sii = SI_INFO(sih); | ||
167 | sb = REGS2SB(sii->curmap); | ||
168 | |||
169 | if (siflag == -1) | ||
170 | vec = 0; | ||
171 | else | ||
172 | vec = 1 << siflag; | ||
173 | W_SBREG(sii, &sb->sbintvec, vec); | ||
174 | } | ||
175 | |||
176 | /* return core index of the core with address 'sba' */ | ||
177 | static uint | ||
178 | _sb_coreidx(si_info_t *sii, uint32 sba) | ||
179 | { | ||
180 | uint i; | ||
181 | |||
182 | for (i = 0; i < sii->numcores; i ++) | ||
183 | if (sba == sii->common_info->coresba[i]) | ||
184 | return i; | ||
185 | return BADIDX; | ||
186 | } | ||
187 | |||
188 | /* return core address of the current core */ | ||
189 | static uint32 | ||
190 | _sb_coresba(si_info_t *sii) | ||
191 | { | ||
192 | uint32 sbaddr; | ||
193 | |||
194 | |||
195 | switch (BUSTYPE(sii->pub.bustype)) { | ||
196 | case SI_BUS: { | ||
197 | sbconfig_t *sb = REGS2SB(sii->curmap); | ||
198 | sbaddr = sb_base(R_SBREG(sii, &sb->sbadmatch0)); | ||
199 | break; | ||
200 | } | ||
201 | |||
202 | case PCI_BUS: | ||
203 | sbaddr = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32)); | ||
204 | break; | ||
205 | |||
206 | case PCMCIA_BUS: { | ||
207 | uint8 tmp = 0; | ||
208 | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); | ||
209 | sbaddr = (uint32)tmp << 12; | ||
210 | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); | ||
211 | sbaddr |= (uint32)tmp << 16; | ||
212 | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); | ||
213 | sbaddr |= (uint32)tmp << 24; | ||
214 | break; | ||
215 | } | ||
216 | |||
217 | case SPI_BUS: | ||
218 | case SDIO_BUS: | ||
219 | sbaddr = (uint32)(uintptr)sii->curmap; | ||
220 | break; | ||
221 | |||
222 | |||
223 | default: | ||
224 | sbaddr = BADCOREADDR; | ||
225 | break; | ||
226 | } | ||
227 | |||
228 | return sbaddr; | ||
229 | } | ||
230 | |||
231 | uint | ||
232 | sb_corevendor(si_t *sih) | ||
233 | { | ||
234 | si_info_t *sii; | ||
235 | sbconfig_t *sb; | ||
236 | |||
237 | sii = SI_INFO(sih); | ||
238 | sb = REGS2SB(sii->curmap); | ||
239 | |||
240 | return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT); | ||
241 | } | ||
242 | |||
243 | uint | ||
244 | sb_corerev(si_t *sih) | ||
245 | { | ||
246 | si_info_t *sii; | ||
247 | sbconfig_t *sb; | ||
248 | uint sbidh; | ||
249 | |||
250 | sii = SI_INFO(sih); | ||
251 | sb = REGS2SB(sii->curmap); | ||
252 | sbidh = R_SBREG(sii, &sb->sbidhigh); | ||
253 | |||
254 | return (SBCOREREV(sbidh)); | ||
255 | } | ||
256 | |||
257 | /* set core-specific control flags */ | ||
258 | void | ||
259 | sb_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) | ||
260 | { | ||
261 | si_info_t *sii; | ||
262 | sbconfig_t *sb; | ||
263 | uint32 w; | ||
264 | |||
265 | sii = SI_INFO(sih); | ||
266 | sb = REGS2SB(sii->curmap); | ||
267 | |||
268 | ASSERT((val & ~mask) == 0); | ||
269 | |||
270 | /* mask and set */ | ||
271 | w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | | ||
272 | (val << SBTML_SICF_SHIFT); | ||
273 | W_SBREG(sii, &sb->sbtmstatelow, w); | ||
274 | } | ||
275 | |||
276 | /* set/clear core-specific control flags */ | ||
277 | uint32 | ||
278 | sb_core_cflags(si_t *sih, uint32 mask, uint32 val) | ||
279 | { | ||
280 | si_info_t *sii; | ||
281 | sbconfig_t *sb; | ||
282 | uint32 w; | ||
283 | |||
284 | sii = SI_INFO(sih); | ||
285 | sb = REGS2SB(sii->curmap); | ||
286 | |||
287 | ASSERT((val & ~mask) == 0); | ||
288 | |||
289 | /* mask and set */ | ||
290 | if (mask || val) { | ||
291 | w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | | ||
292 | (val << SBTML_SICF_SHIFT); | ||
293 | W_SBREG(sii, &sb->sbtmstatelow, w); | ||
294 | } | ||
295 | |||
296 | /* return the new value | ||
297 | * for write operation, the following readback ensures the completion of write opration. | ||
298 | */ | ||
299 | return (R_SBREG(sii, &sb->sbtmstatelow) >> SBTML_SICF_SHIFT); | ||
300 | } | ||
301 | |||
302 | /* set/clear core-specific status flags */ | ||
303 | uint32 | ||
304 | sb_core_sflags(si_t *sih, uint32 mask, uint32 val) | ||
305 | { | ||
306 | si_info_t *sii; | ||
307 | sbconfig_t *sb; | ||
308 | uint32 w; | ||
309 | |||
310 | sii = SI_INFO(sih); | ||
311 | sb = REGS2SB(sii->curmap); | ||
312 | |||
313 | ASSERT((val & ~mask) == 0); | ||
314 | ASSERT((mask & ~SISF_CORE_BITS) == 0); | ||
315 | |||
316 | /* mask and set */ | ||
317 | if (mask || val) { | ||
318 | w = (R_SBREG(sii, &sb->sbtmstatehigh) & ~(mask << SBTMH_SISF_SHIFT)) | | ||
319 | (val << SBTMH_SISF_SHIFT); | ||
320 | W_SBREG(sii, &sb->sbtmstatehigh, w); | ||
321 | } | ||
322 | |||
323 | /* return the new value */ | ||
324 | return (R_SBREG(sii, &sb->sbtmstatehigh) >> SBTMH_SISF_SHIFT); | ||
325 | } | ||
326 | |||
327 | bool | ||
328 | sb_iscoreup(si_t *sih) | ||
329 | { | ||
330 | si_info_t *sii; | ||
331 | sbconfig_t *sb; | ||
332 | |||
333 | sii = SI_INFO(sih); | ||
334 | sb = REGS2SB(sii->curmap); | ||
335 | |||
336 | return ((R_SBREG(sii, &sb->sbtmstatelow) & | ||
337 | (SBTML_RESET | SBTML_REJ_MASK | (SICF_CLOCK_EN << SBTML_SICF_SHIFT))) == | ||
338 | (SICF_CLOCK_EN << SBTML_SICF_SHIFT)); | ||
339 | } | ||
340 | |||
341 | /* | ||
342 | * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, | ||
343 | * switch back to the original core, and return the new value. | ||
344 | * | ||
345 | * When using the silicon backplane, no fidleing with interrupts or core switches are needed. | ||
346 | * | ||
347 | * Also, when using pci/pcie, we can optimize away the core switching for pci registers | ||
348 | * and (on newer pci cores) chipcommon registers. | ||
349 | */ | ||
350 | uint | ||
351 | sb_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) | ||
352 | { | ||
353 | uint origidx = 0; | ||
354 | uint32 *r = NULL; | ||
355 | uint w; | ||
356 | uint intr_val = 0; | ||
357 | bool fast = FALSE; | ||
358 | si_info_t *sii; | ||
359 | |||
360 | sii = SI_INFO(sih); | ||
361 | |||
362 | ASSERT(GOODIDX(coreidx)); | ||
363 | ASSERT(regoff < SI_CORE_SIZE); | ||
364 | ASSERT((val & ~mask) == 0); | ||
365 | |||
366 | if (coreidx >= SI_MAXCORES) | ||
367 | return 0; | ||
368 | |||
369 | if (BUSTYPE(sii->pub.bustype) == SI_BUS) { | ||
370 | /* If internal bus, we can always get at everything */ | ||
371 | fast = TRUE; | ||
372 | /* map if does not exist */ | ||
373 | if (!sii->common_info->regs[coreidx]) { | ||
374 | sii->common_info->regs[coreidx] = | ||
375 | REG_MAP(sii->common_info->coresba[coreidx], SI_CORE_SIZE); | ||
376 | ASSERT(GOODREGS(sii->common_info->regs[coreidx])); | ||
377 | } | ||
378 | r = (uint32 *)((uchar *)sii->common_info->regs[coreidx] + regoff); | ||
379 | } else if (BUSTYPE(sii->pub.bustype) == PCI_BUS) { | ||
380 | /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ | ||
381 | |||
382 | if ((sii->common_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { | ||
383 | /* Chipc registers are mapped at 12KB */ | ||
384 | |||
385 | fast = TRUE; | ||
386 | r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); | ||
387 | } else if (sii->pub.buscoreidx == coreidx) { | ||
388 | /* pci registers are at either in the last 2KB of an 8KB window | ||
389 | * or, in pcie and pci rev 13 at 8KB | ||
390 | */ | ||
391 | fast = TRUE; | ||
392 | if (SI_FAST(sii)) | ||
393 | r = (uint32 *)((char *)sii->curmap + | ||
394 | PCI_16KB0_PCIREGS_OFFSET + regoff); | ||
395 | else | ||
396 | r = (uint32 *)((char *)sii->curmap + | ||
397 | ((regoff >= SBCONFIGOFF) ? | ||
398 | PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + | ||
399 | regoff); | ||
400 | } | ||
401 | } | ||
402 | |||
403 | if (!fast) { | ||
404 | INTR_OFF(sii, intr_val); | ||
405 | |||
406 | /* save current core index */ | ||
407 | origidx = si_coreidx(&sii->pub); | ||
408 | |||
409 | /* switch core */ | ||
410 | r = (uint32*) ((uchar*)sb_setcoreidx(&sii->pub, coreidx) + regoff); | ||
411 | } | ||
412 | ASSERT(r != NULL); | ||
413 | |||
414 | /* mask and set */ | ||
415 | if (mask || val) { | ||
416 | if (regoff >= SBCONFIGOFF) { | ||
417 | w = (R_SBREG(sii, r) & ~mask) | val; | ||
418 | W_SBREG(sii, r, w); | ||
419 | } else { | ||
420 | w = (R_REG(sii->osh, r) & ~mask) | val; | ||
421 | W_REG(sii->osh, r, w); | ||
422 | } | ||
423 | } | ||
424 | |||
425 | /* readback */ | ||
426 | if (regoff >= SBCONFIGOFF) | ||
427 | w = R_SBREG(sii, r); | ||
428 | else { | ||
429 | if ((CHIPID(sii->pub.chip) == BCM5354_CHIP_ID) && | ||
430 | (coreidx == SI_CC_IDX) && | ||
431 | (regoff == OFFSETOF(chipcregs_t, watchdog))) { | ||
432 | w = val; | ||
433 | } else | ||
434 | w = R_REG(sii->osh, r); | ||
435 | } | ||
436 | |||
437 | if (!fast) { | ||
438 | /* restore core index */ | ||
439 | if (origidx != coreidx) | ||
440 | sb_setcoreidx(&sii->pub, origidx); | ||
441 | |||
442 | INTR_RESTORE(sii, intr_val); | ||
443 | } | ||
444 | |||
445 | return (w); | ||
446 | } | ||
447 | |||
448 | /* Scan the enumeration space to find all cores starting from the given | ||
449 | * bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba' | ||
450 | * is the default core address at chip POR time and 'regs' is the virtual | ||
451 | * address that the default core is mapped at. 'ncores' is the number of | ||
452 | * cores expected on bus 'sbba'. It returns the total number of cores | ||
453 | * starting from bus 'sbba', inclusive. | ||
454 | */ | ||
455 | #define SB_MAXBUSES 2 | ||
456 | static uint | ||
457 | _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, uint numcores) | ||
458 | { | ||
459 | uint next; | ||
460 | uint ncc = 0; | ||
461 | uint i; | ||
462 | |||
463 | if (bus >= SB_MAXBUSES) { | ||
464 | SI_ERROR(("_sb_scan: bus 0x%08x at level %d is too deep to scan\n", sbba, bus)); | ||
465 | return 0; | ||
466 | } | ||
467 | SI_MSG(("_sb_scan: scan bus 0x%08x assume %u cores\n", sbba, numcores)); | ||
468 | |||
469 | /* Scan all cores on the bus starting from core 0. | ||
470 | * Core addresses must be contiguous on each bus. | ||
471 | */ | ||
472 | for (i = 0, next = sii->numcores; i < numcores && next < SB_BUS_MAXCORES; i++, next++) { | ||
473 | sii->common_info->coresba[next] = sbba + (i * SI_CORE_SIZE); | ||
474 | |||
475 | /* keep and reuse the initial register mapping */ | ||
476 | if ((BUSTYPE(sii->pub.bustype) == SI_BUS) && | ||
477 | (sii->common_info->coresba[next] == sba)) { | ||
478 | SI_MSG(("_sb_scan: reuse mapped regs %p for core %u\n", regs, next)); | ||
479 | sii->common_info->regs[next] = regs; | ||
480 | } | ||
481 | |||
482 | /* change core to 'next' and read its coreid */ | ||
483 | sii->curmap = _sb_setcoreidx(sii, next); | ||
484 | sii->curidx = next; | ||
485 | |||
486 | sii->common_info->coreid[next] = sb_coreid(&sii->pub); | ||
487 | |||
488 | /* core specific processing... */ | ||
489 | /* chipc provides # cores */ | ||
490 | if (sii->common_info->coreid[next] == CC_CORE_ID) { | ||
491 | chipcregs_t *cc = (chipcregs_t *)sii->curmap; | ||
492 | uint32 ccrev = sb_corerev(&sii->pub); | ||
493 | |||
494 | /* determine numcores - this is the total # cores in the chip */ | ||
495 | if (((ccrev == 4) || (ccrev >= 6))) | ||
496 | numcores = (R_REG(sii->osh, &cc->chipid) & CID_CC_MASK) >> | ||
497 | CID_CC_SHIFT; | ||
498 | else { | ||
499 | /* Older chips */ | ||
500 | uint chip = sii->pub.chip; | ||
501 | |||
502 | if (chip == BCM4306_CHIP_ID) /* < 4306c0 */ | ||
503 | numcores = 6; | ||
504 | else if (chip == BCM4704_CHIP_ID) | ||
505 | numcores = 9; | ||
506 | else if (chip == BCM5365_CHIP_ID) | ||
507 | numcores = 7; | ||
508 | else { | ||
509 | SI_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", | ||
510 | chip)); | ||
511 | ASSERT(0); | ||
512 | numcores = 1; | ||
513 | } | ||
514 | } | ||
515 | SI_MSG(("_sb_scan: there are %u cores in the chip %s\n", numcores, | ||
516 | sii->pub.issim ? "QT" : "")); | ||
517 | } | ||
518 | /* scan bridged SB(s) and add results to the end of the list */ | ||
519 | else if (sii->common_info->coreid[next] == OCP_CORE_ID) { | ||
520 | sbconfig_t *sb = REGS2SB(sii->curmap); | ||
521 | uint32 nsbba = R_SBREG(sii, &sb->sbadmatch1); | ||
522 | uint nsbcc; | ||
523 | |||
524 | sii->numcores = next + 1; | ||
525 | |||
526 | if ((nsbba & 0xfff00000) != SI_ENUM_BASE) | ||
527 | continue; | ||
528 | nsbba &= 0xfffff000; | ||
529 | if (_sb_coreidx(sii, nsbba) != BADIDX) | ||
530 | continue; | ||
531 | |||
532 | nsbcc = (R_SBREG(sii, &sb->sbtmstatehigh) & 0x000f0000) >> 16; | ||
533 | nsbcc = _sb_scan(sii, sba, regs, bus + 1, nsbba, nsbcc); | ||
534 | if (sbba == SI_ENUM_BASE) | ||
535 | numcores -= nsbcc; | ||
536 | ncc += nsbcc; | ||
537 | } | ||
538 | } | ||
539 | |||
540 | SI_MSG(("_sb_scan: found %u cores on bus 0x%08x\n", i, sbba)); | ||
541 | |||
542 | sii->numcores = i + ncc; | ||
543 | return sii->numcores; | ||
544 | } | ||
545 | |||
546 | /* scan the sb enumerated space to identify all cores */ | ||
547 | void | ||
548 | sb_scan(si_t *sih, void *regs, uint devid) | ||
549 | { | ||
550 | si_info_t *sii; | ||
551 | uint32 origsba; | ||
552 | |||
553 | sii = SI_INFO(sih); | ||
554 | |||
555 | /* Save the current core info and validate it later till we know | ||
556 | * for sure what is good and what is bad. | ||
557 | */ | ||
558 | origsba = _sb_coresba(sii); | ||
559 | |||
560 | /* scan all SB(s) starting from SI_ENUM_BASE */ | ||
561 | sii->numcores = _sb_scan(sii, origsba, regs, 0, SI_ENUM_BASE, 1); | ||
562 | } | ||
563 | |||
564 | /* | ||
565 | * This function changes logical "focus" to the indicated core; | ||
566 | * must be called with interrupts off. | ||
567 | * Moreover, callers should keep interrupts off during switching out of and back to d11 core | ||
568 | */ | ||
569 | void * | ||
570 | sb_setcoreidx(si_t *sih, uint coreidx) | ||
571 | { | ||
572 | si_info_t *sii; | ||
573 | |||
574 | sii = SI_INFO(sih); | ||
575 | |||
576 | if (coreidx >= sii->numcores) | ||
577 | return (NULL); | ||
578 | |||
579 | /* | ||
580 | * If the user has provided an interrupt mask enabled function, | ||
581 | * then assert interrupts are disabled before switching the core. | ||
582 | */ | ||
583 | ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg)); | ||
584 | |||
585 | sii->curmap = _sb_setcoreidx(sii, coreidx); | ||
586 | sii->curidx = coreidx; | ||
587 | |||
588 | return (sii->curmap); | ||
589 | } | ||
590 | |||
591 | /* This function changes the logical "focus" to the indicated core. | ||
592 | * Return the current core's virtual address. | ||
593 | */ | ||
594 | static void * | ||
595 | _sb_setcoreidx(si_info_t *sii, uint coreidx) | ||
596 | { | ||
597 | uint32 sbaddr = sii->common_info->coresba[coreidx]; | ||
598 | void *regs; | ||
599 | |||
600 | switch (BUSTYPE(sii->pub.bustype)) { | ||
601 | case SI_BUS: | ||
602 | /* map new one */ | ||
603 | if (!sii->common_info->regs[coreidx]) { | ||
604 | sii->common_info->regs[coreidx] = REG_MAP(sbaddr, SI_CORE_SIZE); | ||
605 | ASSERT(GOODREGS(sii->common_info->regs[coreidx])); | ||
606 | } | ||
607 | regs = sii->common_info->regs[coreidx]; | ||
608 | break; | ||
609 | |||
610 | case PCI_BUS: | ||
611 | /* point bar0 window */ | ||
612 | OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, sbaddr); | ||
613 | regs = sii->curmap; | ||
614 | break; | ||
615 | |||
616 | case PCMCIA_BUS: { | ||
617 | uint8 tmp = (sbaddr >> 12) & 0x0f; | ||
618 | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); | ||
619 | tmp = (sbaddr >> 16) & 0xff; | ||
620 | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); | ||
621 | tmp = (sbaddr >> 24) & 0xff; | ||
622 | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); | ||
623 | regs = sii->curmap; | ||
624 | break; | ||
625 | } | ||
626 | case SPI_BUS: | ||
627 | case SDIO_BUS: | ||
628 | /* map new one */ | ||
629 | if (!sii->common_info->regs[coreidx]) { | ||
630 | sii->common_info->regs[coreidx] = (void *)(uintptr)sbaddr; | ||
631 | ASSERT(GOODREGS(sii->common_info->regs[coreidx])); | ||
632 | } | ||
633 | regs = sii->common_info->regs[coreidx]; | ||
634 | break; | ||
635 | |||
636 | |||
637 | default: | ||
638 | ASSERT(0); | ||
639 | regs = NULL; | ||
640 | break; | ||
641 | } | ||
642 | |||
643 | return regs; | ||
644 | } | ||
645 | |||
646 | /* Return the address of sbadmatch0/1/2/3 register */ | ||
647 | static volatile uint32 * | ||
648 | sb_admatch(si_info_t *sii, uint asidx) | ||
649 | { | ||
650 | sbconfig_t *sb; | ||
651 | volatile uint32 *addrm; | ||
652 | |||
653 | sb = REGS2SB(sii->curmap); | ||
654 | |||
655 | switch (asidx) { | ||
656 | case 0: | ||
657 | addrm = &sb->sbadmatch0; | ||
658 | break; | ||
659 | |||
660 | case 1: | ||
661 | addrm = &sb->sbadmatch1; | ||
662 | break; | ||
663 | |||
664 | case 2: | ||
665 | addrm = &sb->sbadmatch2; | ||
666 | break; | ||
667 | |||
668 | case 3: | ||
669 | addrm = &sb->sbadmatch3; | ||
670 | break; | ||
671 | |||
672 | default: | ||
673 | SI_ERROR(("%s: Address space index (%d) out of range\n", __FUNCTION__, asidx)); | ||
674 | return 0; | ||
675 | } | ||
676 | |||
677 | return (addrm); | ||
678 | } | ||
679 | |||
680 | /* Return the number of address spaces in current core */ | ||
681 | int | ||
682 | sb_numaddrspaces(si_t *sih) | ||
683 | { | ||
684 | si_info_t *sii; | ||
685 | sbconfig_t *sb; | ||
686 | |||
687 | sii = SI_INFO(sih); | ||
688 | sb = REGS2SB(sii->curmap); | ||
689 | |||
690 | /* + 1 because of enumeration space */ | ||
691 | return ((R_SBREG(sii, &sb->sbidlow) & SBIDL_AR_MASK) >> SBIDL_AR_SHIFT) + 1; | ||
692 | } | ||
693 | |||
694 | /* Return the address of the nth address space in the current core */ | ||
695 | uint32 | ||
696 | sb_addrspace(si_t *sih, uint asidx) | ||
697 | { | ||
698 | si_info_t *sii; | ||
699 | |||
700 | sii = SI_INFO(sih); | ||
701 | |||
702 | return (sb_base(R_SBREG(sii, sb_admatch(sii, asidx)))); | ||
703 | } | ||
704 | |||
705 | /* Return the size of the nth address space in the current core */ | ||
706 | uint32 | ||
707 | sb_addrspacesize(si_t *sih, uint asidx) | ||
708 | { | ||
709 | si_info_t *sii; | ||
710 | |||
711 | sii = SI_INFO(sih); | ||
712 | |||
713 | return (sb_size(R_SBREG(sii, sb_admatch(sii, asidx)))); | ||
714 | } | ||
715 | |||
716 | |||
717 | /* do buffered registers update */ | ||
718 | void | ||
719 | sb_commit(si_t *sih) | ||
720 | { | ||
721 | si_info_t *sii; | ||
722 | uint origidx; | ||
723 | uint intr_val = 0; | ||
724 | |||
725 | sii = SI_INFO(sih); | ||
726 | |||
727 | origidx = sii->curidx; | ||
728 | ASSERT(GOODIDX(origidx)); | ||
729 | |||
730 | INTR_OFF(sii, intr_val); | ||
731 | |||
732 | /* switch over to chipcommon core if there is one, else use pci */ | ||
733 | if (sii->pub.ccrev != NOREV) { | ||
734 | chipcregs_t *ccregs = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0); | ||
735 | |||
736 | /* do the buffer registers update */ | ||
737 | W_REG(sii->osh, &ccregs->broadcastaddress, SB_COMMIT); | ||
738 | W_REG(sii->osh, &ccregs->broadcastdata, 0x0); | ||
739 | } else | ||
740 | ASSERT(0); | ||
741 | |||
742 | /* restore core index */ | ||
743 | sb_setcoreidx(sih, origidx); | ||
744 | INTR_RESTORE(sii, intr_val); | ||
745 | } | ||
746 | |||
747 | void | ||
748 | sb_core_disable(si_t *sih, uint32 bits) | ||
749 | { | ||
750 | si_info_t *sii; | ||
751 | volatile uint32 dummy; | ||
752 | sbconfig_t *sb; | ||
753 | |||
754 | sii = SI_INFO(sih); | ||
755 | |||
756 | ASSERT(GOODREGS(sii->curmap)); | ||
757 | sb = REGS2SB(sii->curmap); | ||
758 | |||
759 | /* if core is already in reset, just return */ | ||
760 | if (R_SBREG(sii, &sb->sbtmstatelow) & SBTML_RESET) | ||
761 | return; | ||
762 | |||
763 | /* if clocks are not enabled, put into reset and return */ | ||
764 | if ((R_SBREG(sii, &sb->sbtmstatelow) & (SICF_CLOCK_EN << SBTML_SICF_SHIFT)) == 0) | ||
765 | goto disable; | ||
766 | |||
767 | /* set target reject and spin until busy is clear (preserve core-specific bits) */ | ||
768 | OR_SBREG(sii, &sb->sbtmstatelow, SBTML_REJ); | ||
769 | dummy = R_SBREG(sii, &sb->sbtmstatelow); | ||
770 | OSL_DELAY(1); | ||
771 | SPINWAIT((R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000); | ||
772 | if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY) | ||
773 | SI_ERROR(("%s: target state still busy\n", __FUNCTION__)); | ||
774 | |||
775 | if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) { | ||
776 | OR_SBREG(sii, &sb->sbimstate, SBIM_RJ); | ||
777 | dummy = R_SBREG(sii, &sb->sbimstate); | ||
778 | OSL_DELAY(1); | ||
779 | SPINWAIT((R_SBREG(sii, &sb->sbimstate) & SBIM_BY), 100000); | ||
780 | } | ||
781 | |||
782 | /* set reset and reject while enabling the clocks */ | ||
783 | W_SBREG(sii, &sb->sbtmstatelow, | ||
784 | (((bits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | | ||
785 | SBTML_REJ | SBTML_RESET)); | ||
786 | dummy = R_SBREG(sii, &sb->sbtmstatelow); | ||
787 | OSL_DELAY(10); | ||
788 | |||
789 | /* don't forget to clear the initiator reject bit */ | ||
790 | if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) | ||
791 | AND_SBREG(sii, &sb->sbimstate, ~SBIM_RJ); | ||
792 | |||
793 | disable: | ||
794 | /* leave reset and reject asserted */ | ||
795 | W_SBREG(sii, &sb->sbtmstatelow, ((bits << SBTML_SICF_SHIFT) | SBTML_REJ | SBTML_RESET)); | ||
796 | OSL_DELAY(1); | ||
797 | } | ||
798 | |||
799 | /* reset and re-enable a core | ||
800 | * inputs: | ||
801 | * bits - core specific bits that are set during and after reset sequence | ||
802 | * resetbits - core specific bits that are set only during reset sequence | ||
803 | */ | ||
804 | void | ||
805 | sb_core_reset(si_t *sih, uint32 bits, uint32 resetbits) | ||
806 | { | ||
807 | si_info_t *sii; | ||
808 | sbconfig_t *sb; | ||
809 | volatile uint32 dummy; | ||
810 | |||
811 | sii = SI_INFO(sih); | ||
812 | ASSERT(GOODREGS(sii->curmap)); | ||
813 | sb = REGS2SB(sii->curmap); | ||
814 | |||
815 | /* | ||
816 | * Must do the disable sequence first to work for arbitrary current core state. | ||
817 | */ | ||
818 | sb_core_disable(sih, (bits | resetbits)); | ||
819 | |||
820 | /* | ||
821 | * Now do the initialization sequence. | ||
822 | */ | ||
823 | |||
824 | /* set reset while enabling the clock and forcing them on throughout the core */ | ||
825 | W_SBREG(sii, &sb->sbtmstatelow, | ||
826 | (((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | | ||
827 | SBTML_RESET)); | ||
828 | dummy = R_SBREG(sii, &sb->sbtmstatelow); | ||
829 | OSL_DELAY(1); | ||
830 | |||
831 | if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_SERR) { | ||
832 | W_SBREG(sii, &sb->sbtmstatehigh, 0); | ||
833 | } | ||
834 | if ((dummy = R_SBREG(sii, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) { | ||
835 | AND_SBREG(sii, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO)); | ||
836 | } | ||
837 | |||
838 | /* clear reset and allow it to propagate throughout the core */ | ||
839 | W_SBREG(sii, &sb->sbtmstatelow, | ||
840 | ((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); | ||
841 | dummy = R_SBREG(sii, &sb->sbtmstatelow); | ||
842 | OSL_DELAY(1); | ||
843 | |||
844 | /* leave clock enabled */ | ||
845 | W_SBREG(sii, &sb->sbtmstatelow, ((bits | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); | ||
846 | dummy = R_SBREG(sii, &sb->sbtmstatelow); | ||
847 | OSL_DELAY(1); | ||
848 | } | ||
849 | |||
850 | void | ||
851 | sb_core_tofixup(si_t *sih) | ||
852 | { | ||
853 | si_info_t *sii; | ||
854 | sbconfig_t *sb; | ||
855 | |||
856 | sii = SI_INFO(sih); | ||
857 | |||
858 | if ((BUSTYPE(sii->pub.bustype) != PCI_BUS) || PCIE(sii) || | ||
859 | (PCI(sii) && (sii->pub.buscorerev >= 5))) | ||
860 | return; | ||
861 | |||
862 | ASSERT(GOODREGS(sii->curmap)); | ||
863 | sb = REGS2SB(sii->curmap); | ||
864 | |||
865 | if (BUSTYPE(sii->pub.bustype) == SI_BUS) { | ||
866 | SET_SBREG(sii, &sb->sbimconfiglow, | ||
867 | SBIMCL_RTO_MASK | SBIMCL_STO_MASK, | ||
868 | (0x5 << SBIMCL_RTO_SHIFT) | 0x3); | ||
869 | } else { | ||
870 | if (sb_coreid(sih) == PCI_CORE_ID) { | ||
871 | SET_SBREG(sii, &sb->sbimconfiglow, | ||
872 | SBIMCL_RTO_MASK | SBIMCL_STO_MASK, | ||
873 | (0x3 << SBIMCL_RTO_SHIFT) | 0x2); | ||
874 | } else { | ||
875 | SET_SBREG(sii, &sb->sbimconfiglow, (SBIMCL_RTO_MASK | SBIMCL_STO_MASK), 0); | ||
876 | } | ||
877 | } | ||
878 | |||
879 | sb_commit(sih); | ||
880 | } | ||
881 | |||
882 | /* | ||
883 | * Set the initiator timeout for the "master core". | ||
884 | * The master core is defined to be the core in control | ||
885 | * of the chip and so it issues accesses to non-memory | ||
886 | * locations (Because of dma *any* core can access memeory). | ||
887 | * | ||
888 | * The routine uses the bus to decide who is the master: | ||
889 | * SI_BUS => mips | ||
890 | * JTAG_BUS => chipc | ||
891 | * PCI_BUS => pci or pcie | ||
892 | * PCMCIA_BUS => pcmcia | ||
893 | * SDIO_BUS => pcmcia | ||
894 | * | ||
895 | * This routine exists so callers can disable initiator | ||
896 | * timeouts so accesses to very slow devices like otp | ||
897 | * won't cause an abort. The routine allows arbitrary | ||
898 | * settings of the service and request timeouts, though. | ||
899 | * | ||
900 | * Returns the timeout state before changing it or -1 | ||
901 | * on error. | ||
902 | */ | ||
903 | |||
904 | #define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK) | ||
905 | |||
906 | uint32 | ||
907 | sb_set_initiator_to(si_t *sih, uint32 to, uint idx) | ||
908 | { | ||
909 | si_info_t *sii; | ||
910 | uint origidx; | ||
911 | uint intr_val = 0; | ||
912 | uint32 tmp, ret = 0xffffffff; | ||
913 | sbconfig_t *sb; | ||
914 | |||
915 | sii = SI_INFO(sih); | ||
916 | |||
917 | if ((to & ~TO_MASK) != 0) | ||
918 | return ret; | ||
919 | |||
920 | /* Figure out the master core */ | ||
921 | if (idx == BADIDX) { | ||
922 | switch (BUSTYPE(sii->pub.bustype)) { | ||
923 | case PCI_BUS: | ||
924 | idx = sii->pub.buscoreidx; | ||
925 | break; | ||
926 | case JTAG_BUS: | ||
927 | idx = SI_CC_IDX; | ||
928 | break; | ||
929 | case PCMCIA_BUS: | ||
930 | case SDIO_BUS: | ||
931 | idx = si_findcoreidx(sih, PCMCIA_CORE_ID, 0); | ||
932 | break; | ||
933 | case SI_BUS: | ||
934 | idx = si_findcoreidx(sih, MIPS33_CORE_ID, 0); | ||
935 | break; | ||
936 | default: | ||
937 | ASSERT(0); | ||
938 | } | ||
939 | if (idx == BADIDX) | ||
940 | return ret; | ||
941 | } | ||
942 | |||
943 | INTR_OFF(sii, intr_val); | ||
944 | origidx = si_coreidx(sih); | ||
945 | |||
946 | sb = REGS2SB(sb_setcoreidx(sih, idx)); | ||
947 | |||
948 | tmp = R_SBREG(sii, &sb->sbimconfiglow); | ||
949 | ret = tmp & TO_MASK; | ||
950 | W_SBREG(sii, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to); | ||
951 | |||
952 | sb_commit(sih); | ||
953 | sb_setcoreidx(sih, origidx); | ||
954 | INTR_RESTORE(sii, intr_val); | ||
955 | return ret; | ||
956 | } | ||
957 | |||
958 | uint32 | ||
959 | sb_base(uint32 admatch) | ||
960 | { | ||
961 | uint32 base; | ||
962 | uint type; | ||
963 | |||
964 | type = admatch & SBAM_TYPE_MASK; | ||
965 | ASSERT(type < 3); | ||
966 | |||
967 | base = 0; | ||
968 | |||
969 | if (type == 0) { | ||
970 | base = admatch & SBAM_BASE0_MASK; | ||
971 | } else if (type == 1) { | ||
972 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ | ||
973 | base = admatch & SBAM_BASE1_MASK; | ||
974 | } else if (type == 2) { | ||
975 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ | ||
976 | base = admatch & SBAM_BASE2_MASK; | ||
977 | } | ||
978 | |||
979 | return (base); | ||
980 | } | ||
981 | |||
982 | uint32 | ||
983 | sb_size(uint32 admatch) | ||
984 | { | ||
985 | uint32 size; | ||
986 | uint type; | ||
987 | |||
988 | type = admatch & SBAM_TYPE_MASK; | ||
989 | ASSERT(type < 3); | ||
990 | |||
991 | size = 0; | ||
992 | |||
993 | if (type == 0) { | ||
994 | size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1); | ||
995 | } else if (type == 1) { | ||
996 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ | ||
997 | size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1); | ||
998 | } else if (type == 2) { | ||
999 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ | ||
1000 | size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1); | ||
1001 | } | ||
1002 | |||
1003 | return (size); | ||
1004 | } | ||