diff options
Diffstat (limited to 'drivers/net/tile')
-rw-r--r-- | drivers/net/tile/Makefile | 10 | ||||
-rw-r--r-- | drivers/net/tile/tilepro.c | 2465 |
2 files changed, 2475 insertions, 0 deletions
diff --git a/drivers/net/tile/Makefile b/drivers/net/tile/Makefile new file mode 100644 index 00000000000..f634f142cab --- /dev/null +++ b/drivers/net/tile/Makefile | |||
@@ -0,0 +1,10 @@ | |||
1 | # | ||
2 | # Makefile for the TILE on-chip networking support. | ||
3 | # | ||
4 | |||
5 | obj-$(CONFIG_TILE_NET) += tile_net.o | ||
6 | ifdef CONFIG_TILEGX | ||
7 | tile_net-objs := tilegx.o mpipe.o iorpc_mpipe.o dma_queue.o | ||
8 | else | ||
9 | tile_net-objs := tilepro.o | ||
10 | endif | ||
diff --git a/drivers/net/tile/tilepro.c b/drivers/net/tile/tilepro.c new file mode 100644 index 00000000000..1e2af96fc29 --- /dev/null +++ b/drivers/net/tile/tilepro.c | |||
@@ -0,0 +1,2465 @@ | |||
1 | /* | ||
2 | * Copyright 2011 Tilera Corporation. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public License | ||
6 | * as published by the Free Software Foundation, version 2. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, but | ||
9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
12 | * more details. | ||
13 | */ | ||
14 | |||
15 | #include <linux/module.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/moduleparam.h> | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/kernel.h> /* printk() */ | ||
20 | #include <linux/slab.h> /* kmalloc() */ | ||
21 | #include <linux/errno.h> /* error codes */ | ||
22 | #include <linux/types.h> /* size_t */ | ||
23 | #include <linux/interrupt.h> | ||
24 | #include <linux/in.h> | ||
25 | #include <linux/netdevice.h> /* struct device, and other headers */ | ||
26 | #include <linux/etherdevice.h> /* eth_type_trans */ | ||
27 | #include <linux/skbuff.h> | ||
28 | #include <linux/ioctl.h> | ||
29 | #include <linux/cdev.h> | ||
30 | #include <linux/hugetlb.h> | ||
31 | #include <linux/in6.h> | ||
32 | #include <linux/timer.h> | ||
33 | #include <linux/io.h> | ||
34 | #include <asm/checksum.h> | ||
35 | #include <asm/homecache.h> | ||
36 | |||
37 | #include <hv/drv_xgbe_intf.h> | ||
38 | #include <hv/drv_xgbe_impl.h> | ||
39 | #include <hv/hypervisor.h> | ||
40 | #include <hv/netio_intf.h> | ||
41 | |||
42 | /* For TSO */ | ||
43 | #include <linux/ip.h> | ||
44 | #include <linux/tcp.h> | ||
45 | |||
46 | |||
47 | /* | ||
48 | * First, "tile_net_init_module()" initializes all four "devices" which | ||
49 | * can be used by linux. | ||
50 | * | ||
51 | * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes | ||
52 | * the network cpus, then uses "tile_net_open_aux()" to initialize | ||
53 | * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all | ||
54 | * the tiles, provide buffers to LIPP, allow ingress to start, and | ||
55 | * turn on hypervisor interrupt handling (and NAPI) on all tiles. | ||
56 | * | ||
57 | * If registration fails due to the link being down, then "retry_work" | ||
58 | * is used to keep calling "tile_net_open_inner()" until it succeeds. | ||
59 | * | ||
60 | * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to | ||
61 | * stop egress, drain the LIPP buffers, unregister all the tiles, stop | ||
62 | * LIPP/LEPP, and wipe the LEPP queue. | ||
63 | * | ||
64 | * We start out with the ingress interrupt enabled on each CPU. When | ||
65 | * this interrupt fires, we disable it, and call "napi_schedule()". | ||
66 | * This will cause "tile_net_poll()" to be called, which will pull | ||
67 | * packets from the netio queue, filtering them out, or passing them | ||
68 | * to "netif_receive_skb()". If our budget is exhausted, we will | ||
69 | * return, knowing we will be called again later. Otherwise, we | ||
70 | * reenable the ingress interrupt, and call "napi_complete()". | ||
71 | * | ||
72 | * HACK: Since disabling the ingress interrupt is not reliable, we | ||
73 | * ignore the interrupt if the global "active" flag is false. | ||
74 | * | ||
75 | * | ||
76 | * NOTE: The use of "native_driver" ensures that EPP exists, and that | ||
77 | * we are using "LIPP" and "LEPP". | ||
78 | * | ||
79 | * NOTE: Failing to free completions for an arbitrarily long time | ||
80 | * (which is defined to be illegal) does in fact cause bizarre | ||
81 | * problems. The "egress_timer" helps prevent this from happening. | ||
82 | */ | ||
83 | |||
84 | |||
85 | /* HACK: Allow use of "jumbo" packets. */ | ||
86 | /* This should be 1500 if "jumbo" is not set in LIPP. */ | ||
87 | /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */ | ||
88 | /* ISSUE: This has not been thoroughly tested (except at 1500). */ | ||
89 | #define TILE_NET_MTU 1500 | ||
90 | |||
91 | /* HACK: Define to support GSO. */ | ||
92 | /* ISSUE: This may actually hurt performance of the TCP blaster. */ | ||
93 | /* #define TILE_NET_GSO */ | ||
94 | |||
95 | /* Define this to collapse "duplicate" acks. */ | ||
96 | /* #define IGNORE_DUP_ACKS */ | ||
97 | |||
98 | /* HACK: Define this to verify incoming packets. */ | ||
99 | /* #define TILE_NET_VERIFY_INGRESS */ | ||
100 | |||
101 | /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */ | ||
102 | #define TILE_NET_TX_QUEUE_LEN 0 | ||
103 | |||
104 | /* Define to dump packets (prints out the whole packet on tx and rx). */ | ||
105 | /* #define TILE_NET_DUMP_PACKETS */ | ||
106 | |||
107 | /* Define to enable debug spew (all PDEBUG's are enabled). */ | ||
108 | /* #define TILE_NET_DEBUG */ | ||
109 | |||
110 | |||
111 | /* Define to activate paranoia checks. */ | ||
112 | /* #define TILE_NET_PARANOIA */ | ||
113 | |||
114 | /* Default transmit lockup timeout period, in jiffies. */ | ||
115 | #define TILE_NET_TIMEOUT (5 * HZ) | ||
116 | |||
117 | /* Default retry interval for bringing up the NetIO interface, in jiffies. */ | ||
118 | #define TILE_NET_RETRY_INTERVAL (5 * HZ) | ||
119 | |||
120 | /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */ | ||
121 | #define TILE_NET_DEVS 4 | ||
122 | |||
123 | |||
124 | |||
125 | /* Paranoia. */ | ||
126 | #if NET_IP_ALIGN != LIPP_PACKET_PADDING | ||
127 | #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING." | ||
128 | #endif | ||
129 | |||
130 | |||
131 | /* Debug print. */ | ||
132 | #ifdef TILE_NET_DEBUG | ||
133 | #define PDEBUG(fmt, args...) net_printk(fmt, ## args) | ||
134 | #else | ||
135 | #define PDEBUG(fmt, args...) | ||
136 | #endif | ||
137 | |||
138 | |||
139 | MODULE_AUTHOR("Tilera"); | ||
140 | MODULE_LICENSE("GPL"); | ||
141 | |||
142 | |||
143 | /* | ||
144 | * Queue of incoming packets for a specific cpu and device. | ||
145 | * | ||
146 | * Includes a pointer to the "system" data, and the actual "user" data. | ||
147 | */ | ||
148 | struct tile_netio_queue { | ||
149 | netio_queue_impl_t *__system_part; | ||
150 | netio_queue_user_impl_t __user_part; | ||
151 | |||
152 | }; | ||
153 | |||
154 | |||
155 | /* | ||
156 | * Statistics counters for a specific cpu and device. | ||
157 | */ | ||
158 | struct tile_net_stats_t { | ||
159 | u32 rx_packets; | ||
160 | u32 rx_bytes; | ||
161 | u32 tx_packets; | ||
162 | u32 tx_bytes; | ||
163 | }; | ||
164 | |||
165 | |||
166 | /* | ||
167 | * Info for a specific cpu and device. | ||
168 | * | ||
169 | * ISSUE: There is a "dev" pointer in "napi" as well. | ||
170 | */ | ||
171 | struct tile_net_cpu { | ||
172 | /* The NAPI struct. */ | ||
173 | struct napi_struct napi; | ||
174 | /* Packet queue. */ | ||
175 | struct tile_netio_queue queue; | ||
176 | /* Statistics. */ | ||
177 | struct tile_net_stats_t stats; | ||
178 | /* True iff NAPI is enabled. */ | ||
179 | bool napi_enabled; | ||
180 | /* True if this tile has succcessfully registered with the IPP. */ | ||
181 | bool registered; | ||
182 | /* True if the link was down last time we tried to register. */ | ||
183 | bool link_down; | ||
184 | /* True if "egress_timer" is scheduled. */ | ||
185 | bool egress_timer_scheduled; | ||
186 | /* Number of small sk_buffs which must still be provided. */ | ||
187 | unsigned int num_needed_small_buffers; | ||
188 | /* Number of large sk_buffs which must still be provided. */ | ||
189 | unsigned int num_needed_large_buffers; | ||
190 | /* A timer for handling egress completions. */ | ||
191 | struct timer_list egress_timer; | ||
192 | }; | ||
193 | |||
194 | |||
195 | /* | ||
196 | * Info for a specific device. | ||
197 | */ | ||
198 | struct tile_net_priv { | ||
199 | /* Our network device. */ | ||
200 | struct net_device *dev; | ||
201 | /* Pages making up the egress queue. */ | ||
202 | struct page *eq_pages; | ||
203 | /* Address of the actual egress queue. */ | ||
204 | lepp_queue_t *eq; | ||
205 | /* Protects "eq". */ | ||
206 | spinlock_t eq_lock; | ||
207 | /* The hypervisor handle for this interface. */ | ||
208 | int hv_devhdl; | ||
209 | /* The intr bit mask that IDs this device. */ | ||
210 | u32 intr_id; | ||
211 | /* True iff "tile_net_open_aux()" has succeeded. */ | ||
212 | bool partly_opened; | ||
213 | /* True iff the device is "active". */ | ||
214 | bool active; | ||
215 | /* Effective network cpus. */ | ||
216 | struct cpumask network_cpus_map; | ||
217 | /* Number of network cpus. */ | ||
218 | int network_cpus_count; | ||
219 | /* Credits per network cpu. */ | ||
220 | int network_cpus_credits; | ||
221 | /* Network stats. */ | ||
222 | struct net_device_stats stats; | ||
223 | /* For NetIO bringup retries. */ | ||
224 | struct delayed_work retry_work; | ||
225 | /* Quick access to per cpu data. */ | ||
226 | struct tile_net_cpu *cpu[NR_CPUS]; | ||
227 | }; | ||
228 | |||
229 | /* Log2 of the number of small pages needed for the egress queue. */ | ||
230 | #define EQ_ORDER get_order(sizeof(lepp_queue_t)) | ||
231 | /* Size of the egress queue's pages. */ | ||
232 | #define EQ_SIZE (1 << (PAGE_SHIFT + EQ_ORDER)) | ||
233 | |||
234 | /* | ||
235 | * The actual devices (xgbe0, xgbe1, gbe0, gbe1). | ||
236 | */ | ||
237 | static struct net_device *tile_net_devs[TILE_NET_DEVS]; | ||
238 | |||
239 | /* | ||
240 | * The "tile_net_cpu" structures for each device. | ||
241 | */ | ||
242 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0); | ||
243 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1); | ||
244 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0); | ||
245 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1); | ||
246 | |||
247 | |||
248 | /* | ||
249 | * True if "network_cpus" was specified. | ||
250 | */ | ||
251 | static bool network_cpus_used; | ||
252 | |||
253 | /* | ||
254 | * The actual cpus in "network_cpus". | ||
255 | */ | ||
256 | static struct cpumask network_cpus_map; | ||
257 | |||
258 | |||
259 | |||
260 | #ifdef TILE_NET_DEBUG | ||
261 | /* | ||
262 | * printk with extra stuff. | ||
263 | * | ||
264 | * We print the CPU we're running in brackets. | ||
265 | */ | ||
266 | static void net_printk(char *fmt, ...) | ||
267 | { | ||
268 | int i; | ||
269 | int len; | ||
270 | va_list args; | ||
271 | static char buf[256]; | ||
272 | |||
273 | len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id()); | ||
274 | va_start(args, fmt); | ||
275 | i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args); | ||
276 | va_end(args); | ||
277 | buf[255] = '\0'; | ||
278 | pr_notice(buf); | ||
279 | } | ||
280 | #endif | ||
281 | |||
282 | |||
283 | #ifdef TILE_NET_DUMP_PACKETS | ||
284 | /* | ||
285 | * Dump a packet. | ||
286 | */ | ||
287 | static void dump_packet(unsigned char *data, unsigned long length, char *s) | ||
288 | { | ||
289 | int my_cpu = smp_processor_id(); | ||
290 | |||
291 | unsigned long i; | ||
292 | char buf[128]; | ||
293 | |||
294 | static unsigned int count; | ||
295 | |||
296 | pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n", | ||
297 | data, length, s, count++); | ||
298 | |||
299 | pr_info("\n"); | ||
300 | |||
301 | for (i = 0; i < length; i++) { | ||
302 | if ((i & 0xf) == 0) | ||
303 | sprintf(buf, "[%02d] %8.8lx:", my_cpu, i); | ||
304 | sprintf(buf + strlen(buf), " %2.2x", data[i]); | ||
305 | if ((i & 0xf) == 0xf || i == length - 1) { | ||
306 | strcat(buf, "\n"); | ||
307 | pr_info("%s", buf); | ||
308 | } | ||
309 | } | ||
310 | } | ||
311 | #endif | ||
312 | |||
313 | |||
314 | /* | ||
315 | * Provide support for the __netio_fastio1() swint | ||
316 | * (see <hv/drv_xgbe_intf.h> for how it is used). | ||
317 | * | ||
318 | * The fastio swint2 call may clobber all the caller-saved registers. | ||
319 | * It rarely clobbers memory, but we allow for the possibility in | ||
320 | * the signature just to be on the safe side. | ||
321 | * | ||
322 | * Also, gcc doesn't seem to allow an input operand to be | ||
323 | * clobbered, so we fake it with dummy outputs. | ||
324 | * | ||
325 | * This function can't be static because of the way it is declared | ||
326 | * in the netio header. | ||
327 | */ | ||
328 | inline int __netio_fastio1(u32 fastio_index, u32 arg0) | ||
329 | { | ||
330 | long result, clobber_r1, clobber_r10; | ||
331 | asm volatile("swint2" | ||
332 | : "=R00" (result), | ||
333 | "=R01" (clobber_r1), "=R10" (clobber_r10) | ||
334 | : "R10" (fastio_index), "R01" (arg0) | ||
335 | : "memory", "r2", "r3", "r4", | ||
336 | "r5", "r6", "r7", "r8", "r9", | ||
337 | "r11", "r12", "r13", "r14", | ||
338 | "r15", "r16", "r17", "r18", "r19", | ||
339 | "r20", "r21", "r22", "r23", "r24", | ||
340 | "r25", "r26", "r27", "r28", "r29"); | ||
341 | return result; | ||
342 | } | ||
343 | |||
344 | |||
345 | /* | ||
346 | * Provide a linux buffer to LIPP. | ||
347 | */ | ||
348 | static void tile_net_provide_linux_buffer(struct tile_net_cpu *info, | ||
349 | void *va, bool small) | ||
350 | { | ||
351 | struct tile_netio_queue *queue = &info->queue; | ||
352 | |||
353 | /* Convert "va" and "small" to "linux_buffer_t". */ | ||
354 | unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small; | ||
355 | |||
356 | __netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer); | ||
357 | } | ||
358 | |||
359 | |||
360 | /* | ||
361 | * Provide a linux buffer for LIPP. | ||
362 | * | ||
363 | * Note that the ACTUAL allocation for each buffer is a "struct sk_buff", | ||
364 | * plus a chunk of memory that includes not only the requested bytes, but | ||
365 | * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info". | ||
366 | * | ||
367 | * Note that "struct skb_shared_info" is 88 bytes with 64K pages and | ||
368 | * 268 bytes with 4K pages (since the frags[] array needs 18 entries). | ||
369 | * | ||
370 | * Without jumbo packets, the maximum packet size will be 1536 bytes, | ||
371 | * and we use 2 bytes (NET_IP_ALIGN) of padding. ISSUE: If we told | ||
372 | * the hardware to clip at 1518 bytes instead of 1536 bytes, then we | ||
373 | * could save an entire cache line, but in practice, we don't need it. | ||
374 | * | ||
375 | * Since CPAs are 38 bits, and we can only encode the high 31 bits in | ||
376 | * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must | ||
377 | * align the actual "va" mod 128. | ||
378 | * | ||
379 | * We assume that the underlying "head" will be aligned mod 64. Note | ||
380 | * that in practice, we have seen "head" NOT aligned mod 128 even when | ||
381 | * using 2048 byte allocations, which is surprising. | ||
382 | * | ||
383 | * If "head" WAS always aligned mod 128, we could change LIPP to | ||
384 | * assume that the low SIX bits are zero, and the 7th bit is one, that | ||
385 | * is, align the actual "va" mod 128 plus 64, which would be "free". | ||
386 | * | ||
387 | * For now, the actual "head" pointer points at NET_SKB_PAD bytes of | ||
388 | * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff | ||
389 | * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for | ||
390 | * the actual packet, plus 62 bytes of empty padding, plus some | ||
391 | * padding and the "struct skb_shared_info". | ||
392 | * | ||
393 | * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88 | ||
394 | * bytes, or 1816 bytes, which fits comfortably into 2048 bytes. | ||
395 | * | ||
396 | * With 64K pages, a small buffer thus needs 32+92+4+2+126+88 | ||
397 | * bytes, or 344 bytes, which means we are wasting 64+ bytes, and | ||
398 | * could presumably increase the size of small buffers. | ||
399 | * | ||
400 | * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268 | ||
401 | * bytes, or 1996 bytes, which fits comfortably into 2048 bytes. | ||
402 | * | ||
403 | * With 4K pages, a small buffer thus needs 32+92+4+2+126+268 | ||
404 | * bytes, or 524 bytes, which is annoyingly wasteful. | ||
405 | * | ||
406 | * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192? | ||
407 | * | ||
408 | * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64? | ||
409 | */ | ||
410 | static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info, | ||
411 | bool small) | ||
412 | { | ||
413 | #if TILE_NET_MTU <= 1536 | ||
414 | /* Without "jumbo", 2 + 1536 should be sufficient. */ | ||
415 | unsigned int large_size = NET_IP_ALIGN + 1536; | ||
416 | #else | ||
417 | /* ISSUE: This has not been tested. */ | ||
418 | unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100; | ||
419 | #endif | ||
420 | |||
421 | /* Avoid "false sharing" with last cache line. */ | ||
422 | /* ISSUE: This is already done by "dev_alloc_skb()". */ | ||
423 | unsigned int len = | ||
424 | (((small ? LIPP_SMALL_PACKET_SIZE : large_size) + | ||
425 | CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE()); | ||
426 | |||
427 | unsigned int padding = 128 - NET_SKB_PAD; | ||
428 | unsigned int align; | ||
429 | |||
430 | struct sk_buff *skb; | ||
431 | void *va; | ||
432 | |||
433 | struct sk_buff **skb_ptr; | ||
434 | |||
435 | /* Request 96 extra bytes for alignment purposes. */ | ||
436 | skb = dev_alloc_skb(len + padding); | ||
437 | if (skb == NULL) | ||
438 | return false; | ||
439 | |||
440 | /* Skip 32 or 96 bytes to align "data" mod 128. */ | ||
441 | align = -(long)skb->data & (128 - 1); | ||
442 | BUG_ON(align > padding); | ||
443 | skb_reserve(skb, align); | ||
444 | |||
445 | /* This address is given to IPP. */ | ||
446 | va = skb->data; | ||
447 | |||
448 | /* Buffers must not span a huge page. */ | ||
449 | BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0); | ||
450 | |||
451 | #ifdef TILE_NET_PARANOIA | ||
452 | #if CHIP_HAS_CBOX_HOME_MAP() | ||
453 | if (hash_default) { | ||
454 | HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va); | ||
455 | if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3) | ||
456 | panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx", | ||
457 | va, hv_pte_get_mode(pte), hv_pte_val(pte)); | ||
458 | } | ||
459 | #endif | ||
460 | #endif | ||
461 | |||
462 | /* Invalidate the packet buffer. */ | ||
463 | if (!hash_default) | ||
464 | __inv_buffer(va, len); | ||
465 | |||
466 | /* Skip two bytes to satisfy LIPP assumptions. */ | ||
467 | /* Note that this aligns IP on a 16 byte boundary. */ | ||
468 | /* ISSUE: Do this when the packet arrives? */ | ||
469 | skb_reserve(skb, NET_IP_ALIGN); | ||
470 | |||
471 | /* Save a back-pointer to 'skb'. */ | ||
472 | skb_ptr = va - sizeof(*skb_ptr); | ||
473 | *skb_ptr = skb; | ||
474 | |||
475 | /* Make sure "skb_ptr" has been flushed. */ | ||
476 | __insn_mf(); | ||
477 | |||
478 | /* Provide the new buffer. */ | ||
479 | tile_net_provide_linux_buffer(info, va, small); | ||
480 | |||
481 | return true; | ||
482 | } | ||
483 | |||
484 | |||
485 | /* | ||
486 | * Provide linux buffers for LIPP. | ||
487 | */ | ||
488 | static void tile_net_provide_needed_buffers(struct tile_net_cpu *info) | ||
489 | { | ||
490 | while (info->num_needed_small_buffers != 0) { | ||
491 | if (!tile_net_provide_needed_buffer(info, true)) | ||
492 | goto oops; | ||
493 | info->num_needed_small_buffers--; | ||
494 | } | ||
495 | |||
496 | while (info->num_needed_large_buffers != 0) { | ||
497 | if (!tile_net_provide_needed_buffer(info, false)) | ||
498 | goto oops; | ||
499 | info->num_needed_large_buffers--; | ||
500 | } | ||
501 | |||
502 | return; | ||
503 | |||
504 | oops: | ||
505 | |||
506 | /* Add a description to the page allocation failure dump. */ | ||
507 | pr_notice("Could not provide a linux buffer to LIPP.\n"); | ||
508 | } | ||
509 | |||
510 | |||
511 | /* | ||
512 | * Grab some LEPP completions, and store them in "comps", of size | ||
513 | * "comps_size", and return the number of completions which were | ||
514 | * stored, so the caller can free them. | ||
515 | */ | ||
516 | static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq, | ||
517 | struct sk_buff *comps[], | ||
518 | unsigned int comps_size, | ||
519 | unsigned int min_size) | ||
520 | { | ||
521 | unsigned int n = 0; | ||
522 | |||
523 | unsigned int comp_head = eq->comp_head; | ||
524 | unsigned int comp_busy = eq->comp_busy; | ||
525 | |||
526 | while (comp_head != comp_busy && n < comps_size) { | ||
527 | comps[n++] = eq->comps[comp_head]; | ||
528 | LEPP_QINC(comp_head); | ||
529 | } | ||
530 | |||
531 | if (n < min_size) | ||
532 | return 0; | ||
533 | |||
534 | eq->comp_head = comp_head; | ||
535 | |||
536 | return n; | ||
537 | } | ||
538 | |||
539 | |||
540 | /* | ||
541 | * Free some comps, and return true iff there are still some pending. | ||
542 | */ | ||
543 | static bool tile_net_lepp_free_comps(struct net_device *dev, bool all) | ||
544 | { | ||
545 | struct tile_net_priv *priv = netdev_priv(dev); | ||
546 | |||
547 | lepp_queue_t *eq = priv->eq; | ||
548 | |||
549 | struct sk_buff *olds[64]; | ||
550 | unsigned int wanted = 64; | ||
551 | unsigned int i, n; | ||
552 | bool pending; | ||
553 | |||
554 | spin_lock(&priv->eq_lock); | ||
555 | |||
556 | if (all) | ||
557 | eq->comp_busy = eq->comp_tail; | ||
558 | |||
559 | n = tile_net_lepp_grab_comps(eq, olds, wanted, 0); | ||
560 | |||
561 | pending = (eq->comp_head != eq->comp_tail); | ||
562 | |||
563 | spin_unlock(&priv->eq_lock); | ||
564 | |||
565 | for (i = 0; i < n; i++) | ||
566 | kfree_skb(olds[i]); | ||
567 | |||
568 | return pending; | ||
569 | } | ||
570 | |||
571 | |||
572 | /* | ||
573 | * Make sure the egress timer is scheduled. | ||
574 | * | ||
575 | * Note that we use "schedule if not scheduled" logic instead of the more | ||
576 | * obvious "reschedule" logic, because "reschedule" is fairly expensive. | ||
577 | */ | ||
578 | static void tile_net_schedule_egress_timer(struct tile_net_cpu *info) | ||
579 | { | ||
580 | if (!info->egress_timer_scheduled) { | ||
581 | mod_timer_pinned(&info->egress_timer, jiffies + 1); | ||
582 | info->egress_timer_scheduled = true; | ||
583 | } | ||
584 | } | ||
585 | |||
586 | |||
587 | /* | ||
588 | * The "function" for "info->egress_timer". | ||
589 | * | ||
590 | * This timer will reschedule itself as long as there are any pending | ||
591 | * completions expected (on behalf of any tile). | ||
592 | * | ||
593 | * ISSUE: Realistically, will the timer ever stop scheduling itself? | ||
594 | * | ||
595 | * ISSUE: This timer is almost never actually needed, so just use a global | ||
596 | * timer that can run on any tile. | ||
597 | * | ||
598 | * ISSUE: Maybe instead track number of expected completions, and free | ||
599 | * only that many, resetting to zero if "pending" is ever false. | ||
600 | */ | ||
601 | static void tile_net_handle_egress_timer(unsigned long arg) | ||
602 | { | ||
603 | struct tile_net_cpu *info = (struct tile_net_cpu *)arg; | ||
604 | struct net_device *dev = info->napi.dev; | ||
605 | |||
606 | /* The timer is no longer scheduled. */ | ||
607 | info->egress_timer_scheduled = false; | ||
608 | |||
609 | /* Free comps, and reschedule timer if more are pending. */ | ||
610 | if (tile_net_lepp_free_comps(dev, false)) | ||
611 | tile_net_schedule_egress_timer(info); | ||
612 | } | ||
613 | |||
614 | |||
615 | #ifdef IGNORE_DUP_ACKS | ||
616 | |||
617 | /* | ||
618 | * Help detect "duplicate" ACKs. These are sequential packets (for a | ||
619 | * given flow) which are exactly 66 bytes long, sharing everything but | ||
620 | * ID=2@0x12, Hsum=2@0x18, Ack=4@0x2a, WinSize=2@0x30, Csum=2@0x32, | ||
621 | * Tstamps=10@0x38. The ID's are +1, the Hsum's are -1, the Ack's are | ||
622 | * +N, and the Tstamps are usually identical. | ||
623 | * | ||
624 | * NOTE: Apparently truly duplicate acks (with identical "ack" values), | ||
625 | * should not be collapsed, as they are used for some kind of flow control. | ||
626 | */ | ||
627 | static bool is_dup_ack(char *s1, char *s2, unsigned int len) | ||
628 | { | ||
629 | int i; | ||
630 | |||
631 | unsigned long long ignorable = 0; | ||
632 | |||
633 | /* Identification. */ | ||
634 | ignorable |= (1ULL << 0x12); | ||
635 | ignorable |= (1ULL << 0x13); | ||
636 | |||
637 | /* Header checksum. */ | ||
638 | ignorable |= (1ULL << 0x18); | ||
639 | ignorable |= (1ULL << 0x19); | ||
640 | |||
641 | /* ACK. */ | ||
642 | ignorable |= (1ULL << 0x2a); | ||
643 | ignorable |= (1ULL << 0x2b); | ||
644 | ignorable |= (1ULL << 0x2c); | ||
645 | ignorable |= (1ULL << 0x2d); | ||
646 | |||
647 | /* WinSize. */ | ||
648 | ignorable |= (1ULL << 0x30); | ||
649 | ignorable |= (1ULL << 0x31); | ||
650 | |||
651 | /* Checksum. */ | ||
652 | ignorable |= (1ULL << 0x32); | ||
653 | ignorable |= (1ULL << 0x33); | ||
654 | |||
655 | for (i = 0; i < len; i++, ignorable >>= 1) { | ||
656 | |||
657 | if ((ignorable & 1) || (s1[i] == s2[i])) | ||
658 | continue; | ||
659 | |||
660 | #ifdef TILE_NET_DEBUG | ||
661 | /* HACK: Mention non-timestamp diffs. */ | ||
662 | if (i < 0x38 && i != 0x2f && | ||
663 | net_ratelimit()) | ||
664 | pr_info("Diff at 0x%x\n", i); | ||
665 | #endif | ||
666 | |||
667 | return false; | ||
668 | } | ||
669 | |||
670 | #ifdef TILE_NET_NO_SUPPRESS_DUP_ACKS | ||
671 | /* HACK: Do not suppress truly duplicate ACKs. */ | ||
672 | /* ISSUE: Is this actually necessary or helpful? */ | ||
673 | if (s1[0x2a] == s2[0x2a] && | ||
674 | s1[0x2b] == s2[0x2b] && | ||
675 | s1[0x2c] == s2[0x2c] && | ||
676 | s1[0x2d] == s2[0x2d]) { | ||
677 | return false; | ||
678 | } | ||
679 | #endif | ||
680 | |||
681 | return true; | ||
682 | } | ||
683 | |||
684 | #endif | ||
685 | |||
686 | |||
687 | |||
688 | static void tile_net_discard_aux(struct tile_net_cpu *info, int index) | ||
689 | { | ||
690 | struct tile_netio_queue *queue = &info->queue; | ||
691 | netio_queue_impl_t *qsp = queue->__system_part; | ||
692 | netio_queue_user_impl_t *qup = &queue->__user_part; | ||
693 | |||
694 | int index2_aux = index + sizeof(netio_pkt_t); | ||
695 | int index2 = | ||
696 | ((index2_aux == | ||
697 | qsp->__packet_receive_queue.__last_packet_plus_one) ? | ||
698 | 0 : index2_aux); | ||
699 | |||
700 | netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index); | ||
701 | |||
702 | /* Extract the "linux_buffer_t". */ | ||
703 | unsigned int buffer = pkt->__packet.word; | ||
704 | |||
705 | /* Convert "linux_buffer_t" to "va". */ | ||
706 | void *va = __va((phys_addr_t)(buffer >> 1) << 7); | ||
707 | |||
708 | /* Acquire the associated "skb". */ | ||
709 | struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); | ||
710 | struct sk_buff *skb = *skb_ptr; | ||
711 | |||
712 | kfree_skb(skb); | ||
713 | |||
714 | /* Consume this packet. */ | ||
715 | qup->__packet_receive_read = index2; | ||
716 | } | ||
717 | |||
718 | |||
719 | /* | ||
720 | * Like "tile_net_poll()", but just discard packets. | ||
721 | */ | ||
722 | static void tile_net_discard_packets(struct net_device *dev) | ||
723 | { | ||
724 | struct tile_net_priv *priv = netdev_priv(dev); | ||
725 | int my_cpu = smp_processor_id(); | ||
726 | struct tile_net_cpu *info = priv->cpu[my_cpu]; | ||
727 | struct tile_netio_queue *queue = &info->queue; | ||
728 | netio_queue_impl_t *qsp = queue->__system_part; | ||
729 | netio_queue_user_impl_t *qup = &queue->__user_part; | ||
730 | |||
731 | while (qup->__packet_receive_read != | ||
732 | qsp->__packet_receive_queue.__packet_write) { | ||
733 | int index = qup->__packet_receive_read; | ||
734 | tile_net_discard_aux(info, index); | ||
735 | } | ||
736 | } | ||
737 | |||
738 | |||
739 | /* | ||
740 | * Handle the next packet. Return true if "processed", false if "filtered". | ||
741 | */ | ||
742 | static bool tile_net_poll_aux(struct tile_net_cpu *info, int index) | ||
743 | { | ||
744 | struct net_device *dev = info->napi.dev; | ||
745 | |||
746 | struct tile_netio_queue *queue = &info->queue; | ||
747 | netio_queue_impl_t *qsp = queue->__system_part; | ||
748 | netio_queue_user_impl_t *qup = &queue->__user_part; | ||
749 | struct tile_net_stats_t *stats = &info->stats; | ||
750 | |||
751 | int filter; | ||
752 | |||
753 | int index2_aux = index + sizeof(netio_pkt_t); | ||
754 | int index2 = | ||
755 | ((index2_aux == | ||
756 | qsp->__packet_receive_queue.__last_packet_plus_one) ? | ||
757 | 0 : index2_aux); | ||
758 | |||
759 | netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index); | ||
760 | |||
761 | netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt); | ||
762 | |||
763 | /* Extract the packet size. FIXME: Shouldn't the second line */ | ||
764 | /* get subtracted? Mostly moot, since it should be "zero". */ | ||
765 | unsigned long len = | ||
766 | (NETIO_PKT_CUSTOM_LENGTH(pkt) + | ||
767 | NET_IP_ALIGN - NETIO_PACKET_PADDING); | ||
768 | |||
769 | /* Extract the "linux_buffer_t". */ | ||
770 | unsigned int buffer = pkt->__packet.word; | ||
771 | |||
772 | /* Extract "small" (vs "large"). */ | ||
773 | bool small = ((buffer & 1) != 0); | ||
774 | |||
775 | /* Convert "linux_buffer_t" to "va". */ | ||
776 | void *va = __va((phys_addr_t)(buffer >> 1) << 7); | ||
777 | |||
778 | /* Extract the packet data pointer. */ | ||
779 | /* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */ | ||
780 | unsigned char *buf = va + NET_IP_ALIGN; | ||
781 | |||
782 | /* Invalidate the packet buffer. */ | ||
783 | if (!hash_default) | ||
784 | __inv_buffer(buf, len); | ||
785 | |||
786 | /* ISSUE: Is this needed? */ | ||
787 | dev->last_rx = jiffies; | ||
788 | |||
789 | #ifdef TILE_NET_DUMP_PACKETS | ||
790 | dump_packet(buf, len, "rx"); | ||
791 | #endif /* TILE_NET_DUMP_PACKETS */ | ||
792 | |||
793 | #ifdef TILE_NET_VERIFY_INGRESS | ||
794 | if (!NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt) && | ||
795 | NETIO_PKT_L4_CSUM_CALCULATED_M(metadata, pkt)) { | ||
796 | /* Bug 6624: Includes UDP packets with a "zero" checksum. */ | ||
797 | pr_warning("Bad L4 checksum on %d byte packet.\n", len); | ||
798 | } | ||
799 | if (!NETIO_PKT_L3_CSUM_CORRECT_M(metadata, pkt) && | ||
800 | NETIO_PKT_L3_CSUM_CALCULATED_M(metadata, pkt)) { | ||
801 | dump_packet(buf, len, "rx"); | ||
802 | panic("Bad L3 checksum."); | ||
803 | } | ||
804 | switch (NETIO_PKT_STATUS_M(metadata, pkt)) { | ||
805 | case NETIO_PKT_STATUS_OVERSIZE: | ||
806 | if (len >= 64) { | ||
807 | dump_packet(buf, len, "rx"); | ||
808 | panic("Unexpected OVERSIZE."); | ||
809 | } | ||
810 | break; | ||
811 | case NETIO_PKT_STATUS_BAD: | ||
812 | pr_warning("Unexpected BAD %ld byte packet.\n", len); | ||
813 | } | ||
814 | #endif | ||
815 | |||
816 | filter = 0; | ||
817 | |||
818 | /* ISSUE: Filter TCP packets with "bad" checksums? */ | ||
819 | |||
820 | if (!(dev->flags & IFF_UP)) { | ||
821 | /* Filter packets received before we're up. */ | ||
822 | filter = 1; | ||
823 | } else if (NETIO_PKT_STATUS_M(metadata, pkt) == NETIO_PKT_STATUS_BAD) { | ||
824 | /* Filter "truncated" packets. */ | ||
825 | filter = 1; | ||
826 | } else if (!(dev->flags & IFF_PROMISC)) { | ||
827 | /* FIXME: Implement HW multicast filter. */ | ||
828 | if (!is_multicast_ether_addr(buf)) { | ||
829 | /* Filter packets not for our address. */ | ||
830 | const u8 *mine = dev->dev_addr; | ||
831 | filter = compare_ether_addr(mine, buf); | ||
832 | } | ||
833 | } | ||
834 | |||
835 | if (filter) { | ||
836 | |||
837 | /* ISSUE: Update "drop" statistics? */ | ||
838 | |||
839 | tile_net_provide_linux_buffer(info, va, small); | ||
840 | |||
841 | } else { | ||
842 | |||
843 | /* Acquire the associated "skb". */ | ||
844 | struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); | ||
845 | struct sk_buff *skb = *skb_ptr; | ||
846 | |||
847 | /* Paranoia. */ | ||
848 | if (skb->data != buf) | ||
849 | panic("Corrupt linux buffer from LIPP! " | ||
850 | "VA=%p, skb=%p, skb->data=%p\n", | ||
851 | va, skb, skb->data); | ||
852 | |||
853 | /* Encode the actual packet length. */ | ||
854 | skb_put(skb, len); | ||
855 | |||
856 | /* NOTE: This call also sets "skb->dev = dev". */ | ||
857 | skb->protocol = eth_type_trans(skb, dev); | ||
858 | |||
859 | /* Avoid recomputing "good" TCP/UDP checksums. */ | ||
860 | if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt)) | ||
861 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
862 | |||
863 | netif_receive_skb(skb); | ||
864 | |||
865 | stats->rx_packets++; | ||
866 | stats->rx_bytes += len; | ||
867 | |||
868 | if (small) | ||
869 | info->num_needed_small_buffers++; | ||
870 | else | ||
871 | info->num_needed_large_buffers++; | ||
872 | } | ||
873 | |||
874 | /* Return four credits after every fourth packet. */ | ||
875 | if (--qup->__receive_credit_remaining == 0) { | ||
876 | u32 interval = qup->__receive_credit_interval; | ||
877 | qup->__receive_credit_remaining = interval; | ||
878 | __netio_fastio_return_credits(qup->__fastio_index, interval); | ||
879 | } | ||
880 | |||
881 | /* Consume this packet. */ | ||
882 | qup->__packet_receive_read = index2; | ||
883 | |||
884 | return !filter; | ||
885 | } | ||
886 | |||
887 | |||
888 | /* | ||
889 | * Handle some packets for the given device on the current CPU. | ||
890 | * | ||
891 | * If "tile_net_stop()" is called on some other tile while this | ||
892 | * function is running, we will return, hopefully before that | ||
893 | * other tile asks us to call "napi_disable()". | ||
894 | * | ||
895 | * The "rotting packet" race condition occurs if a packet arrives | ||
896 | * during the extremely narrow window between the queue appearing to | ||
897 | * be empty, and the ingress interrupt being re-enabled. This happens | ||
898 | * a LOT under heavy network load. | ||
899 | */ | ||
900 | static int tile_net_poll(struct napi_struct *napi, int budget) | ||
901 | { | ||
902 | struct net_device *dev = napi->dev; | ||
903 | struct tile_net_priv *priv = netdev_priv(dev); | ||
904 | int my_cpu = smp_processor_id(); | ||
905 | struct tile_net_cpu *info = priv->cpu[my_cpu]; | ||
906 | struct tile_netio_queue *queue = &info->queue; | ||
907 | netio_queue_impl_t *qsp = queue->__system_part; | ||
908 | netio_queue_user_impl_t *qup = &queue->__user_part; | ||
909 | |||
910 | unsigned int work = 0; | ||
911 | |||
912 | while (priv->active) { | ||
913 | int index = qup->__packet_receive_read; | ||
914 | if (index == qsp->__packet_receive_queue.__packet_write) | ||
915 | break; | ||
916 | |||
917 | if (tile_net_poll_aux(info, index)) { | ||
918 | if (++work >= budget) | ||
919 | goto done; | ||
920 | } | ||
921 | } | ||
922 | |||
923 | napi_complete(&info->napi); | ||
924 | |||
925 | if (!priv->active) | ||
926 | goto done; | ||
927 | |||
928 | /* Re-enable the ingress interrupt. */ | ||
929 | enable_percpu_irq(priv->intr_id); | ||
930 | |||
931 | /* HACK: Avoid the "rotting packet" problem (see above). */ | ||
932 | if (qup->__packet_receive_read != | ||
933 | qsp->__packet_receive_queue.__packet_write) { | ||
934 | /* ISSUE: Sometimes this returns zero, presumably */ | ||
935 | /* because an interrupt was handled for this tile. */ | ||
936 | (void)napi_reschedule(&info->napi); | ||
937 | } | ||
938 | |||
939 | done: | ||
940 | |||
941 | if (priv->active) | ||
942 | tile_net_provide_needed_buffers(info); | ||
943 | |||
944 | return work; | ||
945 | } | ||
946 | |||
947 | |||
948 | /* | ||
949 | * Handle an ingress interrupt for the given device on the current cpu. | ||
950 | * | ||
951 | * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has | ||
952 | * been called! This is probably due to "pending hypervisor downcalls". | ||
953 | * | ||
954 | * ISSUE: Is there any race condition between the "napi_schedule()" here | ||
955 | * and the "napi_complete()" call above? | ||
956 | */ | ||
957 | static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr) | ||
958 | { | ||
959 | struct net_device *dev = (struct net_device *)dev_ptr; | ||
960 | struct tile_net_priv *priv = netdev_priv(dev); | ||
961 | int my_cpu = smp_processor_id(); | ||
962 | struct tile_net_cpu *info = priv->cpu[my_cpu]; | ||
963 | |||
964 | /* Disable the ingress interrupt. */ | ||
965 | disable_percpu_irq(priv->intr_id); | ||
966 | |||
967 | /* Ignore unwanted interrupts. */ | ||
968 | if (!priv->active) | ||
969 | return IRQ_HANDLED; | ||
970 | |||
971 | /* ISSUE: Sometimes "info->napi_enabled" is false here. */ | ||
972 | |||
973 | napi_schedule(&info->napi); | ||
974 | |||
975 | return IRQ_HANDLED; | ||
976 | } | ||
977 | |||
978 | |||
979 | /* | ||
980 | * One time initialization per interface. | ||
981 | */ | ||
982 | static int tile_net_open_aux(struct net_device *dev) | ||
983 | { | ||
984 | struct tile_net_priv *priv = netdev_priv(dev); | ||
985 | |||
986 | int ret; | ||
987 | int dummy; | ||
988 | unsigned int epp_lotar; | ||
989 | |||
990 | /* | ||
991 | * Find out where EPP memory should be homed. | ||
992 | */ | ||
993 | ret = hv_dev_pread(priv->hv_devhdl, 0, | ||
994 | (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar), | ||
995 | NETIO_EPP_SHM_OFF); | ||
996 | if (ret < 0) { | ||
997 | pr_err("could not read epp_shm_queue lotar.\n"); | ||
998 | return -EIO; | ||
999 | } | ||
1000 | |||
1001 | /* | ||
1002 | * Home the page on the EPP. | ||
1003 | */ | ||
1004 | { | ||
1005 | int epp_home = hv_lotar_to_cpu(epp_lotar); | ||
1006 | homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home); | ||
1007 | } | ||
1008 | |||
1009 | /* | ||
1010 | * Register the EPP shared memory queue. | ||
1011 | */ | ||
1012 | { | ||
1013 | netio_ipp_address_t ea = { | ||
1014 | .va = 0, | ||
1015 | .pa = __pa(priv->eq), | ||
1016 | .pte = hv_pte(0), | ||
1017 | .size = EQ_SIZE, | ||
1018 | }; | ||
1019 | ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar); | ||
1020 | ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3); | ||
1021 | ret = hv_dev_pwrite(priv->hv_devhdl, 0, | ||
1022 | (HV_VirtAddr)&ea, | ||
1023 | sizeof(ea), | ||
1024 | NETIO_EPP_SHM_OFF); | ||
1025 | if (ret < 0) | ||
1026 | return -EIO; | ||
1027 | } | ||
1028 | |||
1029 | /* | ||
1030 | * Start LIPP/LEPP. | ||
1031 | */ | ||
1032 | if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, | ||
1033 | sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) { | ||
1034 | pr_warning("Failed to start LIPP/LEPP.\n"); | ||
1035 | return -EIO; | ||
1036 | } | ||
1037 | |||
1038 | return 0; | ||
1039 | } | ||
1040 | |||
1041 | |||
1042 | /* | ||
1043 | * Register with hypervisor on the current CPU. | ||
1044 | * | ||
1045 | * Strangely, this function does important things even if it "fails", | ||
1046 | * which is especially common if the link is not up yet. Hopefully | ||
1047 | * these things are all "harmless" if done twice! | ||
1048 | */ | ||
1049 | static void tile_net_register(void *dev_ptr) | ||
1050 | { | ||
1051 | struct net_device *dev = (struct net_device *)dev_ptr; | ||
1052 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1053 | int my_cpu = smp_processor_id(); | ||
1054 | struct tile_net_cpu *info; | ||
1055 | |||
1056 | struct tile_netio_queue *queue; | ||
1057 | |||
1058 | /* Only network cpus can receive packets. */ | ||
1059 | int queue_id = | ||
1060 | cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255; | ||
1061 | |||
1062 | netio_input_config_t config = { | ||
1063 | .flags = 0, | ||
1064 | .num_receive_packets = priv->network_cpus_credits, | ||
1065 | .queue_id = queue_id | ||
1066 | }; | ||
1067 | |||
1068 | int ret = 0; | ||
1069 | netio_queue_impl_t *queuep; | ||
1070 | |||
1071 | PDEBUG("tile_net_register(queue_id %d)\n", queue_id); | ||
1072 | |||
1073 | if (!strcmp(dev->name, "xgbe0")) | ||
1074 | info = &__get_cpu_var(hv_xgbe0); | ||
1075 | else if (!strcmp(dev->name, "xgbe1")) | ||
1076 | info = &__get_cpu_var(hv_xgbe1); | ||
1077 | else if (!strcmp(dev->name, "gbe0")) | ||
1078 | info = &__get_cpu_var(hv_gbe0); | ||
1079 | else if (!strcmp(dev->name, "gbe1")) | ||
1080 | info = &__get_cpu_var(hv_gbe1); | ||
1081 | else | ||
1082 | BUG(); | ||
1083 | |||
1084 | /* Initialize the egress timer. */ | ||
1085 | init_timer(&info->egress_timer); | ||
1086 | info->egress_timer.data = (long)info; | ||
1087 | info->egress_timer.function = tile_net_handle_egress_timer; | ||
1088 | |||
1089 | priv->cpu[my_cpu] = info; | ||
1090 | |||
1091 | /* | ||
1092 | * Register ourselves with LIPP. This does a lot of stuff, | ||
1093 | * including invoking the LIPP registration code. | ||
1094 | */ | ||
1095 | ret = hv_dev_pwrite(priv->hv_devhdl, 0, | ||
1096 | (HV_VirtAddr)&config, | ||
1097 | sizeof(netio_input_config_t), | ||
1098 | NETIO_IPP_INPUT_REGISTER_OFF); | ||
1099 | PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n", | ||
1100 | ret); | ||
1101 | if (ret < 0) { | ||
1102 | if (ret != NETIO_LINK_DOWN) { | ||
1103 | printk(KERN_DEBUG "hv_dev_pwrite " | ||
1104 | "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n", | ||
1105 | ret); | ||
1106 | } | ||
1107 | info->link_down = (ret == NETIO_LINK_DOWN); | ||
1108 | return; | ||
1109 | } | ||
1110 | |||
1111 | /* | ||
1112 | * Get the pointer to our queue's system part. | ||
1113 | */ | ||
1114 | |||
1115 | ret = hv_dev_pread(priv->hv_devhdl, 0, | ||
1116 | (HV_VirtAddr)&queuep, | ||
1117 | sizeof(netio_queue_impl_t *), | ||
1118 | NETIO_IPP_INPUT_REGISTER_OFF); | ||
1119 | PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n", | ||
1120 | ret); | ||
1121 | PDEBUG("queuep %p\n", queuep); | ||
1122 | if (ret <= 0) { | ||
1123 | /* ISSUE: Shouldn't this be a fatal error? */ | ||
1124 | pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n"); | ||
1125 | return; | ||
1126 | } | ||
1127 | |||
1128 | queue = &info->queue; | ||
1129 | |||
1130 | queue->__system_part = queuep; | ||
1131 | |||
1132 | memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t)); | ||
1133 | |||
1134 | /* This is traditionally "config.num_receive_packets / 2". */ | ||
1135 | queue->__user_part.__receive_credit_interval = 4; | ||
1136 | queue->__user_part.__receive_credit_remaining = | ||
1137 | queue->__user_part.__receive_credit_interval; | ||
1138 | |||
1139 | /* | ||
1140 | * Get a fastio index from the hypervisor. | ||
1141 | * ISSUE: Shouldn't this check the result? | ||
1142 | */ | ||
1143 | ret = hv_dev_pread(priv->hv_devhdl, 0, | ||
1144 | (HV_VirtAddr)&queue->__user_part.__fastio_index, | ||
1145 | sizeof(queue->__user_part.__fastio_index), | ||
1146 | NETIO_IPP_GET_FASTIO_OFF); | ||
1147 | PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret); | ||
1148 | |||
1149 | /* Now we are registered. */ | ||
1150 | info->registered = true; | ||
1151 | } | ||
1152 | |||
1153 | |||
1154 | /* | ||
1155 | * Deregister with hypervisor on the current CPU. | ||
1156 | * | ||
1157 | * This simply discards all our credits, so no more packets will be | ||
1158 | * delivered to this tile. There may still be packets in our queue. | ||
1159 | * | ||
1160 | * Also, disable the ingress interrupt. | ||
1161 | */ | ||
1162 | static void tile_net_deregister(void *dev_ptr) | ||
1163 | { | ||
1164 | struct net_device *dev = (struct net_device *)dev_ptr; | ||
1165 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1166 | int my_cpu = smp_processor_id(); | ||
1167 | struct tile_net_cpu *info = priv->cpu[my_cpu]; | ||
1168 | |||
1169 | /* Disable the ingress interrupt. */ | ||
1170 | disable_percpu_irq(priv->intr_id); | ||
1171 | |||
1172 | /* Do nothing else if not registered. */ | ||
1173 | if (info == NULL || !info->registered) | ||
1174 | return; | ||
1175 | |||
1176 | { | ||
1177 | struct tile_netio_queue *queue = &info->queue; | ||
1178 | netio_queue_user_impl_t *qup = &queue->__user_part; | ||
1179 | |||
1180 | /* Discard all our credits. */ | ||
1181 | __netio_fastio_return_credits(qup->__fastio_index, -1); | ||
1182 | } | ||
1183 | } | ||
1184 | |||
1185 | |||
1186 | /* | ||
1187 | * Unregister with hypervisor on the current CPU. | ||
1188 | * | ||
1189 | * Also, disable the ingress interrupt. | ||
1190 | */ | ||
1191 | static void tile_net_unregister(void *dev_ptr) | ||
1192 | { | ||
1193 | struct net_device *dev = (struct net_device *)dev_ptr; | ||
1194 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1195 | int my_cpu = smp_processor_id(); | ||
1196 | struct tile_net_cpu *info = priv->cpu[my_cpu]; | ||
1197 | |||
1198 | int ret; | ||
1199 | int dummy = 0; | ||
1200 | |||
1201 | /* Disable the ingress interrupt. */ | ||
1202 | disable_percpu_irq(priv->intr_id); | ||
1203 | |||
1204 | /* Do nothing else if not registered. */ | ||
1205 | if (info == NULL || !info->registered) | ||
1206 | return; | ||
1207 | |||
1208 | /* Unregister ourselves with LIPP/LEPP. */ | ||
1209 | ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, | ||
1210 | sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF); | ||
1211 | if (ret < 0) | ||
1212 | panic("Failed to unregister with LIPP/LEPP!\n"); | ||
1213 | |||
1214 | /* Discard all packets still in our NetIO queue. */ | ||
1215 | tile_net_discard_packets(dev); | ||
1216 | |||
1217 | /* Reset state. */ | ||
1218 | info->num_needed_small_buffers = 0; | ||
1219 | info->num_needed_large_buffers = 0; | ||
1220 | |||
1221 | /* Cancel egress timer. */ | ||
1222 | del_timer(&info->egress_timer); | ||
1223 | info->egress_timer_scheduled = false; | ||
1224 | } | ||
1225 | |||
1226 | |||
1227 | /* | ||
1228 | * Helper function for "tile_net_stop()". | ||
1229 | * | ||
1230 | * Also used to handle registration failure in "tile_net_open_inner()", | ||
1231 | * when the various extra steps in "tile_net_stop()" are not necessary. | ||
1232 | */ | ||
1233 | static void tile_net_stop_aux(struct net_device *dev) | ||
1234 | { | ||
1235 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1236 | int i; | ||
1237 | |||
1238 | int dummy = 0; | ||
1239 | |||
1240 | /* | ||
1241 | * Unregister all tiles, so LIPP will stop delivering packets. | ||
1242 | * Also, delete all the "napi" objects (sequentially, to protect | ||
1243 | * "dev->napi_list"). | ||
1244 | */ | ||
1245 | on_each_cpu(tile_net_unregister, (void *)dev, 1); | ||
1246 | for_each_online_cpu(i) { | ||
1247 | struct tile_net_cpu *info = priv->cpu[i]; | ||
1248 | if (info != NULL && info->registered) { | ||
1249 | netif_napi_del(&info->napi); | ||
1250 | info->registered = false; | ||
1251 | } | ||
1252 | } | ||
1253 | |||
1254 | /* Stop LIPP/LEPP. */ | ||
1255 | if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, | ||
1256 | sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0) | ||
1257 | panic("Failed to stop LIPP/LEPP!\n"); | ||
1258 | |||
1259 | priv->partly_opened = 0; | ||
1260 | } | ||
1261 | |||
1262 | |||
1263 | /* | ||
1264 | * Disable NAPI for the given device on the current cpu. | ||
1265 | */ | ||
1266 | static void tile_net_stop_disable(void *dev_ptr) | ||
1267 | { | ||
1268 | struct net_device *dev = (struct net_device *)dev_ptr; | ||
1269 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1270 | int my_cpu = smp_processor_id(); | ||
1271 | struct tile_net_cpu *info = priv->cpu[my_cpu]; | ||
1272 | |||
1273 | /* Disable NAPI if needed. */ | ||
1274 | if (info != NULL && info->napi_enabled) { | ||
1275 | napi_disable(&info->napi); | ||
1276 | info->napi_enabled = false; | ||
1277 | } | ||
1278 | } | ||
1279 | |||
1280 | |||
1281 | /* | ||
1282 | * Enable NAPI and the ingress interrupt for the given device | ||
1283 | * on the current cpu. | ||
1284 | * | ||
1285 | * ISSUE: Only do this for "network cpus"? | ||
1286 | */ | ||
1287 | static void tile_net_open_enable(void *dev_ptr) | ||
1288 | { | ||
1289 | struct net_device *dev = (struct net_device *)dev_ptr; | ||
1290 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1291 | int my_cpu = smp_processor_id(); | ||
1292 | struct tile_net_cpu *info = priv->cpu[my_cpu]; | ||
1293 | |||
1294 | /* Enable NAPI. */ | ||
1295 | napi_enable(&info->napi); | ||
1296 | info->napi_enabled = true; | ||
1297 | |||
1298 | /* Enable the ingress interrupt. */ | ||
1299 | enable_percpu_irq(priv->intr_id); | ||
1300 | } | ||
1301 | |||
1302 | |||
1303 | /* | ||
1304 | * tile_net_open_inner does most of the work of bringing up the interface. | ||
1305 | * It's called from tile_net_open(), and also from tile_net_retry_open(). | ||
1306 | * The return value is 0 if the interface was brought up, < 0 if | ||
1307 | * tile_net_open() should return the return value as an error, and > 0 if | ||
1308 | * tile_net_open() should return success and schedule a work item to | ||
1309 | * periodically retry the bringup. | ||
1310 | */ | ||
1311 | static int tile_net_open_inner(struct net_device *dev) | ||
1312 | { | ||
1313 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1314 | int my_cpu = smp_processor_id(); | ||
1315 | struct tile_net_cpu *info; | ||
1316 | struct tile_netio_queue *queue; | ||
1317 | int result = 0; | ||
1318 | int i; | ||
1319 | int dummy = 0; | ||
1320 | |||
1321 | /* | ||
1322 | * First try to register just on the local CPU, and handle any | ||
1323 | * semi-expected "link down" failure specially. Note that we | ||
1324 | * do NOT call "tile_net_stop_aux()", unlike below. | ||
1325 | */ | ||
1326 | tile_net_register(dev); | ||
1327 | info = priv->cpu[my_cpu]; | ||
1328 | if (!info->registered) { | ||
1329 | if (info->link_down) | ||
1330 | return 1; | ||
1331 | return -EAGAIN; | ||
1332 | } | ||
1333 | |||
1334 | /* | ||
1335 | * Now register everywhere else. If any registration fails, | ||
1336 | * even for "link down" (which might not be possible), we | ||
1337 | * clean up using "tile_net_stop_aux()". Also, add all the | ||
1338 | * "napi" objects (sequentially, to protect "dev->napi_list"). | ||
1339 | * ISSUE: Only use "netif_napi_add()" for "network cpus"? | ||
1340 | */ | ||
1341 | smp_call_function(tile_net_register, (void *)dev, 1); | ||
1342 | for_each_online_cpu(i) { | ||
1343 | struct tile_net_cpu *info = priv->cpu[i]; | ||
1344 | if (info->registered) | ||
1345 | netif_napi_add(dev, &info->napi, tile_net_poll, 64); | ||
1346 | else | ||
1347 | result = -EAGAIN; | ||
1348 | } | ||
1349 | if (result != 0) { | ||
1350 | tile_net_stop_aux(dev); | ||
1351 | return result; | ||
1352 | } | ||
1353 | |||
1354 | queue = &info->queue; | ||
1355 | |||
1356 | if (priv->intr_id == 0) { | ||
1357 | unsigned int irq; | ||
1358 | |||
1359 | /* | ||
1360 | * Acquire the irq allocated by the hypervisor. Every | ||
1361 | * queue gets the same irq. The "__intr_id" field is | ||
1362 | * "1 << irq", so we use "__ffs()" to extract "irq". | ||
1363 | */ | ||
1364 | priv->intr_id = queue->__system_part->__intr_id; | ||
1365 | BUG_ON(priv->intr_id == 0); | ||
1366 | irq = __ffs(priv->intr_id); | ||
1367 | |||
1368 | /* | ||
1369 | * Register the ingress interrupt handler for this | ||
1370 | * device, permanently. | ||
1371 | * | ||
1372 | * We used to call "free_irq()" in "tile_net_stop()", | ||
1373 | * and then re-register the handler here every time, | ||
1374 | * but that caused DNP errors in "handle_IRQ_event()" | ||
1375 | * because "desc->action" was NULL. See bug 9143. | ||
1376 | */ | ||
1377 | tile_irq_activate(irq, TILE_IRQ_PERCPU); | ||
1378 | BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt, | ||
1379 | 0, dev->name, (void *)dev) != 0); | ||
1380 | } | ||
1381 | |||
1382 | { | ||
1383 | /* Allocate initial buffers. */ | ||
1384 | |||
1385 | int max_buffers = | ||
1386 | priv->network_cpus_count * priv->network_cpus_credits; | ||
1387 | |||
1388 | info->num_needed_small_buffers = | ||
1389 | min(LIPP_SMALL_BUFFERS, max_buffers); | ||
1390 | |||
1391 | info->num_needed_large_buffers = | ||
1392 | min(LIPP_LARGE_BUFFERS, max_buffers); | ||
1393 | |||
1394 | tile_net_provide_needed_buffers(info); | ||
1395 | |||
1396 | if (info->num_needed_small_buffers != 0 || | ||
1397 | info->num_needed_large_buffers != 0) | ||
1398 | panic("Insufficient memory for buffer stack!"); | ||
1399 | } | ||
1400 | |||
1401 | /* We are about to be active. */ | ||
1402 | priv->active = true; | ||
1403 | |||
1404 | /* Make sure "active" is visible to all tiles. */ | ||
1405 | mb(); | ||
1406 | |||
1407 | /* On each tile, enable NAPI and the ingress interrupt. */ | ||
1408 | on_each_cpu(tile_net_open_enable, (void *)dev, 1); | ||
1409 | |||
1410 | /* Start LIPP/LEPP and activate "ingress" at the shim. */ | ||
1411 | if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, | ||
1412 | sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0) | ||
1413 | panic("Failed to activate the LIPP Shim!\n"); | ||
1414 | |||
1415 | /* Start our transmit queue. */ | ||
1416 | netif_start_queue(dev); | ||
1417 | |||
1418 | return 0; | ||
1419 | } | ||
1420 | |||
1421 | |||
1422 | /* | ||
1423 | * Called periodically to retry bringing up the NetIO interface, | ||
1424 | * if it doesn't come up cleanly during tile_net_open(). | ||
1425 | */ | ||
1426 | static void tile_net_open_retry(struct work_struct *w) | ||
1427 | { | ||
1428 | struct delayed_work *dw = | ||
1429 | container_of(w, struct delayed_work, work); | ||
1430 | |||
1431 | struct tile_net_priv *priv = | ||
1432 | container_of(dw, struct tile_net_priv, retry_work); | ||
1433 | |||
1434 | /* | ||
1435 | * Try to bring the NetIO interface up. If it fails, reschedule | ||
1436 | * ourselves to try again later; otherwise, tell Linux we now have | ||
1437 | * a working link. ISSUE: What if the return value is negative? | ||
1438 | */ | ||
1439 | if (tile_net_open_inner(priv->dev) != 0) | ||
1440 | schedule_delayed_work(&priv->retry_work, | ||
1441 | TILE_NET_RETRY_INTERVAL); | ||
1442 | else | ||
1443 | netif_carrier_on(priv->dev); | ||
1444 | } | ||
1445 | |||
1446 | |||
1447 | /* | ||
1448 | * Called when a network interface is made active. | ||
1449 | * | ||
1450 | * Returns 0 on success, negative value on failure. | ||
1451 | * | ||
1452 | * The open entry point is called when a network interface is made | ||
1453 | * active by the system (IFF_UP). At this point all resources needed | ||
1454 | * for transmit and receive operations are allocated, the interrupt | ||
1455 | * handler is registered with the OS (if needed), the watchdog timer | ||
1456 | * is started, and the stack is notified that the interface is ready. | ||
1457 | * | ||
1458 | * If the actual link is not available yet, then we tell Linux that | ||
1459 | * we have no carrier, and we keep checking until the link comes up. | ||
1460 | */ | ||
1461 | static int tile_net_open(struct net_device *dev) | ||
1462 | { | ||
1463 | int ret = 0; | ||
1464 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1465 | |||
1466 | /* | ||
1467 | * We rely on priv->partly_opened to tell us if this is the | ||
1468 | * first time this interface is being brought up. If it is | ||
1469 | * set, the IPP was already initialized and should not be | ||
1470 | * initialized again. | ||
1471 | */ | ||
1472 | if (!priv->partly_opened) { | ||
1473 | |||
1474 | int count; | ||
1475 | int credits; | ||
1476 | |||
1477 | /* Initialize LIPP/LEPP, and start the Shim. */ | ||
1478 | ret = tile_net_open_aux(dev); | ||
1479 | if (ret < 0) { | ||
1480 | pr_err("tile_net_open_aux failed: %d\n", ret); | ||
1481 | return ret; | ||
1482 | } | ||
1483 | |||
1484 | /* Analyze the network cpus. */ | ||
1485 | |||
1486 | if (network_cpus_used) | ||
1487 | cpumask_copy(&priv->network_cpus_map, | ||
1488 | &network_cpus_map); | ||
1489 | else | ||
1490 | cpumask_copy(&priv->network_cpus_map, cpu_online_mask); | ||
1491 | |||
1492 | |||
1493 | count = cpumask_weight(&priv->network_cpus_map); | ||
1494 | |||
1495 | /* Limit credits to available buffers, and apply min. */ | ||
1496 | credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1); | ||
1497 | |||
1498 | /* Apply "GBE" max limit. */ | ||
1499 | /* ISSUE: Use higher limit for XGBE? */ | ||
1500 | credits = min(NETIO_MAX_RECEIVE_PKTS, credits); | ||
1501 | |||
1502 | priv->network_cpus_count = count; | ||
1503 | priv->network_cpus_credits = credits; | ||
1504 | |||
1505 | #ifdef TILE_NET_DEBUG | ||
1506 | pr_info("Using %d network cpus, with %d credits each\n", | ||
1507 | priv->network_cpus_count, priv->network_cpus_credits); | ||
1508 | #endif | ||
1509 | |||
1510 | priv->partly_opened = 1; | ||
1511 | |||
1512 | } else { | ||
1513 | /* FIXME: Is this possible? */ | ||
1514 | /* printk("Already partly opened.\n"); */ | ||
1515 | } | ||
1516 | |||
1517 | /* | ||
1518 | * Attempt to bring up the link. | ||
1519 | */ | ||
1520 | ret = tile_net_open_inner(dev); | ||
1521 | if (ret <= 0) { | ||
1522 | if (ret == 0) | ||
1523 | netif_carrier_on(dev); | ||
1524 | return ret; | ||
1525 | } | ||
1526 | |||
1527 | /* | ||
1528 | * We were unable to bring up the NetIO interface, but we want to | ||
1529 | * try again in a little bit. Tell Linux that we have no carrier | ||
1530 | * so it doesn't try to use the interface before the link comes up | ||
1531 | * and then remember to try again later. | ||
1532 | */ | ||
1533 | netif_carrier_off(dev); | ||
1534 | schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL); | ||
1535 | |||
1536 | return 0; | ||
1537 | } | ||
1538 | |||
1539 | |||
1540 | static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv) | ||
1541 | { | ||
1542 | int n = 0; | ||
1543 | |||
1544 | /* Drain all the LIPP buffers. */ | ||
1545 | while (true) { | ||
1546 | int buffer; | ||
1547 | |||
1548 | /* NOTE: This should never fail. */ | ||
1549 | if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer, | ||
1550 | sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0) | ||
1551 | break; | ||
1552 | |||
1553 | /* Stop when done. */ | ||
1554 | if (buffer == 0) | ||
1555 | break; | ||
1556 | |||
1557 | { | ||
1558 | /* Convert "linux_buffer_t" to "va". */ | ||
1559 | void *va = __va((phys_addr_t)(buffer >> 1) << 7); | ||
1560 | |||
1561 | /* Acquire the associated "skb". */ | ||
1562 | struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); | ||
1563 | struct sk_buff *skb = *skb_ptr; | ||
1564 | |||
1565 | kfree_skb(skb); | ||
1566 | } | ||
1567 | |||
1568 | n++; | ||
1569 | } | ||
1570 | |||
1571 | return n; | ||
1572 | } | ||
1573 | |||
1574 | |||
1575 | /* | ||
1576 | * Disables a network interface. | ||
1577 | * | ||
1578 | * Returns 0, this is not allowed to fail. | ||
1579 | * | ||
1580 | * The close entry point is called when an interface is de-activated | ||
1581 | * by the OS. The hardware is still under the drivers control, but | ||
1582 | * needs to be disabled. A global MAC reset is issued to stop the | ||
1583 | * hardware, and all transmit and receive resources are freed. | ||
1584 | * | ||
1585 | * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"? | ||
1586 | * | ||
1587 | * Before we are called by "__dev_close()", "netif_running()" will | ||
1588 | * have been cleared, so no NEW calls to "tile_net_poll()" will be | ||
1589 | * made by "netpoll_poll_dev()". | ||
1590 | * | ||
1591 | * Often, this can cause some tiles to still have packets in their | ||
1592 | * queues, so we must call "tile_net_discard_packets()" later. | ||
1593 | * | ||
1594 | * Note that some other tile may still be INSIDE "tile_net_poll()", | ||
1595 | * and in fact, many will be, if there is heavy network load. | ||
1596 | * | ||
1597 | * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when | ||
1598 | * any tile is still "napi_schedule()"'d will induce a horrible crash | ||
1599 | * when "msleep()" is called. This includes tiles which are inside | ||
1600 | * "tile_net_poll()" which have not yet called "napi_complete()". | ||
1601 | * | ||
1602 | * So, we must first try to wait long enough for other tiles to finish | ||
1603 | * with any current "tile_net_poll()" call, and, hopefully, to clear | ||
1604 | * the "scheduled" flag. ISSUE: It is unclear what happens to tiles | ||
1605 | * which have called "napi_schedule()" but which had not yet tried to | ||
1606 | * call "tile_net_poll()", or which exhausted their budget inside | ||
1607 | * "tile_net_poll()" just before this function was called. | ||
1608 | */ | ||
1609 | static int tile_net_stop(struct net_device *dev) | ||
1610 | { | ||
1611 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1612 | |||
1613 | PDEBUG("tile_net_stop()\n"); | ||
1614 | |||
1615 | /* Start discarding packets. */ | ||
1616 | priv->active = false; | ||
1617 | |||
1618 | /* Make sure "active" is visible to all tiles. */ | ||
1619 | mb(); | ||
1620 | |||
1621 | /* | ||
1622 | * On each tile, make sure no NEW packets get delivered, and | ||
1623 | * disable the ingress interrupt. | ||
1624 | * | ||
1625 | * Note that the ingress interrupt can fire AFTER this, | ||
1626 | * presumably due to packets which were recently delivered, | ||
1627 | * but it will have no effect. | ||
1628 | */ | ||
1629 | on_each_cpu(tile_net_deregister, (void *)dev, 1); | ||
1630 | |||
1631 | /* Optimistically drain LIPP buffers. */ | ||
1632 | (void)tile_net_drain_lipp_buffers(priv); | ||
1633 | |||
1634 | /* ISSUE: Only needed if not yet fully open. */ | ||
1635 | cancel_delayed_work_sync(&priv->retry_work); | ||
1636 | |||
1637 | /* Can't transmit any more. */ | ||
1638 | netif_stop_queue(dev); | ||
1639 | |||
1640 | /* Disable NAPI on each tile. */ | ||
1641 | on_each_cpu(tile_net_stop_disable, (void *)dev, 1); | ||
1642 | |||
1643 | /* | ||
1644 | * Drain any remaining LIPP buffers. NOTE: This "printk()" | ||
1645 | * has never been observed, but in theory it could happen. | ||
1646 | */ | ||
1647 | if (tile_net_drain_lipp_buffers(priv) != 0) | ||
1648 | printk("Had to drain some extra LIPP buffers!\n"); | ||
1649 | |||
1650 | /* Stop LIPP/LEPP. */ | ||
1651 | tile_net_stop_aux(dev); | ||
1652 | |||
1653 | /* | ||
1654 | * ISSUE: It appears that, in practice anyway, by the time we | ||
1655 | * get here, there are no pending completions, but just in case, | ||
1656 | * we free (all of) them anyway. | ||
1657 | */ | ||
1658 | while (tile_net_lepp_free_comps(dev, true)) | ||
1659 | /* loop */; | ||
1660 | |||
1661 | /* Wipe the EPP queue, and wait till the stores hit the EPP. */ | ||
1662 | memset(priv->eq, 0, sizeof(lepp_queue_t)); | ||
1663 | mb(); | ||
1664 | |||
1665 | return 0; | ||
1666 | } | ||
1667 | |||
1668 | |||
1669 | /* | ||
1670 | * Prepare the "frags" info for the resulting LEPP command. | ||
1671 | * | ||
1672 | * If needed, flush the memory used by the frags. | ||
1673 | */ | ||
1674 | static unsigned int tile_net_tx_frags(lepp_frag_t *frags, | ||
1675 | struct sk_buff *skb, | ||
1676 | void *b_data, unsigned int b_len) | ||
1677 | { | ||
1678 | unsigned int i, n = 0; | ||
1679 | |||
1680 | struct skb_shared_info *sh = skb_shinfo(skb); | ||
1681 | |||
1682 | phys_addr_t cpa; | ||
1683 | |||
1684 | if (b_len != 0) { | ||
1685 | |||
1686 | if (!hash_default) | ||
1687 | finv_buffer_remote(b_data, b_len, 0); | ||
1688 | |||
1689 | cpa = __pa(b_data); | ||
1690 | frags[n].cpa_lo = cpa; | ||
1691 | frags[n].cpa_hi = cpa >> 32; | ||
1692 | frags[n].length = b_len; | ||
1693 | frags[n].hash_for_home = hash_default; | ||
1694 | n++; | ||
1695 | } | ||
1696 | |||
1697 | for (i = 0; i < sh->nr_frags; i++) { | ||
1698 | |||
1699 | skb_frag_t *f = &sh->frags[i]; | ||
1700 | unsigned long pfn = page_to_pfn(f->page); | ||
1701 | |||
1702 | /* FIXME: Compute "hash_for_home" properly. */ | ||
1703 | /* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */ | ||
1704 | int hash_for_home = hash_default; | ||
1705 | |||
1706 | /* FIXME: Hmmm. */ | ||
1707 | if (!hash_default) { | ||
1708 | void *va = pfn_to_kaddr(pfn) + f->page_offset; | ||
1709 | BUG_ON(PageHighMem(f->page)); | ||
1710 | finv_buffer_remote(va, f->size, 0); | ||
1711 | } | ||
1712 | |||
1713 | cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset; | ||
1714 | frags[n].cpa_lo = cpa; | ||
1715 | frags[n].cpa_hi = cpa >> 32; | ||
1716 | frags[n].length = f->size; | ||
1717 | frags[n].hash_for_home = hash_for_home; | ||
1718 | n++; | ||
1719 | } | ||
1720 | |||
1721 | return n; | ||
1722 | } | ||
1723 | |||
1724 | |||
1725 | /* | ||
1726 | * This function takes "skb", consisting of a header template and a | ||
1727 | * payload, and hands it to LEPP, to emit as one or more segments, | ||
1728 | * each consisting of a possibly modified header, plus a piece of the | ||
1729 | * payload, via a process known as "tcp segmentation offload". | ||
1730 | * | ||
1731 | * Usually, "data" will contain the header template, of size "sh_len", | ||
1732 | * and "sh->frags" will contain "skb->data_len" bytes of payload, and | ||
1733 | * there will be "sh->gso_segs" segments. | ||
1734 | * | ||
1735 | * Sometimes, if "sendfile()" requires copying, we will be called with | ||
1736 | * "data" containing the header and payload, with "frags" being empty. | ||
1737 | * | ||
1738 | * In theory, "sh->nr_frags" could be 3, but in practice, it seems | ||
1739 | * that this will never actually happen. | ||
1740 | * | ||
1741 | * See "emulate_large_send_offload()" for some reference code, which | ||
1742 | * does not handle checksumming. | ||
1743 | * | ||
1744 | * ISSUE: How do we make sure that high memory DMA does not migrate? | ||
1745 | */ | ||
1746 | static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev) | ||
1747 | { | ||
1748 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1749 | int my_cpu = smp_processor_id(); | ||
1750 | struct tile_net_cpu *info = priv->cpu[my_cpu]; | ||
1751 | struct tile_net_stats_t *stats = &info->stats; | ||
1752 | |||
1753 | struct skb_shared_info *sh = skb_shinfo(skb); | ||
1754 | |||
1755 | unsigned char *data = skb->data; | ||
1756 | |||
1757 | /* The ip header follows the ethernet header. */ | ||
1758 | struct iphdr *ih = ip_hdr(skb); | ||
1759 | unsigned int ih_len = ih->ihl * 4; | ||
1760 | |||
1761 | /* Note that "nh == ih", by definition. */ | ||
1762 | unsigned char *nh = skb_network_header(skb); | ||
1763 | unsigned int eh_len = nh - data; | ||
1764 | |||
1765 | /* The tcp header follows the ip header. */ | ||
1766 | struct tcphdr *th = (struct tcphdr *)(nh + ih_len); | ||
1767 | unsigned int th_len = th->doff * 4; | ||
1768 | |||
1769 | /* The total number of header bytes. */ | ||
1770 | /* NOTE: This may be less than skb_headlen(skb). */ | ||
1771 | unsigned int sh_len = eh_len + ih_len + th_len; | ||
1772 | |||
1773 | /* The number of payload bytes at "skb->data + sh_len". */ | ||
1774 | /* This is non-zero for sendfile() without HIGHDMA. */ | ||
1775 | unsigned int b_len = skb_headlen(skb) - sh_len; | ||
1776 | |||
1777 | /* The total number of payload bytes. */ | ||
1778 | unsigned int d_len = b_len + skb->data_len; | ||
1779 | |||
1780 | /* The maximum payload size. */ | ||
1781 | unsigned int p_len = sh->gso_size; | ||
1782 | |||
1783 | /* The total number of segments. */ | ||
1784 | unsigned int num_segs = sh->gso_segs; | ||
1785 | |||
1786 | /* The temporary copy of the command. */ | ||
1787 | u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4]; | ||
1788 | lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body; | ||
1789 | |||
1790 | /* Analyze the "frags". */ | ||
1791 | unsigned int num_frags = | ||
1792 | tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len); | ||
1793 | |||
1794 | /* The size of the command, including frags and header. */ | ||
1795 | size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len); | ||
1796 | |||
1797 | /* The command header. */ | ||
1798 | lepp_tso_cmd_t cmd_init = { | ||
1799 | .tso = true, | ||
1800 | .header_size = sh_len, | ||
1801 | .ip_offset = eh_len, | ||
1802 | .tcp_offset = eh_len + ih_len, | ||
1803 | .payload_size = p_len, | ||
1804 | .num_frags = num_frags, | ||
1805 | }; | ||
1806 | |||
1807 | unsigned long irqflags; | ||
1808 | |||
1809 | lepp_queue_t *eq = priv->eq; | ||
1810 | |||
1811 | struct sk_buff *olds[8]; | ||
1812 | unsigned int wanted = 8; | ||
1813 | unsigned int i, nolds = 0; | ||
1814 | |||
1815 | unsigned int cmd_head, cmd_tail, cmd_next; | ||
1816 | unsigned int comp_tail; | ||
1817 | |||
1818 | |||
1819 | /* Paranoia. */ | ||
1820 | BUG_ON(skb->protocol != htons(ETH_P_IP)); | ||
1821 | BUG_ON(ih->protocol != IPPROTO_TCP); | ||
1822 | BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL); | ||
1823 | BUG_ON(num_frags > LEPP_MAX_FRAGS); | ||
1824 | /*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */ | ||
1825 | BUG_ON(num_segs <= 1); | ||
1826 | |||
1827 | |||
1828 | /* Finish preparing the command. */ | ||
1829 | |||
1830 | /* Copy the command header. */ | ||
1831 | *cmd = cmd_init; | ||
1832 | |||
1833 | /* Copy the "header". */ | ||
1834 | memcpy(&cmd->frags[num_frags], data, sh_len); | ||
1835 | |||
1836 | |||
1837 | /* Prefetch and wait, to minimize time spent holding the spinlock. */ | ||
1838 | prefetch_L1(&eq->comp_tail); | ||
1839 | prefetch_L1(&eq->cmd_tail); | ||
1840 | mb(); | ||
1841 | |||
1842 | |||
1843 | /* Enqueue the command. */ | ||
1844 | |||
1845 | spin_lock_irqsave(&priv->eq_lock, irqflags); | ||
1846 | |||
1847 | /* | ||
1848 | * Handle completions if needed to make room. | ||
1849 | * HACK: Spin until there is sufficient room. | ||
1850 | */ | ||
1851 | if (lepp_num_free_comp_slots(eq) == 0) { | ||
1852 | nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0); | ||
1853 | if (nolds == 0) { | ||
1854 | busy: | ||
1855 | spin_unlock_irqrestore(&priv->eq_lock, irqflags); | ||
1856 | return NETDEV_TX_BUSY; | ||
1857 | } | ||
1858 | } | ||
1859 | |||
1860 | cmd_head = eq->cmd_head; | ||
1861 | cmd_tail = eq->cmd_tail; | ||
1862 | |||
1863 | /* Prepare to advance, detecting full queue. */ | ||
1864 | cmd_next = cmd_tail + cmd_size; | ||
1865 | if (cmd_tail < cmd_head && cmd_next >= cmd_head) | ||
1866 | goto busy; | ||
1867 | if (cmd_next > LEPP_CMD_LIMIT) { | ||
1868 | cmd_next = 0; | ||
1869 | if (cmd_next == cmd_head) | ||
1870 | goto busy; | ||
1871 | } | ||
1872 | |||
1873 | /* Copy the command. */ | ||
1874 | memcpy(&eq->cmds[cmd_tail], cmd, cmd_size); | ||
1875 | |||
1876 | /* Advance. */ | ||
1877 | cmd_tail = cmd_next; | ||
1878 | |||
1879 | /* Record "skb" for eventual freeing. */ | ||
1880 | comp_tail = eq->comp_tail; | ||
1881 | eq->comps[comp_tail] = skb; | ||
1882 | LEPP_QINC(comp_tail); | ||
1883 | eq->comp_tail = comp_tail; | ||
1884 | |||
1885 | /* Flush before allowing LEPP to handle the command. */ | ||
1886 | /* ISSUE: Is this the optimal location for the flush? */ | ||
1887 | __insn_mf(); | ||
1888 | |||
1889 | eq->cmd_tail = cmd_tail; | ||
1890 | |||
1891 | /* NOTE: Using "4" here is more efficient than "0" or "2", */ | ||
1892 | /* and, strangely, more efficient than pre-checking the number */ | ||
1893 | /* of available completions, and comparing it to 4. */ | ||
1894 | if (nolds == 0) | ||
1895 | nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4); | ||
1896 | |||
1897 | spin_unlock_irqrestore(&priv->eq_lock, irqflags); | ||
1898 | |||
1899 | /* Handle completions. */ | ||
1900 | for (i = 0; i < nolds; i++) | ||
1901 | kfree_skb(olds[i]); | ||
1902 | |||
1903 | /* Update stats. */ | ||
1904 | stats->tx_packets += num_segs; | ||
1905 | stats->tx_bytes += (num_segs * sh_len) + d_len; | ||
1906 | |||
1907 | /* Make sure the egress timer is scheduled. */ | ||
1908 | tile_net_schedule_egress_timer(info); | ||
1909 | |||
1910 | return NETDEV_TX_OK; | ||
1911 | } | ||
1912 | |||
1913 | |||
1914 | /* | ||
1915 | * Transmit a packet (called by the kernel via "hard_start_xmit" hook). | ||
1916 | */ | ||
1917 | static int tile_net_tx(struct sk_buff *skb, struct net_device *dev) | ||
1918 | { | ||
1919 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1920 | int my_cpu = smp_processor_id(); | ||
1921 | struct tile_net_cpu *info = priv->cpu[my_cpu]; | ||
1922 | struct tile_net_stats_t *stats = &info->stats; | ||
1923 | |||
1924 | unsigned long irqflags; | ||
1925 | |||
1926 | struct skb_shared_info *sh = skb_shinfo(skb); | ||
1927 | |||
1928 | unsigned int len = skb->len; | ||
1929 | unsigned char *data = skb->data; | ||
1930 | |||
1931 | unsigned int csum_start = skb_checksum_start_offset(skb); | ||
1932 | |||
1933 | lepp_frag_t frags[LEPP_MAX_FRAGS]; | ||
1934 | |||
1935 | unsigned int num_frags; | ||
1936 | |||
1937 | lepp_queue_t *eq = priv->eq; | ||
1938 | |||
1939 | struct sk_buff *olds[8]; | ||
1940 | unsigned int wanted = 8; | ||
1941 | unsigned int i, nolds = 0; | ||
1942 | |||
1943 | unsigned int cmd_size = sizeof(lepp_cmd_t); | ||
1944 | |||
1945 | unsigned int cmd_head, cmd_tail, cmd_next; | ||
1946 | unsigned int comp_tail; | ||
1947 | |||
1948 | lepp_cmd_t cmds[LEPP_MAX_FRAGS]; | ||
1949 | |||
1950 | |||
1951 | /* | ||
1952 | * This is paranoia, since we think that if the link doesn't come | ||
1953 | * up, telling Linux we have no carrier will keep it from trying | ||
1954 | * to transmit. If it does, though, we can't execute this routine, | ||
1955 | * since data structures we depend on aren't set up yet. | ||
1956 | */ | ||
1957 | if (!info->registered) | ||
1958 | return NETDEV_TX_BUSY; | ||
1959 | |||
1960 | |||
1961 | /* Save the timestamp. */ | ||
1962 | dev->trans_start = jiffies; | ||
1963 | |||
1964 | |||
1965 | #ifdef TILE_NET_PARANOIA | ||
1966 | #if CHIP_HAS_CBOX_HOME_MAP() | ||
1967 | if (hash_default) { | ||
1968 | HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data); | ||
1969 | if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3) | ||
1970 | panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx", | ||
1971 | data, hv_pte_get_mode(pte), hv_pte_val(pte)); | ||
1972 | } | ||
1973 | #endif | ||
1974 | #endif | ||
1975 | |||
1976 | |||
1977 | #ifdef TILE_NET_DUMP_PACKETS | ||
1978 | /* ISSUE: Does not dump the "frags". */ | ||
1979 | dump_packet(data, skb_headlen(skb), "tx"); | ||
1980 | #endif /* TILE_NET_DUMP_PACKETS */ | ||
1981 | |||
1982 | |||
1983 | if (sh->gso_size != 0) | ||
1984 | return tile_net_tx_tso(skb, dev); | ||
1985 | |||
1986 | |||
1987 | /* Prepare the commands. */ | ||
1988 | |||
1989 | num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb)); | ||
1990 | |||
1991 | for (i = 0; i < num_frags; i++) { | ||
1992 | |||
1993 | bool final = (i == num_frags - 1); | ||
1994 | |||
1995 | lepp_cmd_t cmd = { | ||
1996 | .cpa_lo = frags[i].cpa_lo, | ||
1997 | .cpa_hi = frags[i].cpa_hi, | ||
1998 | .length = frags[i].length, | ||
1999 | .hash_for_home = frags[i].hash_for_home, | ||
2000 | .send_completion = final, | ||
2001 | .end_of_packet = final | ||
2002 | }; | ||
2003 | |||
2004 | if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) { | ||
2005 | cmd.compute_checksum = 1; | ||
2006 | cmd.checksum_data.bits.start_byte = csum_start; | ||
2007 | cmd.checksum_data.bits.count = len - csum_start; | ||
2008 | cmd.checksum_data.bits.destination_byte = | ||
2009 | csum_start + skb->csum_offset; | ||
2010 | } | ||
2011 | |||
2012 | cmds[i] = cmd; | ||
2013 | } | ||
2014 | |||
2015 | |||
2016 | /* Prefetch and wait, to minimize time spent holding the spinlock. */ | ||
2017 | prefetch_L1(&eq->comp_tail); | ||
2018 | prefetch_L1(&eq->cmd_tail); | ||
2019 | mb(); | ||
2020 | |||
2021 | |||
2022 | /* Enqueue the commands. */ | ||
2023 | |||
2024 | spin_lock_irqsave(&priv->eq_lock, irqflags); | ||
2025 | |||
2026 | /* | ||
2027 | * Handle completions if needed to make room. | ||
2028 | * HACK: Spin until there is sufficient room. | ||
2029 | */ | ||
2030 | if (lepp_num_free_comp_slots(eq) == 0) { | ||
2031 | nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0); | ||
2032 | if (nolds == 0) { | ||
2033 | busy: | ||
2034 | spin_unlock_irqrestore(&priv->eq_lock, irqflags); | ||
2035 | return NETDEV_TX_BUSY; | ||
2036 | } | ||
2037 | } | ||
2038 | |||
2039 | cmd_head = eq->cmd_head; | ||
2040 | cmd_tail = eq->cmd_tail; | ||
2041 | |||
2042 | /* Copy the commands, or fail. */ | ||
2043 | for (i = 0; i < num_frags; i++) { | ||
2044 | |||
2045 | /* Prepare to advance, detecting full queue. */ | ||
2046 | cmd_next = cmd_tail + cmd_size; | ||
2047 | if (cmd_tail < cmd_head && cmd_next >= cmd_head) | ||
2048 | goto busy; | ||
2049 | if (cmd_next > LEPP_CMD_LIMIT) { | ||
2050 | cmd_next = 0; | ||
2051 | if (cmd_next == cmd_head) | ||
2052 | goto busy; | ||
2053 | } | ||
2054 | |||
2055 | /* Copy the command. */ | ||
2056 | *(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i]; | ||
2057 | |||
2058 | /* Advance. */ | ||
2059 | cmd_tail = cmd_next; | ||
2060 | } | ||
2061 | |||
2062 | /* Record "skb" for eventual freeing. */ | ||
2063 | comp_tail = eq->comp_tail; | ||
2064 | eq->comps[comp_tail] = skb; | ||
2065 | LEPP_QINC(comp_tail); | ||
2066 | eq->comp_tail = comp_tail; | ||
2067 | |||
2068 | /* Flush before allowing LEPP to handle the command. */ | ||
2069 | /* ISSUE: Is this the optimal location for the flush? */ | ||
2070 | __insn_mf(); | ||
2071 | |||
2072 | eq->cmd_tail = cmd_tail; | ||
2073 | |||
2074 | /* NOTE: Using "4" here is more efficient than "0" or "2", */ | ||
2075 | /* and, strangely, more efficient than pre-checking the number */ | ||
2076 | /* of available completions, and comparing it to 4. */ | ||
2077 | if (nolds == 0) | ||
2078 | nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4); | ||
2079 | |||
2080 | spin_unlock_irqrestore(&priv->eq_lock, irqflags); | ||
2081 | |||
2082 | /* Handle completions. */ | ||
2083 | for (i = 0; i < nolds; i++) | ||
2084 | kfree_skb(olds[i]); | ||
2085 | |||
2086 | /* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */ | ||
2087 | stats->tx_packets++; | ||
2088 | stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN); | ||
2089 | |||
2090 | /* Make sure the egress timer is scheduled. */ | ||
2091 | tile_net_schedule_egress_timer(info); | ||
2092 | |||
2093 | return NETDEV_TX_OK; | ||
2094 | } | ||
2095 | |||
2096 | |||
2097 | /* | ||
2098 | * Deal with a transmit timeout. | ||
2099 | */ | ||
2100 | static void tile_net_tx_timeout(struct net_device *dev) | ||
2101 | { | ||
2102 | PDEBUG("tile_net_tx_timeout()\n"); | ||
2103 | PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies, | ||
2104 | jiffies - dev->trans_start); | ||
2105 | |||
2106 | /* XXX: ISSUE: This doesn't seem useful for us. */ | ||
2107 | netif_wake_queue(dev); | ||
2108 | } | ||
2109 | |||
2110 | |||
2111 | /* | ||
2112 | * Ioctl commands. | ||
2113 | */ | ||
2114 | static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | ||
2115 | { | ||
2116 | return -EOPNOTSUPP; | ||
2117 | } | ||
2118 | |||
2119 | |||
2120 | /* | ||
2121 | * Get System Network Statistics. | ||
2122 | * | ||
2123 | * Returns the address of the device statistics structure. | ||
2124 | */ | ||
2125 | static struct net_device_stats *tile_net_get_stats(struct net_device *dev) | ||
2126 | { | ||
2127 | struct tile_net_priv *priv = netdev_priv(dev); | ||
2128 | u32 rx_packets = 0; | ||
2129 | u32 tx_packets = 0; | ||
2130 | u32 rx_bytes = 0; | ||
2131 | u32 tx_bytes = 0; | ||
2132 | int i; | ||
2133 | |||
2134 | for_each_online_cpu(i) { | ||
2135 | if (priv->cpu[i]) { | ||
2136 | rx_packets += priv->cpu[i]->stats.rx_packets; | ||
2137 | rx_bytes += priv->cpu[i]->stats.rx_bytes; | ||
2138 | tx_packets += priv->cpu[i]->stats.tx_packets; | ||
2139 | tx_bytes += priv->cpu[i]->stats.tx_bytes; | ||
2140 | } | ||
2141 | } | ||
2142 | |||
2143 | priv->stats.rx_packets = rx_packets; | ||
2144 | priv->stats.rx_bytes = rx_bytes; | ||
2145 | priv->stats.tx_packets = tx_packets; | ||
2146 | priv->stats.tx_bytes = tx_bytes; | ||
2147 | |||
2148 | return &priv->stats; | ||
2149 | } | ||
2150 | |||
2151 | |||
2152 | /* | ||
2153 | * Change the "mtu". | ||
2154 | * | ||
2155 | * The "change_mtu" method is usually not needed. | ||
2156 | * If you need it, it must be like this. | ||
2157 | */ | ||
2158 | static int tile_net_change_mtu(struct net_device *dev, int new_mtu) | ||
2159 | { | ||
2160 | PDEBUG("tile_net_change_mtu()\n"); | ||
2161 | |||
2162 | /* Check ranges. */ | ||
2163 | if ((new_mtu < 68) || (new_mtu > 1500)) | ||
2164 | return -EINVAL; | ||
2165 | |||
2166 | /* Accept the value. */ | ||
2167 | dev->mtu = new_mtu; | ||
2168 | |||
2169 | return 0; | ||
2170 | } | ||
2171 | |||
2172 | |||
2173 | /* | ||
2174 | * Change the Ethernet Address of the NIC. | ||
2175 | * | ||
2176 | * The hypervisor driver does not support changing MAC address. However, | ||
2177 | * the IPP does not do anything with the MAC address, so the address which | ||
2178 | * gets used on outgoing packets, and which is accepted on incoming packets, | ||
2179 | * is completely up to the NetIO program or kernel driver which is actually | ||
2180 | * handling them. | ||
2181 | * | ||
2182 | * Returns 0 on success, negative on failure. | ||
2183 | */ | ||
2184 | static int tile_net_set_mac_address(struct net_device *dev, void *p) | ||
2185 | { | ||
2186 | struct sockaddr *addr = p; | ||
2187 | |||
2188 | if (!is_valid_ether_addr(addr->sa_data)) | ||
2189 | return -EINVAL; | ||
2190 | |||
2191 | /* ISSUE: Note that "dev_addr" is now a pointer. */ | ||
2192 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | ||
2193 | |||
2194 | return 0; | ||
2195 | } | ||
2196 | |||
2197 | |||
2198 | /* | ||
2199 | * Obtain the MAC address from the hypervisor. | ||
2200 | * This must be done before opening the device. | ||
2201 | */ | ||
2202 | static int tile_net_get_mac(struct net_device *dev) | ||
2203 | { | ||
2204 | struct tile_net_priv *priv = netdev_priv(dev); | ||
2205 | |||
2206 | char hv_dev_name[32]; | ||
2207 | int len; | ||
2208 | |||
2209 | __netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF }; | ||
2210 | |||
2211 | int ret; | ||
2212 | |||
2213 | /* For example, "xgbe0". */ | ||
2214 | strcpy(hv_dev_name, dev->name); | ||
2215 | len = strlen(hv_dev_name); | ||
2216 | |||
2217 | /* For example, "xgbe/0". */ | ||
2218 | hv_dev_name[len] = hv_dev_name[len - 1]; | ||
2219 | hv_dev_name[len - 1] = '/'; | ||
2220 | len++; | ||
2221 | |||
2222 | /* For example, "xgbe/0/native_hash". */ | ||
2223 | strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native"); | ||
2224 | |||
2225 | /* Get the hypervisor handle for this device. */ | ||
2226 | priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0); | ||
2227 | PDEBUG("hv_dev_open(%s) returned %d %p\n", | ||
2228 | hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl); | ||
2229 | if (priv->hv_devhdl < 0) { | ||
2230 | if (priv->hv_devhdl == HV_ENODEV) | ||
2231 | printk(KERN_DEBUG "Ignoring unconfigured device %s\n", | ||
2232 | hv_dev_name); | ||
2233 | else | ||
2234 | printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n", | ||
2235 | hv_dev_name, priv->hv_devhdl); | ||
2236 | return -1; | ||
2237 | } | ||
2238 | |||
2239 | /* | ||
2240 | * Read the hardware address from the hypervisor. | ||
2241 | * ISSUE: Note that "dev_addr" is now a pointer. | ||
2242 | */ | ||
2243 | offset.bits.class = NETIO_PARAM; | ||
2244 | offset.bits.addr = NETIO_PARAM_MAC; | ||
2245 | ret = hv_dev_pread(priv->hv_devhdl, 0, | ||
2246 | (HV_VirtAddr)dev->dev_addr, dev->addr_len, | ||
2247 | offset.word); | ||
2248 | PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret); | ||
2249 | if (ret <= 0) { | ||
2250 | printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n", | ||
2251 | dev->name); | ||
2252 | /* | ||
2253 | * Since the device is configured by the hypervisor but we | ||
2254 | * can't get its MAC address, we are most likely running | ||
2255 | * the simulator, so let's generate a random MAC address. | ||
2256 | */ | ||
2257 | random_ether_addr(dev->dev_addr); | ||
2258 | } | ||
2259 | |||
2260 | return 0; | ||
2261 | } | ||
2262 | |||
2263 | |||
2264 | static struct net_device_ops tile_net_ops = { | ||
2265 | .ndo_open = tile_net_open, | ||
2266 | .ndo_stop = tile_net_stop, | ||
2267 | .ndo_start_xmit = tile_net_tx, | ||
2268 | .ndo_do_ioctl = tile_net_ioctl, | ||
2269 | .ndo_get_stats = tile_net_get_stats, | ||
2270 | .ndo_change_mtu = tile_net_change_mtu, | ||
2271 | .ndo_tx_timeout = tile_net_tx_timeout, | ||
2272 | .ndo_set_mac_address = tile_net_set_mac_address | ||
2273 | }; | ||
2274 | |||
2275 | |||
2276 | /* | ||
2277 | * The setup function. | ||
2278 | * | ||
2279 | * This uses ether_setup() to assign various fields in dev, including | ||
2280 | * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields. | ||
2281 | */ | ||
2282 | static void tile_net_setup(struct net_device *dev) | ||
2283 | { | ||
2284 | PDEBUG("tile_net_setup()\n"); | ||
2285 | |||
2286 | ether_setup(dev); | ||
2287 | |||
2288 | dev->netdev_ops = &tile_net_ops; | ||
2289 | |||
2290 | dev->watchdog_timeo = TILE_NET_TIMEOUT; | ||
2291 | |||
2292 | /* We want lockless xmit. */ | ||
2293 | dev->features |= NETIF_F_LLTX; | ||
2294 | |||
2295 | /* We support hardware tx checksums. */ | ||
2296 | dev->features |= NETIF_F_HW_CSUM; | ||
2297 | |||
2298 | /* We support scatter/gather. */ | ||
2299 | dev->features |= NETIF_F_SG; | ||
2300 | |||
2301 | /* We support TSO. */ | ||
2302 | dev->features |= NETIF_F_TSO; | ||
2303 | |||
2304 | #ifdef TILE_NET_GSO | ||
2305 | /* We support GSO. */ | ||
2306 | dev->features |= NETIF_F_GSO; | ||
2307 | #endif | ||
2308 | |||
2309 | if (hash_default) | ||
2310 | dev->features |= NETIF_F_HIGHDMA; | ||
2311 | |||
2312 | /* ISSUE: We should support NETIF_F_UFO. */ | ||
2313 | |||
2314 | dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN; | ||
2315 | |||
2316 | dev->mtu = TILE_NET_MTU; | ||
2317 | } | ||
2318 | |||
2319 | |||
2320 | /* | ||
2321 | * Allocate the device structure, register the device, and obtain the | ||
2322 | * MAC address from the hypervisor. | ||
2323 | */ | ||
2324 | static struct net_device *tile_net_dev_init(const char *name) | ||
2325 | { | ||
2326 | int ret; | ||
2327 | struct net_device *dev; | ||
2328 | struct tile_net_priv *priv; | ||
2329 | |||
2330 | /* | ||
2331 | * Allocate the device structure. This allocates "priv", calls | ||
2332 | * tile_net_setup(), and saves "name". Normally, "name" is a | ||
2333 | * template, instantiated by register_netdev(), but not for us. | ||
2334 | */ | ||
2335 | dev = alloc_netdev(sizeof(*priv), name, tile_net_setup); | ||
2336 | if (!dev) { | ||
2337 | pr_err("alloc_netdev(%s) failed\n", name); | ||
2338 | return NULL; | ||
2339 | } | ||
2340 | |||
2341 | priv = netdev_priv(dev); | ||
2342 | |||
2343 | /* Initialize "priv". */ | ||
2344 | |||
2345 | memset(priv, 0, sizeof(*priv)); | ||
2346 | |||
2347 | /* Save "dev" for "tile_net_open_retry()". */ | ||
2348 | priv->dev = dev; | ||
2349 | |||
2350 | INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry); | ||
2351 | |||
2352 | spin_lock_init(&priv->eq_lock); | ||
2353 | |||
2354 | /* Allocate "eq". */ | ||
2355 | priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER); | ||
2356 | if (!priv->eq_pages) { | ||
2357 | free_netdev(dev); | ||
2358 | return NULL; | ||
2359 | } | ||
2360 | priv->eq = page_address(priv->eq_pages); | ||
2361 | |||
2362 | /* Register the network device. */ | ||
2363 | ret = register_netdev(dev); | ||
2364 | if (ret) { | ||
2365 | pr_err("register_netdev %s failed %d\n", dev->name, ret); | ||
2366 | __free_pages(priv->eq_pages, EQ_ORDER); | ||
2367 | free_netdev(dev); | ||
2368 | return NULL; | ||
2369 | } | ||
2370 | |||
2371 | /* Get the MAC address. */ | ||
2372 | ret = tile_net_get_mac(dev); | ||
2373 | if (ret < 0) { | ||
2374 | unregister_netdev(dev); | ||
2375 | __free_pages(priv->eq_pages, EQ_ORDER); | ||
2376 | free_netdev(dev); | ||
2377 | return NULL; | ||
2378 | } | ||
2379 | |||
2380 | return dev; | ||
2381 | } | ||
2382 | |||
2383 | |||
2384 | /* | ||
2385 | * Module cleanup. | ||
2386 | * | ||
2387 | * FIXME: If compiled as a module, this module cannot be "unloaded", | ||
2388 | * because the "ingress interrupt handler" is registered permanently. | ||
2389 | */ | ||
2390 | static void tile_net_cleanup(void) | ||
2391 | { | ||
2392 | int i; | ||
2393 | |||
2394 | for (i = 0; i < TILE_NET_DEVS; i++) { | ||
2395 | if (tile_net_devs[i]) { | ||
2396 | struct net_device *dev = tile_net_devs[i]; | ||
2397 | struct tile_net_priv *priv = netdev_priv(dev); | ||
2398 | unregister_netdev(dev); | ||
2399 | finv_buffer_remote(priv->eq, EQ_SIZE, 0); | ||
2400 | __free_pages(priv->eq_pages, EQ_ORDER); | ||
2401 | free_netdev(dev); | ||
2402 | } | ||
2403 | } | ||
2404 | } | ||
2405 | |||
2406 | |||
2407 | /* | ||
2408 | * Module initialization. | ||
2409 | */ | ||
2410 | static int tile_net_init_module(void) | ||
2411 | { | ||
2412 | pr_info("Tilera IPP Net Driver\n"); | ||
2413 | |||
2414 | tile_net_devs[0] = tile_net_dev_init("xgbe0"); | ||
2415 | tile_net_devs[1] = tile_net_dev_init("xgbe1"); | ||
2416 | tile_net_devs[2] = tile_net_dev_init("gbe0"); | ||
2417 | tile_net_devs[3] = tile_net_dev_init("gbe1"); | ||
2418 | |||
2419 | return 0; | ||
2420 | } | ||
2421 | |||
2422 | |||
2423 | module_init(tile_net_init_module); | ||
2424 | module_exit(tile_net_cleanup); | ||
2425 | |||
2426 | |||
2427 | #ifndef MODULE | ||
2428 | |||
2429 | /* | ||
2430 | * The "network_cpus" boot argument specifies the cpus that are dedicated | ||
2431 | * to handle ingress packets. | ||
2432 | * | ||
2433 | * The parameter should be in the form "network_cpus=m-n[,x-y]", where | ||
2434 | * m, n, x, y are integer numbers that represent the cpus that can be | ||
2435 | * neither a dedicated cpu nor a dataplane cpu. | ||
2436 | */ | ||
2437 | static int __init network_cpus_setup(char *str) | ||
2438 | { | ||
2439 | int rc = cpulist_parse_crop(str, &network_cpus_map); | ||
2440 | if (rc != 0) { | ||
2441 | pr_warning("network_cpus=%s: malformed cpu list\n", | ||
2442 | str); | ||
2443 | } else { | ||
2444 | |||
2445 | /* Remove dedicated cpus. */ | ||
2446 | cpumask_and(&network_cpus_map, &network_cpus_map, | ||
2447 | cpu_possible_mask); | ||
2448 | |||
2449 | |||
2450 | if (cpumask_empty(&network_cpus_map)) { | ||
2451 | pr_warning("Ignoring network_cpus='%s'.\n", | ||
2452 | str); | ||
2453 | } else { | ||
2454 | char buf[1024]; | ||
2455 | cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map); | ||
2456 | pr_info("Linux network CPUs: %s\n", buf); | ||
2457 | network_cpus_used = true; | ||
2458 | } | ||
2459 | } | ||
2460 | |||
2461 | return 0; | ||
2462 | } | ||
2463 | __setup("network_cpus=", network_cpus_setup); | ||
2464 | |||
2465 | #endif | ||