diff options
Diffstat (limited to 'drivers/net/qlge/qlge_main.c')
-rw-r--r-- | drivers/net/qlge/qlge_main.c | 4987 |
1 files changed, 4987 insertions, 0 deletions
diff --git a/drivers/net/qlge/qlge_main.c b/drivers/net/qlge/qlge_main.c new file mode 100644 index 00000000000..f07e96ec884 --- /dev/null +++ b/drivers/net/qlge/qlge_main.c | |||
@@ -0,0 +1,4987 @@ | |||
1 | /* | ||
2 | * QLogic qlge NIC HBA Driver | ||
3 | * Copyright (c) 2003-2008 QLogic Corporation | ||
4 | * See LICENSE.qlge for copyright and licensing details. | ||
5 | * Author: Linux qlge network device driver by | ||
6 | * Ron Mercer <ron.mercer@qlogic.com> | ||
7 | */ | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/init.h> | ||
10 | #include <linux/bitops.h> | ||
11 | #include <linux/types.h> | ||
12 | #include <linux/module.h> | ||
13 | #include <linux/list.h> | ||
14 | #include <linux/pci.h> | ||
15 | #include <linux/dma-mapping.h> | ||
16 | #include <linux/pagemap.h> | ||
17 | #include <linux/sched.h> | ||
18 | #include <linux/slab.h> | ||
19 | #include <linux/dmapool.h> | ||
20 | #include <linux/mempool.h> | ||
21 | #include <linux/spinlock.h> | ||
22 | #include <linux/kthread.h> | ||
23 | #include <linux/interrupt.h> | ||
24 | #include <linux/errno.h> | ||
25 | #include <linux/ioport.h> | ||
26 | #include <linux/in.h> | ||
27 | #include <linux/ip.h> | ||
28 | #include <linux/ipv6.h> | ||
29 | #include <net/ipv6.h> | ||
30 | #include <linux/tcp.h> | ||
31 | #include <linux/udp.h> | ||
32 | #include <linux/if_arp.h> | ||
33 | #include <linux/if_ether.h> | ||
34 | #include <linux/netdevice.h> | ||
35 | #include <linux/etherdevice.h> | ||
36 | #include <linux/ethtool.h> | ||
37 | #include <linux/if_vlan.h> | ||
38 | #include <linux/skbuff.h> | ||
39 | #include <linux/delay.h> | ||
40 | #include <linux/mm.h> | ||
41 | #include <linux/vmalloc.h> | ||
42 | #include <linux/prefetch.h> | ||
43 | #include <net/ip6_checksum.h> | ||
44 | |||
45 | #include "qlge.h" | ||
46 | |||
47 | char qlge_driver_name[] = DRV_NAME; | ||
48 | const char qlge_driver_version[] = DRV_VERSION; | ||
49 | |||
50 | MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>"); | ||
51 | MODULE_DESCRIPTION(DRV_STRING " "); | ||
52 | MODULE_LICENSE("GPL"); | ||
53 | MODULE_VERSION(DRV_VERSION); | ||
54 | |||
55 | static const u32 default_msg = | ||
56 | NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | | ||
57 | /* NETIF_MSG_TIMER | */ | ||
58 | NETIF_MSG_IFDOWN | | ||
59 | NETIF_MSG_IFUP | | ||
60 | NETIF_MSG_RX_ERR | | ||
61 | NETIF_MSG_TX_ERR | | ||
62 | /* NETIF_MSG_TX_QUEUED | */ | ||
63 | /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */ | ||
64 | /* NETIF_MSG_PKTDATA | */ | ||
65 | NETIF_MSG_HW | NETIF_MSG_WOL | 0; | ||
66 | |||
67 | static int debug = -1; /* defaults above */ | ||
68 | module_param(debug, int, 0664); | ||
69 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | ||
70 | |||
71 | #define MSIX_IRQ 0 | ||
72 | #define MSI_IRQ 1 | ||
73 | #define LEG_IRQ 2 | ||
74 | static int qlge_irq_type = MSIX_IRQ; | ||
75 | module_param(qlge_irq_type, int, 0664); | ||
76 | MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy."); | ||
77 | |||
78 | static int qlge_mpi_coredump; | ||
79 | module_param(qlge_mpi_coredump, int, 0); | ||
80 | MODULE_PARM_DESC(qlge_mpi_coredump, | ||
81 | "Option to enable MPI firmware dump. " | ||
82 | "Default is OFF - Do Not allocate memory. "); | ||
83 | |||
84 | static int qlge_force_coredump; | ||
85 | module_param(qlge_force_coredump, int, 0); | ||
86 | MODULE_PARM_DESC(qlge_force_coredump, | ||
87 | "Option to allow force of firmware core dump. " | ||
88 | "Default is OFF - Do not allow."); | ||
89 | |||
90 | static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = { | ||
91 | {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)}, | ||
92 | {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)}, | ||
93 | /* required last entry */ | ||
94 | {0,} | ||
95 | }; | ||
96 | |||
97 | MODULE_DEVICE_TABLE(pci, qlge_pci_tbl); | ||
98 | |||
99 | static int ql_wol(struct ql_adapter *qdev); | ||
100 | static void qlge_set_multicast_list(struct net_device *ndev); | ||
101 | |||
102 | /* This hardware semaphore causes exclusive access to | ||
103 | * resources shared between the NIC driver, MPI firmware, | ||
104 | * FCOE firmware and the FC driver. | ||
105 | */ | ||
106 | static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask) | ||
107 | { | ||
108 | u32 sem_bits = 0; | ||
109 | |||
110 | switch (sem_mask) { | ||
111 | case SEM_XGMAC0_MASK: | ||
112 | sem_bits = SEM_SET << SEM_XGMAC0_SHIFT; | ||
113 | break; | ||
114 | case SEM_XGMAC1_MASK: | ||
115 | sem_bits = SEM_SET << SEM_XGMAC1_SHIFT; | ||
116 | break; | ||
117 | case SEM_ICB_MASK: | ||
118 | sem_bits = SEM_SET << SEM_ICB_SHIFT; | ||
119 | break; | ||
120 | case SEM_MAC_ADDR_MASK: | ||
121 | sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT; | ||
122 | break; | ||
123 | case SEM_FLASH_MASK: | ||
124 | sem_bits = SEM_SET << SEM_FLASH_SHIFT; | ||
125 | break; | ||
126 | case SEM_PROBE_MASK: | ||
127 | sem_bits = SEM_SET << SEM_PROBE_SHIFT; | ||
128 | break; | ||
129 | case SEM_RT_IDX_MASK: | ||
130 | sem_bits = SEM_SET << SEM_RT_IDX_SHIFT; | ||
131 | break; | ||
132 | case SEM_PROC_REG_MASK: | ||
133 | sem_bits = SEM_SET << SEM_PROC_REG_SHIFT; | ||
134 | break; | ||
135 | default: | ||
136 | netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n"); | ||
137 | return -EINVAL; | ||
138 | } | ||
139 | |||
140 | ql_write32(qdev, SEM, sem_bits | sem_mask); | ||
141 | return !(ql_read32(qdev, SEM) & sem_bits); | ||
142 | } | ||
143 | |||
144 | int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask) | ||
145 | { | ||
146 | unsigned int wait_count = 30; | ||
147 | do { | ||
148 | if (!ql_sem_trylock(qdev, sem_mask)) | ||
149 | return 0; | ||
150 | udelay(100); | ||
151 | } while (--wait_count); | ||
152 | return -ETIMEDOUT; | ||
153 | } | ||
154 | |||
155 | void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask) | ||
156 | { | ||
157 | ql_write32(qdev, SEM, sem_mask); | ||
158 | ql_read32(qdev, SEM); /* flush */ | ||
159 | } | ||
160 | |||
161 | /* This function waits for a specific bit to come ready | ||
162 | * in a given register. It is used mostly by the initialize | ||
163 | * process, but is also used in kernel thread API such as | ||
164 | * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid. | ||
165 | */ | ||
166 | int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit) | ||
167 | { | ||
168 | u32 temp; | ||
169 | int count = UDELAY_COUNT; | ||
170 | |||
171 | while (count) { | ||
172 | temp = ql_read32(qdev, reg); | ||
173 | |||
174 | /* check for errors */ | ||
175 | if (temp & err_bit) { | ||
176 | netif_alert(qdev, probe, qdev->ndev, | ||
177 | "register 0x%.08x access error, value = 0x%.08x!.\n", | ||
178 | reg, temp); | ||
179 | return -EIO; | ||
180 | } else if (temp & bit) | ||
181 | return 0; | ||
182 | udelay(UDELAY_DELAY); | ||
183 | count--; | ||
184 | } | ||
185 | netif_alert(qdev, probe, qdev->ndev, | ||
186 | "Timed out waiting for reg %x to come ready.\n", reg); | ||
187 | return -ETIMEDOUT; | ||
188 | } | ||
189 | |||
190 | /* The CFG register is used to download TX and RX control blocks | ||
191 | * to the chip. This function waits for an operation to complete. | ||
192 | */ | ||
193 | static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit) | ||
194 | { | ||
195 | int count = UDELAY_COUNT; | ||
196 | u32 temp; | ||
197 | |||
198 | while (count) { | ||
199 | temp = ql_read32(qdev, CFG); | ||
200 | if (temp & CFG_LE) | ||
201 | return -EIO; | ||
202 | if (!(temp & bit)) | ||
203 | return 0; | ||
204 | udelay(UDELAY_DELAY); | ||
205 | count--; | ||
206 | } | ||
207 | return -ETIMEDOUT; | ||
208 | } | ||
209 | |||
210 | |||
211 | /* Used to issue init control blocks to hw. Maps control block, | ||
212 | * sets address, triggers download, waits for completion. | ||
213 | */ | ||
214 | int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit, | ||
215 | u16 q_id) | ||
216 | { | ||
217 | u64 map; | ||
218 | int status = 0; | ||
219 | int direction; | ||
220 | u32 mask; | ||
221 | u32 value; | ||
222 | |||
223 | direction = | ||
224 | (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE : | ||
225 | PCI_DMA_FROMDEVICE; | ||
226 | |||
227 | map = pci_map_single(qdev->pdev, ptr, size, direction); | ||
228 | if (pci_dma_mapping_error(qdev->pdev, map)) { | ||
229 | netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n"); | ||
230 | return -ENOMEM; | ||
231 | } | ||
232 | |||
233 | status = ql_sem_spinlock(qdev, SEM_ICB_MASK); | ||
234 | if (status) | ||
235 | return status; | ||
236 | |||
237 | status = ql_wait_cfg(qdev, bit); | ||
238 | if (status) { | ||
239 | netif_err(qdev, ifup, qdev->ndev, | ||
240 | "Timed out waiting for CFG to come ready.\n"); | ||
241 | goto exit; | ||
242 | } | ||
243 | |||
244 | ql_write32(qdev, ICB_L, (u32) map); | ||
245 | ql_write32(qdev, ICB_H, (u32) (map >> 32)); | ||
246 | |||
247 | mask = CFG_Q_MASK | (bit << 16); | ||
248 | value = bit | (q_id << CFG_Q_SHIFT); | ||
249 | ql_write32(qdev, CFG, (mask | value)); | ||
250 | |||
251 | /* | ||
252 | * Wait for the bit to clear after signaling hw. | ||
253 | */ | ||
254 | status = ql_wait_cfg(qdev, bit); | ||
255 | exit: | ||
256 | ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */ | ||
257 | pci_unmap_single(qdev->pdev, map, size, direction); | ||
258 | return status; | ||
259 | } | ||
260 | |||
261 | /* Get a specific MAC address from the CAM. Used for debug and reg dump. */ | ||
262 | int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index, | ||
263 | u32 *value) | ||
264 | { | ||
265 | u32 offset = 0; | ||
266 | int status; | ||
267 | |||
268 | switch (type) { | ||
269 | case MAC_ADDR_TYPE_MULTI_MAC: | ||
270 | case MAC_ADDR_TYPE_CAM_MAC: | ||
271 | { | ||
272 | status = | ||
273 | ql_wait_reg_rdy(qdev, | ||
274 | MAC_ADDR_IDX, MAC_ADDR_MW, 0); | ||
275 | if (status) | ||
276 | goto exit; | ||
277 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ | ||
278 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ | ||
279 | MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ | ||
280 | status = | ||
281 | ql_wait_reg_rdy(qdev, | ||
282 | MAC_ADDR_IDX, MAC_ADDR_MR, 0); | ||
283 | if (status) | ||
284 | goto exit; | ||
285 | *value++ = ql_read32(qdev, MAC_ADDR_DATA); | ||
286 | status = | ||
287 | ql_wait_reg_rdy(qdev, | ||
288 | MAC_ADDR_IDX, MAC_ADDR_MW, 0); | ||
289 | if (status) | ||
290 | goto exit; | ||
291 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ | ||
292 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ | ||
293 | MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ | ||
294 | status = | ||
295 | ql_wait_reg_rdy(qdev, | ||
296 | MAC_ADDR_IDX, MAC_ADDR_MR, 0); | ||
297 | if (status) | ||
298 | goto exit; | ||
299 | *value++ = ql_read32(qdev, MAC_ADDR_DATA); | ||
300 | if (type == MAC_ADDR_TYPE_CAM_MAC) { | ||
301 | status = | ||
302 | ql_wait_reg_rdy(qdev, | ||
303 | MAC_ADDR_IDX, MAC_ADDR_MW, 0); | ||
304 | if (status) | ||
305 | goto exit; | ||
306 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ | ||
307 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ | ||
308 | MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ | ||
309 | status = | ||
310 | ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, | ||
311 | MAC_ADDR_MR, 0); | ||
312 | if (status) | ||
313 | goto exit; | ||
314 | *value++ = ql_read32(qdev, MAC_ADDR_DATA); | ||
315 | } | ||
316 | break; | ||
317 | } | ||
318 | case MAC_ADDR_TYPE_VLAN: | ||
319 | case MAC_ADDR_TYPE_MULTI_FLTR: | ||
320 | default: | ||
321 | netif_crit(qdev, ifup, qdev->ndev, | ||
322 | "Address type %d not yet supported.\n", type); | ||
323 | status = -EPERM; | ||
324 | } | ||
325 | exit: | ||
326 | return status; | ||
327 | } | ||
328 | |||
329 | /* Set up a MAC, multicast or VLAN address for the | ||
330 | * inbound frame matching. | ||
331 | */ | ||
332 | static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type, | ||
333 | u16 index) | ||
334 | { | ||
335 | u32 offset = 0; | ||
336 | int status = 0; | ||
337 | |||
338 | switch (type) { | ||
339 | case MAC_ADDR_TYPE_MULTI_MAC: | ||
340 | { | ||
341 | u32 upper = (addr[0] << 8) | addr[1]; | ||
342 | u32 lower = (addr[2] << 24) | (addr[3] << 16) | | ||
343 | (addr[4] << 8) | (addr[5]); | ||
344 | |||
345 | status = | ||
346 | ql_wait_reg_rdy(qdev, | ||
347 | MAC_ADDR_IDX, MAC_ADDR_MW, 0); | ||
348 | if (status) | ||
349 | goto exit; | ||
350 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | | ||
351 | (index << MAC_ADDR_IDX_SHIFT) | | ||
352 | type | MAC_ADDR_E); | ||
353 | ql_write32(qdev, MAC_ADDR_DATA, lower); | ||
354 | status = | ||
355 | ql_wait_reg_rdy(qdev, | ||
356 | MAC_ADDR_IDX, MAC_ADDR_MW, 0); | ||
357 | if (status) | ||
358 | goto exit; | ||
359 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | | ||
360 | (index << MAC_ADDR_IDX_SHIFT) | | ||
361 | type | MAC_ADDR_E); | ||
362 | |||
363 | ql_write32(qdev, MAC_ADDR_DATA, upper); | ||
364 | status = | ||
365 | ql_wait_reg_rdy(qdev, | ||
366 | MAC_ADDR_IDX, MAC_ADDR_MW, 0); | ||
367 | if (status) | ||
368 | goto exit; | ||
369 | break; | ||
370 | } | ||
371 | case MAC_ADDR_TYPE_CAM_MAC: | ||
372 | { | ||
373 | u32 cam_output; | ||
374 | u32 upper = (addr[0] << 8) | addr[1]; | ||
375 | u32 lower = | ||
376 | (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | | ||
377 | (addr[5]); | ||
378 | |||
379 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
380 | "Adding %s address %pM at index %d in the CAM.\n", | ||
381 | type == MAC_ADDR_TYPE_MULTI_MAC ? | ||
382 | "MULTICAST" : "UNICAST", | ||
383 | addr, index); | ||
384 | |||
385 | status = | ||
386 | ql_wait_reg_rdy(qdev, | ||
387 | MAC_ADDR_IDX, MAC_ADDR_MW, 0); | ||
388 | if (status) | ||
389 | goto exit; | ||
390 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ | ||
391 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ | ||
392 | type); /* type */ | ||
393 | ql_write32(qdev, MAC_ADDR_DATA, lower); | ||
394 | status = | ||
395 | ql_wait_reg_rdy(qdev, | ||
396 | MAC_ADDR_IDX, MAC_ADDR_MW, 0); | ||
397 | if (status) | ||
398 | goto exit; | ||
399 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ | ||
400 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ | ||
401 | type); /* type */ | ||
402 | ql_write32(qdev, MAC_ADDR_DATA, upper); | ||
403 | status = | ||
404 | ql_wait_reg_rdy(qdev, | ||
405 | MAC_ADDR_IDX, MAC_ADDR_MW, 0); | ||
406 | if (status) | ||
407 | goto exit; | ||
408 | ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */ | ||
409 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ | ||
410 | type); /* type */ | ||
411 | /* This field should also include the queue id | ||
412 | and possibly the function id. Right now we hardcode | ||
413 | the route field to NIC core. | ||
414 | */ | ||
415 | cam_output = (CAM_OUT_ROUTE_NIC | | ||
416 | (qdev-> | ||
417 | func << CAM_OUT_FUNC_SHIFT) | | ||
418 | (0 << CAM_OUT_CQ_ID_SHIFT)); | ||
419 | if (qdev->ndev->features & NETIF_F_HW_VLAN_RX) | ||
420 | cam_output |= CAM_OUT_RV; | ||
421 | /* route to NIC core */ | ||
422 | ql_write32(qdev, MAC_ADDR_DATA, cam_output); | ||
423 | break; | ||
424 | } | ||
425 | case MAC_ADDR_TYPE_VLAN: | ||
426 | { | ||
427 | u32 enable_bit = *((u32 *) &addr[0]); | ||
428 | /* For VLAN, the addr actually holds a bit that | ||
429 | * either enables or disables the vlan id we are | ||
430 | * addressing. It's either MAC_ADDR_E on or off. | ||
431 | * That's bit-27 we're talking about. | ||
432 | */ | ||
433 | netif_info(qdev, ifup, qdev->ndev, | ||
434 | "%s VLAN ID %d %s the CAM.\n", | ||
435 | enable_bit ? "Adding" : "Removing", | ||
436 | index, | ||
437 | enable_bit ? "to" : "from"); | ||
438 | |||
439 | status = | ||
440 | ql_wait_reg_rdy(qdev, | ||
441 | MAC_ADDR_IDX, MAC_ADDR_MW, 0); | ||
442 | if (status) | ||
443 | goto exit; | ||
444 | ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */ | ||
445 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ | ||
446 | type | /* type */ | ||
447 | enable_bit); /* enable/disable */ | ||
448 | break; | ||
449 | } | ||
450 | case MAC_ADDR_TYPE_MULTI_FLTR: | ||
451 | default: | ||
452 | netif_crit(qdev, ifup, qdev->ndev, | ||
453 | "Address type %d not yet supported.\n", type); | ||
454 | status = -EPERM; | ||
455 | } | ||
456 | exit: | ||
457 | return status; | ||
458 | } | ||
459 | |||
460 | /* Set or clear MAC address in hardware. We sometimes | ||
461 | * have to clear it to prevent wrong frame routing | ||
462 | * especially in a bonding environment. | ||
463 | */ | ||
464 | static int ql_set_mac_addr(struct ql_adapter *qdev, int set) | ||
465 | { | ||
466 | int status; | ||
467 | char zero_mac_addr[ETH_ALEN]; | ||
468 | char *addr; | ||
469 | |||
470 | if (set) { | ||
471 | addr = &qdev->current_mac_addr[0]; | ||
472 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
473 | "Set Mac addr %pM\n", addr); | ||
474 | } else { | ||
475 | memset(zero_mac_addr, 0, ETH_ALEN); | ||
476 | addr = &zero_mac_addr[0]; | ||
477 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
478 | "Clearing MAC address\n"); | ||
479 | } | ||
480 | status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); | ||
481 | if (status) | ||
482 | return status; | ||
483 | status = ql_set_mac_addr_reg(qdev, (u8 *) addr, | ||
484 | MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ); | ||
485 | ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); | ||
486 | if (status) | ||
487 | netif_err(qdev, ifup, qdev->ndev, | ||
488 | "Failed to init mac address.\n"); | ||
489 | return status; | ||
490 | } | ||
491 | |||
492 | void ql_link_on(struct ql_adapter *qdev) | ||
493 | { | ||
494 | netif_err(qdev, link, qdev->ndev, "Link is up.\n"); | ||
495 | netif_carrier_on(qdev->ndev); | ||
496 | ql_set_mac_addr(qdev, 1); | ||
497 | } | ||
498 | |||
499 | void ql_link_off(struct ql_adapter *qdev) | ||
500 | { | ||
501 | netif_err(qdev, link, qdev->ndev, "Link is down.\n"); | ||
502 | netif_carrier_off(qdev->ndev); | ||
503 | ql_set_mac_addr(qdev, 0); | ||
504 | } | ||
505 | |||
506 | /* Get a specific frame routing value from the CAM. | ||
507 | * Used for debug and reg dump. | ||
508 | */ | ||
509 | int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value) | ||
510 | { | ||
511 | int status = 0; | ||
512 | |||
513 | status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); | ||
514 | if (status) | ||
515 | goto exit; | ||
516 | |||
517 | ql_write32(qdev, RT_IDX, | ||
518 | RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT)); | ||
519 | status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0); | ||
520 | if (status) | ||
521 | goto exit; | ||
522 | *value = ql_read32(qdev, RT_DATA); | ||
523 | exit: | ||
524 | return status; | ||
525 | } | ||
526 | |||
527 | /* The NIC function for this chip has 16 routing indexes. Each one can be used | ||
528 | * to route different frame types to various inbound queues. We send broadcast/ | ||
529 | * multicast/error frames to the default queue for slow handling, | ||
530 | * and CAM hit/RSS frames to the fast handling queues. | ||
531 | */ | ||
532 | static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask, | ||
533 | int enable) | ||
534 | { | ||
535 | int status = -EINVAL; /* Return error if no mask match. */ | ||
536 | u32 value = 0; | ||
537 | |||
538 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
539 | "%s %s mask %s the routing reg.\n", | ||
540 | enable ? "Adding" : "Removing", | ||
541 | index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" : | ||
542 | index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" : | ||
543 | index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" : | ||
544 | index == RT_IDX_BCAST_SLOT ? "BROADCAST" : | ||
545 | index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" : | ||
546 | index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" : | ||
547 | index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" : | ||
548 | index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" : | ||
549 | index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" : | ||
550 | index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" : | ||
551 | index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" : | ||
552 | index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" : | ||
553 | index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" : | ||
554 | index == RT_IDX_UNUSED013 ? "UNUSED13" : | ||
555 | index == RT_IDX_UNUSED014 ? "UNUSED14" : | ||
556 | index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" : | ||
557 | "(Bad index != RT_IDX)", | ||
558 | enable ? "to" : "from"); | ||
559 | |||
560 | switch (mask) { | ||
561 | case RT_IDX_CAM_HIT: | ||
562 | { | ||
563 | value = RT_IDX_DST_CAM_Q | /* dest */ | ||
564 | RT_IDX_TYPE_NICQ | /* type */ | ||
565 | (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */ | ||
566 | break; | ||
567 | } | ||
568 | case RT_IDX_VALID: /* Promiscuous Mode frames. */ | ||
569 | { | ||
570 | value = RT_IDX_DST_DFLT_Q | /* dest */ | ||
571 | RT_IDX_TYPE_NICQ | /* type */ | ||
572 | (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */ | ||
573 | break; | ||
574 | } | ||
575 | case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */ | ||
576 | { | ||
577 | value = RT_IDX_DST_DFLT_Q | /* dest */ | ||
578 | RT_IDX_TYPE_NICQ | /* type */ | ||
579 | (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */ | ||
580 | break; | ||
581 | } | ||
582 | case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */ | ||
583 | { | ||
584 | value = RT_IDX_DST_DFLT_Q | /* dest */ | ||
585 | RT_IDX_TYPE_NICQ | /* type */ | ||
586 | (RT_IDX_IP_CSUM_ERR_SLOT << | ||
587 | RT_IDX_IDX_SHIFT); /* index */ | ||
588 | break; | ||
589 | } | ||
590 | case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */ | ||
591 | { | ||
592 | value = RT_IDX_DST_DFLT_Q | /* dest */ | ||
593 | RT_IDX_TYPE_NICQ | /* type */ | ||
594 | (RT_IDX_TCP_UDP_CSUM_ERR_SLOT << | ||
595 | RT_IDX_IDX_SHIFT); /* index */ | ||
596 | break; | ||
597 | } | ||
598 | case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */ | ||
599 | { | ||
600 | value = RT_IDX_DST_DFLT_Q | /* dest */ | ||
601 | RT_IDX_TYPE_NICQ | /* type */ | ||
602 | (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */ | ||
603 | break; | ||
604 | } | ||
605 | case RT_IDX_MCAST: /* Pass up All Multicast frames. */ | ||
606 | { | ||
607 | value = RT_IDX_DST_DFLT_Q | /* dest */ | ||
608 | RT_IDX_TYPE_NICQ | /* type */ | ||
609 | (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */ | ||
610 | break; | ||
611 | } | ||
612 | case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */ | ||
613 | { | ||
614 | value = RT_IDX_DST_DFLT_Q | /* dest */ | ||
615 | RT_IDX_TYPE_NICQ | /* type */ | ||
616 | (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ | ||
617 | break; | ||
618 | } | ||
619 | case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */ | ||
620 | { | ||
621 | value = RT_IDX_DST_RSS | /* dest */ | ||
622 | RT_IDX_TYPE_NICQ | /* type */ | ||
623 | (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ | ||
624 | break; | ||
625 | } | ||
626 | case 0: /* Clear the E-bit on an entry. */ | ||
627 | { | ||
628 | value = RT_IDX_DST_DFLT_Q | /* dest */ | ||
629 | RT_IDX_TYPE_NICQ | /* type */ | ||
630 | (index << RT_IDX_IDX_SHIFT);/* index */ | ||
631 | break; | ||
632 | } | ||
633 | default: | ||
634 | netif_err(qdev, ifup, qdev->ndev, | ||
635 | "Mask type %d not yet supported.\n", mask); | ||
636 | status = -EPERM; | ||
637 | goto exit; | ||
638 | } | ||
639 | |||
640 | if (value) { | ||
641 | status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); | ||
642 | if (status) | ||
643 | goto exit; | ||
644 | value |= (enable ? RT_IDX_E : 0); | ||
645 | ql_write32(qdev, RT_IDX, value); | ||
646 | ql_write32(qdev, RT_DATA, enable ? mask : 0); | ||
647 | } | ||
648 | exit: | ||
649 | return status; | ||
650 | } | ||
651 | |||
652 | static void ql_enable_interrupts(struct ql_adapter *qdev) | ||
653 | { | ||
654 | ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI); | ||
655 | } | ||
656 | |||
657 | static void ql_disable_interrupts(struct ql_adapter *qdev) | ||
658 | { | ||
659 | ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16)); | ||
660 | } | ||
661 | |||
662 | /* If we're running with multiple MSI-X vectors then we enable on the fly. | ||
663 | * Otherwise, we may have multiple outstanding workers and don't want to | ||
664 | * enable until the last one finishes. In this case, the irq_cnt gets | ||
665 | * incremented every time we queue a worker and decremented every time | ||
666 | * a worker finishes. Once it hits zero we enable the interrupt. | ||
667 | */ | ||
668 | u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr) | ||
669 | { | ||
670 | u32 var = 0; | ||
671 | unsigned long hw_flags = 0; | ||
672 | struct intr_context *ctx = qdev->intr_context + intr; | ||
673 | |||
674 | if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) { | ||
675 | /* Always enable if we're MSIX multi interrupts and | ||
676 | * it's not the default (zeroeth) interrupt. | ||
677 | */ | ||
678 | ql_write32(qdev, INTR_EN, | ||
679 | ctx->intr_en_mask); | ||
680 | var = ql_read32(qdev, STS); | ||
681 | return var; | ||
682 | } | ||
683 | |||
684 | spin_lock_irqsave(&qdev->hw_lock, hw_flags); | ||
685 | if (atomic_dec_and_test(&ctx->irq_cnt)) { | ||
686 | ql_write32(qdev, INTR_EN, | ||
687 | ctx->intr_en_mask); | ||
688 | var = ql_read32(qdev, STS); | ||
689 | } | ||
690 | spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); | ||
691 | return var; | ||
692 | } | ||
693 | |||
694 | static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr) | ||
695 | { | ||
696 | u32 var = 0; | ||
697 | struct intr_context *ctx; | ||
698 | |||
699 | /* HW disables for us if we're MSIX multi interrupts and | ||
700 | * it's not the default (zeroeth) interrupt. | ||
701 | */ | ||
702 | if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) | ||
703 | return 0; | ||
704 | |||
705 | ctx = qdev->intr_context + intr; | ||
706 | spin_lock(&qdev->hw_lock); | ||
707 | if (!atomic_read(&ctx->irq_cnt)) { | ||
708 | ql_write32(qdev, INTR_EN, | ||
709 | ctx->intr_dis_mask); | ||
710 | var = ql_read32(qdev, STS); | ||
711 | } | ||
712 | atomic_inc(&ctx->irq_cnt); | ||
713 | spin_unlock(&qdev->hw_lock); | ||
714 | return var; | ||
715 | } | ||
716 | |||
717 | static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev) | ||
718 | { | ||
719 | int i; | ||
720 | for (i = 0; i < qdev->intr_count; i++) { | ||
721 | /* The enable call does a atomic_dec_and_test | ||
722 | * and enables only if the result is zero. | ||
723 | * So we precharge it here. | ||
724 | */ | ||
725 | if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) || | ||
726 | i == 0)) | ||
727 | atomic_set(&qdev->intr_context[i].irq_cnt, 1); | ||
728 | ql_enable_completion_interrupt(qdev, i); | ||
729 | } | ||
730 | |||
731 | } | ||
732 | |||
733 | static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str) | ||
734 | { | ||
735 | int status, i; | ||
736 | u16 csum = 0; | ||
737 | __le16 *flash = (__le16 *)&qdev->flash; | ||
738 | |||
739 | status = strncmp((char *)&qdev->flash, str, 4); | ||
740 | if (status) { | ||
741 | netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n"); | ||
742 | return status; | ||
743 | } | ||
744 | |||
745 | for (i = 0; i < size; i++) | ||
746 | csum += le16_to_cpu(*flash++); | ||
747 | |||
748 | if (csum) | ||
749 | netif_err(qdev, ifup, qdev->ndev, | ||
750 | "Invalid flash checksum, csum = 0x%.04x.\n", csum); | ||
751 | |||
752 | return csum; | ||
753 | } | ||
754 | |||
755 | static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data) | ||
756 | { | ||
757 | int status = 0; | ||
758 | /* wait for reg to come ready */ | ||
759 | status = ql_wait_reg_rdy(qdev, | ||
760 | FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); | ||
761 | if (status) | ||
762 | goto exit; | ||
763 | /* set up for reg read */ | ||
764 | ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset); | ||
765 | /* wait for reg to come ready */ | ||
766 | status = ql_wait_reg_rdy(qdev, | ||
767 | FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); | ||
768 | if (status) | ||
769 | goto exit; | ||
770 | /* This data is stored on flash as an array of | ||
771 | * __le32. Since ql_read32() returns cpu endian | ||
772 | * we need to swap it back. | ||
773 | */ | ||
774 | *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA)); | ||
775 | exit: | ||
776 | return status; | ||
777 | } | ||
778 | |||
779 | static int ql_get_8000_flash_params(struct ql_adapter *qdev) | ||
780 | { | ||
781 | u32 i, size; | ||
782 | int status; | ||
783 | __le32 *p = (__le32 *)&qdev->flash; | ||
784 | u32 offset; | ||
785 | u8 mac_addr[6]; | ||
786 | |||
787 | /* Get flash offset for function and adjust | ||
788 | * for dword access. | ||
789 | */ | ||
790 | if (!qdev->port) | ||
791 | offset = FUNC0_FLASH_OFFSET / sizeof(u32); | ||
792 | else | ||
793 | offset = FUNC1_FLASH_OFFSET / sizeof(u32); | ||
794 | |||
795 | if (ql_sem_spinlock(qdev, SEM_FLASH_MASK)) | ||
796 | return -ETIMEDOUT; | ||
797 | |||
798 | size = sizeof(struct flash_params_8000) / sizeof(u32); | ||
799 | for (i = 0; i < size; i++, p++) { | ||
800 | status = ql_read_flash_word(qdev, i+offset, p); | ||
801 | if (status) { | ||
802 | netif_err(qdev, ifup, qdev->ndev, | ||
803 | "Error reading flash.\n"); | ||
804 | goto exit; | ||
805 | } | ||
806 | } | ||
807 | |||
808 | status = ql_validate_flash(qdev, | ||
809 | sizeof(struct flash_params_8000) / sizeof(u16), | ||
810 | "8000"); | ||
811 | if (status) { | ||
812 | netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n"); | ||
813 | status = -EINVAL; | ||
814 | goto exit; | ||
815 | } | ||
816 | |||
817 | /* Extract either manufacturer or BOFM modified | ||
818 | * MAC address. | ||
819 | */ | ||
820 | if (qdev->flash.flash_params_8000.data_type1 == 2) | ||
821 | memcpy(mac_addr, | ||
822 | qdev->flash.flash_params_8000.mac_addr1, | ||
823 | qdev->ndev->addr_len); | ||
824 | else | ||
825 | memcpy(mac_addr, | ||
826 | qdev->flash.flash_params_8000.mac_addr, | ||
827 | qdev->ndev->addr_len); | ||
828 | |||
829 | if (!is_valid_ether_addr(mac_addr)) { | ||
830 | netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n"); | ||
831 | status = -EINVAL; | ||
832 | goto exit; | ||
833 | } | ||
834 | |||
835 | memcpy(qdev->ndev->dev_addr, | ||
836 | mac_addr, | ||
837 | qdev->ndev->addr_len); | ||
838 | |||
839 | exit: | ||
840 | ql_sem_unlock(qdev, SEM_FLASH_MASK); | ||
841 | return status; | ||
842 | } | ||
843 | |||
844 | static int ql_get_8012_flash_params(struct ql_adapter *qdev) | ||
845 | { | ||
846 | int i; | ||
847 | int status; | ||
848 | __le32 *p = (__le32 *)&qdev->flash; | ||
849 | u32 offset = 0; | ||
850 | u32 size = sizeof(struct flash_params_8012) / sizeof(u32); | ||
851 | |||
852 | /* Second function's parameters follow the first | ||
853 | * function's. | ||
854 | */ | ||
855 | if (qdev->port) | ||
856 | offset = size; | ||
857 | |||
858 | if (ql_sem_spinlock(qdev, SEM_FLASH_MASK)) | ||
859 | return -ETIMEDOUT; | ||
860 | |||
861 | for (i = 0; i < size; i++, p++) { | ||
862 | status = ql_read_flash_word(qdev, i+offset, p); | ||
863 | if (status) { | ||
864 | netif_err(qdev, ifup, qdev->ndev, | ||
865 | "Error reading flash.\n"); | ||
866 | goto exit; | ||
867 | } | ||
868 | |||
869 | } | ||
870 | |||
871 | status = ql_validate_flash(qdev, | ||
872 | sizeof(struct flash_params_8012) / sizeof(u16), | ||
873 | "8012"); | ||
874 | if (status) { | ||
875 | netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n"); | ||
876 | status = -EINVAL; | ||
877 | goto exit; | ||
878 | } | ||
879 | |||
880 | if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) { | ||
881 | status = -EINVAL; | ||
882 | goto exit; | ||
883 | } | ||
884 | |||
885 | memcpy(qdev->ndev->dev_addr, | ||
886 | qdev->flash.flash_params_8012.mac_addr, | ||
887 | qdev->ndev->addr_len); | ||
888 | |||
889 | exit: | ||
890 | ql_sem_unlock(qdev, SEM_FLASH_MASK); | ||
891 | return status; | ||
892 | } | ||
893 | |||
894 | /* xgmac register are located behind the xgmac_addr and xgmac_data | ||
895 | * register pair. Each read/write requires us to wait for the ready | ||
896 | * bit before reading/writing the data. | ||
897 | */ | ||
898 | static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data) | ||
899 | { | ||
900 | int status; | ||
901 | /* wait for reg to come ready */ | ||
902 | status = ql_wait_reg_rdy(qdev, | ||
903 | XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); | ||
904 | if (status) | ||
905 | return status; | ||
906 | /* write the data to the data reg */ | ||
907 | ql_write32(qdev, XGMAC_DATA, data); | ||
908 | /* trigger the write */ | ||
909 | ql_write32(qdev, XGMAC_ADDR, reg); | ||
910 | return status; | ||
911 | } | ||
912 | |||
913 | /* xgmac register are located behind the xgmac_addr and xgmac_data | ||
914 | * register pair. Each read/write requires us to wait for the ready | ||
915 | * bit before reading/writing the data. | ||
916 | */ | ||
917 | int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data) | ||
918 | { | ||
919 | int status = 0; | ||
920 | /* wait for reg to come ready */ | ||
921 | status = ql_wait_reg_rdy(qdev, | ||
922 | XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); | ||
923 | if (status) | ||
924 | goto exit; | ||
925 | /* set up for reg read */ | ||
926 | ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R); | ||
927 | /* wait for reg to come ready */ | ||
928 | status = ql_wait_reg_rdy(qdev, | ||
929 | XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); | ||
930 | if (status) | ||
931 | goto exit; | ||
932 | /* get the data */ | ||
933 | *data = ql_read32(qdev, XGMAC_DATA); | ||
934 | exit: | ||
935 | return status; | ||
936 | } | ||
937 | |||
938 | /* This is used for reading the 64-bit statistics regs. */ | ||
939 | int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data) | ||
940 | { | ||
941 | int status = 0; | ||
942 | u32 hi = 0; | ||
943 | u32 lo = 0; | ||
944 | |||
945 | status = ql_read_xgmac_reg(qdev, reg, &lo); | ||
946 | if (status) | ||
947 | goto exit; | ||
948 | |||
949 | status = ql_read_xgmac_reg(qdev, reg + 4, &hi); | ||
950 | if (status) | ||
951 | goto exit; | ||
952 | |||
953 | *data = (u64) lo | ((u64) hi << 32); | ||
954 | |||
955 | exit: | ||
956 | return status; | ||
957 | } | ||
958 | |||
959 | static int ql_8000_port_initialize(struct ql_adapter *qdev) | ||
960 | { | ||
961 | int status; | ||
962 | /* | ||
963 | * Get MPI firmware version for driver banner | ||
964 | * and ethool info. | ||
965 | */ | ||
966 | status = ql_mb_about_fw(qdev); | ||
967 | if (status) | ||
968 | goto exit; | ||
969 | status = ql_mb_get_fw_state(qdev); | ||
970 | if (status) | ||
971 | goto exit; | ||
972 | /* Wake up a worker to get/set the TX/RX frame sizes. */ | ||
973 | queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0); | ||
974 | exit: | ||
975 | return status; | ||
976 | } | ||
977 | |||
978 | /* Take the MAC Core out of reset. | ||
979 | * Enable statistics counting. | ||
980 | * Take the transmitter/receiver out of reset. | ||
981 | * This functionality may be done in the MPI firmware at a | ||
982 | * later date. | ||
983 | */ | ||
984 | static int ql_8012_port_initialize(struct ql_adapter *qdev) | ||
985 | { | ||
986 | int status = 0; | ||
987 | u32 data; | ||
988 | |||
989 | if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) { | ||
990 | /* Another function has the semaphore, so | ||
991 | * wait for the port init bit to come ready. | ||
992 | */ | ||
993 | netif_info(qdev, link, qdev->ndev, | ||
994 | "Another function has the semaphore, so wait for the port init bit to come ready.\n"); | ||
995 | status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0); | ||
996 | if (status) { | ||
997 | netif_crit(qdev, link, qdev->ndev, | ||
998 | "Port initialize timed out.\n"); | ||
999 | } | ||
1000 | return status; | ||
1001 | } | ||
1002 | |||
1003 | netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n"); | ||
1004 | /* Set the core reset. */ | ||
1005 | status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data); | ||
1006 | if (status) | ||
1007 | goto end; | ||
1008 | data |= GLOBAL_CFG_RESET; | ||
1009 | status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); | ||
1010 | if (status) | ||
1011 | goto end; | ||
1012 | |||
1013 | /* Clear the core reset and turn on jumbo for receiver. */ | ||
1014 | data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */ | ||
1015 | data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */ | ||
1016 | data |= GLOBAL_CFG_TX_STAT_EN; | ||
1017 | data |= GLOBAL_CFG_RX_STAT_EN; | ||
1018 | status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); | ||
1019 | if (status) | ||
1020 | goto end; | ||
1021 | |||
1022 | /* Enable transmitter, and clear it's reset. */ | ||
1023 | status = ql_read_xgmac_reg(qdev, TX_CFG, &data); | ||
1024 | if (status) | ||
1025 | goto end; | ||
1026 | data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */ | ||
1027 | data |= TX_CFG_EN; /* Enable the transmitter. */ | ||
1028 | status = ql_write_xgmac_reg(qdev, TX_CFG, data); | ||
1029 | if (status) | ||
1030 | goto end; | ||
1031 | |||
1032 | /* Enable receiver and clear it's reset. */ | ||
1033 | status = ql_read_xgmac_reg(qdev, RX_CFG, &data); | ||
1034 | if (status) | ||
1035 | goto end; | ||
1036 | data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */ | ||
1037 | data |= RX_CFG_EN; /* Enable the receiver. */ | ||
1038 | status = ql_write_xgmac_reg(qdev, RX_CFG, data); | ||
1039 | if (status) | ||
1040 | goto end; | ||
1041 | |||
1042 | /* Turn on jumbo. */ | ||
1043 | status = | ||
1044 | ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16)); | ||
1045 | if (status) | ||
1046 | goto end; | ||
1047 | status = | ||
1048 | ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580); | ||
1049 | if (status) | ||
1050 | goto end; | ||
1051 | |||
1052 | /* Signal to the world that the port is enabled. */ | ||
1053 | ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init)); | ||
1054 | end: | ||
1055 | ql_sem_unlock(qdev, qdev->xg_sem_mask); | ||
1056 | return status; | ||
1057 | } | ||
1058 | |||
1059 | static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev) | ||
1060 | { | ||
1061 | return PAGE_SIZE << qdev->lbq_buf_order; | ||
1062 | } | ||
1063 | |||
1064 | /* Get the next large buffer. */ | ||
1065 | static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring) | ||
1066 | { | ||
1067 | struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx]; | ||
1068 | rx_ring->lbq_curr_idx++; | ||
1069 | if (rx_ring->lbq_curr_idx == rx_ring->lbq_len) | ||
1070 | rx_ring->lbq_curr_idx = 0; | ||
1071 | rx_ring->lbq_free_cnt++; | ||
1072 | return lbq_desc; | ||
1073 | } | ||
1074 | |||
1075 | static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev, | ||
1076 | struct rx_ring *rx_ring) | ||
1077 | { | ||
1078 | struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring); | ||
1079 | |||
1080 | pci_dma_sync_single_for_cpu(qdev->pdev, | ||
1081 | dma_unmap_addr(lbq_desc, mapaddr), | ||
1082 | rx_ring->lbq_buf_size, | ||
1083 | PCI_DMA_FROMDEVICE); | ||
1084 | |||
1085 | /* If it's the last chunk of our master page then | ||
1086 | * we unmap it. | ||
1087 | */ | ||
1088 | if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size) | ||
1089 | == ql_lbq_block_size(qdev)) | ||
1090 | pci_unmap_page(qdev->pdev, | ||
1091 | lbq_desc->p.pg_chunk.map, | ||
1092 | ql_lbq_block_size(qdev), | ||
1093 | PCI_DMA_FROMDEVICE); | ||
1094 | return lbq_desc; | ||
1095 | } | ||
1096 | |||
1097 | /* Get the next small buffer. */ | ||
1098 | static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring) | ||
1099 | { | ||
1100 | struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx]; | ||
1101 | rx_ring->sbq_curr_idx++; | ||
1102 | if (rx_ring->sbq_curr_idx == rx_ring->sbq_len) | ||
1103 | rx_ring->sbq_curr_idx = 0; | ||
1104 | rx_ring->sbq_free_cnt++; | ||
1105 | return sbq_desc; | ||
1106 | } | ||
1107 | |||
1108 | /* Update an rx ring index. */ | ||
1109 | static void ql_update_cq(struct rx_ring *rx_ring) | ||
1110 | { | ||
1111 | rx_ring->cnsmr_idx++; | ||
1112 | rx_ring->curr_entry++; | ||
1113 | if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) { | ||
1114 | rx_ring->cnsmr_idx = 0; | ||
1115 | rx_ring->curr_entry = rx_ring->cq_base; | ||
1116 | } | ||
1117 | } | ||
1118 | |||
1119 | static void ql_write_cq_idx(struct rx_ring *rx_ring) | ||
1120 | { | ||
1121 | ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg); | ||
1122 | } | ||
1123 | |||
1124 | static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring, | ||
1125 | struct bq_desc *lbq_desc) | ||
1126 | { | ||
1127 | if (!rx_ring->pg_chunk.page) { | ||
1128 | u64 map; | ||
1129 | rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP | | ||
1130 | GFP_ATOMIC, | ||
1131 | qdev->lbq_buf_order); | ||
1132 | if (unlikely(!rx_ring->pg_chunk.page)) { | ||
1133 | netif_err(qdev, drv, qdev->ndev, | ||
1134 | "page allocation failed.\n"); | ||
1135 | return -ENOMEM; | ||
1136 | } | ||
1137 | rx_ring->pg_chunk.offset = 0; | ||
1138 | map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page, | ||
1139 | 0, ql_lbq_block_size(qdev), | ||
1140 | PCI_DMA_FROMDEVICE); | ||
1141 | if (pci_dma_mapping_error(qdev->pdev, map)) { | ||
1142 | __free_pages(rx_ring->pg_chunk.page, | ||
1143 | qdev->lbq_buf_order); | ||
1144 | netif_err(qdev, drv, qdev->ndev, | ||
1145 | "PCI mapping failed.\n"); | ||
1146 | return -ENOMEM; | ||
1147 | } | ||
1148 | rx_ring->pg_chunk.map = map; | ||
1149 | rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page); | ||
1150 | } | ||
1151 | |||
1152 | /* Copy the current master pg_chunk info | ||
1153 | * to the current descriptor. | ||
1154 | */ | ||
1155 | lbq_desc->p.pg_chunk = rx_ring->pg_chunk; | ||
1156 | |||
1157 | /* Adjust the master page chunk for next | ||
1158 | * buffer get. | ||
1159 | */ | ||
1160 | rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size; | ||
1161 | if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) { | ||
1162 | rx_ring->pg_chunk.page = NULL; | ||
1163 | lbq_desc->p.pg_chunk.last_flag = 1; | ||
1164 | } else { | ||
1165 | rx_ring->pg_chunk.va += rx_ring->lbq_buf_size; | ||
1166 | get_page(rx_ring->pg_chunk.page); | ||
1167 | lbq_desc->p.pg_chunk.last_flag = 0; | ||
1168 | } | ||
1169 | return 0; | ||
1170 | } | ||
1171 | /* Process (refill) a large buffer queue. */ | ||
1172 | static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) | ||
1173 | { | ||
1174 | u32 clean_idx = rx_ring->lbq_clean_idx; | ||
1175 | u32 start_idx = clean_idx; | ||
1176 | struct bq_desc *lbq_desc; | ||
1177 | u64 map; | ||
1178 | int i; | ||
1179 | |||
1180 | while (rx_ring->lbq_free_cnt > 32) { | ||
1181 | for (i = 0; i < 16; i++) { | ||
1182 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1183 | "lbq: try cleaning clean_idx = %d.\n", | ||
1184 | clean_idx); | ||
1185 | lbq_desc = &rx_ring->lbq[clean_idx]; | ||
1186 | if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) { | ||
1187 | netif_err(qdev, ifup, qdev->ndev, | ||
1188 | "Could not get a page chunk.\n"); | ||
1189 | return; | ||
1190 | } | ||
1191 | |||
1192 | map = lbq_desc->p.pg_chunk.map + | ||
1193 | lbq_desc->p.pg_chunk.offset; | ||
1194 | dma_unmap_addr_set(lbq_desc, mapaddr, map); | ||
1195 | dma_unmap_len_set(lbq_desc, maplen, | ||
1196 | rx_ring->lbq_buf_size); | ||
1197 | *lbq_desc->addr = cpu_to_le64(map); | ||
1198 | |||
1199 | pci_dma_sync_single_for_device(qdev->pdev, map, | ||
1200 | rx_ring->lbq_buf_size, | ||
1201 | PCI_DMA_FROMDEVICE); | ||
1202 | clean_idx++; | ||
1203 | if (clean_idx == rx_ring->lbq_len) | ||
1204 | clean_idx = 0; | ||
1205 | } | ||
1206 | |||
1207 | rx_ring->lbq_clean_idx = clean_idx; | ||
1208 | rx_ring->lbq_prod_idx += 16; | ||
1209 | if (rx_ring->lbq_prod_idx == rx_ring->lbq_len) | ||
1210 | rx_ring->lbq_prod_idx = 0; | ||
1211 | rx_ring->lbq_free_cnt -= 16; | ||
1212 | } | ||
1213 | |||
1214 | if (start_idx != clean_idx) { | ||
1215 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1216 | "lbq: updating prod idx = %d.\n", | ||
1217 | rx_ring->lbq_prod_idx); | ||
1218 | ql_write_db_reg(rx_ring->lbq_prod_idx, | ||
1219 | rx_ring->lbq_prod_idx_db_reg); | ||
1220 | } | ||
1221 | } | ||
1222 | |||
1223 | /* Process (refill) a small buffer queue. */ | ||
1224 | static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) | ||
1225 | { | ||
1226 | u32 clean_idx = rx_ring->sbq_clean_idx; | ||
1227 | u32 start_idx = clean_idx; | ||
1228 | struct bq_desc *sbq_desc; | ||
1229 | u64 map; | ||
1230 | int i; | ||
1231 | |||
1232 | while (rx_ring->sbq_free_cnt > 16) { | ||
1233 | for (i = 0; i < 16; i++) { | ||
1234 | sbq_desc = &rx_ring->sbq[clean_idx]; | ||
1235 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1236 | "sbq: try cleaning clean_idx = %d.\n", | ||
1237 | clean_idx); | ||
1238 | if (sbq_desc->p.skb == NULL) { | ||
1239 | netif_printk(qdev, rx_status, KERN_DEBUG, | ||
1240 | qdev->ndev, | ||
1241 | "sbq: getting new skb for index %d.\n", | ||
1242 | sbq_desc->index); | ||
1243 | sbq_desc->p.skb = | ||
1244 | netdev_alloc_skb(qdev->ndev, | ||
1245 | SMALL_BUFFER_SIZE); | ||
1246 | if (sbq_desc->p.skb == NULL) { | ||
1247 | netif_err(qdev, probe, qdev->ndev, | ||
1248 | "Couldn't get an skb.\n"); | ||
1249 | rx_ring->sbq_clean_idx = clean_idx; | ||
1250 | return; | ||
1251 | } | ||
1252 | skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD); | ||
1253 | map = pci_map_single(qdev->pdev, | ||
1254 | sbq_desc->p.skb->data, | ||
1255 | rx_ring->sbq_buf_size, | ||
1256 | PCI_DMA_FROMDEVICE); | ||
1257 | if (pci_dma_mapping_error(qdev->pdev, map)) { | ||
1258 | netif_err(qdev, ifup, qdev->ndev, | ||
1259 | "PCI mapping failed.\n"); | ||
1260 | rx_ring->sbq_clean_idx = clean_idx; | ||
1261 | dev_kfree_skb_any(sbq_desc->p.skb); | ||
1262 | sbq_desc->p.skb = NULL; | ||
1263 | return; | ||
1264 | } | ||
1265 | dma_unmap_addr_set(sbq_desc, mapaddr, map); | ||
1266 | dma_unmap_len_set(sbq_desc, maplen, | ||
1267 | rx_ring->sbq_buf_size); | ||
1268 | *sbq_desc->addr = cpu_to_le64(map); | ||
1269 | } | ||
1270 | |||
1271 | clean_idx++; | ||
1272 | if (clean_idx == rx_ring->sbq_len) | ||
1273 | clean_idx = 0; | ||
1274 | } | ||
1275 | rx_ring->sbq_clean_idx = clean_idx; | ||
1276 | rx_ring->sbq_prod_idx += 16; | ||
1277 | if (rx_ring->sbq_prod_idx == rx_ring->sbq_len) | ||
1278 | rx_ring->sbq_prod_idx = 0; | ||
1279 | rx_ring->sbq_free_cnt -= 16; | ||
1280 | } | ||
1281 | |||
1282 | if (start_idx != clean_idx) { | ||
1283 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1284 | "sbq: updating prod idx = %d.\n", | ||
1285 | rx_ring->sbq_prod_idx); | ||
1286 | ql_write_db_reg(rx_ring->sbq_prod_idx, | ||
1287 | rx_ring->sbq_prod_idx_db_reg); | ||
1288 | } | ||
1289 | } | ||
1290 | |||
1291 | static void ql_update_buffer_queues(struct ql_adapter *qdev, | ||
1292 | struct rx_ring *rx_ring) | ||
1293 | { | ||
1294 | ql_update_sbq(qdev, rx_ring); | ||
1295 | ql_update_lbq(qdev, rx_ring); | ||
1296 | } | ||
1297 | |||
1298 | /* Unmaps tx buffers. Can be called from send() if a pci mapping | ||
1299 | * fails at some stage, or from the interrupt when a tx completes. | ||
1300 | */ | ||
1301 | static void ql_unmap_send(struct ql_adapter *qdev, | ||
1302 | struct tx_ring_desc *tx_ring_desc, int mapped) | ||
1303 | { | ||
1304 | int i; | ||
1305 | for (i = 0; i < mapped; i++) { | ||
1306 | if (i == 0 || (i == 7 && mapped > 7)) { | ||
1307 | /* | ||
1308 | * Unmap the skb->data area, or the | ||
1309 | * external sglist (AKA the Outbound | ||
1310 | * Address List (OAL)). | ||
1311 | * If its the zeroeth element, then it's | ||
1312 | * the skb->data area. If it's the 7th | ||
1313 | * element and there is more than 6 frags, | ||
1314 | * then its an OAL. | ||
1315 | */ | ||
1316 | if (i == 7) { | ||
1317 | netif_printk(qdev, tx_done, KERN_DEBUG, | ||
1318 | qdev->ndev, | ||
1319 | "unmapping OAL area.\n"); | ||
1320 | } | ||
1321 | pci_unmap_single(qdev->pdev, | ||
1322 | dma_unmap_addr(&tx_ring_desc->map[i], | ||
1323 | mapaddr), | ||
1324 | dma_unmap_len(&tx_ring_desc->map[i], | ||
1325 | maplen), | ||
1326 | PCI_DMA_TODEVICE); | ||
1327 | } else { | ||
1328 | netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev, | ||
1329 | "unmapping frag %d.\n", i); | ||
1330 | pci_unmap_page(qdev->pdev, | ||
1331 | dma_unmap_addr(&tx_ring_desc->map[i], | ||
1332 | mapaddr), | ||
1333 | dma_unmap_len(&tx_ring_desc->map[i], | ||
1334 | maplen), PCI_DMA_TODEVICE); | ||
1335 | } | ||
1336 | } | ||
1337 | |||
1338 | } | ||
1339 | |||
1340 | /* Map the buffers for this transmit. This will return | ||
1341 | * NETDEV_TX_BUSY or NETDEV_TX_OK based on success. | ||
1342 | */ | ||
1343 | static int ql_map_send(struct ql_adapter *qdev, | ||
1344 | struct ob_mac_iocb_req *mac_iocb_ptr, | ||
1345 | struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc) | ||
1346 | { | ||
1347 | int len = skb_headlen(skb); | ||
1348 | dma_addr_t map; | ||
1349 | int frag_idx, err, map_idx = 0; | ||
1350 | struct tx_buf_desc *tbd = mac_iocb_ptr->tbd; | ||
1351 | int frag_cnt = skb_shinfo(skb)->nr_frags; | ||
1352 | |||
1353 | if (frag_cnt) { | ||
1354 | netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, | ||
1355 | "frag_cnt = %d.\n", frag_cnt); | ||
1356 | } | ||
1357 | /* | ||
1358 | * Map the skb buffer first. | ||
1359 | */ | ||
1360 | map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE); | ||
1361 | |||
1362 | err = pci_dma_mapping_error(qdev->pdev, map); | ||
1363 | if (err) { | ||
1364 | netif_err(qdev, tx_queued, qdev->ndev, | ||
1365 | "PCI mapping failed with error: %d\n", err); | ||
1366 | |||
1367 | return NETDEV_TX_BUSY; | ||
1368 | } | ||
1369 | |||
1370 | tbd->len = cpu_to_le32(len); | ||
1371 | tbd->addr = cpu_to_le64(map); | ||
1372 | dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); | ||
1373 | dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len); | ||
1374 | map_idx++; | ||
1375 | |||
1376 | /* | ||
1377 | * This loop fills the remainder of the 8 address descriptors | ||
1378 | * in the IOCB. If there are more than 7 fragments, then the | ||
1379 | * eighth address desc will point to an external list (OAL). | ||
1380 | * When this happens, the remainder of the frags will be stored | ||
1381 | * in this list. | ||
1382 | */ | ||
1383 | for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) { | ||
1384 | skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx]; | ||
1385 | tbd++; | ||
1386 | if (frag_idx == 6 && frag_cnt > 7) { | ||
1387 | /* Let's tack on an sglist. | ||
1388 | * Our control block will now | ||
1389 | * look like this: | ||
1390 | * iocb->seg[0] = skb->data | ||
1391 | * iocb->seg[1] = frag[0] | ||
1392 | * iocb->seg[2] = frag[1] | ||
1393 | * iocb->seg[3] = frag[2] | ||
1394 | * iocb->seg[4] = frag[3] | ||
1395 | * iocb->seg[5] = frag[4] | ||
1396 | * iocb->seg[6] = frag[5] | ||
1397 | * iocb->seg[7] = ptr to OAL (external sglist) | ||
1398 | * oal->seg[0] = frag[6] | ||
1399 | * oal->seg[1] = frag[7] | ||
1400 | * oal->seg[2] = frag[8] | ||
1401 | * oal->seg[3] = frag[9] | ||
1402 | * oal->seg[4] = frag[10] | ||
1403 | * etc... | ||
1404 | */ | ||
1405 | /* Tack on the OAL in the eighth segment of IOCB. */ | ||
1406 | map = pci_map_single(qdev->pdev, &tx_ring_desc->oal, | ||
1407 | sizeof(struct oal), | ||
1408 | PCI_DMA_TODEVICE); | ||
1409 | err = pci_dma_mapping_error(qdev->pdev, map); | ||
1410 | if (err) { | ||
1411 | netif_err(qdev, tx_queued, qdev->ndev, | ||
1412 | "PCI mapping outbound address list with error: %d\n", | ||
1413 | err); | ||
1414 | goto map_error; | ||
1415 | } | ||
1416 | |||
1417 | tbd->addr = cpu_to_le64(map); | ||
1418 | /* | ||
1419 | * The length is the number of fragments | ||
1420 | * that remain to be mapped times the length | ||
1421 | * of our sglist (OAL). | ||
1422 | */ | ||
1423 | tbd->len = | ||
1424 | cpu_to_le32((sizeof(struct tx_buf_desc) * | ||
1425 | (frag_cnt - frag_idx)) | TX_DESC_C); | ||
1426 | dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, | ||
1427 | map); | ||
1428 | dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, | ||
1429 | sizeof(struct oal)); | ||
1430 | tbd = (struct tx_buf_desc *)&tx_ring_desc->oal; | ||
1431 | map_idx++; | ||
1432 | } | ||
1433 | |||
1434 | map = | ||
1435 | pci_map_page(qdev->pdev, frag->page, | ||
1436 | frag->page_offset, frag->size, | ||
1437 | PCI_DMA_TODEVICE); | ||
1438 | |||
1439 | err = pci_dma_mapping_error(qdev->pdev, map); | ||
1440 | if (err) { | ||
1441 | netif_err(qdev, tx_queued, qdev->ndev, | ||
1442 | "PCI mapping frags failed with error: %d.\n", | ||
1443 | err); | ||
1444 | goto map_error; | ||
1445 | } | ||
1446 | |||
1447 | tbd->addr = cpu_to_le64(map); | ||
1448 | tbd->len = cpu_to_le32(frag->size); | ||
1449 | dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); | ||
1450 | dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, | ||
1451 | frag->size); | ||
1452 | |||
1453 | } | ||
1454 | /* Save the number of segments we've mapped. */ | ||
1455 | tx_ring_desc->map_cnt = map_idx; | ||
1456 | /* Terminate the last segment. */ | ||
1457 | tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E); | ||
1458 | return NETDEV_TX_OK; | ||
1459 | |||
1460 | map_error: | ||
1461 | /* | ||
1462 | * If the first frag mapping failed, then i will be zero. | ||
1463 | * This causes the unmap of the skb->data area. Otherwise | ||
1464 | * we pass in the number of frags that mapped successfully | ||
1465 | * so they can be umapped. | ||
1466 | */ | ||
1467 | ql_unmap_send(qdev, tx_ring_desc, map_idx); | ||
1468 | return NETDEV_TX_BUSY; | ||
1469 | } | ||
1470 | |||
1471 | /* Process an inbound completion from an rx ring. */ | ||
1472 | static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev, | ||
1473 | struct rx_ring *rx_ring, | ||
1474 | struct ib_mac_iocb_rsp *ib_mac_rsp, | ||
1475 | u32 length, | ||
1476 | u16 vlan_id) | ||
1477 | { | ||
1478 | struct sk_buff *skb; | ||
1479 | struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); | ||
1480 | struct skb_frag_struct *rx_frag; | ||
1481 | int nr_frags; | ||
1482 | struct napi_struct *napi = &rx_ring->napi; | ||
1483 | |||
1484 | napi->dev = qdev->ndev; | ||
1485 | |||
1486 | skb = napi_get_frags(napi); | ||
1487 | if (!skb) { | ||
1488 | netif_err(qdev, drv, qdev->ndev, | ||
1489 | "Couldn't get an skb, exiting.\n"); | ||
1490 | rx_ring->rx_dropped++; | ||
1491 | put_page(lbq_desc->p.pg_chunk.page); | ||
1492 | return; | ||
1493 | } | ||
1494 | prefetch(lbq_desc->p.pg_chunk.va); | ||
1495 | rx_frag = skb_shinfo(skb)->frags; | ||
1496 | nr_frags = skb_shinfo(skb)->nr_frags; | ||
1497 | rx_frag += nr_frags; | ||
1498 | rx_frag->page = lbq_desc->p.pg_chunk.page; | ||
1499 | rx_frag->page_offset = lbq_desc->p.pg_chunk.offset; | ||
1500 | rx_frag->size = length; | ||
1501 | |||
1502 | skb->len += length; | ||
1503 | skb->data_len += length; | ||
1504 | skb->truesize += length; | ||
1505 | skb_shinfo(skb)->nr_frags++; | ||
1506 | |||
1507 | rx_ring->rx_packets++; | ||
1508 | rx_ring->rx_bytes += length; | ||
1509 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1510 | skb_record_rx_queue(skb, rx_ring->cq_id); | ||
1511 | if (vlan_id != 0xffff) | ||
1512 | __vlan_hwaccel_put_tag(skb, vlan_id); | ||
1513 | napi_gro_frags(napi); | ||
1514 | } | ||
1515 | |||
1516 | /* Process an inbound completion from an rx ring. */ | ||
1517 | static void ql_process_mac_rx_page(struct ql_adapter *qdev, | ||
1518 | struct rx_ring *rx_ring, | ||
1519 | struct ib_mac_iocb_rsp *ib_mac_rsp, | ||
1520 | u32 length, | ||
1521 | u16 vlan_id) | ||
1522 | { | ||
1523 | struct net_device *ndev = qdev->ndev; | ||
1524 | struct sk_buff *skb = NULL; | ||
1525 | void *addr; | ||
1526 | struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); | ||
1527 | struct napi_struct *napi = &rx_ring->napi; | ||
1528 | |||
1529 | skb = netdev_alloc_skb(ndev, length); | ||
1530 | if (!skb) { | ||
1531 | netif_err(qdev, drv, qdev->ndev, | ||
1532 | "Couldn't get an skb, need to unwind!.\n"); | ||
1533 | rx_ring->rx_dropped++; | ||
1534 | put_page(lbq_desc->p.pg_chunk.page); | ||
1535 | return; | ||
1536 | } | ||
1537 | |||
1538 | addr = lbq_desc->p.pg_chunk.va; | ||
1539 | prefetch(addr); | ||
1540 | |||
1541 | |||
1542 | /* Frame error, so drop the packet. */ | ||
1543 | if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { | ||
1544 | netif_info(qdev, drv, qdev->ndev, | ||
1545 | "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2); | ||
1546 | rx_ring->rx_errors++; | ||
1547 | goto err_out; | ||
1548 | } | ||
1549 | |||
1550 | /* The max framesize filter on this chip is set higher than | ||
1551 | * MTU since FCoE uses 2k frames. | ||
1552 | */ | ||
1553 | if (skb->len > ndev->mtu + ETH_HLEN) { | ||
1554 | netif_err(qdev, drv, qdev->ndev, | ||
1555 | "Segment too small, dropping.\n"); | ||
1556 | rx_ring->rx_dropped++; | ||
1557 | goto err_out; | ||
1558 | } | ||
1559 | memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN); | ||
1560 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1561 | "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", | ||
1562 | length); | ||
1563 | skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, | ||
1564 | lbq_desc->p.pg_chunk.offset+ETH_HLEN, | ||
1565 | length-ETH_HLEN); | ||
1566 | skb->len += length-ETH_HLEN; | ||
1567 | skb->data_len += length-ETH_HLEN; | ||
1568 | skb->truesize += length-ETH_HLEN; | ||
1569 | |||
1570 | rx_ring->rx_packets++; | ||
1571 | rx_ring->rx_bytes += skb->len; | ||
1572 | skb->protocol = eth_type_trans(skb, ndev); | ||
1573 | skb_checksum_none_assert(skb); | ||
1574 | |||
1575 | if ((ndev->features & NETIF_F_RXCSUM) && | ||
1576 | !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { | ||
1577 | /* TCP frame. */ | ||
1578 | if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { | ||
1579 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1580 | "TCP checksum done!\n"); | ||
1581 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1582 | } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && | ||
1583 | (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { | ||
1584 | /* Unfragmented ipv4 UDP frame. */ | ||
1585 | struct iphdr *iph = (struct iphdr *) skb->data; | ||
1586 | if (!(iph->frag_off & | ||
1587 | cpu_to_be16(IP_MF|IP_OFFSET))) { | ||
1588 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1589 | netif_printk(qdev, rx_status, KERN_DEBUG, | ||
1590 | qdev->ndev, | ||
1591 | "TCP checksum done!\n"); | ||
1592 | } | ||
1593 | } | ||
1594 | } | ||
1595 | |||
1596 | skb_record_rx_queue(skb, rx_ring->cq_id); | ||
1597 | if (vlan_id != 0xffff) | ||
1598 | __vlan_hwaccel_put_tag(skb, vlan_id); | ||
1599 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) | ||
1600 | napi_gro_receive(napi, skb); | ||
1601 | else | ||
1602 | netif_receive_skb(skb); | ||
1603 | return; | ||
1604 | err_out: | ||
1605 | dev_kfree_skb_any(skb); | ||
1606 | put_page(lbq_desc->p.pg_chunk.page); | ||
1607 | } | ||
1608 | |||
1609 | /* Process an inbound completion from an rx ring. */ | ||
1610 | static void ql_process_mac_rx_skb(struct ql_adapter *qdev, | ||
1611 | struct rx_ring *rx_ring, | ||
1612 | struct ib_mac_iocb_rsp *ib_mac_rsp, | ||
1613 | u32 length, | ||
1614 | u16 vlan_id) | ||
1615 | { | ||
1616 | struct net_device *ndev = qdev->ndev; | ||
1617 | struct sk_buff *skb = NULL; | ||
1618 | struct sk_buff *new_skb = NULL; | ||
1619 | struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring); | ||
1620 | |||
1621 | skb = sbq_desc->p.skb; | ||
1622 | /* Allocate new_skb and copy */ | ||
1623 | new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN); | ||
1624 | if (new_skb == NULL) { | ||
1625 | netif_err(qdev, probe, qdev->ndev, | ||
1626 | "No skb available, drop the packet.\n"); | ||
1627 | rx_ring->rx_dropped++; | ||
1628 | return; | ||
1629 | } | ||
1630 | skb_reserve(new_skb, NET_IP_ALIGN); | ||
1631 | memcpy(skb_put(new_skb, length), skb->data, length); | ||
1632 | skb = new_skb; | ||
1633 | |||
1634 | /* Frame error, so drop the packet. */ | ||
1635 | if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { | ||
1636 | netif_info(qdev, drv, qdev->ndev, | ||
1637 | "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2); | ||
1638 | dev_kfree_skb_any(skb); | ||
1639 | rx_ring->rx_errors++; | ||
1640 | return; | ||
1641 | } | ||
1642 | |||
1643 | /* loopback self test for ethtool */ | ||
1644 | if (test_bit(QL_SELFTEST, &qdev->flags)) { | ||
1645 | ql_check_lb_frame(qdev, skb); | ||
1646 | dev_kfree_skb_any(skb); | ||
1647 | return; | ||
1648 | } | ||
1649 | |||
1650 | /* The max framesize filter on this chip is set higher than | ||
1651 | * MTU since FCoE uses 2k frames. | ||
1652 | */ | ||
1653 | if (skb->len > ndev->mtu + ETH_HLEN) { | ||
1654 | dev_kfree_skb_any(skb); | ||
1655 | rx_ring->rx_dropped++; | ||
1656 | return; | ||
1657 | } | ||
1658 | |||
1659 | prefetch(skb->data); | ||
1660 | skb->dev = ndev; | ||
1661 | if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { | ||
1662 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1663 | "%s Multicast.\n", | ||
1664 | (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == | ||
1665 | IB_MAC_IOCB_RSP_M_HASH ? "Hash" : | ||
1666 | (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == | ||
1667 | IB_MAC_IOCB_RSP_M_REG ? "Registered" : | ||
1668 | (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == | ||
1669 | IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); | ||
1670 | } | ||
1671 | if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) | ||
1672 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1673 | "Promiscuous Packet.\n"); | ||
1674 | |||
1675 | rx_ring->rx_packets++; | ||
1676 | rx_ring->rx_bytes += skb->len; | ||
1677 | skb->protocol = eth_type_trans(skb, ndev); | ||
1678 | skb_checksum_none_assert(skb); | ||
1679 | |||
1680 | /* If rx checksum is on, and there are no | ||
1681 | * csum or frame errors. | ||
1682 | */ | ||
1683 | if ((ndev->features & NETIF_F_RXCSUM) && | ||
1684 | !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { | ||
1685 | /* TCP frame. */ | ||
1686 | if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { | ||
1687 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1688 | "TCP checksum done!\n"); | ||
1689 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1690 | } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && | ||
1691 | (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { | ||
1692 | /* Unfragmented ipv4 UDP frame. */ | ||
1693 | struct iphdr *iph = (struct iphdr *) skb->data; | ||
1694 | if (!(iph->frag_off & | ||
1695 | ntohs(IP_MF|IP_OFFSET))) { | ||
1696 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1697 | netif_printk(qdev, rx_status, KERN_DEBUG, | ||
1698 | qdev->ndev, | ||
1699 | "TCP checksum done!\n"); | ||
1700 | } | ||
1701 | } | ||
1702 | } | ||
1703 | |||
1704 | skb_record_rx_queue(skb, rx_ring->cq_id); | ||
1705 | if (vlan_id != 0xffff) | ||
1706 | __vlan_hwaccel_put_tag(skb, vlan_id); | ||
1707 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) | ||
1708 | napi_gro_receive(&rx_ring->napi, skb); | ||
1709 | else | ||
1710 | netif_receive_skb(skb); | ||
1711 | } | ||
1712 | |||
1713 | static void ql_realign_skb(struct sk_buff *skb, int len) | ||
1714 | { | ||
1715 | void *temp_addr = skb->data; | ||
1716 | |||
1717 | /* Undo the skb_reserve(skb,32) we did before | ||
1718 | * giving to hardware, and realign data on | ||
1719 | * a 2-byte boundary. | ||
1720 | */ | ||
1721 | skb->data -= QLGE_SB_PAD - NET_IP_ALIGN; | ||
1722 | skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN; | ||
1723 | skb_copy_to_linear_data(skb, temp_addr, | ||
1724 | (unsigned int)len); | ||
1725 | } | ||
1726 | |||
1727 | /* | ||
1728 | * This function builds an skb for the given inbound | ||
1729 | * completion. It will be rewritten for readability in the near | ||
1730 | * future, but for not it works well. | ||
1731 | */ | ||
1732 | static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev, | ||
1733 | struct rx_ring *rx_ring, | ||
1734 | struct ib_mac_iocb_rsp *ib_mac_rsp) | ||
1735 | { | ||
1736 | struct bq_desc *lbq_desc; | ||
1737 | struct bq_desc *sbq_desc; | ||
1738 | struct sk_buff *skb = NULL; | ||
1739 | u32 length = le32_to_cpu(ib_mac_rsp->data_len); | ||
1740 | u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len); | ||
1741 | |||
1742 | /* | ||
1743 | * Handle the header buffer if present. | ||
1744 | */ | ||
1745 | if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV && | ||
1746 | ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { | ||
1747 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1748 | "Header of %d bytes in small buffer.\n", hdr_len); | ||
1749 | /* | ||
1750 | * Headers fit nicely into a small buffer. | ||
1751 | */ | ||
1752 | sbq_desc = ql_get_curr_sbuf(rx_ring); | ||
1753 | pci_unmap_single(qdev->pdev, | ||
1754 | dma_unmap_addr(sbq_desc, mapaddr), | ||
1755 | dma_unmap_len(sbq_desc, maplen), | ||
1756 | PCI_DMA_FROMDEVICE); | ||
1757 | skb = sbq_desc->p.skb; | ||
1758 | ql_realign_skb(skb, hdr_len); | ||
1759 | skb_put(skb, hdr_len); | ||
1760 | sbq_desc->p.skb = NULL; | ||
1761 | } | ||
1762 | |||
1763 | /* | ||
1764 | * Handle the data buffer(s). | ||
1765 | */ | ||
1766 | if (unlikely(!length)) { /* Is there data too? */ | ||
1767 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1768 | "No Data buffer in this packet.\n"); | ||
1769 | return skb; | ||
1770 | } | ||
1771 | |||
1772 | if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { | ||
1773 | if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { | ||
1774 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1775 | "Headers in small, data of %d bytes in small, combine them.\n", | ||
1776 | length); | ||
1777 | /* | ||
1778 | * Data is less than small buffer size so it's | ||
1779 | * stuffed in a small buffer. | ||
1780 | * For this case we append the data | ||
1781 | * from the "data" small buffer to the "header" small | ||
1782 | * buffer. | ||
1783 | */ | ||
1784 | sbq_desc = ql_get_curr_sbuf(rx_ring); | ||
1785 | pci_dma_sync_single_for_cpu(qdev->pdev, | ||
1786 | dma_unmap_addr | ||
1787 | (sbq_desc, mapaddr), | ||
1788 | dma_unmap_len | ||
1789 | (sbq_desc, maplen), | ||
1790 | PCI_DMA_FROMDEVICE); | ||
1791 | memcpy(skb_put(skb, length), | ||
1792 | sbq_desc->p.skb->data, length); | ||
1793 | pci_dma_sync_single_for_device(qdev->pdev, | ||
1794 | dma_unmap_addr | ||
1795 | (sbq_desc, | ||
1796 | mapaddr), | ||
1797 | dma_unmap_len | ||
1798 | (sbq_desc, | ||
1799 | maplen), | ||
1800 | PCI_DMA_FROMDEVICE); | ||
1801 | } else { | ||
1802 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1803 | "%d bytes in a single small buffer.\n", | ||
1804 | length); | ||
1805 | sbq_desc = ql_get_curr_sbuf(rx_ring); | ||
1806 | skb = sbq_desc->p.skb; | ||
1807 | ql_realign_skb(skb, length); | ||
1808 | skb_put(skb, length); | ||
1809 | pci_unmap_single(qdev->pdev, | ||
1810 | dma_unmap_addr(sbq_desc, | ||
1811 | mapaddr), | ||
1812 | dma_unmap_len(sbq_desc, | ||
1813 | maplen), | ||
1814 | PCI_DMA_FROMDEVICE); | ||
1815 | sbq_desc->p.skb = NULL; | ||
1816 | } | ||
1817 | } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { | ||
1818 | if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { | ||
1819 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1820 | "Header in small, %d bytes in large. Chain large to small!\n", | ||
1821 | length); | ||
1822 | /* | ||
1823 | * The data is in a single large buffer. We | ||
1824 | * chain it to the header buffer's skb and let | ||
1825 | * it rip. | ||
1826 | */ | ||
1827 | lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); | ||
1828 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1829 | "Chaining page at offset = %d, for %d bytes to skb.\n", | ||
1830 | lbq_desc->p.pg_chunk.offset, length); | ||
1831 | skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, | ||
1832 | lbq_desc->p.pg_chunk.offset, | ||
1833 | length); | ||
1834 | skb->len += length; | ||
1835 | skb->data_len += length; | ||
1836 | skb->truesize += length; | ||
1837 | } else { | ||
1838 | /* | ||
1839 | * The headers and data are in a single large buffer. We | ||
1840 | * copy it to a new skb and let it go. This can happen with | ||
1841 | * jumbo mtu on a non-TCP/UDP frame. | ||
1842 | */ | ||
1843 | lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); | ||
1844 | skb = netdev_alloc_skb(qdev->ndev, length); | ||
1845 | if (skb == NULL) { | ||
1846 | netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev, | ||
1847 | "No skb available, drop the packet.\n"); | ||
1848 | return NULL; | ||
1849 | } | ||
1850 | pci_unmap_page(qdev->pdev, | ||
1851 | dma_unmap_addr(lbq_desc, | ||
1852 | mapaddr), | ||
1853 | dma_unmap_len(lbq_desc, maplen), | ||
1854 | PCI_DMA_FROMDEVICE); | ||
1855 | skb_reserve(skb, NET_IP_ALIGN); | ||
1856 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1857 | "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", | ||
1858 | length); | ||
1859 | skb_fill_page_desc(skb, 0, | ||
1860 | lbq_desc->p.pg_chunk.page, | ||
1861 | lbq_desc->p.pg_chunk.offset, | ||
1862 | length); | ||
1863 | skb->len += length; | ||
1864 | skb->data_len += length; | ||
1865 | skb->truesize += length; | ||
1866 | length -= length; | ||
1867 | __pskb_pull_tail(skb, | ||
1868 | (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? | ||
1869 | VLAN_ETH_HLEN : ETH_HLEN); | ||
1870 | } | ||
1871 | } else { | ||
1872 | /* | ||
1873 | * The data is in a chain of large buffers | ||
1874 | * pointed to by a small buffer. We loop | ||
1875 | * thru and chain them to the our small header | ||
1876 | * buffer's skb. | ||
1877 | * frags: There are 18 max frags and our small | ||
1878 | * buffer will hold 32 of them. The thing is, | ||
1879 | * we'll use 3 max for our 9000 byte jumbo | ||
1880 | * frames. If the MTU goes up we could | ||
1881 | * eventually be in trouble. | ||
1882 | */ | ||
1883 | int size, i = 0; | ||
1884 | sbq_desc = ql_get_curr_sbuf(rx_ring); | ||
1885 | pci_unmap_single(qdev->pdev, | ||
1886 | dma_unmap_addr(sbq_desc, mapaddr), | ||
1887 | dma_unmap_len(sbq_desc, maplen), | ||
1888 | PCI_DMA_FROMDEVICE); | ||
1889 | if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) { | ||
1890 | /* | ||
1891 | * This is an non TCP/UDP IP frame, so | ||
1892 | * the headers aren't split into a small | ||
1893 | * buffer. We have to use the small buffer | ||
1894 | * that contains our sg list as our skb to | ||
1895 | * send upstairs. Copy the sg list here to | ||
1896 | * a local buffer and use it to find the | ||
1897 | * pages to chain. | ||
1898 | */ | ||
1899 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1900 | "%d bytes of headers & data in chain of large.\n", | ||
1901 | length); | ||
1902 | skb = sbq_desc->p.skb; | ||
1903 | sbq_desc->p.skb = NULL; | ||
1904 | skb_reserve(skb, NET_IP_ALIGN); | ||
1905 | } | ||
1906 | while (length > 0) { | ||
1907 | lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); | ||
1908 | size = (length < rx_ring->lbq_buf_size) ? length : | ||
1909 | rx_ring->lbq_buf_size; | ||
1910 | |||
1911 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1912 | "Adding page %d to skb for %d bytes.\n", | ||
1913 | i, size); | ||
1914 | skb_fill_page_desc(skb, i, | ||
1915 | lbq_desc->p.pg_chunk.page, | ||
1916 | lbq_desc->p.pg_chunk.offset, | ||
1917 | size); | ||
1918 | skb->len += size; | ||
1919 | skb->data_len += size; | ||
1920 | skb->truesize += size; | ||
1921 | length -= size; | ||
1922 | i++; | ||
1923 | } | ||
1924 | __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? | ||
1925 | VLAN_ETH_HLEN : ETH_HLEN); | ||
1926 | } | ||
1927 | return skb; | ||
1928 | } | ||
1929 | |||
1930 | /* Process an inbound completion from an rx ring. */ | ||
1931 | static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev, | ||
1932 | struct rx_ring *rx_ring, | ||
1933 | struct ib_mac_iocb_rsp *ib_mac_rsp, | ||
1934 | u16 vlan_id) | ||
1935 | { | ||
1936 | struct net_device *ndev = qdev->ndev; | ||
1937 | struct sk_buff *skb = NULL; | ||
1938 | |||
1939 | QL_DUMP_IB_MAC_RSP(ib_mac_rsp); | ||
1940 | |||
1941 | skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp); | ||
1942 | if (unlikely(!skb)) { | ||
1943 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1944 | "No skb available, drop packet.\n"); | ||
1945 | rx_ring->rx_dropped++; | ||
1946 | return; | ||
1947 | } | ||
1948 | |||
1949 | /* Frame error, so drop the packet. */ | ||
1950 | if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { | ||
1951 | netif_info(qdev, drv, qdev->ndev, | ||
1952 | "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2); | ||
1953 | dev_kfree_skb_any(skb); | ||
1954 | rx_ring->rx_errors++; | ||
1955 | return; | ||
1956 | } | ||
1957 | |||
1958 | /* The max framesize filter on this chip is set higher than | ||
1959 | * MTU since FCoE uses 2k frames. | ||
1960 | */ | ||
1961 | if (skb->len > ndev->mtu + ETH_HLEN) { | ||
1962 | dev_kfree_skb_any(skb); | ||
1963 | rx_ring->rx_dropped++; | ||
1964 | return; | ||
1965 | } | ||
1966 | |||
1967 | /* loopback self test for ethtool */ | ||
1968 | if (test_bit(QL_SELFTEST, &qdev->flags)) { | ||
1969 | ql_check_lb_frame(qdev, skb); | ||
1970 | dev_kfree_skb_any(skb); | ||
1971 | return; | ||
1972 | } | ||
1973 | |||
1974 | prefetch(skb->data); | ||
1975 | skb->dev = ndev; | ||
1976 | if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { | ||
1977 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n", | ||
1978 | (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == | ||
1979 | IB_MAC_IOCB_RSP_M_HASH ? "Hash" : | ||
1980 | (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == | ||
1981 | IB_MAC_IOCB_RSP_M_REG ? "Registered" : | ||
1982 | (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == | ||
1983 | IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); | ||
1984 | rx_ring->rx_multicast++; | ||
1985 | } | ||
1986 | if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) { | ||
1987 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
1988 | "Promiscuous Packet.\n"); | ||
1989 | } | ||
1990 | |||
1991 | skb->protocol = eth_type_trans(skb, ndev); | ||
1992 | skb_checksum_none_assert(skb); | ||
1993 | |||
1994 | /* If rx checksum is on, and there are no | ||
1995 | * csum or frame errors. | ||
1996 | */ | ||
1997 | if ((ndev->features & NETIF_F_RXCSUM) && | ||
1998 | !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { | ||
1999 | /* TCP frame. */ | ||
2000 | if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { | ||
2001 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
2002 | "TCP checksum done!\n"); | ||
2003 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
2004 | } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && | ||
2005 | (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { | ||
2006 | /* Unfragmented ipv4 UDP frame. */ | ||
2007 | struct iphdr *iph = (struct iphdr *) skb->data; | ||
2008 | if (!(iph->frag_off & | ||
2009 | ntohs(IP_MF|IP_OFFSET))) { | ||
2010 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
2011 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
2012 | "TCP checksum done!\n"); | ||
2013 | } | ||
2014 | } | ||
2015 | } | ||
2016 | |||
2017 | rx_ring->rx_packets++; | ||
2018 | rx_ring->rx_bytes += skb->len; | ||
2019 | skb_record_rx_queue(skb, rx_ring->cq_id); | ||
2020 | if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0)) | ||
2021 | __vlan_hwaccel_put_tag(skb, vlan_id); | ||
2022 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) | ||
2023 | napi_gro_receive(&rx_ring->napi, skb); | ||
2024 | else | ||
2025 | netif_receive_skb(skb); | ||
2026 | } | ||
2027 | |||
2028 | /* Process an inbound completion from an rx ring. */ | ||
2029 | static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev, | ||
2030 | struct rx_ring *rx_ring, | ||
2031 | struct ib_mac_iocb_rsp *ib_mac_rsp) | ||
2032 | { | ||
2033 | u32 length = le32_to_cpu(ib_mac_rsp->data_len); | ||
2034 | u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? | ||
2035 | ((le16_to_cpu(ib_mac_rsp->vlan_id) & | ||
2036 | IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff; | ||
2037 | |||
2038 | QL_DUMP_IB_MAC_RSP(ib_mac_rsp); | ||
2039 | |||
2040 | if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) { | ||
2041 | /* The data and headers are split into | ||
2042 | * separate buffers. | ||
2043 | */ | ||
2044 | ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp, | ||
2045 | vlan_id); | ||
2046 | } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { | ||
2047 | /* The data fit in a single small buffer. | ||
2048 | * Allocate a new skb, copy the data and | ||
2049 | * return the buffer to the free pool. | ||
2050 | */ | ||
2051 | ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp, | ||
2052 | length, vlan_id); | ||
2053 | } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) && | ||
2054 | !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) && | ||
2055 | (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) { | ||
2056 | /* TCP packet in a page chunk that's been checksummed. | ||
2057 | * Tack it on to our GRO skb and let it go. | ||
2058 | */ | ||
2059 | ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp, | ||
2060 | length, vlan_id); | ||
2061 | } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { | ||
2062 | /* Non-TCP packet in a page chunk. Allocate an | ||
2063 | * skb, tack it on frags, and send it up. | ||
2064 | */ | ||
2065 | ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp, | ||
2066 | length, vlan_id); | ||
2067 | } else { | ||
2068 | /* Non-TCP/UDP large frames that span multiple buffers | ||
2069 | * can be processed corrrectly by the split frame logic. | ||
2070 | */ | ||
2071 | ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp, | ||
2072 | vlan_id); | ||
2073 | } | ||
2074 | |||
2075 | return (unsigned long)length; | ||
2076 | } | ||
2077 | |||
2078 | /* Process an outbound completion from an rx ring. */ | ||
2079 | static void ql_process_mac_tx_intr(struct ql_adapter *qdev, | ||
2080 | struct ob_mac_iocb_rsp *mac_rsp) | ||
2081 | { | ||
2082 | struct tx_ring *tx_ring; | ||
2083 | struct tx_ring_desc *tx_ring_desc; | ||
2084 | |||
2085 | QL_DUMP_OB_MAC_RSP(mac_rsp); | ||
2086 | tx_ring = &qdev->tx_ring[mac_rsp->txq_idx]; | ||
2087 | tx_ring_desc = &tx_ring->q[mac_rsp->tid]; | ||
2088 | ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); | ||
2089 | tx_ring->tx_bytes += (tx_ring_desc->skb)->len; | ||
2090 | tx_ring->tx_packets++; | ||
2091 | dev_kfree_skb(tx_ring_desc->skb); | ||
2092 | tx_ring_desc->skb = NULL; | ||
2093 | |||
2094 | if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E | | ||
2095 | OB_MAC_IOCB_RSP_S | | ||
2096 | OB_MAC_IOCB_RSP_L | | ||
2097 | OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) { | ||
2098 | if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) { | ||
2099 | netif_warn(qdev, tx_done, qdev->ndev, | ||
2100 | "Total descriptor length did not match transfer length.\n"); | ||
2101 | } | ||
2102 | if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) { | ||
2103 | netif_warn(qdev, tx_done, qdev->ndev, | ||
2104 | "Frame too short to be valid, not sent.\n"); | ||
2105 | } | ||
2106 | if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) { | ||
2107 | netif_warn(qdev, tx_done, qdev->ndev, | ||
2108 | "Frame too long, but sent anyway.\n"); | ||
2109 | } | ||
2110 | if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) { | ||
2111 | netif_warn(qdev, tx_done, qdev->ndev, | ||
2112 | "PCI backplane error. Frame not sent.\n"); | ||
2113 | } | ||
2114 | } | ||
2115 | atomic_inc(&tx_ring->tx_count); | ||
2116 | } | ||
2117 | |||
2118 | /* Fire up a handler to reset the MPI processor. */ | ||
2119 | void ql_queue_fw_error(struct ql_adapter *qdev) | ||
2120 | { | ||
2121 | ql_link_off(qdev); | ||
2122 | queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0); | ||
2123 | } | ||
2124 | |||
2125 | void ql_queue_asic_error(struct ql_adapter *qdev) | ||
2126 | { | ||
2127 | ql_link_off(qdev); | ||
2128 | ql_disable_interrupts(qdev); | ||
2129 | /* Clear adapter up bit to signal the recovery | ||
2130 | * process that it shouldn't kill the reset worker | ||
2131 | * thread | ||
2132 | */ | ||
2133 | clear_bit(QL_ADAPTER_UP, &qdev->flags); | ||
2134 | /* Set asic recovery bit to indicate reset process that we are | ||
2135 | * in fatal error recovery process rather than normal close | ||
2136 | */ | ||
2137 | set_bit(QL_ASIC_RECOVERY, &qdev->flags); | ||
2138 | queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0); | ||
2139 | } | ||
2140 | |||
2141 | static void ql_process_chip_ae_intr(struct ql_adapter *qdev, | ||
2142 | struct ib_ae_iocb_rsp *ib_ae_rsp) | ||
2143 | { | ||
2144 | switch (ib_ae_rsp->event) { | ||
2145 | case MGMT_ERR_EVENT: | ||
2146 | netif_err(qdev, rx_err, qdev->ndev, | ||
2147 | "Management Processor Fatal Error.\n"); | ||
2148 | ql_queue_fw_error(qdev); | ||
2149 | return; | ||
2150 | |||
2151 | case CAM_LOOKUP_ERR_EVENT: | ||
2152 | netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n"); | ||
2153 | netdev_err(qdev->ndev, "This event shouldn't occur.\n"); | ||
2154 | ql_queue_asic_error(qdev); | ||
2155 | return; | ||
2156 | |||
2157 | case SOFT_ECC_ERROR_EVENT: | ||
2158 | netdev_err(qdev->ndev, "Soft ECC error detected.\n"); | ||
2159 | ql_queue_asic_error(qdev); | ||
2160 | break; | ||
2161 | |||
2162 | case PCI_ERR_ANON_BUF_RD: | ||
2163 | netdev_err(qdev->ndev, "PCI error occurred when reading " | ||
2164 | "anonymous buffers from rx_ring %d.\n", | ||
2165 | ib_ae_rsp->q_id); | ||
2166 | ql_queue_asic_error(qdev); | ||
2167 | break; | ||
2168 | |||
2169 | default: | ||
2170 | netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n", | ||
2171 | ib_ae_rsp->event); | ||
2172 | ql_queue_asic_error(qdev); | ||
2173 | break; | ||
2174 | } | ||
2175 | } | ||
2176 | |||
2177 | static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring) | ||
2178 | { | ||
2179 | struct ql_adapter *qdev = rx_ring->qdev; | ||
2180 | u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); | ||
2181 | struct ob_mac_iocb_rsp *net_rsp = NULL; | ||
2182 | int count = 0; | ||
2183 | |||
2184 | struct tx_ring *tx_ring; | ||
2185 | /* While there are entries in the completion queue. */ | ||
2186 | while (prod != rx_ring->cnsmr_idx) { | ||
2187 | |||
2188 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
2189 | "cq_id = %d, prod = %d, cnsmr = %d.\n.", | ||
2190 | rx_ring->cq_id, prod, rx_ring->cnsmr_idx); | ||
2191 | |||
2192 | net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry; | ||
2193 | rmb(); | ||
2194 | switch (net_rsp->opcode) { | ||
2195 | |||
2196 | case OPCODE_OB_MAC_TSO_IOCB: | ||
2197 | case OPCODE_OB_MAC_IOCB: | ||
2198 | ql_process_mac_tx_intr(qdev, net_rsp); | ||
2199 | break; | ||
2200 | default: | ||
2201 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
2202 | "Hit default case, not handled! dropping the packet, opcode = %x.\n", | ||
2203 | net_rsp->opcode); | ||
2204 | } | ||
2205 | count++; | ||
2206 | ql_update_cq(rx_ring); | ||
2207 | prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); | ||
2208 | } | ||
2209 | if (!net_rsp) | ||
2210 | return 0; | ||
2211 | ql_write_cq_idx(rx_ring); | ||
2212 | tx_ring = &qdev->tx_ring[net_rsp->txq_idx]; | ||
2213 | if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) { | ||
2214 | if (atomic_read(&tx_ring->queue_stopped) && | ||
2215 | (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4))) | ||
2216 | /* | ||
2217 | * The queue got stopped because the tx_ring was full. | ||
2218 | * Wake it up, because it's now at least 25% empty. | ||
2219 | */ | ||
2220 | netif_wake_subqueue(qdev->ndev, tx_ring->wq_id); | ||
2221 | } | ||
2222 | |||
2223 | return count; | ||
2224 | } | ||
2225 | |||
2226 | static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget) | ||
2227 | { | ||
2228 | struct ql_adapter *qdev = rx_ring->qdev; | ||
2229 | u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); | ||
2230 | struct ql_net_rsp_iocb *net_rsp; | ||
2231 | int count = 0; | ||
2232 | |||
2233 | /* While there are entries in the completion queue. */ | ||
2234 | while (prod != rx_ring->cnsmr_idx) { | ||
2235 | |||
2236 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
2237 | "cq_id = %d, prod = %d, cnsmr = %d.\n.", | ||
2238 | rx_ring->cq_id, prod, rx_ring->cnsmr_idx); | ||
2239 | |||
2240 | net_rsp = rx_ring->curr_entry; | ||
2241 | rmb(); | ||
2242 | switch (net_rsp->opcode) { | ||
2243 | case OPCODE_IB_MAC_IOCB: | ||
2244 | ql_process_mac_rx_intr(qdev, rx_ring, | ||
2245 | (struct ib_mac_iocb_rsp *) | ||
2246 | net_rsp); | ||
2247 | break; | ||
2248 | |||
2249 | case OPCODE_IB_AE_IOCB: | ||
2250 | ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *) | ||
2251 | net_rsp); | ||
2252 | break; | ||
2253 | default: | ||
2254 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
2255 | "Hit default case, not handled! dropping the packet, opcode = %x.\n", | ||
2256 | net_rsp->opcode); | ||
2257 | break; | ||
2258 | } | ||
2259 | count++; | ||
2260 | ql_update_cq(rx_ring); | ||
2261 | prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); | ||
2262 | if (count == budget) | ||
2263 | break; | ||
2264 | } | ||
2265 | ql_update_buffer_queues(qdev, rx_ring); | ||
2266 | ql_write_cq_idx(rx_ring); | ||
2267 | return count; | ||
2268 | } | ||
2269 | |||
2270 | static int ql_napi_poll_msix(struct napi_struct *napi, int budget) | ||
2271 | { | ||
2272 | struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi); | ||
2273 | struct ql_adapter *qdev = rx_ring->qdev; | ||
2274 | struct rx_ring *trx_ring; | ||
2275 | int i, work_done = 0; | ||
2276 | struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id]; | ||
2277 | |||
2278 | netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, | ||
2279 | "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id); | ||
2280 | |||
2281 | /* Service the TX rings first. They start | ||
2282 | * right after the RSS rings. */ | ||
2283 | for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) { | ||
2284 | trx_ring = &qdev->rx_ring[i]; | ||
2285 | /* If this TX completion ring belongs to this vector and | ||
2286 | * it's not empty then service it. | ||
2287 | */ | ||
2288 | if ((ctx->irq_mask & (1 << trx_ring->cq_id)) && | ||
2289 | (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) != | ||
2290 | trx_ring->cnsmr_idx)) { | ||
2291 | netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, | ||
2292 | "%s: Servicing TX completion ring %d.\n", | ||
2293 | __func__, trx_ring->cq_id); | ||
2294 | ql_clean_outbound_rx_ring(trx_ring); | ||
2295 | } | ||
2296 | } | ||
2297 | |||
2298 | /* | ||
2299 | * Now service the RSS ring if it's active. | ||
2300 | */ | ||
2301 | if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != | ||
2302 | rx_ring->cnsmr_idx) { | ||
2303 | netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, | ||
2304 | "%s: Servicing RX completion ring %d.\n", | ||
2305 | __func__, rx_ring->cq_id); | ||
2306 | work_done = ql_clean_inbound_rx_ring(rx_ring, budget); | ||
2307 | } | ||
2308 | |||
2309 | if (work_done < budget) { | ||
2310 | napi_complete(napi); | ||
2311 | ql_enable_completion_interrupt(qdev, rx_ring->irq); | ||
2312 | } | ||
2313 | return work_done; | ||
2314 | } | ||
2315 | |||
2316 | static void qlge_vlan_mode(struct net_device *ndev, u32 features) | ||
2317 | { | ||
2318 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
2319 | |||
2320 | if (features & NETIF_F_HW_VLAN_RX) { | ||
2321 | netif_printk(qdev, ifup, KERN_DEBUG, ndev, | ||
2322 | "Turning on VLAN in NIC_RCV_CFG.\n"); | ||
2323 | ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK | | ||
2324 | NIC_RCV_CFG_VLAN_MATCH_AND_NON); | ||
2325 | } else { | ||
2326 | netif_printk(qdev, ifup, KERN_DEBUG, ndev, | ||
2327 | "Turning off VLAN in NIC_RCV_CFG.\n"); | ||
2328 | ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK); | ||
2329 | } | ||
2330 | } | ||
2331 | |||
2332 | static u32 qlge_fix_features(struct net_device *ndev, u32 features) | ||
2333 | { | ||
2334 | /* | ||
2335 | * Since there is no support for separate rx/tx vlan accel | ||
2336 | * enable/disable make sure tx flag is always in same state as rx. | ||
2337 | */ | ||
2338 | if (features & NETIF_F_HW_VLAN_RX) | ||
2339 | features |= NETIF_F_HW_VLAN_TX; | ||
2340 | else | ||
2341 | features &= ~NETIF_F_HW_VLAN_TX; | ||
2342 | |||
2343 | return features; | ||
2344 | } | ||
2345 | |||
2346 | static int qlge_set_features(struct net_device *ndev, u32 features) | ||
2347 | { | ||
2348 | u32 changed = ndev->features ^ features; | ||
2349 | |||
2350 | if (changed & NETIF_F_HW_VLAN_RX) | ||
2351 | qlge_vlan_mode(ndev, features); | ||
2352 | |||
2353 | return 0; | ||
2354 | } | ||
2355 | |||
2356 | static void __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid) | ||
2357 | { | ||
2358 | u32 enable_bit = MAC_ADDR_E; | ||
2359 | |||
2360 | if (ql_set_mac_addr_reg | ||
2361 | (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) { | ||
2362 | netif_err(qdev, ifup, qdev->ndev, | ||
2363 | "Failed to init vlan address.\n"); | ||
2364 | } | ||
2365 | } | ||
2366 | |||
2367 | static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid) | ||
2368 | { | ||
2369 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
2370 | int status; | ||
2371 | |||
2372 | status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); | ||
2373 | if (status) | ||
2374 | return; | ||
2375 | |||
2376 | __qlge_vlan_rx_add_vid(qdev, vid); | ||
2377 | set_bit(vid, qdev->active_vlans); | ||
2378 | |||
2379 | ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); | ||
2380 | } | ||
2381 | |||
2382 | static void __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid) | ||
2383 | { | ||
2384 | u32 enable_bit = 0; | ||
2385 | |||
2386 | if (ql_set_mac_addr_reg | ||
2387 | (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) { | ||
2388 | netif_err(qdev, ifup, qdev->ndev, | ||
2389 | "Failed to clear vlan address.\n"); | ||
2390 | } | ||
2391 | } | ||
2392 | |||
2393 | static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid) | ||
2394 | { | ||
2395 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
2396 | int status; | ||
2397 | |||
2398 | status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); | ||
2399 | if (status) | ||
2400 | return; | ||
2401 | |||
2402 | __qlge_vlan_rx_kill_vid(qdev, vid); | ||
2403 | clear_bit(vid, qdev->active_vlans); | ||
2404 | |||
2405 | ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); | ||
2406 | } | ||
2407 | |||
2408 | static void qlge_restore_vlan(struct ql_adapter *qdev) | ||
2409 | { | ||
2410 | int status; | ||
2411 | u16 vid; | ||
2412 | |||
2413 | status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); | ||
2414 | if (status) | ||
2415 | return; | ||
2416 | |||
2417 | for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID) | ||
2418 | __qlge_vlan_rx_add_vid(qdev, vid); | ||
2419 | |||
2420 | ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); | ||
2421 | } | ||
2422 | |||
2423 | /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */ | ||
2424 | static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id) | ||
2425 | { | ||
2426 | struct rx_ring *rx_ring = dev_id; | ||
2427 | napi_schedule(&rx_ring->napi); | ||
2428 | return IRQ_HANDLED; | ||
2429 | } | ||
2430 | |||
2431 | /* This handles a fatal error, MPI activity, and the default | ||
2432 | * rx_ring in an MSI-X multiple vector environment. | ||
2433 | * In MSI/Legacy environment it also process the rest of | ||
2434 | * the rx_rings. | ||
2435 | */ | ||
2436 | static irqreturn_t qlge_isr(int irq, void *dev_id) | ||
2437 | { | ||
2438 | struct rx_ring *rx_ring = dev_id; | ||
2439 | struct ql_adapter *qdev = rx_ring->qdev; | ||
2440 | struct intr_context *intr_context = &qdev->intr_context[0]; | ||
2441 | u32 var; | ||
2442 | int work_done = 0; | ||
2443 | |||
2444 | spin_lock(&qdev->hw_lock); | ||
2445 | if (atomic_read(&qdev->intr_context[0].irq_cnt)) { | ||
2446 | netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, | ||
2447 | "Shared Interrupt, Not ours!\n"); | ||
2448 | spin_unlock(&qdev->hw_lock); | ||
2449 | return IRQ_NONE; | ||
2450 | } | ||
2451 | spin_unlock(&qdev->hw_lock); | ||
2452 | |||
2453 | var = ql_disable_completion_interrupt(qdev, intr_context->intr); | ||
2454 | |||
2455 | /* | ||
2456 | * Check for fatal error. | ||
2457 | */ | ||
2458 | if (var & STS_FE) { | ||
2459 | ql_queue_asic_error(qdev); | ||
2460 | netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var); | ||
2461 | var = ql_read32(qdev, ERR_STS); | ||
2462 | netdev_err(qdev->ndev, "Resetting chip. " | ||
2463 | "Error Status Register = 0x%x\n", var); | ||
2464 | return IRQ_HANDLED; | ||
2465 | } | ||
2466 | |||
2467 | /* | ||
2468 | * Check MPI processor activity. | ||
2469 | */ | ||
2470 | if ((var & STS_PI) && | ||
2471 | (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) { | ||
2472 | /* | ||
2473 | * We've got an async event or mailbox completion. | ||
2474 | * Handle it and clear the source of the interrupt. | ||
2475 | */ | ||
2476 | netif_err(qdev, intr, qdev->ndev, | ||
2477 | "Got MPI processor interrupt.\n"); | ||
2478 | ql_disable_completion_interrupt(qdev, intr_context->intr); | ||
2479 | ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16)); | ||
2480 | queue_delayed_work_on(smp_processor_id(), | ||
2481 | qdev->workqueue, &qdev->mpi_work, 0); | ||
2482 | work_done++; | ||
2483 | } | ||
2484 | |||
2485 | /* | ||
2486 | * Get the bit-mask that shows the active queues for this | ||
2487 | * pass. Compare it to the queues that this irq services | ||
2488 | * and call napi if there's a match. | ||
2489 | */ | ||
2490 | var = ql_read32(qdev, ISR1); | ||
2491 | if (var & intr_context->irq_mask) { | ||
2492 | netif_info(qdev, intr, qdev->ndev, | ||
2493 | "Waking handler for rx_ring[0].\n"); | ||
2494 | ql_disable_completion_interrupt(qdev, intr_context->intr); | ||
2495 | napi_schedule(&rx_ring->napi); | ||
2496 | work_done++; | ||
2497 | } | ||
2498 | ql_enable_completion_interrupt(qdev, intr_context->intr); | ||
2499 | return work_done ? IRQ_HANDLED : IRQ_NONE; | ||
2500 | } | ||
2501 | |||
2502 | static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr) | ||
2503 | { | ||
2504 | |||
2505 | if (skb_is_gso(skb)) { | ||
2506 | int err; | ||
2507 | if (skb_header_cloned(skb)) { | ||
2508 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
2509 | if (err) | ||
2510 | return err; | ||
2511 | } | ||
2512 | |||
2513 | mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; | ||
2514 | mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC; | ||
2515 | mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); | ||
2516 | mac_iocb_ptr->total_hdrs_len = | ||
2517 | cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb)); | ||
2518 | mac_iocb_ptr->net_trans_offset = | ||
2519 | cpu_to_le16(skb_network_offset(skb) | | ||
2520 | skb_transport_offset(skb) | ||
2521 | << OB_MAC_TRANSPORT_HDR_SHIFT); | ||
2522 | mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); | ||
2523 | mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO; | ||
2524 | if (likely(skb->protocol == htons(ETH_P_IP))) { | ||
2525 | struct iphdr *iph = ip_hdr(skb); | ||
2526 | iph->check = 0; | ||
2527 | mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; | ||
2528 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
2529 | iph->daddr, 0, | ||
2530 | IPPROTO_TCP, | ||
2531 | 0); | ||
2532 | } else if (skb->protocol == htons(ETH_P_IPV6)) { | ||
2533 | mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6; | ||
2534 | tcp_hdr(skb)->check = | ||
2535 | ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
2536 | &ipv6_hdr(skb)->daddr, | ||
2537 | 0, IPPROTO_TCP, 0); | ||
2538 | } | ||
2539 | return 1; | ||
2540 | } | ||
2541 | return 0; | ||
2542 | } | ||
2543 | |||
2544 | static void ql_hw_csum_setup(struct sk_buff *skb, | ||
2545 | struct ob_mac_tso_iocb_req *mac_iocb_ptr) | ||
2546 | { | ||
2547 | int len; | ||
2548 | struct iphdr *iph = ip_hdr(skb); | ||
2549 | __sum16 *check; | ||
2550 | mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; | ||
2551 | mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); | ||
2552 | mac_iocb_ptr->net_trans_offset = | ||
2553 | cpu_to_le16(skb_network_offset(skb) | | ||
2554 | skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT); | ||
2555 | |||
2556 | mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; | ||
2557 | len = (ntohs(iph->tot_len) - (iph->ihl << 2)); | ||
2558 | if (likely(iph->protocol == IPPROTO_TCP)) { | ||
2559 | check = &(tcp_hdr(skb)->check); | ||
2560 | mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC; | ||
2561 | mac_iocb_ptr->total_hdrs_len = | ||
2562 | cpu_to_le16(skb_transport_offset(skb) + | ||
2563 | (tcp_hdr(skb)->doff << 2)); | ||
2564 | } else { | ||
2565 | check = &(udp_hdr(skb)->check); | ||
2566 | mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC; | ||
2567 | mac_iocb_ptr->total_hdrs_len = | ||
2568 | cpu_to_le16(skb_transport_offset(skb) + | ||
2569 | sizeof(struct udphdr)); | ||
2570 | } | ||
2571 | *check = ~csum_tcpudp_magic(iph->saddr, | ||
2572 | iph->daddr, len, iph->protocol, 0); | ||
2573 | } | ||
2574 | |||
2575 | static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev) | ||
2576 | { | ||
2577 | struct tx_ring_desc *tx_ring_desc; | ||
2578 | struct ob_mac_iocb_req *mac_iocb_ptr; | ||
2579 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
2580 | int tso; | ||
2581 | struct tx_ring *tx_ring; | ||
2582 | u32 tx_ring_idx = (u32) skb->queue_mapping; | ||
2583 | |||
2584 | tx_ring = &qdev->tx_ring[tx_ring_idx]; | ||
2585 | |||
2586 | if (skb_padto(skb, ETH_ZLEN)) | ||
2587 | return NETDEV_TX_OK; | ||
2588 | |||
2589 | if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) { | ||
2590 | netif_info(qdev, tx_queued, qdev->ndev, | ||
2591 | "%s: shutting down tx queue %d du to lack of resources.\n", | ||
2592 | __func__, tx_ring_idx); | ||
2593 | netif_stop_subqueue(ndev, tx_ring->wq_id); | ||
2594 | atomic_inc(&tx_ring->queue_stopped); | ||
2595 | tx_ring->tx_errors++; | ||
2596 | return NETDEV_TX_BUSY; | ||
2597 | } | ||
2598 | tx_ring_desc = &tx_ring->q[tx_ring->prod_idx]; | ||
2599 | mac_iocb_ptr = tx_ring_desc->queue_entry; | ||
2600 | memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr)); | ||
2601 | |||
2602 | mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB; | ||
2603 | mac_iocb_ptr->tid = tx_ring_desc->index; | ||
2604 | /* We use the upper 32-bits to store the tx queue for this IO. | ||
2605 | * When we get the completion we can use it to establish the context. | ||
2606 | */ | ||
2607 | mac_iocb_ptr->txq_idx = tx_ring_idx; | ||
2608 | tx_ring_desc->skb = skb; | ||
2609 | |||
2610 | mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len); | ||
2611 | |||
2612 | if (vlan_tx_tag_present(skb)) { | ||
2613 | netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, | ||
2614 | "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb)); | ||
2615 | mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V; | ||
2616 | mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb)); | ||
2617 | } | ||
2618 | tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); | ||
2619 | if (tso < 0) { | ||
2620 | dev_kfree_skb_any(skb); | ||
2621 | return NETDEV_TX_OK; | ||
2622 | } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) { | ||
2623 | ql_hw_csum_setup(skb, | ||
2624 | (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); | ||
2625 | } | ||
2626 | if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != | ||
2627 | NETDEV_TX_OK) { | ||
2628 | netif_err(qdev, tx_queued, qdev->ndev, | ||
2629 | "Could not map the segments.\n"); | ||
2630 | tx_ring->tx_errors++; | ||
2631 | return NETDEV_TX_BUSY; | ||
2632 | } | ||
2633 | QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr); | ||
2634 | tx_ring->prod_idx++; | ||
2635 | if (tx_ring->prod_idx == tx_ring->wq_len) | ||
2636 | tx_ring->prod_idx = 0; | ||
2637 | wmb(); | ||
2638 | |||
2639 | ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg); | ||
2640 | netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, | ||
2641 | "tx queued, slot %d, len %d\n", | ||
2642 | tx_ring->prod_idx, skb->len); | ||
2643 | |||
2644 | atomic_dec(&tx_ring->tx_count); | ||
2645 | return NETDEV_TX_OK; | ||
2646 | } | ||
2647 | |||
2648 | |||
2649 | static void ql_free_shadow_space(struct ql_adapter *qdev) | ||
2650 | { | ||
2651 | if (qdev->rx_ring_shadow_reg_area) { | ||
2652 | pci_free_consistent(qdev->pdev, | ||
2653 | PAGE_SIZE, | ||
2654 | qdev->rx_ring_shadow_reg_area, | ||
2655 | qdev->rx_ring_shadow_reg_dma); | ||
2656 | qdev->rx_ring_shadow_reg_area = NULL; | ||
2657 | } | ||
2658 | if (qdev->tx_ring_shadow_reg_area) { | ||
2659 | pci_free_consistent(qdev->pdev, | ||
2660 | PAGE_SIZE, | ||
2661 | qdev->tx_ring_shadow_reg_area, | ||
2662 | qdev->tx_ring_shadow_reg_dma); | ||
2663 | qdev->tx_ring_shadow_reg_area = NULL; | ||
2664 | } | ||
2665 | } | ||
2666 | |||
2667 | static int ql_alloc_shadow_space(struct ql_adapter *qdev) | ||
2668 | { | ||
2669 | qdev->rx_ring_shadow_reg_area = | ||
2670 | pci_alloc_consistent(qdev->pdev, | ||
2671 | PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma); | ||
2672 | if (qdev->rx_ring_shadow_reg_area == NULL) { | ||
2673 | netif_err(qdev, ifup, qdev->ndev, | ||
2674 | "Allocation of RX shadow space failed.\n"); | ||
2675 | return -ENOMEM; | ||
2676 | } | ||
2677 | memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE); | ||
2678 | qdev->tx_ring_shadow_reg_area = | ||
2679 | pci_alloc_consistent(qdev->pdev, PAGE_SIZE, | ||
2680 | &qdev->tx_ring_shadow_reg_dma); | ||
2681 | if (qdev->tx_ring_shadow_reg_area == NULL) { | ||
2682 | netif_err(qdev, ifup, qdev->ndev, | ||
2683 | "Allocation of TX shadow space failed.\n"); | ||
2684 | goto err_wqp_sh_area; | ||
2685 | } | ||
2686 | memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE); | ||
2687 | return 0; | ||
2688 | |||
2689 | err_wqp_sh_area: | ||
2690 | pci_free_consistent(qdev->pdev, | ||
2691 | PAGE_SIZE, | ||
2692 | qdev->rx_ring_shadow_reg_area, | ||
2693 | qdev->rx_ring_shadow_reg_dma); | ||
2694 | return -ENOMEM; | ||
2695 | } | ||
2696 | |||
2697 | static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) | ||
2698 | { | ||
2699 | struct tx_ring_desc *tx_ring_desc; | ||
2700 | int i; | ||
2701 | struct ob_mac_iocb_req *mac_iocb_ptr; | ||
2702 | |||
2703 | mac_iocb_ptr = tx_ring->wq_base; | ||
2704 | tx_ring_desc = tx_ring->q; | ||
2705 | for (i = 0; i < tx_ring->wq_len; i++) { | ||
2706 | tx_ring_desc->index = i; | ||
2707 | tx_ring_desc->skb = NULL; | ||
2708 | tx_ring_desc->queue_entry = mac_iocb_ptr; | ||
2709 | mac_iocb_ptr++; | ||
2710 | tx_ring_desc++; | ||
2711 | } | ||
2712 | atomic_set(&tx_ring->tx_count, tx_ring->wq_len); | ||
2713 | atomic_set(&tx_ring->queue_stopped, 0); | ||
2714 | } | ||
2715 | |||
2716 | static void ql_free_tx_resources(struct ql_adapter *qdev, | ||
2717 | struct tx_ring *tx_ring) | ||
2718 | { | ||
2719 | if (tx_ring->wq_base) { | ||
2720 | pci_free_consistent(qdev->pdev, tx_ring->wq_size, | ||
2721 | tx_ring->wq_base, tx_ring->wq_base_dma); | ||
2722 | tx_ring->wq_base = NULL; | ||
2723 | } | ||
2724 | kfree(tx_ring->q); | ||
2725 | tx_ring->q = NULL; | ||
2726 | } | ||
2727 | |||
2728 | static int ql_alloc_tx_resources(struct ql_adapter *qdev, | ||
2729 | struct tx_ring *tx_ring) | ||
2730 | { | ||
2731 | tx_ring->wq_base = | ||
2732 | pci_alloc_consistent(qdev->pdev, tx_ring->wq_size, | ||
2733 | &tx_ring->wq_base_dma); | ||
2734 | |||
2735 | if ((tx_ring->wq_base == NULL) || | ||
2736 | tx_ring->wq_base_dma & WQ_ADDR_ALIGN) { | ||
2737 | netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n"); | ||
2738 | return -ENOMEM; | ||
2739 | } | ||
2740 | tx_ring->q = | ||
2741 | kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL); | ||
2742 | if (tx_ring->q == NULL) | ||
2743 | goto err; | ||
2744 | |||
2745 | return 0; | ||
2746 | err: | ||
2747 | pci_free_consistent(qdev->pdev, tx_ring->wq_size, | ||
2748 | tx_ring->wq_base, tx_ring->wq_base_dma); | ||
2749 | return -ENOMEM; | ||
2750 | } | ||
2751 | |||
2752 | static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) | ||
2753 | { | ||
2754 | struct bq_desc *lbq_desc; | ||
2755 | |||
2756 | uint32_t curr_idx, clean_idx; | ||
2757 | |||
2758 | curr_idx = rx_ring->lbq_curr_idx; | ||
2759 | clean_idx = rx_ring->lbq_clean_idx; | ||
2760 | while (curr_idx != clean_idx) { | ||
2761 | lbq_desc = &rx_ring->lbq[curr_idx]; | ||
2762 | |||
2763 | if (lbq_desc->p.pg_chunk.last_flag) { | ||
2764 | pci_unmap_page(qdev->pdev, | ||
2765 | lbq_desc->p.pg_chunk.map, | ||
2766 | ql_lbq_block_size(qdev), | ||
2767 | PCI_DMA_FROMDEVICE); | ||
2768 | lbq_desc->p.pg_chunk.last_flag = 0; | ||
2769 | } | ||
2770 | |||
2771 | put_page(lbq_desc->p.pg_chunk.page); | ||
2772 | lbq_desc->p.pg_chunk.page = NULL; | ||
2773 | |||
2774 | if (++curr_idx == rx_ring->lbq_len) | ||
2775 | curr_idx = 0; | ||
2776 | |||
2777 | } | ||
2778 | } | ||
2779 | |||
2780 | static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) | ||
2781 | { | ||
2782 | int i; | ||
2783 | struct bq_desc *sbq_desc; | ||
2784 | |||
2785 | for (i = 0; i < rx_ring->sbq_len; i++) { | ||
2786 | sbq_desc = &rx_ring->sbq[i]; | ||
2787 | if (sbq_desc == NULL) { | ||
2788 | netif_err(qdev, ifup, qdev->ndev, | ||
2789 | "sbq_desc %d is NULL.\n", i); | ||
2790 | return; | ||
2791 | } | ||
2792 | if (sbq_desc->p.skb) { | ||
2793 | pci_unmap_single(qdev->pdev, | ||
2794 | dma_unmap_addr(sbq_desc, mapaddr), | ||
2795 | dma_unmap_len(sbq_desc, maplen), | ||
2796 | PCI_DMA_FROMDEVICE); | ||
2797 | dev_kfree_skb(sbq_desc->p.skb); | ||
2798 | sbq_desc->p.skb = NULL; | ||
2799 | } | ||
2800 | } | ||
2801 | } | ||
2802 | |||
2803 | /* Free all large and small rx buffers associated | ||
2804 | * with the completion queues for this device. | ||
2805 | */ | ||
2806 | static void ql_free_rx_buffers(struct ql_adapter *qdev) | ||
2807 | { | ||
2808 | int i; | ||
2809 | struct rx_ring *rx_ring; | ||
2810 | |||
2811 | for (i = 0; i < qdev->rx_ring_count; i++) { | ||
2812 | rx_ring = &qdev->rx_ring[i]; | ||
2813 | if (rx_ring->lbq) | ||
2814 | ql_free_lbq_buffers(qdev, rx_ring); | ||
2815 | if (rx_ring->sbq) | ||
2816 | ql_free_sbq_buffers(qdev, rx_ring); | ||
2817 | } | ||
2818 | } | ||
2819 | |||
2820 | static void ql_alloc_rx_buffers(struct ql_adapter *qdev) | ||
2821 | { | ||
2822 | struct rx_ring *rx_ring; | ||
2823 | int i; | ||
2824 | |||
2825 | for (i = 0; i < qdev->rx_ring_count; i++) { | ||
2826 | rx_ring = &qdev->rx_ring[i]; | ||
2827 | if (rx_ring->type != TX_Q) | ||
2828 | ql_update_buffer_queues(qdev, rx_ring); | ||
2829 | } | ||
2830 | } | ||
2831 | |||
2832 | static void ql_init_lbq_ring(struct ql_adapter *qdev, | ||
2833 | struct rx_ring *rx_ring) | ||
2834 | { | ||
2835 | int i; | ||
2836 | struct bq_desc *lbq_desc; | ||
2837 | __le64 *bq = rx_ring->lbq_base; | ||
2838 | |||
2839 | memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc)); | ||
2840 | for (i = 0; i < rx_ring->lbq_len; i++) { | ||
2841 | lbq_desc = &rx_ring->lbq[i]; | ||
2842 | memset(lbq_desc, 0, sizeof(*lbq_desc)); | ||
2843 | lbq_desc->index = i; | ||
2844 | lbq_desc->addr = bq; | ||
2845 | bq++; | ||
2846 | } | ||
2847 | } | ||
2848 | |||
2849 | static void ql_init_sbq_ring(struct ql_adapter *qdev, | ||
2850 | struct rx_ring *rx_ring) | ||
2851 | { | ||
2852 | int i; | ||
2853 | struct bq_desc *sbq_desc; | ||
2854 | __le64 *bq = rx_ring->sbq_base; | ||
2855 | |||
2856 | memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc)); | ||
2857 | for (i = 0; i < rx_ring->sbq_len; i++) { | ||
2858 | sbq_desc = &rx_ring->sbq[i]; | ||
2859 | memset(sbq_desc, 0, sizeof(*sbq_desc)); | ||
2860 | sbq_desc->index = i; | ||
2861 | sbq_desc->addr = bq; | ||
2862 | bq++; | ||
2863 | } | ||
2864 | } | ||
2865 | |||
2866 | static void ql_free_rx_resources(struct ql_adapter *qdev, | ||
2867 | struct rx_ring *rx_ring) | ||
2868 | { | ||
2869 | /* Free the small buffer queue. */ | ||
2870 | if (rx_ring->sbq_base) { | ||
2871 | pci_free_consistent(qdev->pdev, | ||
2872 | rx_ring->sbq_size, | ||
2873 | rx_ring->sbq_base, rx_ring->sbq_base_dma); | ||
2874 | rx_ring->sbq_base = NULL; | ||
2875 | } | ||
2876 | |||
2877 | /* Free the small buffer queue control blocks. */ | ||
2878 | kfree(rx_ring->sbq); | ||
2879 | rx_ring->sbq = NULL; | ||
2880 | |||
2881 | /* Free the large buffer queue. */ | ||
2882 | if (rx_ring->lbq_base) { | ||
2883 | pci_free_consistent(qdev->pdev, | ||
2884 | rx_ring->lbq_size, | ||
2885 | rx_ring->lbq_base, rx_ring->lbq_base_dma); | ||
2886 | rx_ring->lbq_base = NULL; | ||
2887 | } | ||
2888 | |||
2889 | /* Free the large buffer queue control blocks. */ | ||
2890 | kfree(rx_ring->lbq); | ||
2891 | rx_ring->lbq = NULL; | ||
2892 | |||
2893 | /* Free the rx queue. */ | ||
2894 | if (rx_ring->cq_base) { | ||
2895 | pci_free_consistent(qdev->pdev, | ||
2896 | rx_ring->cq_size, | ||
2897 | rx_ring->cq_base, rx_ring->cq_base_dma); | ||
2898 | rx_ring->cq_base = NULL; | ||
2899 | } | ||
2900 | } | ||
2901 | |||
2902 | /* Allocate queues and buffers for this completions queue based | ||
2903 | * on the values in the parameter structure. */ | ||
2904 | static int ql_alloc_rx_resources(struct ql_adapter *qdev, | ||
2905 | struct rx_ring *rx_ring) | ||
2906 | { | ||
2907 | |||
2908 | /* | ||
2909 | * Allocate the completion queue for this rx_ring. | ||
2910 | */ | ||
2911 | rx_ring->cq_base = | ||
2912 | pci_alloc_consistent(qdev->pdev, rx_ring->cq_size, | ||
2913 | &rx_ring->cq_base_dma); | ||
2914 | |||
2915 | if (rx_ring->cq_base == NULL) { | ||
2916 | netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n"); | ||
2917 | return -ENOMEM; | ||
2918 | } | ||
2919 | |||
2920 | if (rx_ring->sbq_len) { | ||
2921 | /* | ||
2922 | * Allocate small buffer queue. | ||
2923 | */ | ||
2924 | rx_ring->sbq_base = | ||
2925 | pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size, | ||
2926 | &rx_ring->sbq_base_dma); | ||
2927 | |||
2928 | if (rx_ring->sbq_base == NULL) { | ||
2929 | netif_err(qdev, ifup, qdev->ndev, | ||
2930 | "Small buffer queue allocation failed.\n"); | ||
2931 | goto err_mem; | ||
2932 | } | ||
2933 | |||
2934 | /* | ||
2935 | * Allocate small buffer queue control blocks. | ||
2936 | */ | ||
2937 | rx_ring->sbq = | ||
2938 | kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc), | ||
2939 | GFP_KERNEL); | ||
2940 | if (rx_ring->sbq == NULL) { | ||
2941 | netif_err(qdev, ifup, qdev->ndev, | ||
2942 | "Small buffer queue control block allocation failed.\n"); | ||
2943 | goto err_mem; | ||
2944 | } | ||
2945 | |||
2946 | ql_init_sbq_ring(qdev, rx_ring); | ||
2947 | } | ||
2948 | |||
2949 | if (rx_ring->lbq_len) { | ||
2950 | /* | ||
2951 | * Allocate large buffer queue. | ||
2952 | */ | ||
2953 | rx_ring->lbq_base = | ||
2954 | pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size, | ||
2955 | &rx_ring->lbq_base_dma); | ||
2956 | |||
2957 | if (rx_ring->lbq_base == NULL) { | ||
2958 | netif_err(qdev, ifup, qdev->ndev, | ||
2959 | "Large buffer queue allocation failed.\n"); | ||
2960 | goto err_mem; | ||
2961 | } | ||
2962 | /* | ||
2963 | * Allocate large buffer queue control blocks. | ||
2964 | */ | ||
2965 | rx_ring->lbq = | ||
2966 | kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc), | ||
2967 | GFP_KERNEL); | ||
2968 | if (rx_ring->lbq == NULL) { | ||
2969 | netif_err(qdev, ifup, qdev->ndev, | ||
2970 | "Large buffer queue control block allocation failed.\n"); | ||
2971 | goto err_mem; | ||
2972 | } | ||
2973 | |||
2974 | ql_init_lbq_ring(qdev, rx_ring); | ||
2975 | } | ||
2976 | |||
2977 | return 0; | ||
2978 | |||
2979 | err_mem: | ||
2980 | ql_free_rx_resources(qdev, rx_ring); | ||
2981 | return -ENOMEM; | ||
2982 | } | ||
2983 | |||
2984 | static void ql_tx_ring_clean(struct ql_adapter *qdev) | ||
2985 | { | ||
2986 | struct tx_ring *tx_ring; | ||
2987 | struct tx_ring_desc *tx_ring_desc; | ||
2988 | int i, j; | ||
2989 | |||
2990 | /* | ||
2991 | * Loop through all queues and free | ||
2992 | * any resources. | ||
2993 | */ | ||
2994 | for (j = 0; j < qdev->tx_ring_count; j++) { | ||
2995 | tx_ring = &qdev->tx_ring[j]; | ||
2996 | for (i = 0; i < tx_ring->wq_len; i++) { | ||
2997 | tx_ring_desc = &tx_ring->q[i]; | ||
2998 | if (tx_ring_desc && tx_ring_desc->skb) { | ||
2999 | netif_err(qdev, ifdown, qdev->ndev, | ||
3000 | "Freeing lost SKB %p, from queue %d, index %d.\n", | ||
3001 | tx_ring_desc->skb, j, | ||
3002 | tx_ring_desc->index); | ||
3003 | ql_unmap_send(qdev, tx_ring_desc, | ||
3004 | tx_ring_desc->map_cnt); | ||
3005 | dev_kfree_skb(tx_ring_desc->skb); | ||
3006 | tx_ring_desc->skb = NULL; | ||
3007 | } | ||
3008 | } | ||
3009 | } | ||
3010 | } | ||
3011 | |||
3012 | static void ql_free_mem_resources(struct ql_adapter *qdev) | ||
3013 | { | ||
3014 | int i; | ||
3015 | |||
3016 | for (i = 0; i < qdev->tx_ring_count; i++) | ||
3017 | ql_free_tx_resources(qdev, &qdev->tx_ring[i]); | ||
3018 | for (i = 0; i < qdev->rx_ring_count; i++) | ||
3019 | ql_free_rx_resources(qdev, &qdev->rx_ring[i]); | ||
3020 | ql_free_shadow_space(qdev); | ||
3021 | } | ||
3022 | |||
3023 | static int ql_alloc_mem_resources(struct ql_adapter *qdev) | ||
3024 | { | ||
3025 | int i; | ||
3026 | |||
3027 | /* Allocate space for our shadow registers and such. */ | ||
3028 | if (ql_alloc_shadow_space(qdev)) | ||
3029 | return -ENOMEM; | ||
3030 | |||
3031 | for (i = 0; i < qdev->rx_ring_count; i++) { | ||
3032 | if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) { | ||
3033 | netif_err(qdev, ifup, qdev->ndev, | ||
3034 | "RX resource allocation failed.\n"); | ||
3035 | goto err_mem; | ||
3036 | } | ||
3037 | } | ||
3038 | /* Allocate tx queue resources */ | ||
3039 | for (i = 0; i < qdev->tx_ring_count; i++) { | ||
3040 | if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) { | ||
3041 | netif_err(qdev, ifup, qdev->ndev, | ||
3042 | "TX resource allocation failed.\n"); | ||
3043 | goto err_mem; | ||
3044 | } | ||
3045 | } | ||
3046 | return 0; | ||
3047 | |||
3048 | err_mem: | ||
3049 | ql_free_mem_resources(qdev); | ||
3050 | return -ENOMEM; | ||
3051 | } | ||
3052 | |||
3053 | /* Set up the rx ring control block and pass it to the chip. | ||
3054 | * The control block is defined as | ||
3055 | * "Completion Queue Initialization Control Block", or cqicb. | ||
3056 | */ | ||
3057 | static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring) | ||
3058 | { | ||
3059 | struct cqicb *cqicb = &rx_ring->cqicb; | ||
3060 | void *shadow_reg = qdev->rx_ring_shadow_reg_area + | ||
3061 | (rx_ring->cq_id * RX_RING_SHADOW_SPACE); | ||
3062 | u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma + | ||
3063 | (rx_ring->cq_id * RX_RING_SHADOW_SPACE); | ||
3064 | void __iomem *doorbell_area = | ||
3065 | qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id)); | ||
3066 | int err = 0; | ||
3067 | u16 bq_len; | ||
3068 | u64 tmp; | ||
3069 | __le64 *base_indirect_ptr; | ||
3070 | int page_entries; | ||
3071 | |||
3072 | /* Set up the shadow registers for this ring. */ | ||
3073 | rx_ring->prod_idx_sh_reg = shadow_reg; | ||
3074 | rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma; | ||
3075 | *rx_ring->prod_idx_sh_reg = 0; | ||
3076 | shadow_reg += sizeof(u64); | ||
3077 | shadow_reg_dma += sizeof(u64); | ||
3078 | rx_ring->lbq_base_indirect = shadow_reg; | ||
3079 | rx_ring->lbq_base_indirect_dma = shadow_reg_dma; | ||
3080 | shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len)); | ||
3081 | shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len)); | ||
3082 | rx_ring->sbq_base_indirect = shadow_reg; | ||
3083 | rx_ring->sbq_base_indirect_dma = shadow_reg_dma; | ||
3084 | |||
3085 | /* PCI doorbell mem area + 0x00 for consumer index register */ | ||
3086 | rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area; | ||
3087 | rx_ring->cnsmr_idx = 0; | ||
3088 | rx_ring->curr_entry = rx_ring->cq_base; | ||
3089 | |||
3090 | /* PCI doorbell mem area + 0x04 for valid register */ | ||
3091 | rx_ring->valid_db_reg = doorbell_area + 0x04; | ||
3092 | |||
3093 | /* PCI doorbell mem area + 0x18 for large buffer consumer */ | ||
3094 | rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18); | ||
3095 | |||
3096 | /* PCI doorbell mem area + 0x1c */ | ||
3097 | rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c); | ||
3098 | |||
3099 | memset((void *)cqicb, 0, sizeof(struct cqicb)); | ||
3100 | cqicb->msix_vect = rx_ring->irq; | ||
3101 | |||
3102 | bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len; | ||
3103 | cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT); | ||
3104 | |||
3105 | cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma); | ||
3106 | |||
3107 | cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma); | ||
3108 | |||
3109 | /* | ||
3110 | * Set up the control block load flags. | ||
3111 | */ | ||
3112 | cqicb->flags = FLAGS_LC | /* Load queue base address */ | ||
3113 | FLAGS_LV | /* Load MSI-X vector */ | ||
3114 | FLAGS_LI; /* Load irq delay values */ | ||
3115 | if (rx_ring->lbq_len) { | ||
3116 | cqicb->flags |= FLAGS_LL; /* Load lbq values */ | ||
3117 | tmp = (u64)rx_ring->lbq_base_dma; | ||
3118 | base_indirect_ptr = rx_ring->lbq_base_indirect; | ||
3119 | page_entries = 0; | ||
3120 | do { | ||
3121 | *base_indirect_ptr = cpu_to_le64(tmp); | ||
3122 | tmp += DB_PAGE_SIZE; | ||
3123 | base_indirect_ptr++; | ||
3124 | page_entries++; | ||
3125 | } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len)); | ||
3126 | cqicb->lbq_addr = | ||
3127 | cpu_to_le64(rx_ring->lbq_base_indirect_dma); | ||
3128 | bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 : | ||
3129 | (u16) rx_ring->lbq_buf_size; | ||
3130 | cqicb->lbq_buf_size = cpu_to_le16(bq_len); | ||
3131 | bq_len = (rx_ring->lbq_len == 65536) ? 0 : | ||
3132 | (u16) rx_ring->lbq_len; | ||
3133 | cqicb->lbq_len = cpu_to_le16(bq_len); | ||
3134 | rx_ring->lbq_prod_idx = 0; | ||
3135 | rx_ring->lbq_curr_idx = 0; | ||
3136 | rx_ring->lbq_clean_idx = 0; | ||
3137 | rx_ring->lbq_free_cnt = rx_ring->lbq_len; | ||
3138 | } | ||
3139 | if (rx_ring->sbq_len) { | ||
3140 | cqicb->flags |= FLAGS_LS; /* Load sbq values */ | ||
3141 | tmp = (u64)rx_ring->sbq_base_dma; | ||
3142 | base_indirect_ptr = rx_ring->sbq_base_indirect; | ||
3143 | page_entries = 0; | ||
3144 | do { | ||
3145 | *base_indirect_ptr = cpu_to_le64(tmp); | ||
3146 | tmp += DB_PAGE_SIZE; | ||
3147 | base_indirect_ptr++; | ||
3148 | page_entries++; | ||
3149 | } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len)); | ||
3150 | cqicb->sbq_addr = | ||
3151 | cpu_to_le64(rx_ring->sbq_base_indirect_dma); | ||
3152 | cqicb->sbq_buf_size = | ||
3153 | cpu_to_le16((u16)(rx_ring->sbq_buf_size)); | ||
3154 | bq_len = (rx_ring->sbq_len == 65536) ? 0 : | ||
3155 | (u16) rx_ring->sbq_len; | ||
3156 | cqicb->sbq_len = cpu_to_le16(bq_len); | ||
3157 | rx_ring->sbq_prod_idx = 0; | ||
3158 | rx_ring->sbq_curr_idx = 0; | ||
3159 | rx_ring->sbq_clean_idx = 0; | ||
3160 | rx_ring->sbq_free_cnt = rx_ring->sbq_len; | ||
3161 | } | ||
3162 | switch (rx_ring->type) { | ||
3163 | case TX_Q: | ||
3164 | cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs); | ||
3165 | cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames); | ||
3166 | break; | ||
3167 | case RX_Q: | ||
3168 | /* Inbound completion handling rx_rings run in | ||
3169 | * separate NAPI contexts. | ||
3170 | */ | ||
3171 | netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix, | ||
3172 | 64); | ||
3173 | cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs); | ||
3174 | cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames); | ||
3175 | break; | ||
3176 | default: | ||
3177 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3178 | "Invalid rx_ring->type = %d.\n", rx_ring->type); | ||
3179 | } | ||
3180 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3181 | "Initializing rx work queue.\n"); | ||
3182 | err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb), | ||
3183 | CFG_LCQ, rx_ring->cq_id); | ||
3184 | if (err) { | ||
3185 | netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n"); | ||
3186 | return err; | ||
3187 | } | ||
3188 | return err; | ||
3189 | } | ||
3190 | |||
3191 | static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) | ||
3192 | { | ||
3193 | struct wqicb *wqicb = (struct wqicb *)tx_ring; | ||
3194 | void __iomem *doorbell_area = | ||
3195 | qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id); | ||
3196 | void *shadow_reg = qdev->tx_ring_shadow_reg_area + | ||
3197 | (tx_ring->wq_id * sizeof(u64)); | ||
3198 | u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma + | ||
3199 | (tx_ring->wq_id * sizeof(u64)); | ||
3200 | int err = 0; | ||
3201 | |||
3202 | /* | ||
3203 | * Assign doorbell registers for this tx_ring. | ||
3204 | */ | ||
3205 | /* TX PCI doorbell mem area for tx producer index */ | ||
3206 | tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area; | ||
3207 | tx_ring->prod_idx = 0; | ||
3208 | /* TX PCI doorbell mem area + 0x04 */ | ||
3209 | tx_ring->valid_db_reg = doorbell_area + 0x04; | ||
3210 | |||
3211 | /* | ||
3212 | * Assign shadow registers for this tx_ring. | ||
3213 | */ | ||
3214 | tx_ring->cnsmr_idx_sh_reg = shadow_reg; | ||
3215 | tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma; | ||
3216 | |||
3217 | wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT); | ||
3218 | wqicb->flags = cpu_to_le16(Q_FLAGS_LC | | ||
3219 | Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO); | ||
3220 | wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id); | ||
3221 | wqicb->rid = 0; | ||
3222 | wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma); | ||
3223 | |||
3224 | wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma); | ||
3225 | |||
3226 | ql_init_tx_ring(qdev, tx_ring); | ||
3227 | |||
3228 | err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ, | ||
3229 | (u16) tx_ring->wq_id); | ||
3230 | if (err) { | ||
3231 | netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n"); | ||
3232 | return err; | ||
3233 | } | ||
3234 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3235 | "Successfully loaded WQICB.\n"); | ||
3236 | return err; | ||
3237 | } | ||
3238 | |||
3239 | static void ql_disable_msix(struct ql_adapter *qdev) | ||
3240 | { | ||
3241 | if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { | ||
3242 | pci_disable_msix(qdev->pdev); | ||
3243 | clear_bit(QL_MSIX_ENABLED, &qdev->flags); | ||
3244 | kfree(qdev->msi_x_entry); | ||
3245 | qdev->msi_x_entry = NULL; | ||
3246 | } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) { | ||
3247 | pci_disable_msi(qdev->pdev); | ||
3248 | clear_bit(QL_MSI_ENABLED, &qdev->flags); | ||
3249 | } | ||
3250 | } | ||
3251 | |||
3252 | /* We start by trying to get the number of vectors | ||
3253 | * stored in qdev->intr_count. If we don't get that | ||
3254 | * many then we reduce the count and try again. | ||
3255 | */ | ||
3256 | static void ql_enable_msix(struct ql_adapter *qdev) | ||
3257 | { | ||
3258 | int i, err; | ||
3259 | |||
3260 | /* Get the MSIX vectors. */ | ||
3261 | if (qlge_irq_type == MSIX_IRQ) { | ||
3262 | /* Try to alloc space for the msix struct, | ||
3263 | * if it fails then go to MSI/legacy. | ||
3264 | */ | ||
3265 | qdev->msi_x_entry = kcalloc(qdev->intr_count, | ||
3266 | sizeof(struct msix_entry), | ||
3267 | GFP_KERNEL); | ||
3268 | if (!qdev->msi_x_entry) { | ||
3269 | qlge_irq_type = MSI_IRQ; | ||
3270 | goto msi; | ||
3271 | } | ||
3272 | |||
3273 | for (i = 0; i < qdev->intr_count; i++) | ||
3274 | qdev->msi_x_entry[i].entry = i; | ||
3275 | |||
3276 | /* Loop to get our vectors. We start with | ||
3277 | * what we want and settle for what we get. | ||
3278 | */ | ||
3279 | do { | ||
3280 | err = pci_enable_msix(qdev->pdev, | ||
3281 | qdev->msi_x_entry, qdev->intr_count); | ||
3282 | if (err > 0) | ||
3283 | qdev->intr_count = err; | ||
3284 | } while (err > 0); | ||
3285 | |||
3286 | if (err < 0) { | ||
3287 | kfree(qdev->msi_x_entry); | ||
3288 | qdev->msi_x_entry = NULL; | ||
3289 | netif_warn(qdev, ifup, qdev->ndev, | ||
3290 | "MSI-X Enable failed, trying MSI.\n"); | ||
3291 | qdev->intr_count = 1; | ||
3292 | qlge_irq_type = MSI_IRQ; | ||
3293 | } else if (err == 0) { | ||
3294 | set_bit(QL_MSIX_ENABLED, &qdev->flags); | ||
3295 | netif_info(qdev, ifup, qdev->ndev, | ||
3296 | "MSI-X Enabled, got %d vectors.\n", | ||
3297 | qdev->intr_count); | ||
3298 | return; | ||
3299 | } | ||
3300 | } | ||
3301 | msi: | ||
3302 | qdev->intr_count = 1; | ||
3303 | if (qlge_irq_type == MSI_IRQ) { | ||
3304 | if (!pci_enable_msi(qdev->pdev)) { | ||
3305 | set_bit(QL_MSI_ENABLED, &qdev->flags); | ||
3306 | netif_info(qdev, ifup, qdev->ndev, | ||
3307 | "Running with MSI interrupts.\n"); | ||
3308 | return; | ||
3309 | } | ||
3310 | } | ||
3311 | qlge_irq_type = LEG_IRQ; | ||
3312 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3313 | "Running with legacy interrupts.\n"); | ||
3314 | } | ||
3315 | |||
3316 | /* Each vector services 1 RSS ring and and 1 or more | ||
3317 | * TX completion rings. This function loops through | ||
3318 | * the TX completion rings and assigns the vector that | ||
3319 | * will service it. An example would be if there are | ||
3320 | * 2 vectors (so 2 RSS rings) and 8 TX completion rings. | ||
3321 | * This would mean that vector 0 would service RSS ring 0 | ||
3322 | * and TX completion rings 0,1,2 and 3. Vector 1 would | ||
3323 | * service RSS ring 1 and TX completion rings 4,5,6 and 7. | ||
3324 | */ | ||
3325 | static void ql_set_tx_vect(struct ql_adapter *qdev) | ||
3326 | { | ||
3327 | int i, j, vect; | ||
3328 | u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count; | ||
3329 | |||
3330 | if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { | ||
3331 | /* Assign irq vectors to TX rx_rings.*/ | ||
3332 | for (vect = 0, j = 0, i = qdev->rss_ring_count; | ||
3333 | i < qdev->rx_ring_count; i++) { | ||
3334 | if (j == tx_rings_per_vector) { | ||
3335 | vect++; | ||
3336 | j = 0; | ||
3337 | } | ||
3338 | qdev->rx_ring[i].irq = vect; | ||
3339 | j++; | ||
3340 | } | ||
3341 | } else { | ||
3342 | /* For single vector all rings have an irq | ||
3343 | * of zero. | ||
3344 | */ | ||
3345 | for (i = 0; i < qdev->rx_ring_count; i++) | ||
3346 | qdev->rx_ring[i].irq = 0; | ||
3347 | } | ||
3348 | } | ||
3349 | |||
3350 | /* Set the interrupt mask for this vector. Each vector | ||
3351 | * will service 1 RSS ring and 1 or more TX completion | ||
3352 | * rings. This function sets up a bit mask per vector | ||
3353 | * that indicates which rings it services. | ||
3354 | */ | ||
3355 | static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx) | ||
3356 | { | ||
3357 | int j, vect = ctx->intr; | ||
3358 | u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count; | ||
3359 | |||
3360 | if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { | ||
3361 | /* Add the RSS ring serviced by this vector | ||
3362 | * to the mask. | ||
3363 | */ | ||
3364 | ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id); | ||
3365 | /* Add the TX ring(s) serviced by this vector | ||
3366 | * to the mask. */ | ||
3367 | for (j = 0; j < tx_rings_per_vector; j++) { | ||
3368 | ctx->irq_mask |= | ||
3369 | (1 << qdev->rx_ring[qdev->rss_ring_count + | ||
3370 | (vect * tx_rings_per_vector) + j].cq_id); | ||
3371 | } | ||
3372 | } else { | ||
3373 | /* For single vector we just shift each queue's | ||
3374 | * ID into the mask. | ||
3375 | */ | ||
3376 | for (j = 0; j < qdev->rx_ring_count; j++) | ||
3377 | ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id); | ||
3378 | } | ||
3379 | } | ||
3380 | |||
3381 | /* | ||
3382 | * Here we build the intr_context structures based on | ||
3383 | * our rx_ring count and intr vector count. | ||
3384 | * The intr_context structure is used to hook each vector | ||
3385 | * to possibly different handlers. | ||
3386 | */ | ||
3387 | static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev) | ||
3388 | { | ||
3389 | int i = 0; | ||
3390 | struct intr_context *intr_context = &qdev->intr_context[0]; | ||
3391 | |||
3392 | if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { | ||
3393 | /* Each rx_ring has it's | ||
3394 | * own intr_context since we have separate | ||
3395 | * vectors for each queue. | ||
3396 | */ | ||
3397 | for (i = 0; i < qdev->intr_count; i++, intr_context++) { | ||
3398 | qdev->rx_ring[i].irq = i; | ||
3399 | intr_context->intr = i; | ||
3400 | intr_context->qdev = qdev; | ||
3401 | /* Set up this vector's bit-mask that indicates | ||
3402 | * which queues it services. | ||
3403 | */ | ||
3404 | ql_set_irq_mask(qdev, intr_context); | ||
3405 | /* | ||
3406 | * We set up each vectors enable/disable/read bits so | ||
3407 | * there's no bit/mask calculations in the critical path. | ||
3408 | */ | ||
3409 | intr_context->intr_en_mask = | ||
3410 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | | ||
3411 | INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD | ||
3412 | | i; | ||
3413 | intr_context->intr_dis_mask = | ||
3414 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | | ||
3415 | INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK | | ||
3416 | INTR_EN_IHD | i; | ||
3417 | intr_context->intr_read_mask = | ||
3418 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | | ||
3419 | INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD | | ||
3420 | i; | ||
3421 | if (i == 0) { | ||
3422 | /* The first vector/queue handles | ||
3423 | * broadcast/multicast, fatal errors, | ||
3424 | * and firmware events. This in addition | ||
3425 | * to normal inbound NAPI processing. | ||
3426 | */ | ||
3427 | intr_context->handler = qlge_isr; | ||
3428 | sprintf(intr_context->name, "%s-rx-%d", | ||
3429 | qdev->ndev->name, i); | ||
3430 | } else { | ||
3431 | /* | ||
3432 | * Inbound queues handle unicast frames only. | ||
3433 | */ | ||
3434 | intr_context->handler = qlge_msix_rx_isr; | ||
3435 | sprintf(intr_context->name, "%s-rx-%d", | ||
3436 | qdev->ndev->name, i); | ||
3437 | } | ||
3438 | } | ||
3439 | } else { | ||
3440 | /* | ||
3441 | * All rx_rings use the same intr_context since | ||
3442 | * there is only one vector. | ||
3443 | */ | ||
3444 | intr_context->intr = 0; | ||
3445 | intr_context->qdev = qdev; | ||
3446 | /* | ||
3447 | * We set up each vectors enable/disable/read bits so | ||
3448 | * there's no bit/mask calculations in the critical path. | ||
3449 | */ | ||
3450 | intr_context->intr_en_mask = | ||
3451 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE; | ||
3452 | intr_context->intr_dis_mask = | ||
3453 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | | ||
3454 | INTR_EN_TYPE_DISABLE; | ||
3455 | intr_context->intr_read_mask = | ||
3456 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ; | ||
3457 | /* | ||
3458 | * Single interrupt means one handler for all rings. | ||
3459 | */ | ||
3460 | intr_context->handler = qlge_isr; | ||
3461 | sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name); | ||
3462 | /* Set up this vector's bit-mask that indicates | ||
3463 | * which queues it services. In this case there is | ||
3464 | * a single vector so it will service all RSS and | ||
3465 | * TX completion rings. | ||
3466 | */ | ||
3467 | ql_set_irq_mask(qdev, intr_context); | ||
3468 | } | ||
3469 | /* Tell the TX completion rings which MSIx vector | ||
3470 | * they will be using. | ||
3471 | */ | ||
3472 | ql_set_tx_vect(qdev); | ||
3473 | } | ||
3474 | |||
3475 | static void ql_free_irq(struct ql_adapter *qdev) | ||
3476 | { | ||
3477 | int i; | ||
3478 | struct intr_context *intr_context = &qdev->intr_context[0]; | ||
3479 | |||
3480 | for (i = 0; i < qdev->intr_count; i++, intr_context++) { | ||
3481 | if (intr_context->hooked) { | ||
3482 | if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { | ||
3483 | free_irq(qdev->msi_x_entry[i].vector, | ||
3484 | &qdev->rx_ring[i]); | ||
3485 | netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev, | ||
3486 | "freeing msix interrupt %d.\n", i); | ||
3487 | } else { | ||
3488 | free_irq(qdev->pdev->irq, &qdev->rx_ring[0]); | ||
3489 | netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev, | ||
3490 | "freeing msi interrupt %d.\n", i); | ||
3491 | } | ||
3492 | } | ||
3493 | } | ||
3494 | ql_disable_msix(qdev); | ||
3495 | } | ||
3496 | |||
3497 | static int ql_request_irq(struct ql_adapter *qdev) | ||
3498 | { | ||
3499 | int i; | ||
3500 | int status = 0; | ||
3501 | struct pci_dev *pdev = qdev->pdev; | ||
3502 | struct intr_context *intr_context = &qdev->intr_context[0]; | ||
3503 | |||
3504 | ql_resolve_queues_to_irqs(qdev); | ||
3505 | |||
3506 | for (i = 0; i < qdev->intr_count; i++, intr_context++) { | ||
3507 | atomic_set(&intr_context->irq_cnt, 0); | ||
3508 | if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { | ||
3509 | status = request_irq(qdev->msi_x_entry[i].vector, | ||
3510 | intr_context->handler, | ||
3511 | 0, | ||
3512 | intr_context->name, | ||
3513 | &qdev->rx_ring[i]); | ||
3514 | if (status) { | ||
3515 | netif_err(qdev, ifup, qdev->ndev, | ||
3516 | "Failed request for MSIX interrupt %d.\n", | ||
3517 | i); | ||
3518 | goto err_irq; | ||
3519 | } else { | ||
3520 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3521 | "Hooked intr %d, queue type %s, with name %s.\n", | ||
3522 | i, | ||
3523 | qdev->rx_ring[i].type == DEFAULT_Q ? | ||
3524 | "DEFAULT_Q" : | ||
3525 | qdev->rx_ring[i].type == TX_Q ? | ||
3526 | "TX_Q" : | ||
3527 | qdev->rx_ring[i].type == RX_Q ? | ||
3528 | "RX_Q" : "", | ||
3529 | intr_context->name); | ||
3530 | } | ||
3531 | } else { | ||
3532 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3533 | "trying msi or legacy interrupts.\n"); | ||
3534 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3535 | "%s: irq = %d.\n", __func__, pdev->irq); | ||
3536 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3537 | "%s: context->name = %s.\n", __func__, | ||
3538 | intr_context->name); | ||
3539 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3540 | "%s: dev_id = 0x%p.\n", __func__, | ||
3541 | &qdev->rx_ring[0]); | ||
3542 | status = | ||
3543 | request_irq(pdev->irq, qlge_isr, | ||
3544 | test_bit(QL_MSI_ENABLED, | ||
3545 | &qdev-> | ||
3546 | flags) ? 0 : IRQF_SHARED, | ||
3547 | intr_context->name, &qdev->rx_ring[0]); | ||
3548 | if (status) | ||
3549 | goto err_irq; | ||
3550 | |||
3551 | netif_err(qdev, ifup, qdev->ndev, | ||
3552 | "Hooked intr %d, queue type %s, with name %s.\n", | ||
3553 | i, | ||
3554 | qdev->rx_ring[0].type == DEFAULT_Q ? | ||
3555 | "DEFAULT_Q" : | ||
3556 | qdev->rx_ring[0].type == TX_Q ? "TX_Q" : | ||
3557 | qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "", | ||
3558 | intr_context->name); | ||
3559 | } | ||
3560 | intr_context->hooked = 1; | ||
3561 | } | ||
3562 | return status; | ||
3563 | err_irq: | ||
3564 | netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n"); | ||
3565 | ql_free_irq(qdev); | ||
3566 | return status; | ||
3567 | } | ||
3568 | |||
3569 | static int ql_start_rss(struct ql_adapter *qdev) | ||
3570 | { | ||
3571 | static const u8 init_hash_seed[] = { | ||
3572 | 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, | ||
3573 | 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, | ||
3574 | 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4, | ||
3575 | 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c, | ||
3576 | 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa | ||
3577 | }; | ||
3578 | struct ricb *ricb = &qdev->ricb; | ||
3579 | int status = 0; | ||
3580 | int i; | ||
3581 | u8 *hash_id = (u8 *) ricb->hash_cq_id; | ||
3582 | |||
3583 | memset((void *)ricb, 0, sizeof(*ricb)); | ||
3584 | |||
3585 | ricb->base_cq = RSS_L4K; | ||
3586 | ricb->flags = | ||
3587 | (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6); | ||
3588 | ricb->mask = cpu_to_le16((u16)(0x3ff)); | ||
3589 | |||
3590 | /* | ||
3591 | * Fill out the Indirection Table. | ||
3592 | */ | ||
3593 | for (i = 0; i < 1024; i++) | ||
3594 | hash_id[i] = (i & (qdev->rss_ring_count - 1)); | ||
3595 | |||
3596 | memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40); | ||
3597 | memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16); | ||
3598 | |||
3599 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n"); | ||
3600 | |||
3601 | status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0); | ||
3602 | if (status) { | ||
3603 | netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n"); | ||
3604 | return status; | ||
3605 | } | ||
3606 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3607 | "Successfully loaded RICB.\n"); | ||
3608 | return status; | ||
3609 | } | ||
3610 | |||
3611 | static int ql_clear_routing_entries(struct ql_adapter *qdev) | ||
3612 | { | ||
3613 | int i, status = 0; | ||
3614 | |||
3615 | status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); | ||
3616 | if (status) | ||
3617 | return status; | ||
3618 | /* Clear all the entries in the routing table. */ | ||
3619 | for (i = 0; i < 16; i++) { | ||
3620 | status = ql_set_routing_reg(qdev, i, 0, 0); | ||
3621 | if (status) { | ||
3622 | netif_err(qdev, ifup, qdev->ndev, | ||
3623 | "Failed to init routing register for CAM packets.\n"); | ||
3624 | break; | ||
3625 | } | ||
3626 | } | ||
3627 | ql_sem_unlock(qdev, SEM_RT_IDX_MASK); | ||
3628 | return status; | ||
3629 | } | ||
3630 | |||
3631 | /* Initialize the frame-to-queue routing. */ | ||
3632 | static int ql_route_initialize(struct ql_adapter *qdev) | ||
3633 | { | ||
3634 | int status = 0; | ||
3635 | |||
3636 | /* Clear all the entries in the routing table. */ | ||
3637 | status = ql_clear_routing_entries(qdev); | ||
3638 | if (status) | ||
3639 | return status; | ||
3640 | |||
3641 | status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); | ||
3642 | if (status) | ||
3643 | return status; | ||
3644 | |||
3645 | status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT, | ||
3646 | RT_IDX_IP_CSUM_ERR, 1); | ||
3647 | if (status) { | ||
3648 | netif_err(qdev, ifup, qdev->ndev, | ||
3649 | "Failed to init routing register " | ||
3650 | "for IP CSUM error packets.\n"); | ||
3651 | goto exit; | ||
3652 | } | ||
3653 | status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT, | ||
3654 | RT_IDX_TU_CSUM_ERR, 1); | ||
3655 | if (status) { | ||
3656 | netif_err(qdev, ifup, qdev->ndev, | ||
3657 | "Failed to init routing register " | ||
3658 | "for TCP/UDP CSUM error packets.\n"); | ||
3659 | goto exit; | ||
3660 | } | ||
3661 | status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1); | ||
3662 | if (status) { | ||
3663 | netif_err(qdev, ifup, qdev->ndev, | ||
3664 | "Failed to init routing register for broadcast packets.\n"); | ||
3665 | goto exit; | ||
3666 | } | ||
3667 | /* If we have more than one inbound queue, then turn on RSS in the | ||
3668 | * routing block. | ||
3669 | */ | ||
3670 | if (qdev->rss_ring_count > 1) { | ||
3671 | status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT, | ||
3672 | RT_IDX_RSS_MATCH, 1); | ||
3673 | if (status) { | ||
3674 | netif_err(qdev, ifup, qdev->ndev, | ||
3675 | "Failed to init routing register for MATCH RSS packets.\n"); | ||
3676 | goto exit; | ||
3677 | } | ||
3678 | } | ||
3679 | |||
3680 | status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT, | ||
3681 | RT_IDX_CAM_HIT, 1); | ||
3682 | if (status) | ||
3683 | netif_err(qdev, ifup, qdev->ndev, | ||
3684 | "Failed to init routing register for CAM packets.\n"); | ||
3685 | exit: | ||
3686 | ql_sem_unlock(qdev, SEM_RT_IDX_MASK); | ||
3687 | return status; | ||
3688 | } | ||
3689 | |||
3690 | int ql_cam_route_initialize(struct ql_adapter *qdev) | ||
3691 | { | ||
3692 | int status, set; | ||
3693 | |||
3694 | /* If check if the link is up and use to | ||
3695 | * determine if we are setting or clearing | ||
3696 | * the MAC address in the CAM. | ||
3697 | */ | ||
3698 | set = ql_read32(qdev, STS); | ||
3699 | set &= qdev->port_link_up; | ||
3700 | status = ql_set_mac_addr(qdev, set); | ||
3701 | if (status) { | ||
3702 | netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n"); | ||
3703 | return status; | ||
3704 | } | ||
3705 | |||
3706 | status = ql_route_initialize(qdev); | ||
3707 | if (status) | ||
3708 | netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n"); | ||
3709 | |||
3710 | return status; | ||
3711 | } | ||
3712 | |||
3713 | static int ql_adapter_initialize(struct ql_adapter *qdev) | ||
3714 | { | ||
3715 | u32 value, mask; | ||
3716 | int i; | ||
3717 | int status = 0; | ||
3718 | |||
3719 | /* | ||
3720 | * Set up the System register to halt on errors. | ||
3721 | */ | ||
3722 | value = SYS_EFE | SYS_FAE; | ||
3723 | mask = value << 16; | ||
3724 | ql_write32(qdev, SYS, mask | value); | ||
3725 | |||
3726 | /* Set the default queue, and VLAN behavior. */ | ||
3727 | value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV; | ||
3728 | mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16); | ||
3729 | ql_write32(qdev, NIC_RCV_CFG, (mask | value)); | ||
3730 | |||
3731 | /* Set the MPI interrupt to enabled. */ | ||
3732 | ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI); | ||
3733 | |||
3734 | /* Enable the function, set pagesize, enable error checking. */ | ||
3735 | value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND | | ||
3736 | FSC_EC | FSC_VM_PAGE_4K; | ||
3737 | value |= SPLT_SETTING; | ||
3738 | |||
3739 | /* Set/clear header splitting. */ | ||
3740 | mask = FSC_VM_PAGESIZE_MASK | | ||
3741 | FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16); | ||
3742 | ql_write32(qdev, FSC, mask | value); | ||
3743 | |||
3744 | ql_write32(qdev, SPLT_HDR, SPLT_LEN); | ||
3745 | |||
3746 | /* Set RX packet routing to use port/pci function on which the | ||
3747 | * packet arrived on in addition to usual frame routing. | ||
3748 | * This is helpful on bonding where both interfaces can have | ||
3749 | * the same MAC address. | ||
3750 | */ | ||
3751 | ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ); | ||
3752 | /* Reroute all packets to our Interface. | ||
3753 | * They may have been routed to MPI firmware | ||
3754 | * due to WOL. | ||
3755 | */ | ||
3756 | value = ql_read32(qdev, MGMT_RCV_CFG); | ||
3757 | value &= ~MGMT_RCV_CFG_RM; | ||
3758 | mask = 0xffff0000; | ||
3759 | |||
3760 | /* Sticky reg needs clearing due to WOL. */ | ||
3761 | ql_write32(qdev, MGMT_RCV_CFG, mask); | ||
3762 | ql_write32(qdev, MGMT_RCV_CFG, mask | value); | ||
3763 | |||
3764 | /* Default WOL is enable on Mezz cards */ | ||
3765 | if (qdev->pdev->subsystem_device == 0x0068 || | ||
3766 | qdev->pdev->subsystem_device == 0x0180) | ||
3767 | qdev->wol = WAKE_MAGIC; | ||
3768 | |||
3769 | /* Start up the rx queues. */ | ||
3770 | for (i = 0; i < qdev->rx_ring_count; i++) { | ||
3771 | status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]); | ||
3772 | if (status) { | ||
3773 | netif_err(qdev, ifup, qdev->ndev, | ||
3774 | "Failed to start rx ring[%d].\n", i); | ||
3775 | return status; | ||
3776 | } | ||
3777 | } | ||
3778 | |||
3779 | /* If there is more than one inbound completion queue | ||
3780 | * then download a RICB to configure RSS. | ||
3781 | */ | ||
3782 | if (qdev->rss_ring_count > 1) { | ||
3783 | status = ql_start_rss(qdev); | ||
3784 | if (status) { | ||
3785 | netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n"); | ||
3786 | return status; | ||
3787 | } | ||
3788 | } | ||
3789 | |||
3790 | /* Start up the tx queues. */ | ||
3791 | for (i = 0; i < qdev->tx_ring_count; i++) { | ||
3792 | status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]); | ||
3793 | if (status) { | ||
3794 | netif_err(qdev, ifup, qdev->ndev, | ||
3795 | "Failed to start tx ring[%d].\n", i); | ||
3796 | return status; | ||
3797 | } | ||
3798 | } | ||
3799 | |||
3800 | /* Initialize the port and set the max framesize. */ | ||
3801 | status = qdev->nic_ops->port_initialize(qdev); | ||
3802 | if (status) | ||
3803 | netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n"); | ||
3804 | |||
3805 | /* Set up the MAC address and frame routing filter. */ | ||
3806 | status = ql_cam_route_initialize(qdev); | ||
3807 | if (status) { | ||
3808 | netif_err(qdev, ifup, qdev->ndev, | ||
3809 | "Failed to init CAM/Routing tables.\n"); | ||
3810 | return status; | ||
3811 | } | ||
3812 | |||
3813 | /* Start NAPI for the RSS queues. */ | ||
3814 | for (i = 0; i < qdev->rss_ring_count; i++) { | ||
3815 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
3816 | "Enabling NAPI for rx_ring[%d].\n", i); | ||
3817 | napi_enable(&qdev->rx_ring[i].napi); | ||
3818 | } | ||
3819 | |||
3820 | return status; | ||
3821 | } | ||
3822 | |||
3823 | /* Issue soft reset to chip. */ | ||
3824 | static int ql_adapter_reset(struct ql_adapter *qdev) | ||
3825 | { | ||
3826 | u32 value; | ||
3827 | int status = 0; | ||
3828 | unsigned long end_jiffies; | ||
3829 | |||
3830 | /* Clear all the entries in the routing table. */ | ||
3831 | status = ql_clear_routing_entries(qdev); | ||
3832 | if (status) { | ||
3833 | netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n"); | ||
3834 | return status; | ||
3835 | } | ||
3836 | |||
3837 | end_jiffies = jiffies + | ||
3838 | max((unsigned long)1, usecs_to_jiffies(30)); | ||
3839 | |||
3840 | /* Check if bit is set then skip the mailbox command and | ||
3841 | * clear the bit, else we are in normal reset process. | ||
3842 | */ | ||
3843 | if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) { | ||
3844 | /* Stop management traffic. */ | ||
3845 | ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP); | ||
3846 | |||
3847 | /* Wait for the NIC and MGMNT FIFOs to empty. */ | ||
3848 | ql_wait_fifo_empty(qdev); | ||
3849 | } else | ||
3850 | clear_bit(QL_ASIC_RECOVERY, &qdev->flags); | ||
3851 | |||
3852 | ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR); | ||
3853 | |||
3854 | do { | ||
3855 | value = ql_read32(qdev, RST_FO); | ||
3856 | if ((value & RST_FO_FR) == 0) | ||
3857 | break; | ||
3858 | cpu_relax(); | ||
3859 | } while (time_before(jiffies, end_jiffies)); | ||
3860 | |||
3861 | if (value & RST_FO_FR) { | ||
3862 | netif_err(qdev, ifdown, qdev->ndev, | ||
3863 | "ETIMEDOUT!!! errored out of resetting the chip!\n"); | ||
3864 | status = -ETIMEDOUT; | ||
3865 | } | ||
3866 | |||
3867 | /* Resume management traffic. */ | ||
3868 | ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME); | ||
3869 | return status; | ||
3870 | } | ||
3871 | |||
3872 | static void ql_display_dev_info(struct net_device *ndev) | ||
3873 | { | ||
3874 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
3875 | |||
3876 | netif_info(qdev, probe, qdev->ndev, | ||
3877 | "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, " | ||
3878 | "XG Roll = %d, XG Rev = %d.\n", | ||
3879 | qdev->func, | ||
3880 | qdev->port, | ||
3881 | qdev->chip_rev_id & 0x0000000f, | ||
3882 | qdev->chip_rev_id >> 4 & 0x0000000f, | ||
3883 | qdev->chip_rev_id >> 8 & 0x0000000f, | ||
3884 | qdev->chip_rev_id >> 12 & 0x0000000f); | ||
3885 | netif_info(qdev, probe, qdev->ndev, | ||
3886 | "MAC address %pM\n", ndev->dev_addr); | ||
3887 | } | ||
3888 | |||
3889 | static int ql_wol(struct ql_adapter *qdev) | ||
3890 | { | ||
3891 | int status = 0; | ||
3892 | u32 wol = MB_WOL_DISABLE; | ||
3893 | |||
3894 | /* The CAM is still intact after a reset, but if we | ||
3895 | * are doing WOL, then we may need to program the | ||
3896 | * routing regs. We would also need to issue the mailbox | ||
3897 | * commands to instruct the MPI what to do per the ethtool | ||
3898 | * settings. | ||
3899 | */ | ||
3900 | |||
3901 | if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST | | ||
3902 | WAKE_MCAST | WAKE_BCAST)) { | ||
3903 | netif_err(qdev, ifdown, qdev->ndev, | ||
3904 | "Unsupported WOL paramter. qdev->wol = 0x%x.\n", | ||
3905 | qdev->wol); | ||
3906 | return -EINVAL; | ||
3907 | } | ||
3908 | |||
3909 | if (qdev->wol & WAKE_MAGIC) { | ||
3910 | status = ql_mb_wol_set_magic(qdev, 1); | ||
3911 | if (status) { | ||
3912 | netif_err(qdev, ifdown, qdev->ndev, | ||
3913 | "Failed to set magic packet on %s.\n", | ||
3914 | qdev->ndev->name); | ||
3915 | return status; | ||
3916 | } else | ||
3917 | netif_info(qdev, drv, qdev->ndev, | ||
3918 | "Enabled magic packet successfully on %s.\n", | ||
3919 | qdev->ndev->name); | ||
3920 | |||
3921 | wol |= MB_WOL_MAGIC_PKT; | ||
3922 | } | ||
3923 | |||
3924 | if (qdev->wol) { | ||
3925 | wol |= MB_WOL_MODE_ON; | ||
3926 | status = ql_mb_wol_mode(qdev, wol); | ||
3927 | netif_err(qdev, drv, qdev->ndev, | ||
3928 | "WOL %s (wol code 0x%x) on %s\n", | ||
3929 | (status == 0) ? "Successfully set" : "Failed", | ||
3930 | wol, qdev->ndev->name); | ||
3931 | } | ||
3932 | |||
3933 | return status; | ||
3934 | } | ||
3935 | |||
3936 | static void ql_cancel_all_work_sync(struct ql_adapter *qdev) | ||
3937 | { | ||
3938 | |||
3939 | /* Don't kill the reset worker thread if we | ||
3940 | * are in the process of recovery. | ||
3941 | */ | ||
3942 | if (test_bit(QL_ADAPTER_UP, &qdev->flags)) | ||
3943 | cancel_delayed_work_sync(&qdev->asic_reset_work); | ||
3944 | cancel_delayed_work_sync(&qdev->mpi_reset_work); | ||
3945 | cancel_delayed_work_sync(&qdev->mpi_work); | ||
3946 | cancel_delayed_work_sync(&qdev->mpi_idc_work); | ||
3947 | cancel_delayed_work_sync(&qdev->mpi_core_to_log); | ||
3948 | cancel_delayed_work_sync(&qdev->mpi_port_cfg_work); | ||
3949 | } | ||
3950 | |||
3951 | static int ql_adapter_down(struct ql_adapter *qdev) | ||
3952 | { | ||
3953 | int i, status = 0; | ||
3954 | |||
3955 | ql_link_off(qdev); | ||
3956 | |||
3957 | ql_cancel_all_work_sync(qdev); | ||
3958 | |||
3959 | for (i = 0; i < qdev->rss_ring_count; i++) | ||
3960 | napi_disable(&qdev->rx_ring[i].napi); | ||
3961 | |||
3962 | clear_bit(QL_ADAPTER_UP, &qdev->flags); | ||
3963 | |||
3964 | ql_disable_interrupts(qdev); | ||
3965 | |||
3966 | ql_tx_ring_clean(qdev); | ||
3967 | |||
3968 | /* Call netif_napi_del() from common point. | ||
3969 | */ | ||
3970 | for (i = 0; i < qdev->rss_ring_count; i++) | ||
3971 | netif_napi_del(&qdev->rx_ring[i].napi); | ||
3972 | |||
3973 | status = ql_adapter_reset(qdev); | ||
3974 | if (status) | ||
3975 | netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n", | ||
3976 | qdev->func); | ||
3977 | ql_free_rx_buffers(qdev); | ||
3978 | |||
3979 | return status; | ||
3980 | } | ||
3981 | |||
3982 | static int ql_adapter_up(struct ql_adapter *qdev) | ||
3983 | { | ||
3984 | int err = 0; | ||
3985 | |||
3986 | err = ql_adapter_initialize(qdev); | ||
3987 | if (err) { | ||
3988 | netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n"); | ||
3989 | goto err_init; | ||
3990 | } | ||
3991 | set_bit(QL_ADAPTER_UP, &qdev->flags); | ||
3992 | ql_alloc_rx_buffers(qdev); | ||
3993 | /* If the port is initialized and the | ||
3994 | * link is up the turn on the carrier. | ||
3995 | */ | ||
3996 | if ((ql_read32(qdev, STS) & qdev->port_init) && | ||
3997 | (ql_read32(qdev, STS) & qdev->port_link_up)) | ||
3998 | ql_link_on(qdev); | ||
3999 | /* Restore rx mode. */ | ||
4000 | clear_bit(QL_ALLMULTI, &qdev->flags); | ||
4001 | clear_bit(QL_PROMISCUOUS, &qdev->flags); | ||
4002 | qlge_set_multicast_list(qdev->ndev); | ||
4003 | |||
4004 | /* Restore vlan setting. */ | ||
4005 | qlge_restore_vlan(qdev); | ||
4006 | |||
4007 | ql_enable_interrupts(qdev); | ||
4008 | ql_enable_all_completion_interrupts(qdev); | ||
4009 | netif_tx_start_all_queues(qdev->ndev); | ||
4010 | |||
4011 | return 0; | ||
4012 | err_init: | ||
4013 | ql_adapter_reset(qdev); | ||
4014 | return err; | ||
4015 | } | ||
4016 | |||
4017 | static void ql_release_adapter_resources(struct ql_adapter *qdev) | ||
4018 | { | ||
4019 | ql_free_mem_resources(qdev); | ||
4020 | ql_free_irq(qdev); | ||
4021 | } | ||
4022 | |||
4023 | static int ql_get_adapter_resources(struct ql_adapter *qdev) | ||
4024 | { | ||
4025 | int status = 0; | ||
4026 | |||
4027 | if (ql_alloc_mem_resources(qdev)) { | ||
4028 | netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n"); | ||
4029 | return -ENOMEM; | ||
4030 | } | ||
4031 | status = ql_request_irq(qdev); | ||
4032 | return status; | ||
4033 | } | ||
4034 | |||
4035 | static int qlge_close(struct net_device *ndev) | ||
4036 | { | ||
4037 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4038 | |||
4039 | /* If we hit pci_channel_io_perm_failure | ||
4040 | * failure condition, then we already | ||
4041 | * brought the adapter down. | ||
4042 | */ | ||
4043 | if (test_bit(QL_EEH_FATAL, &qdev->flags)) { | ||
4044 | netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n"); | ||
4045 | clear_bit(QL_EEH_FATAL, &qdev->flags); | ||
4046 | return 0; | ||
4047 | } | ||
4048 | |||
4049 | /* | ||
4050 | * Wait for device to recover from a reset. | ||
4051 | * (Rarely happens, but possible.) | ||
4052 | */ | ||
4053 | while (!test_bit(QL_ADAPTER_UP, &qdev->flags)) | ||
4054 | msleep(1); | ||
4055 | ql_adapter_down(qdev); | ||
4056 | ql_release_adapter_resources(qdev); | ||
4057 | return 0; | ||
4058 | } | ||
4059 | |||
4060 | static int ql_configure_rings(struct ql_adapter *qdev) | ||
4061 | { | ||
4062 | int i; | ||
4063 | struct rx_ring *rx_ring; | ||
4064 | struct tx_ring *tx_ring; | ||
4065 | int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus()); | ||
4066 | unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ? | ||
4067 | LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE; | ||
4068 | |||
4069 | qdev->lbq_buf_order = get_order(lbq_buf_len); | ||
4070 | |||
4071 | /* In a perfect world we have one RSS ring for each CPU | ||
4072 | * and each has it's own vector. To do that we ask for | ||
4073 | * cpu_cnt vectors. ql_enable_msix() will adjust the | ||
4074 | * vector count to what we actually get. We then | ||
4075 | * allocate an RSS ring for each. | ||
4076 | * Essentially, we are doing min(cpu_count, msix_vector_count). | ||
4077 | */ | ||
4078 | qdev->intr_count = cpu_cnt; | ||
4079 | ql_enable_msix(qdev); | ||
4080 | /* Adjust the RSS ring count to the actual vector count. */ | ||
4081 | qdev->rss_ring_count = qdev->intr_count; | ||
4082 | qdev->tx_ring_count = cpu_cnt; | ||
4083 | qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count; | ||
4084 | |||
4085 | for (i = 0; i < qdev->tx_ring_count; i++) { | ||
4086 | tx_ring = &qdev->tx_ring[i]; | ||
4087 | memset((void *)tx_ring, 0, sizeof(*tx_ring)); | ||
4088 | tx_ring->qdev = qdev; | ||
4089 | tx_ring->wq_id = i; | ||
4090 | tx_ring->wq_len = qdev->tx_ring_size; | ||
4091 | tx_ring->wq_size = | ||
4092 | tx_ring->wq_len * sizeof(struct ob_mac_iocb_req); | ||
4093 | |||
4094 | /* | ||
4095 | * The completion queue ID for the tx rings start | ||
4096 | * immediately after the rss rings. | ||
4097 | */ | ||
4098 | tx_ring->cq_id = qdev->rss_ring_count + i; | ||
4099 | } | ||
4100 | |||
4101 | for (i = 0; i < qdev->rx_ring_count; i++) { | ||
4102 | rx_ring = &qdev->rx_ring[i]; | ||
4103 | memset((void *)rx_ring, 0, sizeof(*rx_ring)); | ||
4104 | rx_ring->qdev = qdev; | ||
4105 | rx_ring->cq_id = i; | ||
4106 | rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */ | ||
4107 | if (i < qdev->rss_ring_count) { | ||
4108 | /* | ||
4109 | * Inbound (RSS) queues. | ||
4110 | */ | ||
4111 | rx_ring->cq_len = qdev->rx_ring_size; | ||
4112 | rx_ring->cq_size = | ||
4113 | rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); | ||
4114 | rx_ring->lbq_len = NUM_LARGE_BUFFERS; | ||
4115 | rx_ring->lbq_size = | ||
4116 | rx_ring->lbq_len * sizeof(__le64); | ||
4117 | rx_ring->lbq_buf_size = (u16)lbq_buf_len; | ||
4118 | netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, | ||
4119 | "lbq_buf_size %d, order = %d\n", | ||
4120 | rx_ring->lbq_buf_size, | ||
4121 | qdev->lbq_buf_order); | ||
4122 | rx_ring->sbq_len = NUM_SMALL_BUFFERS; | ||
4123 | rx_ring->sbq_size = | ||
4124 | rx_ring->sbq_len * sizeof(__le64); | ||
4125 | rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE; | ||
4126 | rx_ring->type = RX_Q; | ||
4127 | } else { | ||
4128 | /* | ||
4129 | * Outbound queue handles outbound completions only. | ||
4130 | */ | ||
4131 | /* outbound cq is same size as tx_ring it services. */ | ||
4132 | rx_ring->cq_len = qdev->tx_ring_size; | ||
4133 | rx_ring->cq_size = | ||
4134 | rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); | ||
4135 | rx_ring->lbq_len = 0; | ||
4136 | rx_ring->lbq_size = 0; | ||
4137 | rx_ring->lbq_buf_size = 0; | ||
4138 | rx_ring->sbq_len = 0; | ||
4139 | rx_ring->sbq_size = 0; | ||
4140 | rx_ring->sbq_buf_size = 0; | ||
4141 | rx_ring->type = TX_Q; | ||
4142 | } | ||
4143 | } | ||
4144 | return 0; | ||
4145 | } | ||
4146 | |||
4147 | static int qlge_open(struct net_device *ndev) | ||
4148 | { | ||
4149 | int err = 0; | ||
4150 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4151 | |||
4152 | err = ql_adapter_reset(qdev); | ||
4153 | if (err) | ||
4154 | return err; | ||
4155 | |||
4156 | err = ql_configure_rings(qdev); | ||
4157 | if (err) | ||
4158 | return err; | ||
4159 | |||
4160 | err = ql_get_adapter_resources(qdev); | ||
4161 | if (err) | ||
4162 | goto error_up; | ||
4163 | |||
4164 | err = ql_adapter_up(qdev); | ||
4165 | if (err) | ||
4166 | goto error_up; | ||
4167 | |||
4168 | return err; | ||
4169 | |||
4170 | error_up: | ||
4171 | ql_release_adapter_resources(qdev); | ||
4172 | return err; | ||
4173 | } | ||
4174 | |||
4175 | static int ql_change_rx_buffers(struct ql_adapter *qdev) | ||
4176 | { | ||
4177 | struct rx_ring *rx_ring; | ||
4178 | int i, status; | ||
4179 | u32 lbq_buf_len; | ||
4180 | |||
4181 | /* Wait for an outstanding reset to complete. */ | ||
4182 | if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) { | ||
4183 | int i = 3; | ||
4184 | while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) { | ||
4185 | netif_err(qdev, ifup, qdev->ndev, | ||
4186 | "Waiting for adapter UP...\n"); | ||
4187 | ssleep(1); | ||
4188 | } | ||
4189 | |||
4190 | if (!i) { | ||
4191 | netif_err(qdev, ifup, qdev->ndev, | ||
4192 | "Timed out waiting for adapter UP\n"); | ||
4193 | return -ETIMEDOUT; | ||
4194 | } | ||
4195 | } | ||
4196 | |||
4197 | status = ql_adapter_down(qdev); | ||
4198 | if (status) | ||
4199 | goto error; | ||
4200 | |||
4201 | /* Get the new rx buffer size. */ | ||
4202 | lbq_buf_len = (qdev->ndev->mtu > 1500) ? | ||
4203 | LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE; | ||
4204 | qdev->lbq_buf_order = get_order(lbq_buf_len); | ||
4205 | |||
4206 | for (i = 0; i < qdev->rss_ring_count; i++) { | ||
4207 | rx_ring = &qdev->rx_ring[i]; | ||
4208 | /* Set the new size. */ | ||
4209 | rx_ring->lbq_buf_size = lbq_buf_len; | ||
4210 | } | ||
4211 | |||
4212 | status = ql_adapter_up(qdev); | ||
4213 | if (status) | ||
4214 | goto error; | ||
4215 | |||
4216 | return status; | ||
4217 | error: | ||
4218 | netif_alert(qdev, ifup, qdev->ndev, | ||
4219 | "Driver up/down cycle failed, closing device.\n"); | ||
4220 | set_bit(QL_ADAPTER_UP, &qdev->flags); | ||
4221 | dev_close(qdev->ndev); | ||
4222 | return status; | ||
4223 | } | ||
4224 | |||
4225 | static int qlge_change_mtu(struct net_device *ndev, int new_mtu) | ||
4226 | { | ||
4227 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4228 | int status; | ||
4229 | |||
4230 | if (ndev->mtu == 1500 && new_mtu == 9000) { | ||
4231 | netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n"); | ||
4232 | } else if (ndev->mtu == 9000 && new_mtu == 1500) { | ||
4233 | netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n"); | ||
4234 | } else | ||
4235 | return -EINVAL; | ||
4236 | |||
4237 | queue_delayed_work(qdev->workqueue, | ||
4238 | &qdev->mpi_port_cfg_work, 3*HZ); | ||
4239 | |||
4240 | ndev->mtu = new_mtu; | ||
4241 | |||
4242 | if (!netif_running(qdev->ndev)) { | ||
4243 | return 0; | ||
4244 | } | ||
4245 | |||
4246 | status = ql_change_rx_buffers(qdev); | ||
4247 | if (status) { | ||
4248 | netif_err(qdev, ifup, qdev->ndev, | ||
4249 | "Changing MTU failed.\n"); | ||
4250 | } | ||
4251 | |||
4252 | return status; | ||
4253 | } | ||
4254 | |||
4255 | static struct net_device_stats *qlge_get_stats(struct net_device | ||
4256 | *ndev) | ||
4257 | { | ||
4258 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4259 | struct rx_ring *rx_ring = &qdev->rx_ring[0]; | ||
4260 | struct tx_ring *tx_ring = &qdev->tx_ring[0]; | ||
4261 | unsigned long pkts, mcast, dropped, errors, bytes; | ||
4262 | int i; | ||
4263 | |||
4264 | /* Get RX stats. */ | ||
4265 | pkts = mcast = dropped = errors = bytes = 0; | ||
4266 | for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) { | ||
4267 | pkts += rx_ring->rx_packets; | ||
4268 | bytes += rx_ring->rx_bytes; | ||
4269 | dropped += rx_ring->rx_dropped; | ||
4270 | errors += rx_ring->rx_errors; | ||
4271 | mcast += rx_ring->rx_multicast; | ||
4272 | } | ||
4273 | ndev->stats.rx_packets = pkts; | ||
4274 | ndev->stats.rx_bytes = bytes; | ||
4275 | ndev->stats.rx_dropped = dropped; | ||
4276 | ndev->stats.rx_errors = errors; | ||
4277 | ndev->stats.multicast = mcast; | ||
4278 | |||
4279 | /* Get TX stats. */ | ||
4280 | pkts = errors = bytes = 0; | ||
4281 | for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) { | ||
4282 | pkts += tx_ring->tx_packets; | ||
4283 | bytes += tx_ring->tx_bytes; | ||
4284 | errors += tx_ring->tx_errors; | ||
4285 | } | ||
4286 | ndev->stats.tx_packets = pkts; | ||
4287 | ndev->stats.tx_bytes = bytes; | ||
4288 | ndev->stats.tx_errors = errors; | ||
4289 | return &ndev->stats; | ||
4290 | } | ||
4291 | |||
4292 | static void qlge_set_multicast_list(struct net_device *ndev) | ||
4293 | { | ||
4294 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4295 | struct netdev_hw_addr *ha; | ||
4296 | int i, status; | ||
4297 | |||
4298 | status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); | ||
4299 | if (status) | ||
4300 | return; | ||
4301 | /* | ||
4302 | * Set or clear promiscuous mode if a | ||
4303 | * transition is taking place. | ||
4304 | */ | ||
4305 | if (ndev->flags & IFF_PROMISC) { | ||
4306 | if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) { | ||
4307 | if (ql_set_routing_reg | ||
4308 | (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) { | ||
4309 | netif_err(qdev, hw, qdev->ndev, | ||
4310 | "Failed to set promiscuous mode.\n"); | ||
4311 | } else { | ||
4312 | set_bit(QL_PROMISCUOUS, &qdev->flags); | ||
4313 | } | ||
4314 | } | ||
4315 | } else { | ||
4316 | if (test_bit(QL_PROMISCUOUS, &qdev->flags)) { | ||
4317 | if (ql_set_routing_reg | ||
4318 | (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) { | ||
4319 | netif_err(qdev, hw, qdev->ndev, | ||
4320 | "Failed to clear promiscuous mode.\n"); | ||
4321 | } else { | ||
4322 | clear_bit(QL_PROMISCUOUS, &qdev->flags); | ||
4323 | } | ||
4324 | } | ||
4325 | } | ||
4326 | |||
4327 | /* | ||
4328 | * Set or clear all multicast mode if a | ||
4329 | * transition is taking place. | ||
4330 | */ | ||
4331 | if ((ndev->flags & IFF_ALLMULTI) || | ||
4332 | (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) { | ||
4333 | if (!test_bit(QL_ALLMULTI, &qdev->flags)) { | ||
4334 | if (ql_set_routing_reg | ||
4335 | (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) { | ||
4336 | netif_err(qdev, hw, qdev->ndev, | ||
4337 | "Failed to set all-multi mode.\n"); | ||
4338 | } else { | ||
4339 | set_bit(QL_ALLMULTI, &qdev->flags); | ||
4340 | } | ||
4341 | } | ||
4342 | } else { | ||
4343 | if (test_bit(QL_ALLMULTI, &qdev->flags)) { | ||
4344 | if (ql_set_routing_reg | ||
4345 | (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) { | ||
4346 | netif_err(qdev, hw, qdev->ndev, | ||
4347 | "Failed to clear all-multi mode.\n"); | ||
4348 | } else { | ||
4349 | clear_bit(QL_ALLMULTI, &qdev->flags); | ||
4350 | } | ||
4351 | } | ||
4352 | } | ||
4353 | |||
4354 | if (!netdev_mc_empty(ndev)) { | ||
4355 | status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); | ||
4356 | if (status) | ||
4357 | goto exit; | ||
4358 | i = 0; | ||
4359 | netdev_for_each_mc_addr(ha, ndev) { | ||
4360 | if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr, | ||
4361 | MAC_ADDR_TYPE_MULTI_MAC, i)) { | ||
4362 | netif_err(qdev, hw, qdev->ndev, | ||
4363 | "Failed to loadmulticast address.\n"); | ||
4364 | ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); | ||
4365 | goto exit; | ||
4366 | } | ||
4367 | i++; | ||
4368 | } | ||
4369 | ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); | ||
4370 | if (ql_set_routing_reg | ||
4371 | (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) { | ||
4372 | netif_err(qdev, hw, qdev->ndev, | ||
4373 | "Failed to set multicast match mode.\n"); | ||
4374 | } else { | ||
4375 | set_bit(QL_ALLMULTI, &qdev->flags); | ||
4376 | } | ||
4377 | } | ||
4378 | exit: | ||
4379 | ql_sem_unlock(qdev, SEM_RT_IDX_MASK); | ||
4380 | } | ||
4381 | |||
4382 | static int qlge_set_mac_address(struct net_device *ndev, void *p) | ||
4383 | { | ||
4384 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4385 | struct sockaddr *addr = p; | ||
4386 | int status; | ||
4387 | |||
4388 | if (!is_valid_ether_addr(addr->sa_data)) | ||
4389 | return -EADDRNOTAVAIL; | ||
4390 | memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); | ||
4391 | /* Update local copy of current mac address. */ | ||
4392 | memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len); | ||
4393 | |||
4394 | status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); | ||
4395 | if (status) | ||
4396 | return status; | ||
4397 | status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr, | ||
4398 | MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ); | ||
4399 | if (status) | ||
4400 | netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n"); | ||
4401 | ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); | ||
4402 | return status; | ||
4403 | } | ||
4404 | |||
4405 | static void qlge_tx_timeout(struct net_device *ndev) | ||
4406 | { | ||
4407 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4408 | ql_queue_asic_error(qdev); | ||
4409 | } | ||
4410 | |||
4411 | static void ql_asic_reset_work(struct work_struct *work) | ||
4412 | { | ||
4413 | struct ql_adapter *qdev = | ||
4414 | container_of(work, struct ql_adapter, asic_reset_work.work); | ||
4415 | int status; | ||
4416 | rtnl_lock(); | ||
4417 | status = ql_adapter_down(qdev); | ||
4418 | if (status) | ||
4419 | goto error; | ||
4420 | |||
4421 | status = ql_adapter_up(qdev); | ||
4422 | if (status) | ||
4423 | goto error; | ||
4424 | |||
4425 | /* Restore rx mode. */ | ||
4426 | clear_bit(QL_ALLMULTI, &qdev->flags); | ||
4427 | clear_bit(QL_PROMISCUOUS, &qdev->flags); | ||
4428 | qlge_set_multicast_list(qdev->ndev); | ||
4429 | |||
4430 | rtnl_unlock(); | ||
4431 | return; | ||
4432 | error: | ||
4433 | netif_alert(qdev, ifup, qdev->ndev, | ||
4434 | "Driver up/down cycle failed, closing device\n"); | ||
4435 | |||
4436 | set_bit(QL_ADAPTER_UP, &qdev->flags); | ||
4437 | dev_close(qdev->ndev); | ||
4438 | rtnl_unlock(); | ||
4439 | } | ||
4440 | |||
4441 | static const struct nic_operations qla8012_nic_ops = { | ||
4442 | .get_flash = ql_get_8012_flash_params, | ||
4443 | .port_initialize = ql_8012_port_initialize, | ||
4444 | }; | ||
4445 | |||
4446 | static const struct nic_operations qla8000_nic_ops = { | ||
4447 | .get_flash = ql_get_8000_flash_params, | ||
4448 | .port_initialize = ql_8000_port_initialize, | ||
4449 | }; | ||
4450 | |||
4451 | /* Find the pcie function number for the other NIC | ||
4452 | * on this chip. Since both NIC functions share a | ||
4453 | * common firmware we have the lowest enabled function | ||
4454 | * do any common work. Examples would be resetting | ||
4455 | * after a fatal firmware error, or doing a firmware | ||
4456 | * coredump. | ||
4457 | */ | ||
4458 | static int ql_get_alt_pcie_func(struct ql_adapter *qdev) | ||
4459 | { | ||
4460 | int status = 0; | ||
4461 | u32 temp; | ||
4462 | u32 nic_func1, nic_func2; | ||
4463 | |||
4464 | status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG, | ||
4465 | &temp); | ||
4466 | if (status) | ||
4467 | return status; | ||
4468 | |||
4469 | nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) & | ||
4470 | MPI_TEST_NIC_FUNC_MASK); | ||
4471 | nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) & | ||
4472 | MPI_TEST_NIC_FUNC_MASK); | ||
4473 | |||
4474 | if (qdev->func == nic_func1) | ||
4475 | qdev->alt_func = nic_func2; | ||
4476 | else if (qdev->func == nic_func2) | ||
4477 | qdev->alt_func = nic_func1; | ||
4478 | else | ||
4479 | status = -EIO; | ||
4480 | |||
4481 | return status; | ||
4482 | } | ||
4483 | |||
4484 | static int ql_get_board_info(struct ql_adapter *qdev) | ||
4485 | { | ||
4486 | int status; | ||
4487 | qdev->func = | ||
4488 | (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT; | ||
4489 | if (qdev->func > 3) | ||
4490 | return -EIO; | ||
4491 | |||
4492 | status = ql_get_alt_pcie_func(qdev); | ||
4493 | if (status) | ||
4494 | return status; | ||
4495 | |||
4496 | qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1; | ||
4497 | if (qdev->port) { | ||
4498 | qdev->xg_sem_mask = SEM_XGMAC1_MASK; | ||
4499 | qdev->port_link_up = STS_PL1; | ||
4500 | qdev->port_init = STS_PI1; | ||
4501 | qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI; | ||
4502 | qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO; | ||
4503 | } else { | ||
4504 | qdev->xg_sem_mask = SEM_XGMAC0_MASK; | ||
4505 | qdev->port_link_up = STS_PL0; | ||
4506 | qdev->port_init = STS_PI0; | ||
4507 | qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI; | ||
4508 | qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO; | ||
4509 | } | ||
4510 | qdev->chip_rev_id = ql_read32(qdev, REV_ID); | ||
4511 | qdev->device_id = qdev->pdev->device; | ||
4512 | if (qdev->device_id == QLGE_DEVICE_ID_8012) | ||
4513 | qdev->nic_ops = &qla8012_nic_ops; | ||
4514 | else if (qdev->device_id == QLGE_DEVICE_ID_8000) | ||
4515 | qdev->nic_ops = &qla8000_nic_ops; | ||
4516 | return status; | ||
4517 | } | ||
4518 | |||
4519 | static void ql_release_all(struct pci_dev *pdev) | ||
4520 | { | ||
4521 | struct net_device *ndev = pci_get_drvdata(pdev); | ||
4522 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4523 | |||
4524 | if (qdev->workqueue) { | ||
4525 | destroy_workqueue(qdev->workqueue); | ||
4526 | qdev->workqueue = NULL; | ||
4527 | } | ||
4528 | |||
4529 | if (qdev->reg_base) | ||
4530 | iounmap(qdev->reg_base); | ||
4531 | if (qdev->doorbell_area) | ||
4532 | iounmap(qdev->doorbell_area); | ||
4533 | vfree(qdev->mpi_coredump); | ||
4534 | pci_release_regions(pdev); | ||
4535 | pci_set_drvdata(pdev, NULL); | ||
4536 | } | ||
4537 | |||
4538 | static int __devinit ql_init_device(struct pci_dev *pdev, | ||
4539 | struct net_device *ndev, int cards_found) | ||
4540 | { | ||
4541 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4542 | int err = 0; | ||
4543 | |||
4544 | memset((void *)qdev, 0, sizeof(*qdev)); | ||
4545 | err = pci_enable_device(pdev); | ||
4546 | if (err) { | ||
4547 | dev_err(&pdev->dev, "PCI device enable failed.\n"); | ||
4548 | return err; | ||
4549 | } | ||
4550 | |||
4551 | qdev->ndev = ndev; | ||
4552 | qdev->pdev = pdev; | ||
4553 | pci_set_drvdata(pdev, ndev); | ||
4554 | |||
4555 | /* Set PCIe read request size */ | ||
4556 | err = pcie_set_readrq(pdev, 4096); | ||
4557 | if (err) { | ||
4558 | dev_err(&pdev->dev, "Set readrq failed.\n"); | ||
4559 | goto err_out1; | ||
4560 | } | ||
4561 | |||
4562 | err = pci_request_regions(pdev, DRV_NAME); | ||
4563 | if (err) { | ||
4564 | dev_err(&pdev->dev, "PCI region request failed.\n"); | ||
4565 | return err; | ||
4566 | } | ||
4567 | |||
4568 | pci_set_master(pdev); | ||
4569 | if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { | ||
4570 | set_bit(QL_DMA64, &qdev->flags); | ||
4571 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); | ||
4572 | } else { | ||
4573 | err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); | ||
4574 | if (!err) | ||
4575 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); | ||
4576 | } | ||
4577 | |||
4578 | if (err) { | ||
4579 | dev_err(&pdev->dev, "No usable DMA configuration.\n"); | ||
4580 | goto err_out2; | ||
4581 | } | ||
4582 | |||
4583 | /* Set PCIe reset type for EEH to fundamental. */ | ||
4584 | pdev->needs_freset = 1; | ||
4585 | pci_save_state(pdev); | ||
4586 | qdev->reg_base = | ||
4587 | ioremap_nocache(pci_resource_start(pdev, 1), | ||
4588 | pci_resource_len(pdev, 1)); | ||
4589 | if (!qdev->reg_base) { | ||
4590 | dev_err(&pdev->dev, "Register mapping failed.\n"); | ||
4591 | err = -ENOMEM; | ||
4592 | goto err_out2; | ||
4593 | } | ||
4594 | |||
4595 | qdev->doorbell_area_size = pci_resource_len(pdev, 3); | ||
4596 | qdev->doorbell_area = | ||
4597 | ioremap_nocache(pci_resource_start(pdev, 3), | ||
4598 | pci_resource_len(pdev, 3)); | ||
4599 | if (!qdev->doorbell_area) { | ||
4600 | dev_err(&pdev->dev, "Doorbell register mapping failed.\n"); | ||
4601 | err = -ENOMEM; | ||
4602 | goto err_out2; | ||
4603 | } | ||
4604 | |||
4605 | err = ql_get_board_info(qdev); | ||
4606 | if (err) { | ||
4607 | dev_err(&pdev->dev, "Register access failed.\n"); | ||
4608 | err = -EIO; | ||
4609 | goto err_out2; | ||
4610 | } | ||
4611 | qdev->msg_enable = netif_msg_init(debug, default_msg); | ||
4612 | spin_lock_init(&qdev->hw_lock); | ||
4613 | spin_lock_init(&qdev->stats_lock); | ||
4614 | |||
4615 | if (qlge_mpi_coredump) { | ||
4616 | qdev->mpi_coredump = | ||
4617 | vmalloc(sizeof(struct ql_mpi_coredump)); | ||
4618 | if (qdev->mpi_coredump == NULL) { | ||
4619 | dev_err(&pdev->dev, "Coredump alloc failed.\n"); | ||
4620 | err = -ENOMEM; | ||
4621 | goto err_out2; | ||
4622 | } | ||
4623 | if (qlge_force_coredump) | ||
4624 | set_bit(QL_FRC_COREDUMP, &qdev->flags); | ||
4625 | } | ||
4626 | /* make sure the EEPROM is good */ | ||
4627 | err = qdev->nic_ops->get_flash(qdev); | ||
4628 | if (err) { | ||
4629 | dev_err(&pdev->dev, "Invalid FLASH.\n"); | ||
4630 | goto err_out2; | ||
4631 | } | ||
4632 | |||
4633 | memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len); | ||
4634 | /* Keep local copy of current mac address. */ | ||
4635 | memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len); | ||
4636 | |||
4637 | /* Set up the default ring sizes. */ | ||
4638 | qdev->tx_ring_size = NUM_TX_RING_ENTRIES; | ||
4639 | qdev->rx_ring_size = NUM_RX_RING_ENTRIES; | ||
4640 | |||
4641 | /* Set up the coalescing parameters. */ | ||
4642 | qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT; | ||
4643 | qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT; | ||
4644 | qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; | ||
4645 | qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; | ||
4646 | |||
4647 | /* | ||
4648 | * Set up the operating parameters. | ||
4649 | */ | ||
4650 | qdev->workqueue = create_singlethread_workqueue(ndev->name); | ||
4651 | INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work); | ||
4652 | INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work); | ||
4653 | INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work); | ||
4654 | INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work); | ||
4655 | INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work); | ||
4656 | INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log); | ||
4657 | init_completion(&qdev->ide_completion); | ||
4658 | mutex_init(&qdev->mpi_mutex); | ||
4659 | |||
4660 | if (!cards_found) { | ||
4661 | dev_info(&pdev->dev, "%s\n", DRV_STRING); | ||
4662 | dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n", | ||
4663 | DRV_NAME, DRV_VERSION); | ||
4664 | } | ||
4665 | return 0; | ||
4666 | err_out2: | ||
4667 | ql_release_all(pdev); | ||
4668 | err_out1: | ||
4669 | pci_disable_device(pdev); | ||
4670 | return err; | ||
4671 | } | ||
4672 | |||
4673 | static const struct net_device_ops qlge_netdev_ops = { | ||
4674 | .ndo_open = qlge_open, | ||
4675 | .ndo_stop = qlge_close, | ||
4676 | .ndo_start_xmit = qlge_send, | ||
4677 | .ndo_change_mtu = qlge_change_mtu, | ||
4678 | .ndo_get_stats = qlge_get_stats, | ||
4679 | .ndo_set_multicast_list = qlge_set_multicast_list, | ||
4680 | .ndo_set_mac_address = qlge_set_mac_address, | ||
4681 | .ndo_validate_addr = eth_validate_addr, | ||
4682 | .ndo_tx_timeout = qlge_tx_timeout, | ||
4683 | .ndo_fix_features = qlge_fix_features, | ||
4684 | .ndo_set_features = qlge_set_features, | ||
4685 | .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid, | ||
4686 | .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid, | ||
4687 | }; | ||
4688 | |||
4689 | static void ql_timer(unsigned long data) | ||
4690 | { | ||
4691 | struct ql_adapter *qdev = (struct ql_adapter *)data; | ||
4692 | u32 var = 0; | ||
4693 | |||
4694 | var = ql_read32(qdev, STS); | ||
4695 | if (pci_channel_offline(qdev->pdev)) { | ||
4696 | netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var); | ||
4697 | return; | ||
4698 | } | ||
4699 | |||
4700 | mod_timer(&qdev->timer, jiffies + (5*HZ)); | ||
4701 | } | ||
4702 | |||
4703 | static int __devinit qlge_probe(struct pci_dev *pdev, | ||
4704 | const struct pci_device_id *pci_entry) | ||
4705 | { | ||
4706 | struct net_device *ndev = NULL; | ||
4707 | struct ql_adapter *qdev = NULL; | ||
4708 | static int cards_found = 0; | ||
4709 | int err = 0; | ||
4710 | |||
4711 | ndev = alloc_etherdev_mq(sizeof(struct ql_adapter), | ||
4712 | min(MAX_CPUS, (int)num_online_cpus())); | ||
4713 | if (!ndev) | ||
4714 | return -ENOMEM; | ||
4715 | |||
4716 | err = ql_init_device(pdev, ndev, cards_found); | ||
4717 | if (err < 0) { | ||
4718 | free_netdev(ndev); | ||
4719 | return err; | ||
4720 | } | ||
4721 | |||
4722 | qdev = netdev_priv(ndev); | ||
4723 | SET_NETDEV_DEV(ndev, &pdev->dev); | ||
4724 | ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | | ||
4725 | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | | ||
4726 | NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM; | ||
4727 | ndev->features = ndev->hw_features | | ||
4728 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER; | ||
4729 | |||
4730 | if (test_bit(QL_DMA64, &qdev->flags)) | ||
4731 | ndev->features |= NETIF_F_HIGHDMA; | ||
4732 | |||
4733 | /* | ||
4734 | * Set up net_device structure. | ||
4735 | */ | ||
4736 | ndev->tx_queue_len = qdev->tx_ring_size; | ||
4737 | ndev->irq = pdev->irq; | ||
4738 | |||
4739 | ndev->netdev_ops = &qlge_netdev_ops; | ||
4740 | SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops); | ||
4741 | ndev->watchdog_timeo = 10 * HZ; | ||
4742 | |||
4743 | err = register_netdev(ndev); | ||
4744 | if (err) { | ||
4745 | dev_err(&pdev->dev, "net device registration failed.\n"); | ||
4746 | ql_release_all(pdev); | ||
4747 | pci_disable_device(pdev); | ||
4748 | return err; | ||
4749 | } | ||
4750 | /* Start up the timer to trigger EEH if | ||
4751 | * the bus goes dead | ||
4752 | */ | ||
4753 | init_timer_deferrable(&qdev->timer); | ||
4754 | qdev->timer.data = (unsigned long)qdev; | ||
4755 | qdev->timer.function = ql_timer; | ||
4756 | qdev->timer.expires = jiffies + (5*HZ); | ||
4757 | add_timer(&qdev->timer); | ||
4758 | ql_link_off(qdev); | ||
4759 | ql_display_dev_info(ndev); | ||
4760 | atomic_set(&qdev->lb_count, 0); | ||
4761 | cards_found++; | ||
4762 | return 0; | ||
4763 | } | ||
4764 | |||
4765 | netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev) | ||
4766 | { | ||
4767 | return qlge_send(skb, ndev); | ||
4768 | } | ||
4769 | |||
4770 | int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget) | ||
4771 | { | ||
4772 | return ql_clean_inbound_rx_ring(rx_ring, budget); | ||
4773 | } | ||
4774 | |||
4775 | static void __devexit qlge_remove(struct pci_dev *pdev) | ||
4776 | { | ||
4777 | struct net_device *ndev = pci_get_drvdata(pdev); | ||
4778 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4779 | del_timer_sync(&qdev->timer); | ||
4780 | ql_cancel_all_work_sync(qdev); | ||
4781 | unregister_netdev(ndev); | ||
4782 | ql_release_all(pdev); | ||
4783 | pci_disable_device(pdev); | ||
4784 | free_netdev(ndev); | ||
4785 | } | ||
4786 | |||
4787 | /* Clean up resources without touching hardware. */ | ||
4788 | static void ql_eeh_close(struct net_device *ndev) | ||
4789 | { | ||
4790 | int i; | ||
4791 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4792 | |||
4793 | if (netif_carrier_ok(ndev)) { | ||
4794 | netif_carrier_off(ndev); | ||
4795 | netif_stop_queue(ndev); | ||
4796 | } | ||
4797 | |||
4798 | /* Disabling the timer */ | ||
4799 | del_timer_sync(&qdev->timer); | ||
4800 | ql_cancel_all_work_sync(qdev); | ||
4801 | |||
4802 | for (i = 0; i < qdev->rss_ring_count; i++) | ||
4803 | netif_napi_del(&qdev->rx_ring[i].napi); | ||
4804 | |||
4805 | clear_bit(QL_ADAPTER_UP, &qdev->flags); | ||
4806 | ql_tx_ring_clean(qdev); | ||
4807 | ql_free_rx_buffers(qdev); | ||
4808 | ql_release_adapter_resources(qdev); | ||
4809 | } | ||
4810 | |||
4811 | /* | ||
4812 | * This callback is called by the PCI subsystem whenever | ||
4813 | * a PCI bus error is detected. | ||
4814 | */ | ||
4815 | static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev, | ||
4816 | enum pci_channel_state state) | ||
4817 | { | ||
4818 | struct net_device *ndev = pci_get_drvdata(pdev); | ||
4819 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4820 | |||
4821 | switch (state) { | ||
4822 | case pci_channel_io_normal: | ||
4823 | return PCI_ERS_RESULT_CAN_RECOVER; | ||
4824 | case pci_channel_io_frozen: | ||
4825 | netif_device_detach(ndev); | ||
4826 | if (netif_running(ndev)) | ||
4827 | ql_eeh_close(ndev); | ||
4828 | pci_disable_device(pdev); | ||
4829 | return PCI_ERS_RESULT_NEED_RESET; | ||
4830 | case pci_channel_io_perm_failure: | ||
4831 | dev_err(&pdev->dev, | ||
4832 | "%s: pci_channel_io_perm_failure.\n", __func__); | ||
4833 | ql_eeh_close(ndev); | ||
4834 | set_bit(QL_EEH_FATAL, &qdev->flags); | ||
4835 | return PCI_ERS_RESULT_DISCONNECT; | ||
4836 | } | ||
4837 | |||
4838 | /* Request a slot reset. */ | ||
4839 | return PCI_ERS_RESULT_NEED_RESET; | ||
4840 | } | ||
4841 | |||
4842 | /* | ||
4843 | * This callback is called after the PCI buss has been reset. | ||
4844 | * Basically, this tries to restart the card from scratch. | ||
4845 | * This is a shortened version of the device probe/discovery code, | ||
4846 | * it resembles the first-half of the () routine. | ||
4847 | */ | ||
4848 | static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev) | ||
4849 | { | ||
4850 | struct net_device *ndev = pci_get_drvdata(pdev); | ||
4851 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4852 | |||
4853 | pdev->error_state = pci_channel_io_normal; | ||
4854 | |||
4855 | pci_restore_state(pdev); | ||
4856 | if (pci_enable_device(pdev)) { | ||
4857 | netif_err(qdev, ifup, qdev->ndev, | ||
4858 | "Cannot re-enable PCI device after reset.\n"); | ||
4859 | return PCI_ERS_RESULT_DISCONNECT; | ||
4860 | } | ||
4861 | pci_set_master(pdev); | ||
4862 | |||
4863 | if (ql_adapter_reset(qdev)) { | ||
4864 | netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n"); | ||
4865 | set_bit(QL_EEH_FATAL, &qdev->flags); | ||
4866 | return PCI_ERS_RESULT_DISCONNECT; | ||
4867 | } | ||
4868 | |||
4869 | return PCI_ERS_RESULT_RECOVERED; | ||
4870 | } | ||
4871 | |||
4872 | static void qlge_io_resume(struct pci_dev *pdev) | ||
4873 | { | ||
4874 | struct net_device *ndev = pci_get_drvdata(pdev); | ||
4875 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4876 | int err = 0; | ||
4877 | |||
4878 | if (netif_running(ndev)) { | ||
4879 | err = qlge_open(ndev); | ||
4880 | if (err) { | ||
4881 | netif_err(qdev, ifup, qdev->ndev, | ||
4882 | "Device initialization failed after reset.\n"); | ||
4883 | return; | ||
4884 | } | ||
4885 | } else { | ||
4886 | netif_err(qdev, ifup, qdev->ndev, | ||
4887 | "Device was not running prior to EEH.\n"); | ||
4888 | } | ||
4889 | mod_timer(&qdev->timer, jiffies + (5*HZ)); | ||
4890 | netif_device_attach(ndev); | ||
4891 | } | ||
4892 | |||
4893 | static struct pci_error_handlers qlge_err_handler = { | ||
4894 | .error_detected = qlge_io_error_detected, | ||
4895 | .slot_reset = qlge_io_slot_reset, | ||
4896 | .resume = qlge_io_resume, | ||
4897 | }; | ||
4898 | |||
4899 | static int qlge_suspend(struct pci_dev *pdev, pm_message_t state) | ||
4900 | { | ||
4901 | struct net_device *ndev = pci_get_drvdata(pdev); | ||
4902 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4903 | int err; | ||
4904 | |||
4905 | netif_device_detach(ndev); | ||
4906 | del_timer_sync(&qdev->timer); | ||
4907 | |||
4908 | if (netif_running(ndev)) { | ||
4909 | err = ql_adapter_down(qdev); | ||
4910 | if (!err) | ||
4911 | return err; | ||
4912 | } | ||
4913 | |||
4914 | ql_wol(qdev); | ||
4915 | err = pci_save_state(pdev); | ||
4916 | if (err) | ||
4917 | return err; | ||
4918 | |||
4919 | pci_disable_device(pdev); | ||
4920 | |||
4921 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | ||
4922 | |||
4923 | return 0; | ||
4924 | } | ||
4925 | |||
4926 | #ifdef CONFIG_PM | ||
4927 | static int qlge_resume(struct pci_dev *pdev) | ||
4928 | { | ||
4929 | struct net_device *ndev = pci_get_drvdata(pdev); | ||
4930 | struct ql_adapter *qdev = netdev_priv(ndev); | ||
4931 | int err; | ||
4932 | |||
4933 | pci_set_power_state(pdev, PCI_D0); | ||
4934 | pci_restore_state(pdev); | ||
4935 | err = pci_enable_device(pdev); | ||
4936 | if (err) { | ||
4937 | netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n"); | ||
4938 | return err; | ||
4939 | } | ||
4940 | pci_set_master(pdev); | ||
4941 | |||
4942 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
4943 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
4944 | |||
4945 | if (netif_running(ndev)) { | ||
4946 | err = ql_adapter_up(qdev); | ||
4947 | if (err) | ||
4948 | return err; | ||
4949 | } | ||
4950 | |||
4951 | mod_timer(&qdev->timer, jiffies + (5*HZ)); | ||
4952 | netif_device_attach(ndev); | ||
4953 | |||
4954 | return 0; | ||
4955 | } | ||
4956 | #endif /* CONFIG_PM */ | ||
4957 | |||
4958 | static void qlge_shutdown(struct pci_dev *pdev) | ||
4959 | { | ||
4960 | qlge_suspend(pdev, PMSG_SUSPEND); | ||
4961 | } | ||
4962 | |||
4963 | static struct pci_driver qlge_driver = { | ||
4964 | .name = DRV_NAME, | ||
4965 | .id_table = qlge_pci_tbl, | ||
4966 | .probe = qlge_probe, | ||
4967 | .remove = __devexit_p(qlge_remove), | ||
4968 | #ifdef CONFIG_PM | ||
4969 | .suspend = qlge_suspend, | ||
4970 | .resume = qlge_resume, | ||
4971 | #endif | ||
4972 | .shutdown = qlge_shutdown, | ||
4973 | .err_handler = &qlge_err_handler | ||
4974 | }; | ||
4975 | |||
4976 | static int __init qlge_init_module(void) | ||
4977 | { | ||
4978 | return pci_register_driver(&qlge_driver); | ||
4979 | } | ||
4980 | |||
4981 | static void __exit qlge_exit(void) | ||
4982 | { | ||
4983 | pci_unregister_driver(&qlge_driver); | ||
4984 | } | ||
4985 | |||
4986 | module_init(qlge_init_module); | ||
4987 | module_exit(qlge_exit); | ||