diff options
Diffstat (limited to 'drivers/net/e1000/e1000_main.c')
| -rw-r--r-- | drivers/net/e1000/e1000_main.c | 4974 |
1 files changed, 4974 insertions, 0 deletions
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c new file mode 100644 index 00000000000..f97afda941d --- /dev/null +++ b/drivers/net/e1000/e1000_main.c | |||
| @@ -0,0 +1,4974 @@ | |||
| 1 | /******************************************************************************* | ||
| 2 | |||
| 3 | Intel PRO/1000 Linux driver | ||
| 4 | Copyright(c) 1999 - 2006 Intel Corporation. | ||
| 5 | |||
| 6 | This program is free software; you can redistribute it and/or modify it | ||
| 7 | under the terms and conditions of the GNU General Public License, | ||
| 8 | version 2, as published by the Free Software Foundation. | ||
| 9 | |||
| 10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
| 13 | more details. | ||
| 14 | |||
| 15 | You should have received a copy of the GNU General Public License along with | ||
| 16 | this program; if not, write to the Free Software Foundation, Inc., | ||
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
| 18 | |||
| 19 | The full GNU General Public License is included in this distribution in | ||
| 20 | the file called "COPYING". | ||
| 21 | |||
| 22 | Contact Information: | ||
| 23 | Linux NICS <linux.nics@intel.com> | ||
| 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
| 26 | |||
| 27 | *******************************************************************************/ | ||
| 28 | |||
| 29 | #include "e1000.h" | ||
| 30 | #include <net/ip6_checksum.h> | ||
| 31 | #include <linux/io.h> | ||
| 32 | #include <linux/prefetch.h> | ||
| 33 | #include <linux/bitops.h> | ||
| 34 | #include <linux/if_vlan.h> | ||
| 35 | |||
| 36 | /* Intel Media SOC GbE MDIO physical base address */ | ||
| 37 | static unsigned long ce4100_gbe_mdio_base_phy; | ||
| 38 | /* Intel Media SOC GbE MDIO virtual base address */ | ||
| 39 | void __iomem *ce4100_gbe_mdio_base_virt; | ||
| 40 | |||
| 41 | char e1000_driver_name[] = "e1000"; | ||
| 42 | static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; | ||
| 43 | #define DRV_VERSION "7.3.21-k8-NAPI" | ||
| 44 | const char e1000_driver_version[] = DRV_VERSION; | ||
| 45 | static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; | ||
| 46 | |||
| 47 | /* e1000_pci_tbl - PCI Device ID Table | ||
| 48 | * | ||
| 49 | * Last entry must be all 0s | ||
| 50 | * | ||
| 51 | * Macro expands to... | ||
| 52 | * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} | ||
| 53 | */ | ||
| 54 | static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { | ||
| 55 | INTEL_E1000_ETHERNET_DEVICE(0x1000), | ||
| 56 | INTEL_E1000_ETHERNET_DEVICE(0x1001), | ||
| 57 | INTEL_E1000_ETHERNET_DEVICE(0x1004), | ||
| 58 | INTEL_E1000_ETHERNET_DEVICE(0x1008), | ||
| 59 | INTEL_E1000_ETHERNET_DEVICE(0x1009), | ||
| 60 | INTEL_E1000_ETHERNET_DEVICE(0x100C), | ||
| 61 | INTEL_E1000_ETHERNET_DEVICE(0x100D), | ||
| 62 | INTEL_E1000_ETHERNET_DEVICE(0x100E), | ||
| 63 | INTEL_E1000_ETHERNET_DEVICE(0x100F), | ||
| 64 | INTEL_E1000_ETHERNET_DEVICE(0x1010), | ||
| 65 | INTEL_E1000_ETHERNET_DEVICE(0x1011), | ||
| 66 | INTEL_E1000_ETHERNET_DEVICE(0x1012), | ||
| 67 | INTEL_E1000_ETHERNET_DEVICE(0x1013), | ||
| 68 | INTEL_E1000_ETHERNET_DEVICE(0x1014), | ||
| 69 | INTEL_E1000_ETHERNET_DEVICE(0x1015), | ||
| 70 | INTEL_E1000_ETHERNET_DEVICE(0x1016), | ||
| 71 | INTEL_E1000_ETHERNET_DEVICE(0x1017), | ||
| 72 | INTEL_E1000_ETHERNET_DEVICE(0x1018), | ||
| 73 | INTEL_E1000_ETHERNET_DEVICE(0x1019), | ||
| 74 | INTEL_E1000_ETHERNET_DEVICE(0x101A), | ||
| 75 | INTEL_E1000_ETHERNET_DEVICE(0x101D), | ||
| 76 | INTEL_E1000_ETHERNET_DEVICE(0x101E), | ||
| 77 | INTEL_E1000_ETHERNET_DEVICE(0x1026), | ||
| 78 | INTEL_E1000_ETHERNET_DEVICE(0x1027), | ||
| 79 | INTEL_E1000_ETHERNET_DEVICE(0x1028), | ||
| 80 | INTEL_E1000_ETHERNET_DEVICE(0x1075), | ||
| 81 | INTEL_E1000_ETHERNET_DEVICE(0x1076), | ||
| 82 | INTEL_E1000_ETHERNET_DEVICE(0x1077), | ||
| 83 | INTEL_E1000_ETHERNET_DEVICE(0x1078), | ||
| 84 | INTEL_E1000_ETHERNET_DEVICE(0x1079), | ||
| 85 | INTEL_E1000_ETHERNET_DEVICE(0x107A), | ||
| 86 | INTEL_E1000_ETHERNET_DEVICE(0x107B), | ||
| 87 | INTEL_E1000_ETHERNET_DEVICE(0x107C), | ||
| 88 | INTEL_E1000_ETHERNET_DEVICE(0x108A), | ||
| 89 | INTEL_E1000_ETHERNET_DEVICE(0x1099), | ||
| 90 | INTEL_E1000_ETHERNET_DEVICE(0x10B5), | ||
| 91 | INTEL_E1000_ETHERNET_DEVICE(0x2E6E), | ||
| 92 | /* required last entry */ | ||
| 93 | {0,} | ||
| 94 | }; | ||
| 95 | |||
| 96 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | ||
| 97 | |||
| 98 | int e1000_up(struct e1000_adapter *adapter); | ||
| 99 | void e1000_down(struct e1000_adapter *adapter); | ||
| 100 | void e1000_reinit_locked(struct e1000_adapter *adapter); | ||
| 101 | void e1000_reset(struct e1000_adapter *adapter); | ||
| 102 | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); | ||
| 103 | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); | ||
| 104 | void e1000_free_all_tx_resources(struct e1000_adapter *adapter); | ||
| 105 | void e1000_free_all_rx_resources(struct e1000_adapter *adapter); | ||
| 106 | static int e1000_setup_tx_resources(struct e1000_adapter *adapter, | ||
| 107 | struct e1000_tx_ring *txdr); | ||
| 108 | static int e1000_setup_rx_resources(struct e1000_adapter *adapter, | ||
| 109 | struct e1000_rx_ring *rxdr); | ||
| 110 | static void e1000_free_tx_resources(struct e1000_adapter *adapter, | ||
| 111 | struct e1000_tx_ring *tx_ring); | ||
| 112 | static void e1000_free_rx_resources(struct e1000_adapter *adapter, | ||
| 113 | struct e1000_rx_ring *rx_ring); | ||
| 114 | void e1000_update_stats(struct e1000_adapter *adapter); | ||
| 115 | |||
| 116 | static int e1000_init_module(void); | ||
| 117 | static void e1000_exit_module(void); | ||
| 118 | static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); | ||
| 119 | static void __devexit e1000_remove(struct pci_dev *pdev); | ||
| 120 | static int e1000_alloc_queues(struct e1000_adapter *adapter); | ||
| 121 | static int e1000_sw_init(struct e1000_adapter *adapter); | ||
| 122 | static int e1000_open(struct net_device *netdev); | ||
| 123 | static int e1000_close(struct net_device *netdev); | ||
| 124 | static void e1000_configure_tx(struct e1000_adapter *adapter); | ||
| 125 | static void e1000_configure_rx(struct e1000_adapter *adapter); | ||
| 126 | static void e1000_setup_rctl(struct e1000_adapter *adapter); | ||
| 127 | static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); | ||
| 128 | static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); | ||
| 129 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter, | ||
| 130 | struct e1000_tx_ring *tx_ring); | ||
| 131 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | ||
| 132 | struct e1000_rx_ring *rx_ring); | ||
| 133 | static void e1000_set_rx_mode(struct net_device *netdev); | ||
| 134 | static void e1000_update_phy_info(unsigned long data); | ||
| 135 | static void e1000_update_phy_info_task(struct work_struct *work); | ||
| 136 | static void e1000_watchdog(unsigned long data); | ||
| 137 | static void e1000_82547_tx_fifo_stall(unsigned long data); | ||
| 138 | static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); | ||
| 139 | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, | ||
| 140 | struct net_device *netdev); | ||
| 141 | static struct net_device_stats * e1000_get_stats(struct net_device *netdev); | ||
| 142 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu); | ||
| 143 | static int e1000_set_mac(struct net_device *netdev, void *p); | ||
| 144 | static irqreturn_t e1000_intr(int irq, void *data); | ||
| 145 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, | ||
| 146 | struct e1000_tx_ring *tx_ring); | ||
| 147 | static int e1000_clean(struct napi_struct *napi, int budget); | ||
| 148 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | ||
| 149 | struct e1000_rx_ring *rx_ring, | ||
| 150 | int *work_done, int work_to_do); | ||
| 151 | static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, | ||
| 152 | struct e1000_rx_ring *rx_ring, | ||
| 153 | int *work_done, int work_to_do); | ||
| 154 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | ||
| 155 | struct e1000_rx_ring *rx_ring, | ||
| 156 | int cleaned_count); | ||
| 157 | static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, | ||
| 158 | struct e1000_rx_ring *rx_ring, | ||
| 159 | int cleaned_count); | ||
| 160 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); | ||
| 161 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | ||
| 162 | int cmd); | ||
| 163 | static void e1000_enter_82542_rst(struct e1000_adapter *adapter); | ||
| 164 | static void e1000_leave_82542_rst(struct e1000_adapter *adapter); | ||
| 165 | static void e1000_tx_timeout(struct net_device *dev); | ||
| 166 | static void e1000_reset_task(struct work_struct *work); | ||
| 167 | static void e1000_smartspeed(struct e1000_adapter *adapter); | ||
| 168 | static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, | ||
| 169 | struct sk_buff *skb); | ||
| 170 | |||
| 171 | static bool e1000_vlan_used(struct e1000_adapter *adapter); | ||
| 172 | static void e1000_vlan_mode(struct net_device *netdev, u32 features); | ||
| 173 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); | ||
| 174 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); | ||
| 175 | static void e1000_restore_vlan(struct e1000_adapter *adapter); | ||
| 176 | |||
| 177 | #ifdef CONFIG_PM | ||
| 178 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); | ||
| 179 | static int e1000_resume(struct pci_dev *pdev); | ||
| 180 | #endif | ||
| 181 | static void e1000_shutdown(struct pci_dev *pdev); | ||
| 182 | |||
| 183 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
| 184 | /* for netdump / net console */ | ||
| 185 | static void e1000_netpoll (struct net_device *netdev); | ||
| 186 | #endif | ||
| 187 | |||
| 188 | #define COPYBREAK_DEFAULT 256 | ||
| 189 | static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; | ||
| 190 | module_param(copybreak, uint, 0644); | ||
| 191 | MODULE_PARM_DESC(copybreak, | ||
| 192 | "Maximum size of packet that is copied to a new buffer on receive"); | ||
| 193 | |||
| 194 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | ||
| 195 | pci_channel_state_t state); | ||
| 196 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); | ||
| 197 | static void e1000_io_resume(struct pci_dev *pdev); | ||
| 198 | |||
| 199 | static struct pci_error_handlers e1000_err_handler = { | ||
| 200 | .error_detected = e1000_io_error_detected, | ||
| 201 | .slot_reset = e1000_io_slot_reset, | ||
| 202 | .resume = e1000_io_resume, | ||
| 203 | }; | ||
| 204 | |||
| 205 | static struct pci_driver e1000_driver = { | ||
| 206 | .name = e1000_driver_name, | ||
| 207 | .id_table = e1000_pci_tbl, | ||
| 208 | .probe = e1000_probe, | ||
| 209 | .remove = __devexit_p(e1000_remove), | ||
| 210 | #ifdef CONFIG_PM | ||
| 211 | /* Power Management Hooks */ | ||
| 212 | .suspend = e1000_suspend, | ||
| 213 | .resume = e1000_resume, | ||
| 214 | #endif | ||
| 215 | .shutdown = e1000_shutdown, | ||
| 216 | .err_handler = &e1000_err_handler | ||
| 217 | }; | ||
| 218 | |||
| 219 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | ||
| 220 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | ||
| 221 | MODULE_LICENSE("GPL"); | ||
| 222 | MODULE_VERSION(DRV_VERSION); | ||
| 223 | |||
| 224 | static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; | ||
| 225 | module_param(debug, int, 0); | ||
| 226 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | ||
| 227 | |||
| 228 | /** | ||
| 229 | * e1000_get_hw_dev - return device | ||
| 230 | * used by hardware layer to print debugging information | ||
| 231 | * | ||
| 232 | **/ | ||
| 233 | struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) | ||
| 234 | { | ||
| 235 | struct e1000_adapter *adapter = hw->back; | ||
| 236 | return adapter->netdev; | ||
| 237 | } | ||
| 238 | |||
| 239 | /** | ||
| 240 | * e1000_init_module - Driver Registration Routine | ||
| 241 | * | ||
| 242 | * e1000_init_module is the first routine called when the driver is | ||
| 243 | * loaded. All it does is register with the PCI subsystem. | ||
| 244 | **/ | ||
| 245 | |||
| 246 | static int __init e1000_init_module(void) | ||
| 247 | { | ||
| 248 | int ret; | ||
| 249 | pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); | ||
| 250 | |||
| 251 | pr_info("%s\n", e1000_copyright); | ||
| 252 | |||
| 253 | ret = pci_register_driver(&e1000_driver); | ||
| 254 | if (copybreak != COPYBREAK_DEFAULT) { | ||
| 255 | if (copybreak == 0) | ||
| 256 | pr_info("copybreak disabled\n"); | ||
| 257 | else | ||
| 258 | pr_info("copybreak enabled for " | ||
| 259 | "packets <= %u bytes\n", copybreak); | ||
| 260 | } | ||
| 261 | return ret; | ||
| 262 | } | ||
| 263 | |||
| 264 | module_init(e1000_init_module); | ||
| 265 | |||
| 266 | /** | ||
| 267 | * e1000_exit_module - Driver Exit Cleanup Routine | ||
| 268 | * | ||
| 269 | * e1000_exit_module is called just before the driver is removed | ||
| 270 | * from memory. | ||
| 271 | **/ | ||
| 272 | |||
| 273 | static void __exit e1000_exit_module(void) | ||
| 274 | { | ||
| 275 | pci_unregister_driver(&e1000_driver); | ||
| 276 | } | ||
| 277 | |||
| 278 | module_exit(e1000_exit_module); | ||
| 279 | |||
| 280 | static int e1000_request_irq(struct e1000_adapter *adapter) | ||
| 281 | { | ||
| 282 | struct net_device *netdev = adapter->netdev; | ||
| 283 | irq_handler_t handler = e1000_intr; | ||
| 284 | int irq_flags = IRQF_SHARED; | ||
| 285 | int err; | ||
| 286 | |||
| 287 | err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, | ||
| 288 | netdev); | ||
| 289 | if (err) { | ||
| 290 | e_err(probe, "Unable to allocate interrupt Error: %d\n", err); | ||
| 291 | } | ||
| 292 | |||
| 293 | return err; | ||
| 294 | } | ||
| 295 | |||
| 296 | static void e1000_free_irq(struct e1000_adapter *adapter) | ||
| 297 | { | ||
| 298 | struct net_device *netdev = adapter->netdev; | ||
| 299 | |||
| 300 | free_irq(adapter->pdev->irq, netdev); | ||
| 301 | } | ||
| 302 | |||
| 303 | /** | ||
| 304 | * e1000_irq_disable - Mask off interrupt generation on the NIC | ||
| 305 | * @adapter: board private structure | ||
| 306 | **/ | ||
| 307 | |||
| 308 | static void e1000_irq_disable(struct e1000_adapter *adapter) | ||
| 309 | { | ||
| 310 | struct e1000_hw *hw = &adapter->hw; | ||
| 311 | |||
| 312 | ew32(IMC, ~0); | ||
| 313 | E1000_WRITE_FLUSH(); | ||
| 314 | synchronize_irq(adapter->pdev->irq); | ||
| 315 | } | ||
| 316 | |||
| 317 | /** | ||
| 318 | * e1000_irq_enable - Enable default interrupt generation settings | ||
| 319 | * @adapter: board private structure | ||
| 320 | **/ | ||
| 321 | |||
| 322 | static void e1000_irq_enable(struct e1000_adapter *adapter) | ||
| 323 | { | ||
| 324 | struct e1000_hw *hw = &adapter->hw; | ||
| 325 | |||
| 326 | ew32(IMS, IMS_ENABLE_MASK); | ||
| 327 | E1000_WRITE_FLUSH(); | ||
| 328 | } | ||
| 329 | |||
| 330 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | ||
| 331 | { | ||
| 332 | struct e1000_hw *hw = &adapter->hw; | ||
| 333 | struct net_device *netdev = adapter->netdev; | ||
| 334 | u16 vid = hw->mng_cookie.vlan_id; | ||
| 335 | u16 old_vid = adapter->mng_vlan_id; | ||
| 336 | |||
| 337 | if (!e1000_vlan_used(adapter)) | ||
| 338 | return; | ||
| 339 | |||
| 340 | if (!test_bit(vid, adapter->active_vlans)) { | ||
| 341 | if (hw->mng_cookie.status & | ||
| 342 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { | ||
| 343 | e1000_vlan_rx_add_vid(netdev, vid); | ||
| 344 | adapter->mng_vlan_id = vid; | ||
| 345 | } else { | ||
| 346 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
| 347 | } | ||
| 348 | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | ||
| 349 | (vid != old_vid) && | ||
| 350 | !test_bit(old_vid, adapter->active_vlans)) | ||
| 351 | e1000_vlan_rx_kill_vid(netdev, old_vid); | ||
| 352 | } else { | ||
| 353 | adapter->mng_vlan_id = vid; | ||
| 354 | } | ||
| 355 | } | ||
| 356 | |||
| 357 | static void e1000_init_manageability(struct e1000_adapter *adapter) | ||
| 358 | { | ||
| 359 | struct e1000_hw *hw = &adapter->hw; | ||
| 360 | |||
| 361 | if (adapter->en_mng_pt) { | ||
| 362 | u32 manc = er32(MANC); | ||
| 363 | |||
| 364 | /* disable hardware interception of ARP */ | ||
| 365 | manc &= ~(E1000_MANC_ARP_EN); | ||
| 366 | |||
| 367 | ew32(MANC, manc); | ||
| 368 | } | ||
| 369 | } | ||
| 370 | |||
| 371 | static void e1000_release_manageability(struct e1000_adapter *adapter) | ||
| 372 | { | ||
| 373 | struct e1000_hw *hw = &adapter->hw; | ||
| 374 | |||
| 375 | if (adapter->en_mng_pt) { | ||
| 376 | u32 manc = er32(MANC); | ||
| 377 | |||
| 378 | /* re-enable hardware interception of ARP */ | ||
| 379 | manc |= E1000_MANC_ARP_EN; | ||
| 380 | |||
| 381 | ew32(MANC, manc); | ||
| 382 | } | ||
| 383 | } | ||
| 384 | |||
| 385 | /** | ||
| 386 | * e1000_configure - configure the hardware for RX and TX | ||
| 387 | * @adapter = private board structure | ||
| 388 | **/ | ||
| 389 | static void e1000_configure(struct e1000_adapter *adapter) | ||
| 390 | { | ||
| 391 | struct net_device *netdev = adapter->netdev; | ||
| 392 | int i; | ||
| 393 | |||
| 394 | e1000_set_rx_mode(netdev); | ||
| 395 | |||
| 396 | e1000_restore_vlan(adapter); | ||
| 397 | e1000_init_manageability(adapter); | ||
| 398 | |||
| 399 | e1000_configure_tx(adapter); | ||
| 400 | e1000_setup_rctl(adapter); | ||
| 401 | e1000_configure_rx(adapter); | ||
| 402 | /* call E1000_DESC_UNUSED which always leaves | ||
| 403 | * at least 1 descriptor unused to make sure | ||
| 404 | * next_to_use != next_to_clean */ | ||
| 405 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
| 406 | struct e1000_rx_ring *ring = &adapter->rx_ring[i]; | ||
| 407 | adapter->alloc_rx_buf(adapter, ring, | ||
| 408 | E1000_DESC_UNUSED(ring)); | ||
| 409 | } | ||
| 410 | } | ||
| 411 | |||
| 412 | int e1000_up(struct e1000_adapter *adapter) | ||
| 413 | { | ||
| 414 | struct e1000_hw *hw = &adapter->hw; | ||
| 415 | |||
| 416 | /* hardware has been reset, we need to reload some things */ | ||
| 417 | e1000_configure(adapter); | ||
| 418 | |||
| 419 | clear_bit(__E1000_DOWN, &adapter->flags); | ||
| 420 | |||
| 421 | napi_enable(&adapter->napi); | ||
| 422 | |||
| 423 | e1000_irq_enable(adapter); | ||
| 424 | |||
| 425 | netif_wake_queue(adapter->netdev); | ||
| 426 | |||
| 427 | /* fire a link change interrupt to start the watchdog */ | ||
| 428 | ew32(ICS, E1000_ICS_LSC); | ||
| 429 | return 0; | ||
| 430 | } | ||
| 431 | |||
| 432 | /** | ||
| 433 | * e1000_power_up_phy - restore link in case the phy was powered down | ||
| 434 | * @adapter: address of board private structure | ||
| 435 | * | ||
| 436 | * The phy may be powered down to save power and turn off link when the | ||
| 437 | * driver is unloaded and wake on lan is not enabled (among others) | ||
| 438 | * *** this routine MUST be followed by a call to e1000_reset *** | ||
| 439 | * | ||
| 440 | **/ | ||
| 441 | |||
| 442 | void e1000_power_up_phy(struct e1000_adapter *adapter) | ||
| 443 | { | ||
| 444 | struct e1000_hw *hw = &adapter->hw; | ||
| 445 | u16 mii_reg = 0; | ||
| 446 | |||
| 447 | /* Just clear the power down bit to wake the phy back up */ | ||
| 448 | if (hw->media_type == e1000_media_type_copper) { | ||
| 449 | /* according to the manual, the phy will retain its | ||
| 450 | * settings across a power-down/up cycle */ | ||
| 451 | e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); | ||
| 452 | mii_reg &= ~MII_CR_POWER_DOWN; | ||
| 453 | e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); | ||
| 454 | } | ||
| 455 | } | ||
| 456 | |||
| 457 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | ||
| 458 | { | ||
| 459 | struct e1000_hw *hw = &adapter->hw; | ||
| 460 | |||
| 461 | /* Power down the PHY so no link is implied when interface is down * | ||
| 462 | * The PHY cannot be powered down if any of the following is true * | ||
| 463 | * (a) WoL is enabled | ||
| 464 | * (b) AMT is active | ||
| 465 | * (c) SoL/IDER session is active */ | ||
| 466 | if (!adapter->wol && hw->mac_type >= e1000_82540 && | ||
| 467 | hw->media_type == e1000_media_type_copper) { | ||
| 468 | u16 mii_reg = 0; | ||
| 469 | |||
| 470 | switch (hw->mac_type) { | ||
| 471 | case e1000_82540: | ||
| 472 | case e1000_82545: | ||
| 473 | case e1000_82545_rev_3: | ||
| 474 | case e1000_82546: | ||
| 475 | case e1000_ce4100: | ||
| 476 | case e1000_82546_rev_3: | ||
| 477 | case e1000_82541: | ||
| 478 | case e1000_82541_rev_2: | ||
| 479 | case e1000_82547: | ||
| 480 | case e1000_82547_rev_2: | ||
| 481 | if (er32(MANC) & E1000_MANC_SMBUS_EN) | ||
| 482 | goto out; | ||
| 483 | break; | ||
| 484 | default: | ||
| 485 | goto out; | ||
| 486 | } | ||
| 487 | e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); | ||
| 488 | mii_reg |= MII_CR_POWER_DOWN; | ||
| 489 | e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); | ||
| 490 | mdelay(1); | ||
| 491 | } | ||
| 492 | out: | ||
| 493 | return; | ||
| 494 | } | ||
| 495 | |||
| 496 | void e1000_down(struct e1000_adapter *adapter) | ||
| 497 | { | ||
| 498 | struct e1000_hw *hw = &adapter->hw; | ||
| 499 | struct net_device *netdev = adapter->netdev; | ||
| 500 | u32 rctl, tctl; | ||
| 501 | |||
| 502 | |||
| 503 | /* disable receives in the hardware */ | ||
| 504 | rctl = er32(RCTL); | ||
| 505 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
| 506 | /* flush and sleep below */ | ||
| 507 | |||
| 508 | netif_tx_disable(netdev); | ||
| 509 | |||
| 510 | /* disable transmits in the hardware */ | ||
| 511 | tctl = er32(TCTL); | ||
| 512 | tctl &= ~E1000_TCTL_EN; | ||
| 513 | ew32(TCTL, tctl); | ||
| 514 | /* flush both disables and wait for them to finish */ | ||
| 515 | E1000_WRITE_FLUSH(); | ||
| 516 | msleep(10); | ||
| 517 | |||
| 518 | napi_disable(&adapter->napi); | ||
| 519 | |||
| 520 | e1000_irq_disable(adapter); | ||
| 521 | |||
| 522 | /* | ||
| 523 | * Setting DOWN must be after irq_disable to prevent | ||
| 524 | * a screaming interrupt. Setting DOWN also prevents | ||
| 525 | * timers and tasks from rescheduling. | ||
| 526 | */ | ||
| 527 | set_bit(__E1000_DOWN, &adapter->flags); | ||
| 528 | |||
| 529 | del_timer_sync(&adapter->tx_fifo_stall_timer); | ||
| 530 | del_timer_sync(&adapter->watchdog_timer); | ||
| 531 | del_timer_sync(&adapter->phy_info_timer); | ||
| 532 | |||
| 533 | adapter->link_speed = 0; | ||
| 534 | adapter->link_duplex = 0; | ||
| 535 | netif_carrier_off(netdev); | ||
| 536 | |||
| 537 | e1000_reset(adapter); | ||
| 538 | e1000_clean_all_tx_rings(adapter); | ||
| 539 | e1000_clean_all_rx_rings(adapter); | ||
| 540 | } | ||
| 541 | |||
| 542 | static void e1000_reinit_safe(struct e1000_adapter *adapter) | ||
| 543 | { | ||
| 544 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
| 545 | msleep(1); | ||
| 546 | rtnl_lock(); | ||
| 547 | e1000_down(adapter); | ||
| 548 | e1000_up(adapter); | ||
| 549 | rtnl_unlock(); | ||
| 550 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
| 551 | } | ||
| 552 | |||
| 553 | void e1000_reinit_locked(struct e1000_adapter *adapter) | ||
| 554 | { | ||
| 555 | /* if rtnl_lock is not held the call path is bogus */ | ||
| 556 | ASSERT_RTNL(); | ||
| 557 | WARN_ON(in_interrupt()); | ||
| 558 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
| 559 | msleep(1); | ||
| 560 | e1000_down(adapter); | ||
| 561 | e1000_up(adapter); | ||
| 562 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
| 563 | } | ||
| 564 | |||
| 565 | void e1000_reset(struct e1000_adapter *adapter) | ||
| 566 | { | ||
| 567 | struct e1000_hw *hw = &adapter->hw; | ||
| 568 | u32 pba = 0, tx_space, min_tx_space, min_rx_space; | ||
| 569 | bool legacy_pba_adjust = false; | ||
| 570 | u16 hwm; | ||
| 571 | |||
| 572 | /* Repartition Pba for greater than 9k mtu | ||
| 573 | * To take effect CTRL.RST is required. | ||
| 574 | */ | ||
| 575 | |||
| 576 | switch (hw->mac_type) { | ||
| 577 | case e1000_82542_rev2_0: | ||
| 578 | case e1000_82542_rev2_1: | ||
| 579 | case e1000_82543: | ||
| 580 | case e1000_82544: | ||
| 581 | case e1000_82540: | ||
| 582 | case e1000_82541: | ||
| 583 | case e1000_82541_rev_2: | ||
| 584 | legacy_pba_adjust = true; | ||
| 585 | pba = E1000_PBA_48K; | ||
| 586 | break; | ||
| 587 | case e1000_82545: | ||
| 588 | case e1000_82545_rev_3: | ||
| 589 | case e1000_82546: | ||
| 590 | case e1000_ce4100: | ||
| 591 | case e1000_82546_rev_3: | ||
| 592 | pba = E1000_PBA_48K; | ||
| 593 | break; | ||
| 594 | case e1000_82547: | ||
| 595 | case e1000_82547_rev_2: | ||
| 596 | legacy_pba_adjust = true; | ||
| 597 | pba = E1000_PBA_30K; | ||
| 598 | break; | ||
| 599 | case e1000_undefined: | ||
| 600 | case e1000_num_macs: | ||
| 601 | break; | ||
| 602 | } | ||
| 603 | |||
| 604 | if (legacy_pba_adjust) { | ||
| 605 | if (hw->max_frame_size > E1000_RXBUFFER_8192) | ||
| 606 | pba -= 8; /* allocate more FIFO for Tx */ | ||
| 607 | |||
| 608 | if (hw->mac_type == e1000_82547) { | ||
| 609 | adapter->tx_fifo_head = 0; | ||
| 610 | adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; | ||
| 611 | adapter->tx_fifo_size = | ||
| 612 | (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; | ||
| 613 | atomic_set(&adapter->tx_fifo_stall, 0); | ||
| 614 | } | ||
| 615 | } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { | ||
| 616 | /* adjust PBA for jumbo frames */ | ||
| 617 | ew32(PBA, pba); | ||
| 618 | |||
| 619 | /* To maintain wire speed transmits, the Tx FIFO should be | ||
| 620 | * large enough to accommodate two full transmit packets, | ||
| 621 | * rounded up to the next 1KB and expressed in KB. Likewise, | ||
| 622 | * the Rx FIFO should be large enough to accommodate at least | ||
| 623 | * one full receive packet and is similarly rounded up and | ||
| 624 | * expressed in KB. */ | ||
| 625 | pba = er32(PBA); | ||
| 626 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | ||
| 627 | tx_space = pba >> 16; | ||
| 628 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | ||
| 629 | pba &= 0xffff; | ||
| 630 | /* | ||
| 631 | * the tx fifo also stores 16 bytes of information about the tx | ||
| 632 | * but don't include ethernet FCS because hardware appends it | ||
| 633 | */ | ||
| 634 | min_tx_space = (hw->max_frame_size + | ||
| 635 | sizeof(struct e1000_tx_desc) - | ||
| 636 | ETH_FCS_LEN) * 2; | ||
| 637 | min_tx_space = ALIGN(min_tx_space, 1024); | ||
| 638 | min_tx_space >>= 10; | ||
| 639 | /* software strips receive CRC, so leave room for it */ | ||
| 640 | min_rx_space = hw->max_frame_size; | ||
| 641 | min_rx_space = ALIGN(min_rx_space, 1024); | ||
| 642 | min_rx_space >>= 10; | ||
| 643 | |||
| 644 | /* If current Tx allocation is less than the min Tx FIFO size, | ||
| 645 | * and the min Tx FIFO size is less than the current Rx FIFO | ||
| 646 | * allocation, take space away from current Rx allocation */ | ||
| 647 | if (tx_space < min_tx_space && | ||
| 648 | ((min_tx_space - tx_space) < pba)) { | ||
| 649 | pba = pba - (min_tx_space - tx_space); | ||
| 650 | |||
| 651 | /* PCI/PCIx hardware has PBA alignment constraints */ | ||
| 652 | switch (hw->mac_type) { | ||
| 653 | case e1000_82545 ... e1000_82546_rev_3: | ||
| 654 | pba &= ~(E1000_PBA_8K - 1); | ||
| 655 | break; | ||
| 656 | default: | ||
| 657 | break; | ||
| 658 | } | ||
| 659 | |||
| 660 | /* if short on rx space, rx wins and must trump tx | ||
| 661 | * adjustment or use Early Receive if available */ | ||
| 662 | if (pba < min_rx_space) | ||
| 663 | pba = min_rx_space; | ||
| 664 | } | ||
| 665 | } | ||
| 666 | |||
| 667 | ew32(PBA, pba); | ||
| 668 | |||
| 669 | /* | ||
| 670 | * flow control settings: | ||
| 671 | * The high water mark must be low enough to fit one full frame | ||
| 672 | * (or the size used for early receive) above it in the Rx FIFO. | ||
| 673 | * Set it to the lower of: | ||
| 674 | * - 90% of the Rx FIFO size, and | ||
| 675 | * - the full Rx FIFO size minus the early receive size (for parts | ||
| 676 | * with ERT support assuming ERT set to E1000_ERT_2048), or | ||
| 677 | * - the full Rx FIFO size minus one full frame | ||
| 678 | */ | ||
| 679 | hwm = min(((pba << 10) * 9 / 10), | ||
| 680 | ((pba << 10) - hw->max_frame_size)); | ||
| 681 | |||
| 682 | hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ | ||
| 683 | hw->fc_low_water = hw->fc_high_water - 8; | ||
| 684 | hw->fc_pause_time = E1000_FC_PAUSE_TIME; | ||
| 685 | hw->fc_send_xon = 1; | ||
| 686 | hw->fc = hw->original_fc; | ||
| 687 | |||
| 688 | /* Allow time for pending master requests to run */ | ||
| 689 | e1000_reset_hw(hw); | ||
| 690 | if (hw->mac_type >= e1000_82544) | ||
| 691 | ew32(WUC, 0); | ||
| 692 | |||
| 693 | if (e1000_init_hw(hw)) | ||
| 694 | e_dev_err("Hardware Error\n"); | ||
| 695 | e1000_update_mng_vlan(adapter); | ||
| 696 | |||
| 697 | /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ | ||
| 698 | if (hw->mac_type >= e1000_82544 && | ||
| 699 | hw->autoneg == 1 && | ||
| 700 | hw->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
| 701 | u32 ctrl = er32(CTRL); | ||
| 702 | /* clear phy power management bit if we are in gig only mode, | ||
| 703 | * which if enabled will attempt negotiation to 100Mb, which | ||
| 704 | * can cause a loss of link at power off or driver unload */ | ||
| 705 | ctrl &= ~E1000_CTRL_SWDPIN3; | ||
| 706 | ew32(CTRL, ctrl); | ||
| 707 | } | ||
| 708 | |||
| 709 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
| 710 | ew32(VET, ETHERNET_IEEE_VLAN_TYPE); | ||
| 711 | |||
| 712 | e1000_reset_adaptive(hw); | ||
| 713 | e1000_phy_get_info(hw, &adapter->phy_info); | ||
| 714 | |||
| 715 | e1000_release_manageability(adapter); | ||
| 716 | } | ||
| 717 | |||
| 718 | /** | ||
| 719 | * Dump the eeprom for users having checksum issues | ||
| 720 | **/ | ||
| 721 | static void e1000_dump_eeprom(struct e1000_adapter *adapter) | ||
| 722 | { | ||
| 723 | struct net_device *netdev = adapter->netdev; | ||
| 724 | struct ethtool_eeprom eeprom; | ||
| 725 | const struct ethtool_ops *ops = netdev->ethtool_ops; | ||
| 726 | u8 *data; | ||
| 727 | int i; | ||
| 728 | u16 csum_old, csum_new = 0; | ||
| 729 | |||
| 730 | eeprom.len = ops->get_eeprom_len(netdev); | ||
| 731 | eeprom.offset = 0; | ||
| 732 | |||
| 733 | data = kmalloc(eeprom.len, GFP_KERNEL); | ||
| 734 | if (!data) { | ||
| 735 | pr_err("Unable to allocate memory to dump EEPROM data\n"); | ||
| 736 | return; | ||
| 737 | } | ||
| 738 | |||
| 739 | ops->get_eeprom(netdev, &eeprom, data); | ||
| 740 | |||
| 741 | csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + | ||
| 742 | (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); | ||
| 743 | for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) | ||
| 744 | csum_new += data[i] + (data[i + 1] << 8); | ||
| 745 | csum_new = EEPROM_SUM - csum_new; | ||
| 746 | |||
| 747 | pr_err("/*********************/\n"); | ||
| 748 | pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); | ||
| 749 | pr_err("Calculated : 0x%04x\n", csum_new); | ||
| 750 | |||
| 751 | pr_err("Offset Values\n"); | ||
| 752 | pr_err("======== ======\n"); | ||
| 753 | print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); | ||
| 754 | |||
| 755 | pr_err("Include this output when contacting your support provider.\n"); | ||
| 756 | pr_err("This is not a software error! Something bad happened to\n"); | ||
| 757 | pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); | ||
| 758 | pr_err("result in further problems, possibly loss of data,\n"); | ||
| 759 | pr_err("corruption or system hangs!\n"); | ||
| 760 | pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); | ||
| 761 | pr_err("which is invalid and requires you to set the proper MAC\n"); | ||
| 762 | pr_err("address manually before continuing to enable this network\n"); | ||
| 763 | pr_err("device. Please inspect the EEPROM dump and report the\n"); | ||
| 764 | pr_err("issue to your hardware vendor or Intel Customer Support.\n"); | ||
| 765 | pr_err("/*********************/\n"); | ||
| 766 | |||
| 767 | kfree(data); | ||
| 768 | } | ||
| 769 | |||
| 770 | /** | ||
| 771 | * e1000_is_need_ioport - determine if an adapter needs ioport resources or not | ||
| 772 | * @pdev: PCI device information struct | ||
| 773 | * | ||
| 774 | * Return true if an adapter needs ioport resources | ||
| 775 | **/ | ||
| 776 | static int e1000_is_need_ioport(struct pci_dev *pdev) | ||
| 777 | { | ||
| 778 | switch (pdev->device) { | ||
| 779 | case E1000_DEV_ID_82540EM: | ||
| 780 | case E1000_DEV_ID_82540EM_LOM: | ||
| 781 | case E1000_DEV_ID_82540EP: | ||
| 782 | case E1000_DEV_ID_82540EP_LOM: | ||
| 783 | case E1000_DEV_ID_82540EP_LP: | ||
| 784 | case E1000_DEV_ID_82541EI: | ||
| 785 | case E1000_DEV_ID_82541EI_MOBILE: | ||
| 786 | case E1000_DEV_ID_82541ER: | ||
| 787 | case E1000_DEV_ID_82541ER_LOM: | ||
| 788 | case E1000_DEV_ID_82541GI: | ||
| 789 | case E1000_DEV_ID_82541GI_LF: | ||
| 790 | case E1000_DEV_ID_82541GI_MOBILE: | ||
| 791 | case E1000_DEV_ID_82544EI_COPPER: | ||
| 792 | case E1000_DEV_ID_82544EI_FIBER: | ||
| 793 | case E1000_DEV_ID_82544GC_COPPER: | ||
| 794 | case E1000_DEV_ID_82544GC_LOM: | ||
| 795 | case E1000_DEV_ID_82545EM_COPPER: | ||
| 796 | case E1000_DEV_ID_82545EM_FIBER: | ||
| 797 | case E1000_DEV_ID_82546EB_COPPER: | ||
| 798 | case E1000_DEV_ID_82546EB_FIBER: | ||
| 799 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
| 800 | return true; | ||
| 801 | default: | ||
| 802 | return false; | ||
| 803 | } | ||
| 804 | } | ||
| 805 | |||
| 806 | static u32 e1000_fix_features(struct net_device *netdev, u32 features) | ||
| 807 | { | ||
| 808 | /* | ||
| 809 | * Since there is no support for separate rx/tx vlan accel | ||
| 810 | * enable/disable make sure tx flag is always in same state as rx. | ||
| 811 | */ | ||
| 812 | if (features & NETIF_F_HW_VLAN_RX) | ||
| 813 | features |= NETIF_F_HW_VLAN_TX; | ||
| 814 | else | ||
| 815 | features &= ~NETIF_F_HW_VLAN_TX; | ||
| 816 | |||
| 817 | return features; | ||
| 818 | } | ||
| 819 | |||
| 820 | static int e1000_set_features(struct net_device *netdev, u32 features) | ||
| 821 | { | ||
| 822 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 823 | u32 changed = features ^ netdev->features; | ||
| 824 | |||
| 825 | if (changed & NETIF_F_HW_VLAN_RX) | ||
| 826 | e1000_vlan_mode(netdev, features); | ||
| 827 | |||
| 828 | if (!(changed & NETIF_F_RXCSUM)) | ||
| 829 | return 0; | ||
| 830 | |||
| 831 | adapter->rx_csum = !!(features & NETIF_F_RXCSUM); | ||
| 832 | |||
| 833 | if (netif_running(netdev)) | ||
| 834 | e1000_reinit_locked(adapter); | ||
| 835 | else | ||
| 836 | e1000_reset(adapter); | ||
| 837 | |||
| 838 | return 0; | ||
| 839 | } | ||
| 840 | |||
| 841 | static const struct net_device_ops e1000_netdev_ops = { | ||
| 842 | .ndo_open = e1000_open, | ||
| 843 | .ndo_stop = e1000_close, | ||
| 844 | .ndo_start_xmit = e1000_xmit_frame, | ||
| 845 | .ndo_get_stats = e1000_get_stats, | ||
| 846 | .ndo_set_rx_mode = e1000_set_rx_mode, | ||
| 847 | .ndo_set_mac_address = e1000_set_mac, | ||
| 848 | .ndo_tx_timeout = e1000_tx_timeout, | ||
| 849 | .ndo_change_mtu = e1000_change_mtu, | ||
| 850 | .ndo_do_ioctl = e1000_ioctl, | ||
| 851 | .ndo_validate_addr = eth_validate_addr, | ||
| 852 | .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, | ||
| 853 | .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, | ||
| 854 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
| 855 | .ndo_poll_controller = e1000_netpoll, | ||
| 856 | #endif | ||
| 857 | .ndo_fix_features = e1000_fix_features, | ||
| 858 | .ndo_set_features = e1000_set_features, | ||
| 859 | }; | ||
| 860 | |||
| 861 | /** | ||
| 862 | * e1000_init_hw_struct - initialize members of hw struct | ||
| 863 | * @adapter: board private struct | ||
| 864 | * @hw: structure used by e1000_hw.c | ||
| 865 | * | ||
| 866 | * Factors out initialization of the e1000_hw struct to its own function | ||
| 867 | * that can be called very early at init (just after struct allocation). | ||
| 868 | * Fields are initialized based on PCI device information and | ||
| 869 | * OS network device settings (MTU size). | ||
| 870 | * Returns negative error codes if MAC type setup fails. | ||
| 871 | */ | ||
| 872 | static int e1000_init_hw_struct(struct e1000_adapter *adapter, | ||
| 873 | struct e1000_hw *hw) | ||
| 874 | { | ||
| 875 | struct pci_dev *pdev = adapter->pdev; | ||
| 876 | |||
| 877 | /* PCI config space info */ | ||
| 878 | hw->vendor_id = pdev->vendor; | ||
| 879 | hw->device_id = pdev->device; | ||
| 880 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
| 881 | hw->subsystem_id = pdev->subsystem_device; | ||
| 882 | hw->revision_id = pdev->revision; | ||
| 883 | |||
| 884 | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); | ||
| 885 | |||
| 886 | hw->max_frame_size = adapter->netdev->mtu + | ||
| 887 | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | ||
| 888 | hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; | ||
| 889 | |||
| 890 | /* identify the MAC */ | ||
| 891 | if (e1000_set_mac_type(hw)) { | ||
| 892 | e_err(probe, "Unknown MAC Type\n"); | ||
| 893 | return -EIO; | ||
| 894 | } | ||
| 895 | |||
| 896 | switch (hw->mac_type) { | ||
| 897 | default: | ||
| 898 | break; | ||
| 899 | case e1000_82541: | ||
| 900 | case e1000_82547: | ||
| 901 | case e1000_82541_rev_2: | ||
| 902 | case e1000_82547_rev_2: | ||
| 903 | hw->phy_init_script = 1; | ||
| 904 | break; | ||
| 905 | } | ||
| 906 | |||
| 907 | e1000_set_media_type(hw); | ||
| 908 | e1000_get_bus_info(hw); | ||
| 909 | |||
| 910 | hw->wait_autoneg_complete = false; | ||
| 911 | hw->tbi_compatibility_en = true; | ||
| 912 | hw->adaptive_ifs = true; | ||
| 913 | |||
| 914 | /* Copper options */ | ||
| 915 | |||
| 916 | if (hw->media_type == e1000_media_type_copper) { | ||
| 917 | hw->mdix = AUTO_ALL_MODES; | ||
| 918 | hw->disable_polarity_correction = false; | ||
| 919 | hw->master_slave = E1000_MASTER_SLAVE; | ||
| 920 | } | ||
| 921 | |||
| 922 | return 0; | ||
| 923 | } | ||
| 924 | |||
| 925 | /** | ||
| 926 | * e1000_probe - Device Initialization Routine | ||
| 927 | * @pdev: PCI device information struct | ||
| 928 | * @ent: entry in e1000_pci_tbl | ||
| 929 | * | ||
| 930 | * Returns 0 on success, negative on failure | ||
| 931 | * | ||
| 932 | * e1000_probe initializes an adapter identified by a pci_dev structure. | ||
| 933 | * The OS initialization, configuring of the adapter private structure, | ||
| 934 | * and a hardware reset occur. | ||
| 935 | **/ | ||
| 936 | static int __devinit e1000_probe(struct pci_dev *pdev, | ||
| 937 | const struct pci_device_id *ent) | ||
| 938 | { | ||
| 939 | struct net_device *netdev; | ||
| 940 | struct e1000_adapter *adapter; | ||
| 941 | struct e1000_hw *hw; | ||
| 942 | |||
| 943 | static int cards_found = 0; | ||
| 944 | static int global_quad_port_a = 0; /* global ksp3 port a indication */ | ||
| 945 | int i, err, pci_using_dac; | ||
| 946 | u16 eeprom_data = 0; | ||
| 947 | u16 tmp = 0; | ||
| 948 | u16 eeprom_apme_mask = E1000_EEPROM_APME; | ||
| 949 | int bars, need_ioport; | ||
| 950 | |||
| 951 | /* do not allocate ioport bars when not needed */ | ||
| 952 | need_ioport = e1000_is_need_ioport(pdev); | ||
| 953 | if (need_ioport) { | ||
| 954 | bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); | ||
| 955 | err = pci_enable_device(pdev); | ||
| 956 | } else { | ||
| 957 | bars = pci_select_bars(pdev, IORESOURCE_MEM); | ||
| 958 | err = pci_enable_device_mem(pdev); | ||
| 959 | } | ||
| 960 | if (err) | ||
| 961 | return err; | ||
| 962 | |||
| 963 | err = pci_request_selected_regions(pdev, bars, e1000_driver_name); | ||
| 964 | if (err) | ||
| 965 | goto err_pci_reg; | ||
| 966 | |||
| 967 | pci_set_master(pdev); | ||
| 968 | err = pci_save_state(pdev); | ||
| 969 | if (err) | ||
| 970 | goto err_alloc_etherdev; | ||
| 971 | |||
| 972 | err = -ENOMEM; | ||
| 973 | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | ||
| 974 | if (!netdev) | ||
| 975 | goto err_alloc_etherdev; | ||
| 976 | |||
| 977 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
| 978 | |||
| 979 | pci_set_drvdata(pdev, netdev); | ||
| 980 | adapter = netdev_priv(netdev); | ||
| 981 | adapter->netdev = netdev; | ||
| 982 | adapter->pdev = pdev; | ||
| 983 | adapter->msg_enable = (1 << debug) - 1; | ||
| 984 | adapter->bars = bars; | ||
| 985 | adapter->need_ioport = need_ioport; | ||
| 986 | |||
| 987 | hw = &adapter->hw; | ||
| 988 | hw->back = adapter; | ||
| 989 | |||
| 990 | err = -EIO; | ||
| 991 | hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); | ||
| 992 | if (!hw->hw_addr) | ||
| 993 | goto err_ioremap; | ||
| 994 | |||
| 995 | if (adapter->need_ioport) { | ||
| 996 | for (i = BAR_1; i <= BAR_5; i++) { | ||
| 997 | if (pci_resource_len(pdev, i) == 0) | ||
| 998 | continue; | ||
| 999 | if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { | ||
| 1000 | hw->io_base = pci_resource_start(pdev, i); | ||
| 1001 | break; | ||
| 1002 | } | ||
| 1003 | } | ||
| 1004 | } | ||
| 1005 | |||
| 1006 | /* make ready for any if (hw->...) below */ | ||
| 1007 | err = e1000_init_hw_struct(adapter, hw); | ||
| 1008 | if (err) | ||
| 1009 | goto err_sw_init; | ||
| 1010 | |||
| 1011 | /* | ||
| 1012 | * there is a workaround being applied below that limits | ||
| 1013 | * 64-bit DMA addresses to 64-bit hardware. There are some | ||
| 1014 | * 32-bit adapters that Tx hang when given 64-bit DMA addresses | ||
| 1015 | */ | ||
| 1016 | pci_using_dac = 0; | ||
| 1017 | if ((hw->bus_type == e1000_bus_type_pcix) && | ||
| 1018 | !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { | ||
| 1019 | /* | ||
| 1020 | * according to DMA-API-HOWTO, coherent calls will always | ||
| 1021 | * succeed if the set call did | ||
| 1022 | */ | ||
| 1023 | dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
| 1024 | pci_using_dac = 1; | ||
| 1025 | } else { | ||
| 1026 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
| 1027 | if (err) { | ||
| 1028 | pr_err("No usable DMA config, aborting\n"); | ||
| 1029 | goto err_dma; | ||
| 1030 | } | ||
| 1031 | dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
| 1032 | } | ||
| 1033 | |||
| 1034 | netdev->netdev_ops = &e1000_netdev_ops; | ||
| 1035 | e1000_set_ethtool_ops(netdev); | ||
| 1036 | netdev->watchdog_timeo = 5 * HZ; | ||
| 1037 | netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | ||
| 1038 | |||
| 1039 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
| 1040 | |||
| 1041 | adapter->bd_number = cards_found; | ||
| 1042 | |||
| 1043 | /* setup the private structure */ | ||
| 1044 | |||
| 1045 | err = e1000_sw_init(adapter); | ||
| 1046 | if (err) | ||
| 1047 | goto err_sw_init; | ||
| 1048 | |||
| 1049 | err = -EIO; | ||
| 1050 | if (hw->mac_type == e1000_ce4100) { | ||
| 1051 | ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1); | ||
| 1052 | ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy, | ||
| 1053 | pci_resource_len(pdev, BAR_1)); | ||
| 1054 | |||
| 1055 | if (!ce4100_gbe_mdio_base_virt) | ||
| 1056 | goto err_mdio_ioremap; | ||
| 1057 | } | ||
| 1058 | |||
| 1059 | if (hw->mac_type >= e1000_82543) { | ||
| 1060 | netdev->hw_features = NETIF_F_SG | | ||
| 1061 | NETIF_F_HW_CSUM | | ||
| 1062 | NETIF_F_HW_VLAN_RX; | ||
| 1063 | netdev->features = NETIF_F_HW_VLAN_TX | | ||
| 1064 | NETIF_F_HW_VLAN_FILTER; | ||
| 1065 | } | ||
| 1066 | |||
| 1067 | if ((hw->mac_type >= e1000_82544) && | ||
| 1068 | (hw->mac_type != e1000_82547)) | ||
| 1069 | netdev->hw_features |= NETIF_F_TSO; | ||
| 1070 | |||
| 1071 | netdev->features |= netdev->hw_features; | ||
| 1072 | netdev->hw_features |= NETIF_F_RXCSUM; | ||
| 1073 | |||
| 1074 | if (pci_using_dac) { | ||
| 1075 | netdev->features |= NETIF_F_HIGHDMA; | ||
| 1076 | netdev->vlan_features |= NETIF_F_HIGHDMA; | ||
| 1077 | } | ||
| 1078 | |||
| 1079 | netdev->vlan_features |= NETIF_F_TSO; | ||
| 1080 | netdev->vlan_features |= NETIF_F_HW_CSUM; | ||
| 1081 | netdev->vlan_features |= NETIF_F_SG; | ||
| 1082 | |||
| 1083 | adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); | ||
| 1084 | |||
| 1085 | /* initialize eeprom parameters */ | ||
| 1086 | if (e1000_init_eeprom_params(hw)) { | ||
| 1087 | e_err(probe, "EEPROM initialization failed\n"); | ||
| 1088 | goto err_eeprom; | ||
| 1089 | } | ||
| 1090 | |||
| 1091 | /* before reading the EEPROM, reset the controller to | ||
| 1092 | * put the device in a known good starting state */ | ||
| 1093 | |||
| 1094 | e1000_reset_hw(hw); | ||
| 1095 | |||
| 1096 | /* make sure the EEPROM is good */ | ||
| 1097 | if (e1000_validate_eeprom_checksum(hw) < 0) { | ||
| 1098 | e_err(probe, "The EEPROM Checksum Is Not Valid\n"); | ||
| 1099 | e1000_dump_eeprom(adapter); | ||
| 1100 | /* | ||
| 1101 | * set MAC address to all zeroes to invalidate and temporary | ||
| 1102 | * disable this device for the user. This blocks regular | ||
| 1103 | * traffic while still permitting ethtool ioctls from reaching | ||
| 1104 | * the hardware as well as allowing the user to run the | ||
| 1105 | * interface after manually setting a hw addr using | ||
| 1106 | * `ip set address` | ||
| 1107 | */ | ||
| 1108 | memset(hw->mac_addr, 0, netdev->addr_len); | ||
| 1109 | } else { | ||
| 1110 | /* copy the MAC address out of the EEPROM */ | ||
| 1111 | if (e1000_read_mac_addr(hw)) | ||
| 1112 | e_err(probe, "EEPROM Read Error\n"); | ||
| 1113 | } | ||
| 1114 | /* don't block initalization here due to bad MAC address */ | ||
| 1115 | memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); | ||
| 1116 | memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); | ||
| 1117 | |||
| 1118 | if (!is_valid_ether_addr(netdev->perm_addr)) | ||
| 1119 | e_err(probe, "Invalid MAC Address\n"); | ||
| 1120 | |||
| 1121 | init_timer(&adapter->tx_fifo_stall_timer); | ||
| 1122 | adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall; | ||
| 1123 | adapter->tx_fifo_stall_timer.data = (unsigned long)adapter; | ||
| 1124 | |||
| 1125 | init_timer(&adapter->watchdog_timer); | ||
| 1126 | adapter->watchdog_timer.function = e1000_watchdog; | ||
| 1127 | adapter->watchdog_timer.data = (unsigned long) adapter; | ||
| 1128 | |||
| 1129 | init_timer(&adapter->phy_info_timer); | ||
| 1130 | adapter->phy_info_timer.function = e1000_update_phy_info; | ||
| 1131 | adapter->phy_info_timer.data = (unsigned long)adapter; | ||
| 1132 | |||
| 1133 | INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task); | ||
| 1134 | INIT_WORK(&adapter->reset_task, e1000_reset_task); | ||
| 1135 | INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); | ||
| 1136 | |||
| 1137 | e1000_check_options(adapter); | ||
| 1138 | |||
| 1139 | /* Initial Wake on LAN setting | ||
| 1140 | * If APM wake is enabled in the EEPROM, | ||
| 1141 | * enable the ACPI Magic Packet filter | ||
| 1142 | */ | ||
| 1143 | |||
| 1144 | switch (hw->mac_type) { | ||
| 1145 | case e1000_82542_rev2_0: | ||
| 1146 | case e1000_82542_rev2_1: | ||
| 1147 | case e1000_82543: | ||
| 1148 | break; | ||
| 1149 | case e1000_82544: | ||
| 1150 | e1000_read_eeprom(hw, | ||
| 1151 | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); | ||
| 1152 | eeprom_apme_mask = E1000_EEPROM_82544_APM; | ||
| 1153 | break; | ||
| 1154 | case e1000_82546: | ||
| 1155 | case e1000_82546_rev_3: | ||
| 1156 | if (er32(STATUS) & E1000_STATUS_FUNC_1){ | ||
| 1157 | e1000_read_eeprom(hw, | ||
| 1158 | EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | ||
| 1159 | break; | ||
| 1160 | } | ||
| 1161 | /* Fall Through */ | ||
| 1162 | default: | ||
| 1163 | e1000_read_eeprom(hw, | ||
| 1164 | EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | ||
| 1165 | break; | ||
| 1166 | } | ||
| 1167 | if (eeprom_data & eeprom_apme_mask) | ||
| 1168 | adapter->eeprom_wol |= E1000_WUFC_MAG; | ||
| 1169 | |||
| 1170 | /* now that we have the eeprom settings, apply the special cases | ||
| 1171 | * where the eeprom may be wrong or the board simply won't support | ||
| 1172 | * wake on lan on a particular port */ | ||
| 1173 | switch (pdev->device) { | ||
| 1174 | case E1000_DEV_ID_82546GB_PCIE: | ||
| 1175 | adapter->eeprom_wol = 0; | ||
| 1176 | break; | ||
| 1177 | case E1000_DEV_ID_82546EB_FIBER: | ||
| 1178 | case E1000_DEV_ID_82546GB_FIBER: | ||
| 1179 | /* Wake events only supported on port A for dual fiber | ||
| 1180 | * regardless of eeprom setting */ | ||
| 1181 | if (er32(STATUS) & E1000_STATUS_FUNC_1) | ||
| 1182 | adapter->eeprom_wol = 0; | ||
| 1183 | break; | ||
| 1184 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | ||
| 1185 | /* if quad port adapter, disable WoL on all but port A */ | ||
| 1186 | if (global_quad_port_a != 0) | ||
| 1187 | adapter->eeprom_wol = 0; | ||
| 1188 | else | ||
| 1189 | adapter->quad_port_a = 1; | ||
| 1190 | /* Reset for multiple quad port adapters */ | ||
| 1191 | if (++global_quad_port_a == 4) | ||
| 1192 | global_quad_port_a = 0; | ||
| 1193 | break; | ||
| 1194 | } | ||
| 1195 | |||
| 1196 | /* initialize the wol settings based on the eeprom settings */ | ||
| 1197 | adapter->wol = adapter->eeprom_wol; | ||
| 1198 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | ||
| 1199 | |||
| 1200 | /* Auto detect PHY address */ | ||
| 1201 | if (hw->mac_type == e1000_ce4100) { | ||
| 1202 | for (i = 0; i < 32; i++) { | ||
| 1203 | hw->phy_addr = i; | ||
| 1204 | e1000_read_phy_reg(hw, PHY_ID2, &tmp); | ||
| 1205 | if (tmp == 0 || tmp == 0xFF) { | ||
| 1206 | if (i == 31) | ||
| 1207 | goto err_eeprom; | ||
| 1208 | continue; | ||
| 1209 | } else | ||
| 1210 | break; | ||
| 1211 | } | ||
| 1212 | } | ||
| 1213 | |||
| 1214 | /* reset the hardware with the new settings */ | ||
| 1215 | e1000_reset(adapter); | ||
| 1216 | |||
| 1217 | strcpy(netdev->name, "eth%d"); | ||
| 1218 | err = register_netdev(netdev); | ||
| 1219 | if (err) | ||
| 1220 | goto err_register; | ||
| 1221 | |||
| 1222 | e1000_vlan_mode(netdev, netdev->features); | ||
| 1223 | |||
| 1224 | /* print bus type/speed/width info */ | ||
| 1225 | e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", | ||
| 1226 | ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), | ||
| 1227 | ((hw->bus_speed == e1000_bus_speed_133) ? 133 : | ||
| 1228 | (hw->bus_speed == e1000_bus_speed_120) ? 120 : | ||
| 1229 | (hw->bus_speed == e1000_bus_speed_100) ? 100 : | ||
| 1230 | (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), | ||
| 1231 | ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), | ||
| 1232 | netdev->dev_addr); | ||
| 1233 | |||
| 1234 | /* carrier off reporting is important to ethtool even BEFORE open */ | ||
| 1235 | netif_carrier_off(netdev); | ||
| 1236 | |||
| 1237 | e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); | ||
| 1238 | |||
| 1239 | cards_found++; | ||
| 1240 | return 0; | ||
| 1241 | |||
| 1242 | err_register: | ||
| 1243 | err_eeprom: | ||
| 1244 | e1000_phy_hw_reset(hw); | ||
| 1245 | |||
| 1246 | if (hw->flash_address) | ||
| 1247 | iounmap(hw->flash_address); | ||
| 1248 | kfree(adapter->tx_ring); | ||
| 1249 | kfree(adapter->rx_ring); | ||
| 1250 | err_dma: | ||
| 1251 | err_sw_init: | ||
| 1252 | err_mdio_ioremap: | ||
| 1253 | iounmap(ce4100_gbe_mdio_base_virt); | ||
| 1254 | iounmap(hw->hw_addr); | ||
| 1255 | err_ioremap: | ||
| 1256 | free_netdev(netdev); | ||
| 1257 | err_alloc_etherdev: | ||
| 1258 | pci_release_selected_regions(pdev, bars); | ||
| 1259 | err_pci_reg: | ||
| 1260 | pci_disable_device(pdev); | ||
| 1261 | return err; | ||
| 1262 | } | ||
| 1263 | |||
| 1264 | /** | ||
| 1265 | * e1000_remove - Device Removal Routine | ||
| 1266 | * @pdev: PCI device information struct | ||
| 1267 | * | ||
| 1268 | * e1000_remove is called by the PCI subsystem to alert the driver | ||
| 1269 | * that it should release a PCI device. The could be caused by a | ||
| 1270 | * Hot-Plug event, or because the driver is going to be removed from | ||
| 1271 | * memory. | ||
| 1272 | **/ | ||
| 1273 | |||
| 1274 | static void __devexit e1000_remove(struct pci_dev *pdev) | ||
| 1275 | { | ||
| 1276 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 1277 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1278 | struct e1000_hw *hw = &adapter->hw; | ||
| 1279 | |||
| 1280 | set_bit(__E1000_DOWN, &adapter->flags); | ||
| 1281 | del_timer_sync(&adapter->tx_fifo_stall_timer); | ||
| 1282 | del_timer_sync(&adapter->watchdog_timer); | ||
| 1283 | del_timer_sync(&adapter->phy_info_timer); | ||
| 1284 | |||
| 1285 | cancel_work_sync(&adapter->reset_task); | ||
| 1286 | |||
| 1287 | e1000_release_manageability(adapter); | ||
| 1288 | |||
| 1289 | unregister_netdev(netdev); | ||
| 1290 | |||
| 1291 | e1000_phy_hw_reset(hw); | ||
| 1292 | |||
| 1293 | kfree(adapter->tx_ring); | ||
| 1294 | kfree(adapter->rx_ring); | ||
| 1295 | |||
| 1296 | iounmap(hw->hw_addr); | ||
| 1297 | if (hw->flash_address) | ||
| 1298 | iounmap(hw->flash_address); | ||
| 1299 | pci_release_selected_regions(pdev, adapter->bars); | ||
| 1300 | |||
| 1301 | free_netdev(netdev); | ||
| 1302 | |||
| 1303 | pci_disable_device(pdev); | ||
| 1304 | } | ||
| 1305 | |||
| 1306 | /** | ||
| 1307 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | ||
| 1308 | * @adapter: board private structure to initialize | ||
| 1309 | * | ||
| 1310 | * e1000_sw_init initializes the Adapter private data structure. | ||
| 1311 | * e1000_init_hw_struct MUST be called before this function | ||
| 1312 | **/ | ||
| 1313 | |||
| 1314 | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | ||
| 1315 | { | ||
| 1316 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
| 1317 | |||
| 1318 | adapter->num_tx_queues = 1; | ||
| 1319 | adapter->num_rx_queues = 1; | ||
| 1320 | |||
| 1321 | if (e1000_alloc_queues(adapter)) { | ||
| 1322 | e_err(probe, "Unable to allocate memory for queues\n"); | ||
| 1323 | return -ENOMEM; | ||
| 1324 | } | ||
| 1325 | |||
| 1326 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
| 1327 | e1000_irq_disable(adapter); | ||
| 1328 | |||
| 1329 | spin_lock_init(&adapter->stats_lock); | ||
| 1330 | |||
| 1331 | set_bit(__E1000_DOWN, &adapter->flags); | ||
| 1332 | |||
| 1333 | return 0; | ||
| 1334 | } | ||
| 1335 | |||
| 1336 | /** | ||
| 1337 | * e1000_alloc_queues - Allocate memory for all rings | ||
| 1338 | * @adapter: board private structure to initialize | ||
| 1339 | * | ||
| 1340 | * We allocate one ring per queue at run-time since we don't know the | ||
| 1341 | * number of queues at compile-time. | ||
| 1342 | **/ | ||
| 1343 | |||
| 1344 | static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) | ||
| 1345 | { | ||
| 1346 | adapter->tx_ring = kcalloc(adapter->num_tx_queues, | ||
| 1347 | sizeof(struct e1000_tx_ring), GFP_KERNEL); | ||
| 1348 | if (!adapter->tx_ring) | ||
| 1349 | return -ENOMEM; | ||
| 1350 | |||
| 1351 | adapter->rx_ring = kcalloc(adapter->num_rx_queues, | ||
| 1352 | sizeof(struct e1000_rx_ring), GFP_KERNEL); | ||
| 1353 | if (!adapter->rx_ring) { | ||
| 1354 | kfree(adapter->tx_ring); | ||
| 1355 | return -ENOMEM; | ||
| 1356 | } | ||
| 1357 | |||
| 1358 | return E1000_SUCCESS; | ||
| 1359 | } | ||
| 1360 | |||
| 1361 | /** | ||
| 1362 | * e1000_open - Called when a network interface is made active | ||
| 1363 | * @netdev: network interface device structure | ||
| 1364 | * | ||
| 1365 | * Returns 0 on success, negative value on failure | ||
| 1366 | * | ||
| 1367 | * The open entry point is called when a network interface is made | ||
| 1368 | * active by the system (IFF_UP). At this point all resources needed | ||
| 1369 | * for transmit and receive operations are allocated, the interrupt | ||
| 1370 | * handler is registered with the OS, the watchdog timer is started, | ||
| 1371 | * and the stack is notified that the interface is ready. | ||
| 1372 | **/ | ||
| 1373 | |||
| 1374 | static int e1000_open(struct net_device *netdev) | ||
| 1375 | { | ||
| 1376 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1377 | struct e1000_hw *hw = &adapter->hw; | ||
| 1378 | int err; | ||
| 1379 | |||
| 1380 | /* disallow open during test */ | ||
| 1381 | if (test_bit(__E1000_TESTING, &adapter->flags)) | ||
| 1382 | return -EBUSY; | ||
| 1383 | |||
| 1384 | netif_carrier_off(netdev); | ||
| 1385 | |||
| 1386 | /* allocate transmit descriptors */ | ||
| 1387 | err = e1000_setup_all_tx_resources(adapter); | ||
| 1388 | if (err) | ||
| 1389 | goto err_setup_tx; | ||
| 1390 | |||
| 1391 | /* allocate receive descriptors */ | ||
| 1392 | err = e1000_setup_all_rx_resources(adapter); | ||
| 1393 | if (err) | ||
| 1394 | goto err_setup_rx; | ||
| 1395 | |||
| 1396 | e1000_power_up_phy(adapter); | ||
| 1397 | |||
| 1398 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
| 1399 | if ((hw->mng_cookie.status & | ||
| 1400 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { | ||
| 1401 | e1000_update_mng_vlan(adapter); | ||
| 1402 | } | ||
| 1403 | |||
| 1404 | /* before we allocate an interrupt, we must be ready to handle it. | ||
| 1405 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
| 1406 | * as soon as we call pci_request_irq, so we have to setup our | ||
| 1407 | * clean_rx handler before we do so. */ | ||
| 1408 | e1000_configure(adapter); | ||
| 1409 | |||
| 1410 | err = e1000_request_irq(adapter); | ||
| 1411 | if (err) | ||
| 1412 | goto err_req_irq; | ||
| 1413 | |||
| 1414 | /* From here on the code is the same as e1000_up() */ | ||
| 1415 | clear_bit(__E1000_DOWN, &adapter->flags); | ||
| 1416 | |||
| 1417 | napi_enable(&adapter->napi); | ||
| 1418 | |||
| 1419 | e1000_irq_enable(adapter); | ||
| 1420 | |||
| 1421 | netif_start_queue(netdev); | ||
| 1422 | |||
| 1423 | /* fire a link status change interrupt to start the watchdog */ | ||
| 1424 | ew32(ICS, E1000_ICS_LSC); | ||
| 1425 | |||
| 1426 | return E1000_SUCCESS; | ||
| 1427 | |||
| 1428 | err_req_irq: | ||
| 1429 | e1000_power_down_phy(adapter); | ||
| 1430 | e1000_free_all_rx_resources(adapter); | ||
| 1431 | err_setup_rx: | ||
| 1432 | e1000_free_all_tx_resources(adapter); | ||
| 1433 | err_setup_tx: | ||
| 1434 | e1000_reset(adapter); | ||
| 1435 | |||
| 1436 | return err; | ||
| 1437 | } | ||
| 1438 | |||
| 1439 | /** | ||
| 1440 | * e1000_close - Disables a network interface | ||
| 1441 | * @netdev: network interface device structure | ||
| 1442 | * | ||
| 1443 | * Returns 0, this is not allowed to fail | ||
| 1444 | * | ||
| 1445 | * The close entry point is called when an interface is de-activated | ||
| 1446 | * by the OS. The hardware is still under the drivers control, but | ||
| 1447 | * needs to be disabled. A global MAC reset is issued to stop the | ||
| 1448 | * hardware, and all transmit and receive resources are freed. | ||
| 1449 | **/ | ||
| 1450 | |||
| 1451 | static int e1000_close(struct net_device *netdev) | ||
| 1452 | { | ||
| 1453 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1454 | struct e1000_hw *hw = &adapter->hw; | ||
| 1455 | |||
| 1456 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | ||
| 1457 | e1000_down(adapter); | ||
| 1458 | e1000_power_down_phy(adapter); | ||
| 1459 | e1000_free_irq(adapter); | ||
| 1460 | |||
| 1461 | e1000_free_all_tx_resources(adapter); | ||
| 1462 | e1000_free_all_rx_resources(adapter); | ||
| 1463 | |||
| 1464 | /* kill manageability vlan ID if supported, but not if a vlan with | ||
| 1465 | * the same ID is registered on the host OS (let 8021q kill it) */ | ||
| 1466 | if ((hw->mng_cookie.status & | ||
| 1467 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | ||
| 1468 | !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { | ||
| 1469 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
| 1470 | } | ||
| 1471 | |||
| 1472 | return 0; | ||
| 1473 | } | ||
| 1474 | |||
| 1475 | /** | ||
| 1476 | * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary | ||
| 1477 | * @adapter: address of board private structure | ||
| 1478 | * @start: address of beginning of memory | ||
| 1479 | * @len: length of memory | ||
| 1480 | **/ | ||
| 1481 | static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, | ||
| 1482 | unsigned long len) | ||
| 1483 | { | ||
| 1484 | struct e1000_hw *hw = &adapter->hw; | ||
| 1485 | unsigned long begin = (unsigned long)start; | ||
| 1486 | unsigned long end = begin + len; | ||
| 1487 | |||
| 1488 | /* First rev 82545 and 82546 need to not allow any memory | ||
| 1489 | * write location to cross 64k boundary due to errata 23 */ | ||
| 1490 | if (hw->mac_type == e1000_82545 || | ||
| 1491 | hw->mac_type == e1000_ce4100 || | ||
| 1492 | hw->mac_type == e1000_82546) { | ||
| 1493 | return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; | ||
| 1494 | } | ||
| 1495 | |||
| 1496 | return true; | ||
| 1497 | } | ||
| 1498 | |||
| 1499 | /** | ||
| 1500 | * e1000_setup_tx_resources - allocate Tx resources (Descriptors) | ||
| 1501 | * @adapter: board private structure | ||
| 1502 | * @txdr: tx descriptor ring (for a specific queue) to setup | ||
| 1503 | * | ||
| 1504 | * Return 0 on success, negative on failure | ||
| 1505 | **/ | ||
| 1506 | |||
| 1507 | static int e1000_setup_tx_resources(struct e1000_adapter *adapter, | ||
| 1508 | struct e1000_tx_ring *txdr) | ||
| 1509 | { | ||
| 1510 | struct pci_dev *pdev = adapter->pdev; | ||
| 1511 | int size; | ||
| 1512 | |||
| 1513 | size = sizeof(struct e1000_buffer) * txdr->count; | ||
| 1514 | txdr->buffer_info = vzalloc(size); | ||
| 1515 | if (!txdr->buffer_info) { | ||
| 1516 | e_err(probe, "Unable to allocate memory for the Tx descriptor " | ||
| 1517 | "ring\n"); | ||
| 1518 | return -ENOMEM; | ||
| 1519 | } | ||
| 1520 | |||
| 1521 | /* round up to nearest 4K */ | ||
| 1522 | |||
| 1523 | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | ||
| 1524 | txdr->size = ALIGN(txdr->size, 4096); | ||
| 1525 | |||
| 1526 | txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, | ||
| 1527 | GFP_KERNEL); | ||
| 1528 | if (!txdr->desc) { | ||
| 1529 | setup_tx_desc_die: | ||
| 1530 | vfree(txdr->buffer_info); | ||
| 1531 | e_err(probe, "Unable to allocate memory for the Tx descriptor " | ||
| 1532 | "ring\n"); | ||
| 1533 | return -ENOMEM; | ||
| 1534 | } | ||
| 1535 | |||
| 1536 | /* Fix for errata 23, can't cross 64kB boundary */ | ||
| 1537 | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | ||
| 1538 | void *olddesc = txdr->desc; | ||
| 1539 | dma_addr_t olddma = txdr->dma; | ||
| 1540 | e_err(tx_err, "txdr align check failed: %u bytes at %p\n", | ||
| 1541 | txdr->size, txdr->desc); | ||
| 1542 | /* Try again, without freeing the previous */ | ||
| 1543 | txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, | ||
| 1544 | &txdr->dma, GFP_KERNEL); | ||
| 1545 | /* Failed allocation, critical failure */ | ||
| 1546 | if (!txdr->desc) { | ||
| 1547 | dma_free_coherent(&pdev->dev, txdr->size, olddesc, | ||
| 1548 | olddma); | ||
| 1549 | goto setup_tx_desc_die; | ||
| 1550 | } | ||
| 1551 | |||
| 1552 | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | ||
| 1553 | /* give up */ | ||
| 1554 | dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, | ||
| 1555 | txdr->dma); | ||
| 1556 | dma_free_coherent(&pdev->dev, txdr->size, olddesc, | ||
| 1557 | olddma); | ||
| 1558 | e_err(probe, "Unable to allocate aligned memory " | ||
| 1559 | "for the transmit descriptor ring\n"); | ||
| 1560 | vfree(txdr->buffer_info); | ||
| 1561 | return -ENOMEM; | ||
| 1562 | } else { | ||
| 1563 | /* Free old allocation, new allocation was successful */ | ||
| 1564 | dma_free_coherent(&pdev->dev, txdr->size, olddesc, | ||
| 1565 | olddma); | ||
| 1566 | } | ||
| 1567 | } | ||
| 1568 | memset(txdr->desc, 0, txdr->size); | ||
| 1569 | |||
| 1570 | txdr->next_to_use = 0; | ||
| 1571 | txdr->next_to_clean = 0; | ||
| 1572 | |||
| 1573 | return 0; | ||
| 1574 | } | ||
| 1575 | |||
| 1576 | /** | ||
| 1577 | * e1000_setup_all_tx_resources - wrapper to allocate Tx resources | ||
| 1578 | * (Descriptors) for all queues | ||
| 1579 | * @adapter: board private structure | ||
| 1580 | * | ||
| 1581 | * Return 0 on success, negative on failure | ||
| 1582 | **/ | ||
| 1583 | |||
| 1584 | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) | ||
| 1585 | { | ||
| 1586 | int i, err = 0; | ||
| 1587 | |||
| 1588 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
| 1589 | err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); | ||
| 1590 | if (err) { | ||
| 1591 | e_err(probe, "Allocation for Tx Queue %u failed\n", i); | ||
| 1592 | for (i-- ; i >= 0; i--) | ||
| 1593 | e1000_free_tx_resources(adapter, | ||
| 1594 | &adapter->tx_ring[i]); | ||
| 1595 | break; | ||
| 1596 | } | ||
| 1597 | } | ||
| 1598 | |||
| 1599 | return err; | ||
| 1600 | } | ||
| 1601 | |||
| 1602 | /** | ||
| 1603 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | ||
| 1604 | * @adapter: board private structure | ||
| 1605 | * | ||
| 1606 | * Configure the Tx unit of the MAC after a reset. | ||
| 1607 | **/ | ||
| 1608 | |||
| 1609 | static void e1000_configure_tx(struct e1000_adapter *adapter) | ||
| 1610 | { | ||
| 1611 | u64 tdba; | ||
| 1612 | struct e1000_hw *hw = &adapter->hw; | ||
| 1613 | u32 tdlen, tctl, tipg; | ||
| 1614 | u32 ipgr1, ipgr2; | ||
| 1615 | |||
| 1616 | /* Setup the HW Tx Head and Tail descriptor pointers */ | ||
| 1617 | |||
| 1618 | switch (adapter->num_tx_queues) { | ||
| 1619 | case 1: | ||
| 1620 | default: | ||
| 1621 | tdba = adapter->tx_ring[0].dma; | ||
| 1622 | tdlen = adapter->tx_ring[0].count * | ||
| 1623 | sizeof(struct e1000_tx_desc); | ||
| 1624 | ew32(TDLEN, tdlen); | ||
| 1625 | ew32(TDBAH, (tdba >> 32)); | ||
| 1626 | ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); | ||
| 1627 | ew32(TDT, 0); | ||
| 1628 | ew32(TDH, 0); | ||
| 1629 | adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); | ||
| 1630 | adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); | ||
| 1631 | break; | ||
| 1632 | } | ||
| 1633 | |||
| 1634 | /* Set the default values for the Tx Inter Packet Gap timer */ | ||
| 1635 | if ((hw->media_type == e1000_media_type_fiber || | ||
| 1636 | hw->media_type == e1000_media_type_internal_serdes)) | ||
| 1637 | tipg = DEFAULT_82543_TIPG_IPGT_FIBER; | ||
| 1638 | else | ||
| 1639 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; | ||
| 1640 | |||
| 1641 | switch (hw->mac_type) { | ||
| 1642 | case e1000_82542_rev2_0: | ||
| 1643 | case e1000_82542_rev2_1: | ||
| 1644 | tipg = DEFAULT_82542_TIPG_IPGT; | ||
| 1645 | ipgr1 = DEFAULT_82542_TIPG_IPGR1; | ||
| 1646 | ipgr2 = DEFAULT_82542_TIPG_IPGR2; | ||
| 1647 | break; | ||
| 1648 | default: | ||
| 1649 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; | ||
| 1650 | ipgr2 = DEFAULT_82543_TIPG_IPGR2; | ||
| 1651 | break; | ||
| 1652 | } | ||
| 1653 | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | ||
| 1654 | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | ||
| 1655 | ew32(TIPG, tipg); | ||
| 1656 | |||
| 1657 | /* Set the Tx Interrupt Delay register */ | ||
| 1658 | |||
| 1659 | ew32(TIDV, adapter->tx_int_delay); | ||
| 1660 | if (hw->mac_type >= e1000_82540) | ||
| 1661 | ew32(TADV, adapter->tx_abs_int_delay); | ||
| 1662 | |||
| 1663 | /* Program the Transmit Control Register */ | ||
| 1664 | |||
| 1665 | tctl = er32(TCTL); | ||
| 1666 | tctl &= ~E1000_TCTL_CT; | ||
| 1667 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | ||
| 1668 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
| 1669 | |||
| 1670 | e1000_config_collision_dist(hw); | ||
| 1671 | |||
| 1672 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
| 1673 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | ||
| 1674 | |||
| 1675 | /* only set IDE if we are delaying interrupts using the timers */ | ||
| 1676 | if (adapter->tx_int_delay) | ||
| 1677 | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | ||
| 1678 | |||
| 1679 | if (hw->mac_type < e1000_82543) | ||
| 1680 | adapter->txd_cmd |= E1000_TXD_CMD_RPS; | ||
| 1681 | else | ||
| 1682 | adapter->txd_cmd |= E1000_TXD_CMD_RS; | ||
| 1683 | |||
| 1684 | /* Cache if we're 82544 running in PCI-X because we'll | ||
| 1685 | * need this to apply a workaround later in the send path. */ | ||
| 1686 | if (hw->mac_type == e1000_82544 && | ||
| 1687 | hw->bus_type == e1000_bus_type_pcix) | ||
| 1688 | adapter->pcix_82544 = 1; | ||
| 1689 | |||
| 1690 | ew32(TCTL, tctl); | ||
| 1691 | |||
| 1692 | } | ||
| 1693 | |||
| 1694 | /** | ||
| 1695 | * e1000_setup_rx_resources - allocate Rx resources (Descriptors) | ||
| 1696 | * @adapter: board private structure | ||
| 1697 | * @rxdr: rx descriptor ring (for a specific queue) to setup | ||
| 1698 | * | ||
| 1699 | * Returns 0 on success, negative on failure | ||
| 1700 | **/ | ||
| 1701 | |||
| 1702 | static int e1000_setup_rx_resources(struct e1000_adapter *adapter, | ||
| 1703 | struct e1000_rx_ring *rxdr) | ||
| 1704 | { | ||
| 1705 | struct pci_dev *pdev = adapter->pdev; | ||
| 1706 | int size, desc_len; | ||
| 1707 | |||
| 1708 | size = sizeof(struct e1000_buffer) * rxdr->count; | ||
| 1709 | rxdr->buffer_info = vzalloc(size); | ||
| 1710 | if (!rxdr->buffer_info) { | ||
| 1711 | e_err(probe, "Unable to allocate memory for the Rx descriptor " | ||
| 1712 | "ring\n"); | ||
| 1713 | return -ENOMEM; | ||
| 1714 | } | ||
| 1715 | |||
| 1716 | desc_len = sizeof(struct e1000_rx_desc); | ||
| 1717 | |||
| 1718 | /* Round up to nearest 4K */ | ||
| 1719 | |||
| 1720 | rxdr->size = rxdr->count * desc_len; | ||
| 1721 | rxdr->size = ALIGN(rxdr->size, 4096); | ||
| 1722 | |||
| 1723 | rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, | ||
| 1724 | GFP_KERNEL); | ||
| 1725 | |||
| 1726 | if (!rxdr->desc) { | ||
| 1727 | e_err(probe, "Unable to allocate memory for the Rx descriptor " | ||
| 1728 | "ring\n"); | ||
| 1729 | setup_rx_desc_die: | ||
| 1730 | vfree(rxdr->buffer_info); | ||
| 1731 | return -ENOMEM; | ||
| 1732 | } | ||
| 1733 | |||
| 1734 | /* Fix for errata 23, can't cross 64kB boundary */ | ||
| 1735 | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | ||
| 1736 | void *olddesc = rxdr->desc; | ||
| 1737 | dma_addr_t olddma = rxdr->dma; | ||
| 1738 | e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", | ||
| 1739 | rxdr->size, rxdr->desc); | ||
| 1740 | /* Try again, without freeing the previous */ | ||
| 1741 | rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, | ||
| 1742 | &rxdr->dma, GFP_KERNEL); | ||
| 1743 | /* Failed allocation, critical failure */ | ||
| 1744 | if (!rxdr->desc) { | ||
| 1745 | dma_free_coherent(&pdev->dev, rxdr->size, olddesc, | ||
| 1746 | olddma); | ||
| 1747 | e_err(probe, "Unable to allocate memory for the Rx " | ||
| 1748 | "descriptor ring\n"); | ||
| 1749 | goto setup_rx_desc_die; | ||
| 1750 | } | ||
| 1751 | |||
| 1752 | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | ||
| 1753 | /* give up */ | ||
| 1754 | dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, | ||
| 1755 | rxdr->dma); | ||
| 1756 | dma_free_coherent(&pdev->dev, rxdr->size, olddesc, | ||
| 1757 | olddma); | ||
| 1758 | e_err(probe, "Unable to allocate aligned memory for " | ||
| 1759 | "the Rx descriptor ring\n"); | ||
| 1760 | goto setup_rx_desc_die; | ||
| 1761 | } else { | ||
| 1762 | /* Free old allocation, new allocation was successful */ | ||
| 1763 | dma_free_coherent(&pdev->dev, rxdr->size, olddesc, | ||
| 1764 | olddma); | ||
| 1765 | } | ||
| 1766 | } | ||
| 1767 | memset(rxdr->desc, 0, rxdr->size); | ||
| 1768 | |||
| 1769 | rxdr->next_to_clean = 0; | ||
| 1770 | rxdr->next_to_use = 0; | ||
| 1771 | rxdr->rx_skb_top = NULL; | ||
| 1772 | |||
| 1773 | return 0; | ||
| 1774 | } | ||
| 1775 | |||
| 1776 | /** | ||
| 1777 | * e1000_setup_all_rx_resources - wrapper to allocate Rx resources | ||
| 1778 | * (Descriptors) for all queues | ||
| 1779 | * @adapter: board private structure | ||
| 1780 | * | ||
| 1781 | * Return 0 on success, negative on failure | ||
| 1782 | **/ | ||
| 1783 | |||
| 1784 | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) | ||
| 1785 | { | ||
| 1786 | int i, err = 0; | ||
| 1787 | |||
| 1788 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
| 1789 | err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); | ||
| 1790 | if (err) { | ||
| 1791 | e_err(probe, "Allocation for Rx Queue %u failed\n", i); | ||
| 1792 | for (i-- ; i >= 0; i--) | ||
| 1793 | e1000_free_rx_resources(adapter, | ||
| 1794 | &adapter->rx_ring[i]); | ||
| 1795 | break; | ||
| 1796 | } | ||
| 1797 | } | ||
| 1798 | |||
| 1799 | return err; | ||
| 1800 | } | ||
| 1801 | |||
| 1802 | /** | ||
| 1803 | * e1000_setup_rctl - configure the receive control registers | ||
| 1804 | * @adapter: Board private structure | ||
| 1805 | **/ | ||
| 1806 | static void e1000_setup_rctl(struct e1000_adapter *adapter) | ||
| 1807 | { | ||
| 1808 | struct e1000_hw *hw = &adapter->hw; | ||
| 1809 | u32 rctl; | ||
| 1810 | |||
| 1811 | rctl = er32(RCTL); | ||
| 1812 | |||
| 1813 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
| 1814 | |||
| 1815 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | ||
| 1816 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
| 1817 | (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
| 1818 | |||
| 1819 | if (hw->tbi_compatibility_on == 1) | ||
| 1820 | rctl |= E1000_RCTL_SBP; | ||
| 1821 | else | ||
| 1822 | rctl &= ~E1000_RCTL_SBP; | ||
| 1823 | |||
| 1824 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | ||
| 1825 | rctl &= ~E1000_RCTL_LPE; | ||
| 1826 | else | ||
| 1827 | rctl |= E1000_RCTL_LPE; | ||
| 1828 | |||
| 1829 | /* Setup buffer sizes */ | ||
| 1830 | rctl &= ~E1000_RCTL_SZ_4096; | ||
| 1831 | rctl |= E1000_RCTL_BSEX; | ||
| 1832 | switch (adapter->rx_buffer_len) { | ||
| 1833 | case E1000_RXBUFFER_2048: | ||
| 1834 | default: | ||
| 1835 | rctl |= E1000_RCTL_SZ_2048; | ||
| 1836 | rctl &= ~E1000_RCTL_BSEX; | ||
| 1837 | break; | ||
| 1838 | case E1000_RXBUFFER_4096: | ||
| 1839 | rctl |= E1000_RCTL_SZ_4096; | ||
| 1840 | break; | ||
| 1841 | case E1000_RXBUFFER_8192: | ||
| 1842 | rctl |= E1000_RCTL_SZ_8192; | ||
| 1843 | break; | ||
| 1844 | case E1000_RXBUFFER_16384: | ||
| 1845 | rctl |= E1000_RCTL_SZ_16384; | ||
| 1846 | break; | ||
| 1847 | } | ||
| 1848 | |||
| 1849 | ew32(RCTL, rctl); | ||
| 1850 | } | ||
| 1851 | |||
| 1852 | /** | ||
| 1853 | * e1000_configure_rx - Configure 8254x Receive Unit after Reset | ||
| 1854 | * @adapter: board private structure | ||
| 1855 | * | ||
| 1856 | * Configure the Rx unit of the MAC after a reset. | ||
| 1857 | **/ | ||
| 1858 | |||
| 1859 | static void e1000_configure_rx(struct e1000_adapter *adapter) | ||
| 1860 | { | ||
| 1861 | u64 rdba; | ||
| 1862 | struct e1000_hw *hw = &adapter->hw; | ||
| 1863 | u32 rdlen, rctl, rxcsum; | ||
| 1864 | |||
| 1865 | if (adapter->netdev->mtu > ETH_DATA_LEN) { | ||
| 1866 | rdlen = adapter->rx_ring[0].count * | ||
| 1867 | sizeof(struct e1000_rx_desc); | ||
| 1868 | adapter->clean_rx = e1000_clean_jumbo_rx_irq; | ||
| 1869 | adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; | ||
| 1870 | } else { | ||
| 1871 | rdlen = adapter->rx_ring[0].count * | ||
| 1872 | sizeof(struct e1000_rx_desc); | ||
| 1873 | adapter->clean_rx = e1000_clean_rx_irq; | ||
| 1874 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | ||
| 1875 | } | ||
| 1876 | |||
| 1877 | /* disable receives while setting up the descriptors */ | ||
| 1878 | rctl = er32(RCTL); | ||
| 1879 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
| 1880 | |||
| 1881 | /* set the Receive Delay Timer Register */ | ||
| 1882 | ew32(RDTR, adapter->rx_int_delay); | ||
| 1883 | |||
| 1884 | if (hw->mac_type >= e1000_82540) { | ||
| 1885 | ew32(RADV, adapter->rx_abs_int_delay); | ||
| 1886 | if (adapter->itr_setting != 0) | ||
| 1887 | ew32(ITR, 1000000000 / (adapter->itr * 256)); | ||
| 1888 | } | ||
| 1889 | |||
| 1890 | /* Setup the HW Rx Head and Tail Descriptor Pointers and | ||
| 1891 | * the Base and Length of the Rx Descriptor Ring */ | ||
| 1892 | switch (adapter->num_rx_queues) { | ||
| 1893 | case 1: | ||
| 1894 | default: | ||
| 1895 | rdba = adapter->rx_ring[0].dma; | ||
| 1896 | ew32(RDLEN, rdlen); | ||
| 1897 | ew32(RDBAH, (rdba >> 32)); | ||
| 1898 | ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); | ||
| 1899 | ew32(RDT, 0); | ||
| 1900 | ew32(RDH, 0); | ||
| 1901 | adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); | ||
| 1902 | adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); | ||
| 1903 | break; | ||
| 1904 | } | ||
| 1905 | |||
| 1906 | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ | ||
| 1907 | if (hw->mac_type >= e1000_82543) { | ||
| 1908 | rxcsum = er32(RXCSUM); | ||
| 1909 | if (adapter->rx_csum) | ||
| 1910 | rxcsum |= E1000_RXCSUM_TUOFL; | ||
| 1911 | else | ||
| 1912 | /* don't need to clear IPPCSE as it defaults to 0 */ | ||
| 1913 | rxcsum &= ~E1000_RXCSUM_TUOFL; | ||
| 1914 | ew32(RXCSUM, rxcsum); | ||
| 1915 | } | ||
| 1916 | |||
| 1917 | /* Enable Receives */ | ||
| 1918 | ew32(RCTL, rctl); | ||
| 1919 | } | ||
| 1920 | |||
| 1921 | /** | ||
| 1922 | * e1000_free_tx_resources - Free Tx Resources per Queue | ||
| 1923 | * @adapter: board private structure | ||
| 1924 | * @tx_ring: Tx descriptor ring for a specific queue | ||
| 1925 | * | ||
| 1926 | * Free all transmit software resources | ||
| 1927 | **/ | ||
| 1928 | |||
| 1929 | static void e1000_free_tx_resources(struct e1000_adapter *adapter, | ||
| 1930 | struct e1000_tx_ring *tx_ring) | ||
| 1931 | { | ||
| 1932 | struct pci_dev *pdev = adapter->pdev; | ||
| 1933 | |||
| 1934 | e1000_clean_tx_ring(adapter, tx_ring); | ||
| 1935 | |||
| 1936 | vfree(tx_ring->buffer_info); | ||
| 1937 | tx_ring->buffer_info = NULL; | ||
| 1938 | |||
| 1939 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | ||
| 1940 | tx_ring->dma); | ||
| 1941 | |||
| 1942 | tx_ring->desc = NULL; | ||
| 1943 | } | ||
| 1944 | |||
| 1945 | /** | ||
| 1946 | * e1000_free_all_tx_resources - Free Tx Resources for All Queues | ||
| 1947 | * @adapter: board private structure | ||
| 1948 | * | ||
| 1949 | * Free all transmit software resources | ||
| 1950 | **/ | ||
| 1951 | |||
| 1952 | void e1000_free_all_tx_resources(struct e1000_adapter *adapter) | ||
| 1953 | { | ||
| 1954 | int i; | ||
| 1955 | |||
| 1956 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
| 1957 | e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); | ||
| 1958 | } | ||
| 1959 | |||
| 1960 | static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, | ||
| 1961 | struct e1000_buffer *buffer_info) | ||
| 1962 | { | ||
| 1963 | if (buffer_info->dma) { | ||
| 1964 | if (buffer_info->mapped_as_page) | ||
| 1965 | dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, | ||
| 1966 | buffer_info->length, DMA_TO_DEVICE); | ||
| 1967 | else | ||
| 1968 | dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, | ||
| 1969 | buffer_info->length, | ||
| 1970 | DMA_TO_DEVICE); | ||
| 1971 | buffer_info->dma = 0; | ||
| 1972 | } | ||
| 1973 | if (buffer_info->skb) { | ||
| 1974 | dev_kfree_skb_any(buffer_info->skb); | ||
| 1975 | buffer_info->skb = NULL; | ||
| 1976 | } | ||
| 1977 | buffer_info->time_stamp = 0; | ||
| 1978 | /* buffer_info must be completely set up in the transmit path */ | ||
| 1979 | } | ||
| 1980 | |||
| 1981 | /** | ||
| 1982 | * e1000_clean_tx_ring - Free Tx Buffers | ||
| 1983 | * @adapter: board private structure | ||
| 1984 | * @tx_ring: ring to be cleaned | ||
| 1985 | **/ | ||
| 1986 | |||
| 1987 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter, | ||
| 1988 | struct e1000_tx_ring *tx_ring) | ||
| 1989 | { | ||
| 1990 | struct e1000_hw *hw = &adapter->hw; | ||
| 1991 | struct e1000_buffer *buffer_info; | ||
| 1992 | unsigned long size; | ||
| 1993 | unsigned int i; | ||
| 1994 | |||
| 1995 | /* Free all the Tx ring sk_buffs */ | ||
| 1996 | |||
| 1997 | for (i = 0; i < tx_ring->count; i++) { | ||
| 1998 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 1999 | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | ||
| 2000 | } | ||
| 2001 | |||
| 2002 | size = sizeof(struct e1000_buffer) * tx_ring->count; | ||
| 2003 | memset(tx_ring->buffer_info, 0, size); | ||
| 2004 | |||
| 2005 | /* Zero out the descriptor ring */ | ||
| 2006 | |||
| 2007 | memset(tx_ring->desc, 0, tx_ring->size); | ||
| 2008 | |||
| 2009 | tx_ring->next_to_use = 0; | ||
| 2010 | tx_ring->next_to_clean = 0; | ||
| 2011 | tx_ring->last_tx_tso = 0; | ||
| 2012 | |||
| 2013 | writel(0, hw->hw_addr + tx_ring->tdh); | ||
| 2014 | writel(0, hw->hw_addr + tx_ring->tdt); | ||
| 2015 | } | ||
| 2016 | |||
| 2017 | /** | ||
| 2018 | * e1000_clean_all_tx_rings - Free Tx Buffers for all queues | ||
| 2019 | * @adapter: board private structure | ||
| 2020 | **/ | ||
| 2021 | |||
| 2022 | static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) | ||
| 2023 | { | ||
| 2024 | int i; | ||
| 2025 | |||
| 2026 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
| 2027 | e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); | ||
| 2028 | } | ||
| 2029 | |||
| 2030 | /** | ||
| 2031 | * e1000_free_rx_resources - Free Rx Resources | ||
| 2032 | * @adapter: board private structure | ||
| 2033 | * @rx_ring: ring to clean the resources from | ||
| 2034 | * | ||
| 2035 | * Free all receive software resources | ||
| 2036 | **/ | ||
| 2037 | |||
| 2038 | static void e1000_free_rx_resources(struct e1000_adapter *adapter, | ||
| 2039 | struct e1000_rx_ring *rx_ring) | ||
| 2040 | { | ||
| 2041 | struct pci_dev *pdev = adapter->pdev; | ||
| 2042 | |||
| 2043 | e1000_clean_rx_ring(adapter, rx_ring); | ||
| 2044 | |||
| 2045 | vfree(rx_ring->buffer_info); | ||
| 2046 | rx_ring->buffer_info = NULL; | ||
| 2047 | |||
| 2048 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | ||
| 2049 | rx_ring->dma); | ||
| 2050 | |||
| 2051 | rx_ring->desc = NULL; | ||
| 2052 | } | ||
| 2053 | |||
| 2054 | /** | ||
| 2055 | * e1000_free_all_rx_resources - Free Rx Resources for All Queues | ||
| 2056 | * @adapter: board private structure | ||
| 2057 | * | ||
| 2058 | * Free all receive software resources | ||
| 2059 | **/ | ||
| 2060 | |||
| 2061 | void e1000_free_all_rx_resources(struct e1000_adapter *adapter) | ||
| 2062 | { | ||
| 2063 | int i; | ||
| 2064 | |||
| 2065 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
| 2066 | e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); | ||
| 2067 | } | ||
| 2068 | |||
| 2069 | /** | ||
| 2070 | * e1000_clean_rx_ring - Free Rx Buffers per Queue | ||
| 2071 | * @adapter: board private structure | ||
| 2072 | * @rx_ring: ring to free buffers from | ||
| 2073 | **/ | ||
| 2074 | |||
| 2075 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | ||
| 2076 | struct e1000_rx_ring *rx_ring) | ||
| 2077 | { | ||
| 2078 | struct e1000_hw *hw = &adapter->hw; | ||
| 2079 | struct e1000_buffer *buffer_info; | ||
| 2080 | struct pci_dev *pdev = adapter->pdev; | ||
| 2081 | unsigned long size; | ||
| 2082 | unsigned int i; | ||
| 2083 | |||
| 2084 | /* Free all the Rx ring sk_buffs */ | ||
| 2085 | for (i = 0; i < rx_ring->count; i++) { | ||
| 2086 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 2087 | if (buffer_info->dma && | ||
| 2088 | adapter->clean_rx == e1000_clean_rx_irq) { | ||
| 2089 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
| 2090 | buffer_info->length, | ||
| 2091 | DMA_FROM_DEVICE); | ||
| 2092 | } else if (buffer_info->dma && | ||
| 2093 | adapter->clean_rx == e1000_clean_jumbo_rx_irq) { | ||
| 2094 | dma_unmap_page(&pdev->dev, buffer_info->dma, | ||
| 2095 | buffer_info->length, | ||
| 2096 | DMA_FROM_DEVICE); | ||
| 2097 | } | ||
| 2098 | |||
| 2099 | buffer_info->dma = 0; | ||
| 2100 | if (buffer_info->page) { | ||
| 2101 | put_page(buffer_info->page); | ||
| 2102 | buffer_info->page = NULL; | ||
| 2103 | } | ||
| 2104 | if (buffer_info->skb) { | ||
| 2105 | dev_kfree_skb(buffer_info->skb); | ||
| 2106 | buffer_info->skb = NULL; | ||
| 2107 | } | ||
| 2108 | } | ||
| 2109 | |||
| 2110 | /* there also may be some cached data from a chained receive */ | ||
| 2111 | if (rx_ring->rx_skb_top) { | ||
| 2112 | dev_kfree_skb(rx_ring->rx_skb_top); | ||
| 2113 | rx_ring->rx_skb_top = NULL; | ||
| 2114 | } | ||
| 2115 | |||
| 2116 | size = sizeof(struct e1000_buffer) * rx_ring->count; | ||
| 2117 | memset(rx_ring->buffer_info, 0, size); | ||
| 2118 | |||
| 2119 | /* Zero out the descriptor ring */ | ||
| 2120 | memset(rx_ring->desc, 0, rx_ring->size); | ||
| 2121 | |||
| 2122 | rx_ring->next_to_clean = 0; | ||
| 2123 | rx_ring->next_to_use = 0; | ||
| 2124 | |||
| 2125 | writel(0, hw->hw_addr + rx_ring->rdh); | ||
| 2126 | writel(0, hw->hw_addr + rx_ring->rdt); | ||
| 2127 | } | ||
| 2128 | |||
| 2129 | /** | ||
| 2130 | * e1000_clean_all_rx_rings - Free Rx Buffers for all queues | ||
| 2131 | * @adapter: board private structure | ||
| 2132 | **/ | ||
| 2133 | |||
| 2134 | static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) | ||
| 2135 | { | ||
| 2136 | int i; | ||
| 2137 | |||
| 2138 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
| 2139 | e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); | ||
| 2140 | } | ||
| 2141 | |||
| 2142 | /* The 82542 2.0 (revision 2) needs to have the receive unit in reset | ||
| 2143 | * and memory write and invalidate disabled for certain operations | ||
| 2144 | */ | ||
| 2145 | static void e1000_enter_82542_rst(struct e1000_adapter *adapter) | ||
| 2146 | { | ||
| 2147 | struct e1000_hw *hw = &adapter->hw; | ||
| 2148 | struct net_device *netdev = adapter->netdev; | ||
| 2149 | u32 rctl; | ||
| 2150 | |||
| 2151 | e1000_pci_clear_mwi(hw); | ||
| 2152 | |||
| 2153 | rctl = er32(RCTL); | ||
| 2154 | rctl |= E1000_RCTL_RST; | ||
| 2155 | ew32(RCTL, rctl); | ||
| 2156 | E1000_WRITE_FLUSH(); | ||
| 2157 | mdelay(5); | ||
| 2158 | |||
| 2159 | if (netif_running(netdev)) | ||
| 2160 | e1000_clean_all_rx_rings(adapter); | ||
| 2161 | } | ||
| 2162 | |||
| 2163 | static void e1000_leave_82542_rst(struct e1000_adapter *adapter) | ||
| 2164 | { | ||
| 2165 | struct e1000_hw *hw = &adapter->hw; | ||
| 2166 | struct net_device *netdev = adapter->netdev; | ||
| 2167 | u32 rctl; | ||
| 2168 | |||
| 2169 | rctl = er32(RCTL); | ||
| 2170 | rctl &= ~E1000_RCTL_RST; | ||
| 2171 | ew32(RCTL, rctl); | ||
| 2172 | E1000_WRITE_FLUSH(); | ||
| 2173 | mdelay(5); | ||
| 2174 | |||
| 2175 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | ||
| 2176 | e1000_pci_set_mwi(hw); | ||
| 2177 | |||
| 2178 | if (netif_running(netdev)) { | ||
| 2179 | /* No need to loop, because 82542 supports only 1 queue */ | ||
| 2180 | struct e1000_rx_ring *ring = &adapter->rx_ring[0]; | ||
| 2181 | e1000_configure_rx(adapter); | ||
| 2182 | adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); | ||
| 2183 | } | ||
| 2184 | } | ||
| 2185 | |||
| 2186 | /** | ||
| 2187 | * e1000_set_mac - Change the Ethernet Address of the NIC | ||
| 2188 | * @netdev: network interface device structure | ||
| 2189 | * @p: pointer to an address structure | ||
| 2190 | * | ||
| 2191 | * Returns 0 on success, negative on failure | ||
| 2192 | **/ | ||
| 2193 | |||
| 2194 | static int e1000_set_mac(struct net_device *netdev, void *p) | ||
| 2195 | { | ||
| 2196 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 2197 | struct e1000_hw *hw = &adapter->hw; | ||
| 2198 | struct sockaddr *addr = p; | ||
| 2199 | |||
| 2200 | if (!is_valid_ether_addr(addr->sa_data)) | ||
| 2201 | return -EADDRNOTAVAIL; | ||
| 2202 | |||
| 2203 | /* 82542 2.0 needs to be in reset to write receive address registers */ | ||
| 2204 | |||
| 2205 | if (hw->mac_type == e1000_82542_rev2_0) | ||
| 2206 | e1000_enter_82542_rst(adapter); | ||
| 2207 | |||
| 2208 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
| 2209 | memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); | ||
| 2210 | |||
| 2211 | e1000_rar_set(hw, hw->mac_addr, 0); | ||
| 2212 | |||
| 2213 | if (hw->mac_type == e1000_82542_rev2_0) | ||
| 2214 | e1000_leave_82542_rst(adapter); | ||
| 2215 | |||
| 2216 | return 0; | ||
| 2217 | } | ||
| 2218 | |||
| 2219 | /** | ||
| 2220 | * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set | ||
| 2221 | * @netdev: network interface device structure | ||
| 2222 | * | ||
| 2223 | * The set_rx_mode entry point is called whenever the unicast or multicast | ||
| 2224 | * address lists or the network interface flags are updated. This routine is | ||
| 2225 | * responsible for configuring the hardware for proper unicast, multicast, | ||
| 2226 | * promiscuous mode, and all-multi behavior. | ||
| 2227 | **/ | ||
| 2228 | |||
| 2229 | static void e1000_set_rx_mode(struct net_device *netdev) | ||
| 2230 | { | ||
| 2231 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 2232 | struct e1000_hw *hw = &adapter->hw; | ||
| 2233 | struct netdev_hw_addr *ha; | ||
| 2234 | bool use_uc = false; | ||
| 2235 | u32 rctl; | ||
| 2236 | u32 hash_value; | ||
| 2237 | int i, rar_entries = E1000_RAR_ENTRIES; | ||
| 2238 | int mta_reg_count = E1000_NUM_MTA_REGISTERS; | ||
| 2239 | u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); | ||
| 2240 | |||
| 2241 | if (!mcarray) { | ||
| 2242 | e_err(probe, "memory allocation failed\n"); | ||
| 2243 | return; | ||
| 2244 | } | ||
| 2245 | |||
| 2246 | /* Check for Promiscuous and All Multicast modes */ | ||
| 2247 | |||
| 2248 | rctl = er32(RCTL); | ||
| 2249 | |||
| 2250 | if (netdev->flags & IFF_PROMISC) { | ||
| 2251 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
| 2252 | rctl &= ~E1000_RCTL_VFE; | ||
| 2253 | } else { | ||
| 2254 | if (netdev->flags & IFF_ALLMULTI) | ||
| 2255 | rctl |= E1000_RCTL_MPE; | ||
| 2256 | else | ||
| 2257 | rctl &= ~E1000_RCTL_MPE; | ||
| 2258 | /* Enable VLAN filter if there is a VLAN */ | ||
| 2259 | if (e1000_vlan_used(adapter)) | ||
| 2260 | rctl |= E1000_RCTL_VFE; | ||
| 2261 | } | ||
| 2262 | |||
| 2263 | if (netdev_uc_count(netdev) > rar_entries - 1) { | ||
| 2264 | rctl |= E1000_RCTL_UPE; | ||
| 2265 | } else if (!(netdev->flags & IFF_PROMISC)) { | ||
| 2266 | rctl &= ~E1000_RCTL_UPE; | ||
| 2267 | use_uc = true; | ||
| 2268 | } | ||
| 2269 | |||
| 2270 | ew32(RCTL, rctl); | ||
| 2271 | |||
| 2272 | /* 82542 2.0 needs to be in reset to write receive address registers */ | ||
| 2273 | |||
| 2274 | if (hw->mac_type == e1000_82542_rev2_0) | ||
| 2275 | e1000_enter_82542_rst(adapter); | ||
| 2276 | |||
| 2277 | /* load the first 14 addresses into the exact filters 1-14. Unicast | ||
| 2278 | * addresses take precedence to avoid disabling unicast filtering | ||
| 2279 | * when possible. | ||
| 2280 | * | ||
| 2281 | * RAR 0 is used for the station MAC address | ||
| 2282 | * if there are not 14 addresses, go ahead and clear the filters | ||
| 2283 | */ | ||
| 2284 | i = 1; | ||
| 2285 | if (use_uc) | ||
| 2286 | netdev_for_each_uc_addr(ha, netdev) { | ||
| 2287 | if (i == rar_entries) | ||
| 2288 | break; | ||
| 2289 | e1000_rar_set(hw, ha->addr, i++); | ||
| 2290 | } | ||
| 2291 | |||
| 2292 | netdev_for_each_mc_addr(ha, netdev) { | ||
| 2293 | if (i == rar_entries) { | ||
| 2294 | /* load any remaining addresses into the hash table */ | ||
| 2295 | u32 hash_reg, hash_bit, mta; | ||
| 2296 | hash_value = e1000_hash_mc_addr(hw, ha->addr); | ||
| 2297 | hash_reg = (hash_value >> 5) & 0x7F; | ||
| 2298 | hash_bit = hash_value & 0x1F; | ||
| 2299 | mta = (1 << hash_bit); | ||
| 2300 | mcarray[hash_reg] |= mta; | ||
| 2301 | } else { | ||
| 2302 | e1000_rar_set(hw, ha->addr, i++); | ||
| 2303 | } | ||
| 2304 | } | ||
| 2305 | |||
| 2306 | for (; i < rar_entries; i++) { | ||
| 2307 | E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); | ||
| 2308 | E1000_WRITE_FLUSH(); | ||
| 2309 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); | ||
| 2310 | E1000_WRITE_FLUSH(); | ||
| 2311 | } | ||
| 2312 | |||
| 2313 | /* write the hash table completely, write from bottom to avoid | ||
| 2314 | * both stupid write combining chipsets, and flushing each write */ | ||
| 2315 | for (i = mta_reg_count - 1; i >= 0 ; i--) { | ||
| 2316 | /* | ||
| 2317 | * If we are on an 82544 has an errata where writing odd | ||
| 2318 | * offsets overwrites the previous even offset, but writing | ||
| 2319 | * backwards over the range solves the issue by always | ||
| 2320 | * writing the odd offset first | ||
| 2321 | */ | ||
| 2322 | E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); | ||
| 2323 | } | ||
| 2324 | E1000_WRITE_FLUSH(); | ||
| 2325 | |||
| 2326 | if (hw->mac_type == e1000_82542_rev2_0) | ||
| 2327 | e1000_leave_82542_rst(adapter); | ||
| 2328 | |||
| 2329 | kfree(mcarray); | ||
| 2330 | } | ||
| 2331 | |||
| 2332 | /* Need to wait a few seconds after link up to get diagnostic information from | ||
| 2333 | * the phy */ | ||
| 2334 | |||
| 2335 | static void e1000_update_phy_info(unsigned long data) | ||
| 2336 | { | ||
| 2337 | struct e1000_adapter *adapter = (struct e1000_adapter *)data; | ||
| 2338 | schedule_work(&adapter->phy_info_task); | ||
| 2339 | } | ||
| 2340 | |||
| 2341 | static void e1000_update_phy_info_task(struct work_struct *work) | ||
| 2342 | { | ||
| 2343 | struct e1000_adapter *adapter = container_of(work, | ||
| 2344 | struct e1000_adapter, | ||
| 2345 | phy_info_task); | ||
| 2346 | struct e1000_hw *hw = &adapter->hw; | ||
| 2347 | |||
| 2348 | rtnl_lock(); | ||
| 2349 | e1000_phy_get_info(hw, &adapter->phy_info); | ||
| 2350 | rtnl_unlock(); | ||
| 2351 | } | ||
| 2352 | |||
| 2353 | /** | ||
| 2354 | * e1000_82547_tx_fifo_stall - Timer Call-back | ||
| 2355 | * @data: pointer to adapter cast into an unsigned long | ||
| 2356 | **/ | ||
| 2357 | static void e1000_82547_tx_fifo_stall(unsigned long data) | ||
| 2358 | { | ||
| 2359 | struct e1000_adapter *adapter = (struct e1000_adapter *)data; | ||
| 2360 | schedule_work(&adapter->fifo_stall_task); | ||
| 2361 | } | ||
| 2362 | |||
| 2363 | /** | ||
| 2364 | * e1000_82547_tx_fifo_stall_task - task to complete work | ||
| 2365 | * @work: work struct contained inside adapter struct | ||
| 2366 | **/ | ||
| 2367 | static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) | ||
| 2368 | { | ||
| 2369 | struct e1000_adapter *adapter = container_of(work, | ||
| 2370 | struct e1000_adapter, | ||
| 2371 | fifo_stall_task); | ||
| 2372 | struct e1000_hw *hw = &adapter->hw; | ||
| 2373 | struct net_device *netdev = adapter->netdev; | ||
| 2374 | u32 tctl; | ||
| 2375 | |||
| 2376 | rtnl_lock(); | ||
| 2377 | if (atomic_read(&adapter->tx_fifo_stall)) { | ||
| 2378 | if ((er32(TDT) == er32(TDH)) && | ||
| 2379 | (er32(TDFT) == er32(TDFH)) && | ||
| 2380 | (er32(TDFTS) == er32(TDFHS))) { | ||
| 2381 | tctl = er32(TCTL); | ||
| 2382 | ew32(TCTL, tctl & ~E1000_TCTL_EN); | ||
| 2383 | ew32(TDFT, adapter->tx_head_addr); | ||
| 2384 | ew32(TDFH, adapter->tx_head_addr); | ||
| 2385 | ew32(TDFTS, adapter->tx_head_addr); | ||
| 2386 | ew32(TDFHS, adapter->tx_head_addr); | ||
| 2387 | ew32(TCTL, tctl); | ||
| 2388 | E1000_WRITE_FLUSH(); | ||
| 2389 | |||
| 2390 | adapter->tx_fifo_head = 0; | ||
| 2391 | atomic_set(&adapter->tx_fifo_stall, 0); | ||
| 2392 | netif_wake_queue(netdev); | ||
| 2393 | } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { | ||
| 2394 | mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); | ||
| 2395 | } | ||
| 2396 | } | ||
| 2397 | rtnl_unlock(); | ||
| 2398 | } | ||
| 2399 | |||
| 2400 | bool e1000_has_link(struct e1000_adapter *adapter) | ||
| 2401 | { | ||
| 2402 | struct e1000_hw *hw = &adapter->hw; | ||
| 2403 | bool link_active = false; | ||
| 2404 | |||
| 2405 | /* get_link_status is set on LSC (link status) interrupt or rx | ||
| 2406 | * sequence error interrupt (except on intel ce4100). | ||
| 2407 | * get_link_status will stay false until the | ||
| 2408 | * e1000_check_for_link establishes link for copper adapters | ||
| 2409 | * ONLY | ||
| 2410 | */ | ||
| 2411 | switch (hw->media_type) { | ||
| 2412 | case e1000_media_type_copper: | ||
| 2413 | if (hw->mac_type == e1000_ce4100) | ||
| 2414 | hw->get_link_status = 1; | ||
| 2415 | if (hw->get_link_status) { | ||
| 2416 | e1000_check_for_link(hw); | ||
| 2417 | link_active = !hw->get_link_status; | ||
| 2418 | } else { | ||
| 2419 | link_active = true; | ||
| 2420 | } | ||
| 2421 | break; | ||
| 2422 | case e1000_media_type_fiber: | ||
| 2423 | e1000_check_for_link(hw); | ||
| 2424 | link_active = !!(er32(STATUS) & E1000_STATUS_LU); | ||
| 2425 | break; | ||
| 2426 | case e1000_media_type_internal_serdes: | ||
| 2427 | e1000_check_for_link(hw); | ||
| 2428 | link_active = hw->serdes_has_link; | ||
| 2429 | break; | ||
| 2430 | default: | ||
| 2431 | break; | ||
| 2432 | } | ||
| 2433 | |||
| 2434 | return link_active; | ||
| 2435 | } | ||
| 2436 | |||
| 2437 | /** | ||
| 2438 | * e1000_watchdog - Timer Call-back | ||
| 2439 | * @data: pointer to adapter cast into an unsigned long | ||
| 2440 | **/ | ||
| 2441 | static void e1000_watchdog(unsigned long data) | ||
| 2442 | { | ||
| 2443 | struct e1000_adapter *adapter = (struct e1000_adapter *)data; | ||
| 2444 | struct e1000_hw *hw = &adapter->hw; | ||
| 2445 | struct net_device *netdev = adapter->netdev; | ||
| 2446 | struct e1000_tx_ring *txdr = adapter->tx_ring; | ||
| 2447 | u32 link, tctl; | ||
| 2448 | |||
| 2449 | link = e1000_has_link(adapter); | ||
| 2450 | if ((netif_carrier_ok(netdev)) && link) | ||
| 2451 | goto link_up; | ||
| 2452 | |||
| 2453 | if (link) { | ||
| 2454 | if (!netif_carrier_ok(netdev)) { | ||
| 2455 | u32 ctrl; | ||
| 2456 | bool txb2b = true; | ||
| 2457 | /* update snapshot of PHY registers on LSC */ | ||
| 2458 | e1000_get_speed_and_duplex(hw, | ||
| 2459 | &adapter->link_speed, | ||
| 2460 | &adapter->link_duplex); | ||
| 2461 | |||
| 2462 | ctrl = er32(CTRL); | ||
| 2463 | pr_info("%s NIC Link is Up %d Mbps %s, " | ||
| 2464 | "Flow Control: %s\n", | ||
| 2465 | netdev->name, | ||
| 2466 | adapter->link_speed, | ||
| 2467 | adapter->link_duplex == FULL_DUPLEX ? | ||
| 2468 | "Full Duplex" : "Half Duplex", | ||
| 2469 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & | ||
| 2470 | E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & | ||
| 2471 | E1000_CTRL_RFCE) ? "RX" : ((ctrl & | ||
| 2472 | E1000_CTRL_TFCE) ? "TX" : "None"))); | ||
| 2473 | |||
| 2474 | /* adjust timeout factor according to speed/duplex */ | ||
| 2475 | adapter->tx_timeout_factor = 1; | ||
| 2476 | switch (adapter->link_speed) { | ||
| 2477 | case SPEED_10: | ||
| 2478 | txb2b = false; | ||
| 2479 | adapter->tx_timeout_factor = 16; | ||
| 2480 | break; | ||
| 2481 | case SPEED_100: | ||
| 2482 | txb2b = false; | ||
| 2483 | /* maybe add some timeout factor ? */ | ||
| 2484 | break; | ||
| 2485 | } | ||
| 2486 | |||
| 2487 | /* enable transmits in the hardware */ | ||
| 2488 | tctl = er32(TCTL); | ||
| 2489 | tctl |= E1000_TCTL_EN; | ||
| 2490 | ew32(TCTL, tctl); | ||
| 2491 | |||
| 2492 | netif_carrier_on(netdev); | ||
| 2493 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 2494 | mod_timer(&adapter->phy_info_timer, | ||
| 2495 | round_jiffies(jiffies + 2 * HZ)); | ||
| 2496 | adapter->smartspeed = 0; | ||
| 2497 | } | ||
| 2498 | } else { | ||
| 2499 | if (netif_carrier_ok(netdev)) { | ||
| 2500 | adapter->link_speed = 0; | ||
| 2501 | adapter->link_duplex = 0; | ||
| 2502 | pr_info("%s NIC Link is Down\n", | ||
| 2503 | netdev->name); | ||
| 2504 | netif_carrier_off(netdev); | ||
| 2505 | |||
| 2506 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 2507 | mod_timer(&adapter->phy_info_timer, | ||
| 2508 | round_jiffies(jiffies + 2 * HZ)); | ||
| 2509 | } | ||
| 2510 | |||
| 2511 | e1000_smartspeed(adapter); | ||
| 2512 | } | ||
| 2513 | |||
| 2514 | link_up: | ||
| 2515 | e1000_update_stats(adapter); | ||
| 2516 | |||
| 2517 | hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | ||
| 2518 | adapter->tpt_old = adapter->stats.tpt; | ||
| 2519 | hw->collision_delta = adapter->stats.colc - adapter->colc_old; | ||
| 2520 | adapter->colc_old = adapter->stats.colc; | ||
| 2521 | |||
| 2522 | adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; | ||
| 2523 | adapter->gorcl_old = adapter->stats.gorcl; | ||
| 2524 | adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; | ||
| 2525 | adapter->gotcl_old = adapter->stats.gotcl; | ||
| 2526 | |||
| 2527 | e1000_update_adaptive(hw); | ||
| 2528 | |||
| 2529 | if (!netif_carrier_ok(netdev)) { | ||
| 2530 | if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { | ||
| 2531 | /* We've lost link, so the controller stops DMA, | ||
| 2532 | * but we've got queued Tx work that's never going | ||
| 2533 | * to get done, so reset controller to flush Tx. | ||
| 2534 | * (Do the reset outside of interrupt context). */ | ||
| 2535 | adapter->tx_timeout_count++; | ||
| 2536 | schedule_work(&adapter->reset_task); | ||
| 2537 | /* return immediately since reset is imminent */ | ||
| 2538 | return; | ||
| 2539 | } | ||
| 2540 | } | ||
| 2541 | |||
| 2542 | /* Simple mode for Interrupt Throttle Rate (ITR) */ | ||
| 2543 | if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { | ||
| 2544 | /* | ||
| 2545 | * Symmetric Tx/Rx gets a reduced ITR=2000; | ||
| 2546 | * Total asymmetrical Tx or Rx gets ITR=8000; | ||
| 2547 | * everyone else is between 2000-8000. | ||
| 2548 | */ | ||
| 2549 | u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; | ||
| 2550 | u32 dif = (adapter->gotcl > adapter->gorcl ? | ||
| 2551 | adapter->gotcl - adapter->gorcl : | ||
| 2552 | adapter->gorcl - adapter->gotcl) / 10000; | ||
| 2553 | u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; | ||
| 2554 | |||
| 2555 | ew32(ITR, 1000000000 / (itr * 256)); | ||
| 2556 | } | ||
| 2557 | |||
| 2558 | /* Cause software interrupt to ensure rx ring is cleaned */ | ||
| 2559 | ew32(ICS, E1000_ICS_RXDMT0); | ||
| 2560 | |||
| 2561 | /* Force detection of hung controller every watchdog period */ | ||
| 2562 | adapter->detect_tx_hung = true; | ||
| 2563 | |||
| 2564 | /* Reset the timer */ | ||
| 2565 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 2566 | mod_timer(&adapter->watchdog_timer, | ||
| 2567 | round_jiffies(jiffies + 2 * HZ)); | ||
| 2568 | } | ||
| 2569 | |||
| 2570 | enum latency_range { | ||
| 2571 | lowest_latency = 0, | ||
| 2572 | low_latency = 1, | ||
| 2573 | bulk_latency = 2, | ||
| 2574 | latency_invalid = 255 | ||
| 2575 | }; | ||
| 2576 | |||
| 2577 | /** | ||
| 2578 | * e1000_update_itr - update the dynamic ITR value based on statistics | ||
| 2579 | * @adapter: pointer to adapter | ||
| 2580 | * @itr_setting: current adapter->itr | ||
| 2581 | * @packets: the number of packets during this measurement interval | ||
| 2582 | * @bytes: the number of bytes during this measurement interval | ||
| 2583 | * | ||
| 2584 | * Stores a new ITR value based on packets and byte | ||
| 2585 | * counts during the last interrupt. The advantage of per interrupt | ||
| 2586 | * computation is faster updates and more accurate ITR for the current | ||
| 2587 | * traffic pattern. Constants in this function were computed | ||
| 2588 | * based on theoretical maximum wire speed and thresholds were set based | ||
| 2589 | * on testing data as well as attempting to minimize response time | ||
| 2590 | * while increasing bulk throughput. | ||
| 2591 | * this functionality is controlled by the InterruptThrottleRate module | ||
| 2592 | * parameter (see e1000_param.c) | ||
| 2593 | **/ | ||
| 2594 | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | ||
| 2595 | u16 itr_setting, int packets, int bytes) | ||
| 2596 | { | ||
| 2597 | unsigned int retval = itr_setting; | ||
| 2598 | struct e1000_hw *hw = &adapter->hw; | ||
| 2599 | |||
| 2600 | if (unlikely(hw->mac_type < e1000_82540)) | ||
| 2601 | goto update_itr_done; | ||
| 2602 | |||
| 2603 | if (packets == 0) | ||
| 2604 | goto update_itr_done; | ||
| 2605 | |||
| 2606 | switch (itr_setting) { | ||
| 2607 | case lowest_latency: | ||
| 2608 | /* jumbo frames get bulk treatment*/ | ||
| 2609 | if (bytes/packets > 8000) | ||
| 2610 | retval = bulk_latency; | ||
| 2611 | else if ((packets < 5) && (bytes > 512)) | ||
| 2612 | retval = low_latency; | ||
| 2613 | break; | ||
| 2614 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
| 2615 | if (bytes > 10000) { | ||
| 2616 | /* jumbo frames need bulk latency setting */ | ||
| 2617 | if (bytes/packets > 8000) | ||
| 2618 | retval = bulk_latency; | ||
| 2619 | else if ((packets < 10) || ((bytes/packets) > 1200)) | ||
| 2620 | retval = bulk_latency; | ||
| 2621 | else if ((packets > 35)) | ||
| 2622 | retval = lowest_latency; | ||
| 2623 | } else if (bytes/packets > 2000) | ||
| 2624 | retval = bulk_latency; | ||
| 2625 | else if (packets <= 2 && bytes < 512) | ||
| 2626 | retval = lowest_latency; | ||
| 2627 | break; | ||
| 2628 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
| 2629 | if (bytes > 25000) { | ||
| 2630 | if (packets > 35) | ||
| 2631 | retval = low_latency; | ||
| 2632 | } else if (bytes < 6000) { | ||
| 2633 | retval = low_latency; | ||
| 2634 | } | ||
| 2635 | break; | ||
| 2636 | } | ||
| 2637 | |||
| 2638 | update_itr_done: | ||
| 2639 | return retval; | ||
| 2640 | } | ||
| 2641 | |||
| 2642 | static void e1000_set_itr(struct e1000_adapter *adapter) | ||
| 2643 | { | ||
| 2644 | struct e1000_hw *hw = &adapter->hw; | ||
| 2645 | u16 current_itr; | ||
| 2646 | u32 new_itr = adapter->itr; | ||
| 2647 | |||
| 2648 | if (unlikely(hw->mac_type < e1000_82540)) | ||
| 2649 | return; | ||
| 2650 | |||
| 2651 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | ||
| 2652 | if (unlikely(adapter->link_speed != SPEED_1000)) { | ||
| 2653 | current_itr = 0; | ||
| 2654 | new_itr = 4000; | ||
| 2655 | goto set_itr_now; | ||
| 2656 | } | ||
| 2657 | |||
| 2658 | adapter->tx_itr = e1000_update_itr(adapter, | ||
| 2659 | adapter->tx_itr, | ||
| 2660 | adapter->total_tx_packets, | ||
| 2661 | adapter->total_tx_bytes); | ||
| 2662 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
| 2663 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | ||
| 2664 | adapter->tx_itr = low_latency; | ||
| 2665 | |||
| 2666 | adapter->rx_itr = e1000_update_itr(adapter, | ||
| 2667 | adapter->rx_itr, | ||
| 2668 | adapter->total_rx_packets, | ||
| 2669 | adapter->total_rx_bytes); | ||
| 2670 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
| 2671 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | ||
| 2672 | adapter->rx_itr = low_latency; | ||
| 2673 | |||
| 2674 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
| 2675 | |||
| 2676 | switch (current_itr) { | ||
| 2677 | /* counts and packets in update_itr are dependent on these numbers */ | ||
| 2678 | case lowest_latency: | ||
| 2679 | new_itr = 70000; | ||
| 2680 | break; | ||
| 2681 | case low_latency: | ||
| 2682 | new_itr = 20000; /* aka hwitr = ~200 */ | ||
| 2683 | break; | ||
| 2684 | case bulk_latency: | ||
| 2685 | new_itr = 4000; | ||
| 2686 | break; | ||
| 2687 | default: | ||
| 2688 | break; | ||
| 2689 | } | ||
| 2690 | |||
| 2691 | set_itr_now: | ||
| 2692 | if (new_itr != adapter->itr) { | ||
| 2693 | /* this attempts to bias the interrupt rate towards Bulk | ||
| 2694 | * by adding intermediate steps when interrupt rate is | ||
| 2695 | * increasing */ | ||
| 2696 | new_itr = new_itr > adapter->itr ? | ||
| 2697 | min(adapter->itr + (new_itr >> 2), new_itr) : | ||
| 2698 | new_itr; | ||
| 2699 | adapter->itr = new_itr; | ||
| 2700 | ew32(ITR, 1000000000 / (new_itr * 256)); | ||
| 2701 | } | ||
| 2702 | } | ||
| 2703 | |||
| 2704 | #define E1000_TX_FLAGS_CSUM 0x00000001 | ||
| 2705 | #define E1000_TX_FLAGS_VLAN 0x00000002 | ||
| 2706 | #define E1000_TX_FLAGS_TSO 0x00000004 | ||
| 2707 | #define E1000_TX_FLAGS_IPV4 0x00000008 | ||
| 2708 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
| 2709 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 | ||
| 2710 | |||
| 2711 | static int e1000_tso(struct e1000_adapter *adapter, | ||
| 2712 | struct e1000_tx_ring *tx_ring, struct sk_buff *skb) | ||
| 2713 | { | ||
| 2714 | struct e1000_context_desc *context_desc; | ||
| 2715 | struct e1000_buffer *buffer_info; | ||
| 2716 | unsigned int i; | ||
| 2717 | u32 cmd_length = 0; | ||
| 2718 | u16 ipcse = 0, tucse, mss; | ||
| 2719 | u8 ipcss, ipcso, tucss, tucso, hdr_len; | ||
| 2720 | int err; | ||
| 2721 | |||
| 2722 | if (skb_is_gso(skb)) { | ||
| 2723 | if (skb_header_cloned(skb)) { | ||
| 2724 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
| 2725 | if (err) | ||
| 2726 | return err; | ||
| 2727 | } | ||
| 2728 | |||
| 2729 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
| 2730 | mss = skb_shinfo(skb)->gso_size; | ||
| 2731 | if (skb->protocol == htons(ETH_P_IP)) { | ||
| 2732 | struct iphdr *iph = ip_hdr(skb); | ||
| 2733 | iph->tot_len = 0; | ||
| 2734 | iph->check = 0; | ||
| 2735 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
| 2736 | iph->daddr, 0, | ||
| 2737 | IPPROTO_TCP, | ||
| 2738 | 0); | ||
| 2739 | cmd_length = E1000_TXD_CMD_IP; | ||
| 2740 | ipcse = skb_transport_offset(skb) - 1; | ||
| 2741 | } else if (skb->protocol == htons(ETH_P_IPV6)) { | ||
| 2742 | ipv6_hdr(skb)->payload_len = 0; | ||
| 2743 | tcp_hdr(skb)->check = | ||
| 2744 | ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
| 2745 | &ipv6_hdr(skb)->daddr, | ||
| 2746 | 0, IPPROTO_TCP, 0); | ||
| 2747 | ipcse = 0; | ||
| 2748 | } | ||
| 2749 | ipcss = skb_network_offset(skb); | ||
| 2750 | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | ||
| 2751 | tucss = skb_transport_offset(skb); | ||
| 2752 | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | ||
| 2753 | tucse = 0; | ||
| 2754 | |||
| 2755 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | ||
| 2756 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | ||
| 2757 | |||
| 2758 | i = tx_ring->next_to_use; | ||
| 2759 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | ||
| 2760 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 2761 | |||
| 2762 | context_desc->lower_setup.ip_fields.ipcss = ipcss; | ||
| 2763 | context_desc->lower_setup.ip_fields.ipcso = ipcso; | ||
| 2764 | context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); | ||
| 2765 | context_desc->upper_setup.tcp_fields.tucss = tucss; | ||
| 2766 | context_desc->upper_setup.tcp_fields.tucso = tucso; | ||
| 2767 | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | ||
| 2768 | context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); | ||
| 2769 | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | ||
| 2770 | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | ||
| 2771 | |||
| 2772 | buffer_info->time_stamp = jiffies; | ||
| 2773 | buffer_info->next_to_watch = i; | ||
| 2774 | |||
| 2775 | if (++i == tx_ring->count) i = 0; | ||
| 2776 | tx_ring->next_to_use = i; | ||
| 2777 | |||
| 2778 | return true; | ||
| 2779 | } | ||
| 2780 | return false; | ||
| 2781 | } | ||
| 2782 | |||
| 2783 | static bool e1000_tx_csum(struct e1000_adapter *adapter, | ||
| 2784 | struct e1000_tx_ring *tx_ring, struct sk_buff *skb) | ||
| 2785 | { | ||
| 2786 | struct e1000_context_desc *context_desc; | ||
| 2787 | struct e1000_buffer *buffer_info; | ||
| 2788 | unsigned int i; | ||
| 2789 | u8 css; | ||
| 2790 | u32 cmd_len = E1000_TXD_CMD_DEXT; | ||
| 2791 | |||
| 2792 | if (skb->ip_summed != CHECKSUM_PARTIAL) | ||
| 2793 | return false; | ||
| 2794 | |||
| 2795 | switch (skb->protocol) { | ||
| 2796 | case cpu_to_be16(ETH_P_IP): | ||
| 2797 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | ||
| 2798 | cmd_len |= E1000_TXD_CMD_TCP; | ||
| 2799 | break; | ||
| 2800 | case cpu_to_be16(ETH_P_IPV6): | ||
| 2801 | /* XXX not handling all IPV6 headers */ | ||
| 2802 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | ||
| 2803 | cmd_len |= E1000_TXD_CMD_TCP; | ||
| 2804 | break; | ||
| 2805 | default: | ||
| 2806 | if (unlikely(net_ratelimit())) | ||
| 2807 | e_warn(drv, "checksum_partial proto=%x!\n", | ||
| 2808 | skb->protocol); | ||
| 2809 | break; | ||
| 2810 | } | ||
| 2811 | |||
| 2812 | css = skb_checksum_start_offset(skb); | ||
| 2813 | |||
| 2814 | i = tx_ring->next_to_use; | ||
| 2815 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 2816 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | ||
| 2817 | |||
| 2818 | context_desc->lower_setup.ip_config = 0; | ||
| 2819 | context_desc->upper_setup.tcp_fields.tucss = css; | ||
| 2820 | context_desc->upper_setup.tcp_fields.tucso = | ||
| 2821 | css + skb->csum_offset; | ||
| 2822 | context_desc->upper_setup.tcp_fields.tucse = 0; | ||
| 2823 | context_desc->tcp_seg_setup.data = 0; | ||
| 2824 | context_desc->cmd_and_length = cpu_to_le32(cmd_len); | ||
| 2825 | |||
| 2826 | buffer_info->time_stamp = jiffies; | ||
| 2827 | buffer_info->next_to_watch = i; | ||
| 2828 | |||
| 2829 | if (unlikely(++i == tx_ring->count)) i = 0; | ||
| 2830 | tx_ring->next_to_use = i; | ||
| 2831 | |||
| 2832 | return true; | ||
| 2833 | } | ||
| 2834 | |||
| 2835 | #define E1000_MAX_TXD_PWR 12 | ||
| 2836 | #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) | ||
| 2837 | |||
| 2838 | static int e1000_tx_map(struct e1000_adapter *adapter, | ||
| 2839 | struct e1000_tx_ring *tx_ring, | ||
| 2840 | struct sk_buff *skb, unsigned int first, | ||
| 2841 | unsigned int max_per_txd, unsigned int nr_frags, | ||
| 2842 | unsigned int mss) | ||
| 2843 | { | ||
| 2844 | struct e1000_hw *hw = &adapter->hw; | ||
| 2845 | struct pci_dev *pdev = adapter->pdev; | ||
| 2846 | struct e1000_buffer *buffer_info; | ||
| 2847 | unsigned int len = skb_headlen(skb); | ||
| 2848 | unsigned int offset = 0, size, count = 0, i; | ||
| 2849 | unsigned int f; | ||
| 2850 | |||
| 2851 | i = tx_ring->next_to_use; | ||
| 2852 | |||
| 2853 | while (len) { | ||
| 2854 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 2855 | size = min(len, max_per_txd); | ||
| 2856 | /* Workaround for Controller erratum -- | ||
| 2857 | * descriptor for non-tso packet in a linear SKB that follows a | ||
| 2858 | * tso gets written back prematurely before the data is fully | ||
| 2859 | * DMA'd to the controller */ | ||
| 2860 | if (!skb->data_len && tx_ring->last_tx_tso && | ||
| 2861 | !skb_is_gso(skb)) { | ||
| 2862 | tx_ring->last_tx_tso = 0; | ||
| 2863 | size -= 4; | ||
| 2864 | } | ||
| 2865 | |||
| 2866 | /* Workaround for premature desc write-backs | ||
| 2867 | * in TSO mode. Append 4-byte sentinel desc */ | ||
| 2868 | if (unlikely(mss && !nr_frags && size == len && size > 8)) | ||
| 2869 | size -= 4; | ||
| 2870 | /* work-around for errata 10 and it applies | ||
| 2871 | * to all controllers in PCI-X mode | ||
| 2872 | * The fix is to make sure that the first descriptor of a | ||
| 2873 | * packet is smaller than 2048 - 16 - 16 (or 2016) bytes | ||
| 2874 | */ | ||
| 2875 | if (unlikely((hw->bus_type == e1000_bus_type_pcix) && | ||
| 2876 | (size > 2015) && count == 0)) | ||
| 2877 | size = 2015; | ||
| 2878 | |||
| 2879 | /* Workaround for potential 82544 hang in PCI-X. Avoid | ||
| 2880 | * terminating buffers within evenly-aligned dwords. */ | ||
| 2881 | if (unlikely(adapter->pcix_82544 && | ||
| 2882 | !((unsigned long)(skb->data + offset + size - 1) & 4) && | ||
| 2883 | size > 4)) | ||
| 2884 | size -= 4; | ||
| 2885 | |||
| 2886 | buffer_info->length = size; | ||
| 2887 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
| 2888 | buffer_info->time_stamp = jiffies; | ||
| 2889 | buffer_info->mapped_as_page = false; | ||
| 2890 | buffer_info->dma = dma_map_single(&pdev->dev, | ||
| 2891 | skb->data + offset, | ||
| 2892 | size, DMA_TO_DEVICE); | ||
| 2893 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | ||
| 2894 | goto dma_error; | ||
| 2895 | buffer_info->next_to_watch = i; | ||
| 2896 | |||
| 2897 | len -= size; | ||
| 2898 | offset += size; | ||
| 2899 | count++; | ||
| 2900 | if (len) { | ||
| 2901 | i++; | ||
| 2902 | if (unlikely(i == tx_ring->count)) | ||
| 2903 | i = 0; | ||
| 2904 | } | ||
| 2905 | } | ||
| 2906 | |||
| 2907 | for (f = 0; f < nr_frags; f++) { | ||
| 2908 | struct skb_frag_struct *frag; | ||
| 2909 | |||
| 2910 | frag = &skb_shinfo(skb)->frags[f]; | ||
| 2911 | len = frag->size; | ||
| 2912 | offset = frag->page_offset; | ||
| 2913 | |||
| 2914 | while (len) { | ||
| 2915 | i++; | ||
| 2916 | if (unlikely(i == tx_ring->count)) | ||
| 2917 | i = 0; | ||
| 2918 | |||
| 2919 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 2920 | size = min(len, max_per_txd); | ||
| 2921 | /* Workaround for premature desc write-backs | ||
| 2922 | * in TSO mode. Append 4-byte sentinel desc */ | ||
| 2923 | if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) | ||
| 2924 | size -= 4; | ||
| 2925 | /* Workaround for potential 82544 hang in PCI-X. | ||
| 2926 | * Avoid terminating buffers within evenly-aligned | ||
| 2927 | * dwords. */ | ||
| 2928 | if (unlikely(adapter->pcix_82544 && | ||
| 2929 | !((unsigned long)(page_to_phys(frag->page) + offset | ||
| 2930 | + size - 1) & 4) && | ||
| 2931 | size > 4)) | ||
| 2932 | size -= 4; | ||
| 2933 | |||
| 2934 | buffer_info->length = size; | ||
| 2935 | buffer_info->time_stamp = jiffies; | ||
| 2936 | buffer_info->mapped_as_page = true; | ||
| 2937 | buffer_info->dma = dma_map_page(&pdev->dev, frag->page, | ||
| 2938 | offset, size, | ||
| 2939 | DMA_TO_DEVICE); | ||
| 2940 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | ||
| 2941 | goto dma_error; | ||
| 2942 | buffer_info->next_to_watch = i; | ||
| 2943 | |||
| 2944 | len -= size; | ||
| 2945 | offset += size; | ||
| 2946 | count++; | ||
| 2947 | } | ||
| 2948 | } | ||
| 2949 | |||
| 2950 | tx_ring->buffer_info[i].skb = skb; | ||
| 2951 | tx_ring->buffer_info[first].next_to_watch = i; | ||
| 2952 | |||
| 2953 | return count; | ||
| 2954 | |||
| 2955 | dma_error: | ||
| 2956 | dev_err(&pdev->dev, "TX DMA map failed\n"); | ||
| 2957 | buffer_info->dma = 0; | ||
| 2958 | if (count) | ||
| 2959 | count--; | ||
| 2960 | |||
| 2961 | while (count--) { | ||
| 2962 | if (i==0) | ||
| 2963 | i += tx_ring->count; | ||
| 2964 | i--; | ||
| 2965 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 2966 | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | ||
| 2967 | } | ||
| 2968 | |||
| 2969 | return 0; | ||
| 2970 | } | ||
| 2971 | |||
| 2972 | static void e1000_tx_queue(struct e1000_adapter *adapter, | ||
| 2973 | struct e1000_tx_ring *tx_ring, int tx_flags, | ||
| 2974 | int count) | ||
| 2975 | { | ||
| 2976 | struct e1000_hw *hw = &adapter->hw; | ||
| 2977 | struct e1000_tx_desc *tx_desc = NULL; | ||
| 2978 | struct e1000_buffer *buffer_info; | ||
| 2979 | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | ||
| 2980 | unsigned int i; | ||
| 2981 | |||
| 2982 | if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { | ||
| 2983 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | ||
| 2984 | E1000_TXD_CMD_TSE; | ||
| 2985 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
| 2986 | |||
| 2987 | if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) | ||
| 2988 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | ||
| 2989 | } | ||
| 2990 | |||
| 2991 | if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { | ||
| 2992 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | ||
| 2993 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
| 2994 | } | ||
| 2995 | |||
| 2996 | if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { | ||
| 2997 | txd_lower |= E1000_TXD_CMD_VLE; | ||
| 2998 | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | ||
| 2999 | } | ||
| 3000 | |||
| 3001 | i = tx_ring->next_to_use; | ||
| 3002 | |||
| 3003 | while (count--) { | ||
| 3004 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 3005 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
| 3006 | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
| 3007 | tx_desc->lower.data = | ||
| 3008 | cpu_to_le32(txd_lower | buffer_info->length); | ||
| 3009 | tx_desc->upper.data = cpu_to_le32(txd_upper); | ||
| 3010 | if (unlikely(++i == tx_ring->count)) i = 0; | ||
| 3011 | } | ||
| 3012 | |||
| 3013 | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | ||
| 3014 | |||
| 3015 | /* Force memory writes to complete before letting h/w | ||
| 3016 | * know there are new descriptors to fetch. (Only | ||
| 3017 | * applicable for weak-ordered memory model archs, | ||
| 3018 | * such as IA-64). */ | ||
| 3019 | wmb(); | ||
| 3020 | |||
| 3021 | tx_ring->next_to_use = i; | ||
| 3022 | writel(i, hw->hw_addr + tx_ring->tdt); | ||
| 3023 | /* we need this if more than one processor can write to our tail | ||
| 3024 | * at a time, it syncronizes IO on IA64/Altix systems */ | ||
| 3025 | mmiowb(); | ||
| 3026 | } | ||
| 3027 | |||
| 3028 | /** | ||
| 3029 | * 82547 workaround to avoid controller hang in half-duplex environment. | ||
| 3030 | * The workaround is to avoid queuing a large packet that would span | ||
| 3031 | * the internal Tx FIFO ring boundary by notifying the stack to resend | ||
| 3032 | * the packet at a later time. This gives the Tx FIFO an opportunity to | ||
| 3033 | * flush all packets. When that occurs, we reset the Tx FIFO pointers | ||
| 3034 | * to the beginning of the Tx FIFO. | ||
| 3035 | **/ | ||
| 3036 | |||
| 3037 | #define E1000_FIFO_HDR 0x10 | ||
| 3038 | #define E1000_82547_PAD_LEN 0x3E0 | ||
| 3039 | |||
| 3040 | static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, | ||
| 3041 | struct sk_buff *skb) | ||
| 3042 | { | ||
| 3043 | u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; | ||
| 3044 | u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; | ||
| 3045 | |||
| 3046 | skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); | ||
| 3047 | |||
| 3048 | if (adapter->link_duplex != HALF_DUPLEX) | ||
| 3049 | goto no_fifo_stall_required; | ||
| 3050 | |||
| 3051 | if (atomic_read(&adapter->tx_fifo_stall)) | ||
| 3052 | return 1; | ||
| 3053 | |||
| 3054 | if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { | ||
| 3055 | atomic_set(&adapter->tx_fifo_stall, 1); | ||
| 3056 | return 1; | ||
| 3057 | } | ||
| 3058 | |||
| 3059 | no_fifo_stall_required: | ||
| 3060 | adapter->tx_fifo_head += skb_fifo_len; | ||
| 3061 | if (adapter->tx_fifo_head >= adapter->tx_fifo_size) | ||
| 3062 | adapter->tx_fifo_head -= adapter->tx_fifo_size; | ||
| 3063 | return 0; | ||
| 3064 | } | ||
| 3065 | |||
| 3066 | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | ||
| 3067 | { | ||
| 3068 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 3069 | struct e1000_tx_ring *tx_ring = adapter->tx_ring; | ||
| 3070 | |||
| 3071 | netif_stop_queue(netdev); | ||
| 3072 | /* Herbert's original patch had: | ||
| 3073 | * smp_mb__after_netif_stop_queue(); | ||
| 3074 | * but since that doesn't exist yet, just open code it. */ | ||
| 3075 | smp_mb(); | ||
| 3076 | |||
| 3077 | /* We need to check again in a case another CPU has just | ||
| 3078 | * made room available. */ | ||
| 3079 | if (likely(E1000_DESC_UNUSED(tx_ring) < size)) | ||
| 3080 | return -EBUSY; | ||
| 3081 | |||
| 3082 | /* A reprieve! */ | ||
| 3083 | netif_start_queue(netdev); | ||
| 3084 | ++adapter->restart_queue; | ||
| 3085 | return 0; | ||
| 3086 | } | ||
| 3087 | |||
| 3088 | static int e1000_maybe_stop_tx(struct net_device *netdev, | ||
| 3089 | struct e1000_tx_ring *tx_ring, int size) | ||
| 3090 | { | ||
| 3091 | if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) | ||
| 3092 | return 0; | ||
| 3093 | return __e1000_maybe_stop_tx(netdev, size); | ||
| 3094 | } | ||
| 3095 | |||
| 3096 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | ||
| 3097 | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, | ||
| 3098 | struct net_device *netdev) | ||
| 3099 | { | ||
| 3100 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 3101 | struct e1000_hw *hw = &adapter->hw; | ||
| 3102 | struct e1000_tx_ring *tx_ring; | ||
| 3103 | unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; | ||
| 3104 | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | ||
| 3105 | unsigned int tx_flags = 0; | ||
| 3106 | unsigned int len = skb_headlen(skb); | ||
| 3107 | unsigned int nr_frags; | ||
| 3108 | unsigned int mss; | ||
| 3109 | int count = 0; | ||
| 3110 | int tso; | ||
| 3111 | unsigned int f; | ||
| 3112 | |||
| 3113 | /* This goes back to the question of how to logically map a tx queue | ||
| 3114 | * to a flow. Right now, performance is impacted slightly negatively | ||
| 3115 | * if using multiple tx queues. If the stack breaks away from a | ||
| 3116 | * single qdisc implementation, we can look at this again. */ | ||
| 3117 | tx_ring = adapter->tx_ring; | ||
| 3118 | |||
| 3119 | if (unlikely(skb->len <= 0)) { | ||
| 3120 | dev_kfree_skb_any(skb); | ||
| 3121 | return NETDEV_TX_OK; | ||
| 3122 | } | ||
| 3123 | |||
| 3124 | mss = skb_shinfo(skb)->gso_size; | ||
| 3125 | /* The controller does a simple calculation to | ||
| 3126 | * make sure there is enough room in the FIFO before | ||
| 3127 | * initiating the DMA for each buffer. The calc is: | ||
| 3128 | * 4 = ceil(buffer len/mss). To make sure we don't | ||
| 3129 | * overrun the FIFO, adjust the max buffer len if mss | ||
| 3130 | * drops. */ | ||
| 3131 | if (mss) { | ||
| 3132 | u8 hdr_len; | ||
| 3133 | max_per_txd = min(mss << 2, max_per_txd); | ||
| 3134 | max_txd_pwr = fls(max_per_txd) - 1; | ||
| 3135 | |||
| 3136 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
| 3137 | if (skb->data_len && hdr_len == len) { | ||
| 3138 | switch (hw->mac_type) { | ||
| 3139 | unsigned int pull_size; | ||
| 3140 | case e1000_82544: | ||
| 3141 | /* Make sure we have room to chop off 4 bytes, | ||
| 3142 | * and that the end alignment will work out to | ||
| 3143 | * this hardware's requirements | ||
| 3144 | * NOTE: this is a TSO only workaround | ||
| 3145 | * if end byte alignment not correct move us | ||
| 3146 | * into the next dword */ | ||
| 3147 | if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) | ||
| 3148 | break; | ||
| 3149 | /* fall through */ | ||
| 3150 | pull_size = min((unsigned int)4, skb->data_len); | ||
| 3151 | if (!__pskb_pull_tail(skb, pull_size)) { | ||
| 3152 | e_err(drv, "__pskb_pull_tail " | ||
| 3153 | "failed.\n"); | ||
| 3154 | dev_kfree_skb_any(skb); | ||
| 3155 | return NETDEV_TX_OK; | ||
| 3156 | } | ||
| 3157 | len = skb_headlen(skb); | ||
| 3158 | break; | ||
| 3159 | default: | ||
| 3160 | /* do nothing */ | ||
| 3161 | break; | ||
| 3162 | } | ||
| 3163 | } | ||
| 3164 | } | ||
| 3165 | |||
| 3166 | /* reserve a descriptor for the offload context */ | ||
| 3167 | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
| 3168 | count++; | ||
| 3169 | count++; | ||
| 3170 | |||
| 3171 | /* Controller Erratum workaround */ | ||
| 3172 | if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) | ||
| 3173 | count++; | ||
| 3174 | |||
| 3175 | count += TXD_USE_COUNT(len, max_txd_pwr); | ||
| 3176 | |||
| 3177 | if (adapter->pcix_82544) | ||
| 3178 | count++; | ||
| 3179 | |||
| 3180 | /* work-around for errata 10 and it applies to all controllers | ||
| 3181 | * in PCI-X mode, so add one more descriptor to the count | ||
| 3182 | */ | ||
| 3183 | if (unlikely((hw->bus_type == e1000_bus_type_pcix) && | ||
| 3184 | (len > 2015))) | ||
| 3185 | count++; | ||
| 3186 | |||
| 3187 | nr_frags = skb_shinfo(skb)->nr_frags; | ||
| 3188 | for (f = 0; f < nr_frags; f++) | ||
| 3189 | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | ||
| 3190 | max_txd_pwr); | ||
| 3191 | if (adapter->pcix_82544) | ||
| 3192 | count += nr_frags; | ||
| 3193 | |||
| 3194 | /* need: count + 2 desc gap to keep tail from touching | ||
| 3195 | * head, otherwise try next time */ | ||
| 3196 | if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) | ||
| 3197 | return NETDEV_TX_BUSY; | ||
| 3198 | |||
| 3199 | if (unlikely(hw->mac_type == e1000_82547)) { | ||
| 3200 | if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { | ||
| 3201 | netif_stop_queue(netdev); | ||
| 3202 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 3203 | mod_timer(&adapter->tx_fifo_stall_timer, | ||
| 3204 | jiffies + 1); | ||
| 3205 | return NETDEV_TX_BUSY; | ||
| 3206 | } | ||
| 3207 | } | ||
| 3208 | |||
| 3209 | if (vlan_tx_tag_present(skb)) { | ||
| 3210 | tx_flags |= E1000_TX_FLAGS_VLAN; | ||
| 3211 | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | ||
| 3212 | } | ||
| 3213 | |||
| 3214 | first = tx_ring->next_to_use; | ||
| 3215 | |||
| 3216 | tso = e1000_tso(adapter, tx_ring, skb); | ||
| 3217 | if (tso < 0) { | ||
| 3218 | dev_kfree_skb_any(skb); | ||
| 3219 | return NETDEV_TX_OK; | ||
| 3220 | } | ||
| 3221 | |||
| 3222 | if (likely(tso)) { | ||
| 3223 | if (likely(hw->mac_type != e1000_82544)) | ||
| 3224 | tx_ring->last_tx_tso = 1; | ||
| 3225 | tx_flags |= E1000_TX_FLAGS_TSO; | ||
| 3226 | } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) | ||
| 3227 | tx_flags |= E1000_TX_FLAGS_CSUM; | ||
| 3228 | |||
| 3229 | if (likely(skb->protocol == htons(ETH_P_IP))) | ||
| 3230 | tx_flags |= E1000_TX_FLAGS_IPV4; | ||
| 3231 | |||
| 3232 | count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, | ||
| 3233 | nr_frags, mss); | ||
| 3234 | |||
| 3235 | if (count) { | ||
| 3236 | e1000_tx_queue(adapter, tx_ring, tx_flags, count); | ||
| 3237 | /* Make sure there is space in the ring for the next send. */ | ||
| 3238 | e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); | ||
| 3239 | |||
| 3240 | } else { | ||
| 3241 | dev_kfree_skb_any(skb); | ||
| 3242 | tx_ring->buffer_info[first].time_stamp = 0; | ||
| 3243 | tx_ring->next_to_use = first; | ||
| 3244 | } | ||
| 3245 | |||
| 3246 | return NETDEV_TX_OK; | ||
| 3247 | } | ||
| 3248 | |||
| 3249 | /** | ||
| 3250 | * e1000_tx_timeout - Respond to a Tx Hang | ||
| 3251 | * @netdev: network interface device structure | ||
| 3252 | **/ | ||
| 3253 | |||
| 3254 | static void e1000_tx_timeout(struct net_device *netdev) | ||
| 3255 | { | ||
| 3256 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 3257 | |||
| 3258 | /* Do the reset outside of interrupt context */ | ||
| 3259 | adapter->tx_timeout_count++; | ||
| 3260 | schedule_work(&adapter->reset_task); | ||
| 3261 | } | ||
| 3262 | |||
| 3263 | static void e1000_reset_task(struct work_struct *work) | ||
| 3264 | { | ||
| 3265 | struct e1000_adapter *adapter = | ||
| 3266 | container_of(work, struct e1000_adapter, reset_task); | ||
| 3267 | |||
| 3268 | e1000_reinit_safe(adapter); | ||
| 3269 | } | ||
| 3270 | |||
| 3271 | /** | ||
| 3272 | * e1000_get_stats - Get System Network Statistics | ||
| 3273 | * @netdev: network interface device structure | ||
| 3274 | * | ||
| 3275 | * Returns the address of the device statistics structure. | ||
| 3276 | * The statistics are actually updated from the timer callback. | ||
| 3277 | **/ | ||
| 3278 | |||
| 3279 | static struct net_device_stats *e1000_get_stats(struct net_device *netdev) | ||
| 3280 | { | ||
| 3281 | /* only return the current stats */ | ||
| 3282 | return &netdev->stats; | ||
| 3283 | } | ||
| 3284 | |||
| 3285 | /** | ||
| 3286 | * e1000_change_mtu - Change the Maximum Transfer Unit | ||
| 3287 | * @netdev: network interface device structure | ||
| 3288 | * @new_mtu: new value for maximum frame size | ||
| 3289 | * | ||
| 3290 | * Returns 0 on success, negative on failure | ||
| 3291 | **/ | ||
| 3292 | |||
| 3293 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | ||
| 3294 | { | ||
| 3295 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 3296 | struct e1000_hw *hw = &adapter->hw; | ||
| 3297 | int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | ||
| 3298 | |||
| 3299 | if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || | ||
| 3300 | (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
| 3301 | e_err(probe, "Invalid MTU setting\n"); | ||
| 3302 | return -EINVAL; | ||
| 3303 | } | ||
| 3304 | |||
| 3305 | /* Adapter-specific max frame size limits. */ | ||
| 3306 | switch (hw->mac_type) { | ||
| 3307 | case e1000_undefined ... e1000_82542_rev2_1: | ||
| 3308 | if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { | ||
| 3309 | e_err(probe, "Jumbo Frames not supported.\n"); | ||
| 3310 | return -EINVAL; | ||
| 3311 | } | ||
| 3312 | break; | ||
| 3313 | default: | ||
| 3314 | /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ | ||
| 3315 | break; | ||
| 3316 | } | ||
| 3317 | |||
| 3318 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
| 3319 | msleep(1); | ||
| 3320 | /* e1000_down has a dependency on max_frame_size */ | ||
| 3321 | hw->max_frame_size = max_frame; | ||
| 3322 | if (netif_running(netdev)) | ||
| 3323 | e1000_down(adapter); | ||
| 3324 | |||
| 3325 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
| 3326 | * means we reserve 2 more, this pushes us to allocate from the next | ||
| 3327 | * larger slab size. | ||
| 3328 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
| 3329 | * however with the new *_jumbo_rx* routines, jumbo receives will use | ||
| 3330 | * fragmented skbs */ | ||
| 3331 | |||
| 3332 | if (max_frame <= E1000_RXBUFFER_2048) | ||
| 3333 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | ||
| 3334 | else | ||
| 3335 | #if (PAGE_SIZE >= E1000_RXBUFFER_16384) | ||
| 3336 | adapter->rx_buffer_len = E1000_RXBUFFER_16384; | ||
| 3337 | #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) | ||
| 3338 | adapter->rx_buffer_len = PAGE_SIZE; | ||
| 3339 | #endif | ||
| 3340 | |||
| 3341 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | ||
| 3342 | if (!hw->tbi_compatibility_on && | ||
| 3343 | ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || | ||
| 3344 | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) | ||
| 3345 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
| 3346 | |||
| 3347 | pr_info("%s changing MTU from %d to %d\n", | ||
| 3348 | netdev->name, netdev->mtu, new_mtu); | ||
| 3349 | netdev->mtu = new_mtu; | ||
| 3350 | |||
| 3351 | if (netif_running(netdev)) | ||
| 3352 | e1000_up(adapter); | ||
| 3353 | else | ||
| 3354 | e1000_reset(adapter); | ||
| 3355 | |||
| 3356 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
| 3357 | |||
| 3358 | return 0; | ||
| 3359 | } | ||
| 3360 | |||
| 3361 | /** | ||
| 3362 | * e1000_update_stats - Update the board statistics counters | ||
| 3363 | * @adapter: board private structure | ||
| 3364 | **/ | ||
| 3365 | |||
| 3366 | void e1000_update_stats(struct e1000_adapter *adapter) | ||
| 3367 | { | ||
| 3368 | struct net_device *netdev = adapter->netdev; | ||
| 3369 | struct e1000_hw *hw = &adapter->hw; | ||
| 3370 | struct pci_dev *pdev = adapter->pdev; | ||
| 3371 | unsigned long flags; | ||
| 3372 | u16 phy_tmp; | ||
| 3373 | |||
| 3374 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | ||
| 3375 | |||
| 3376 | /* | ||
| 3377 | * Prevent stats update while adapter is being reset, or if the pci | ||
| 3378 | * connection is down. | ||
| 3379 | */ | ||
| 3380 | if (adapter->link_speed == 0) | ||
| 3381 | return; | ||
| 3382 | if (pci_channel_offline(pdev)) | ||
| 3383 | return; | ||
| 3384 | |||
| 3385 | spin_lock_irqsave(&adapter->stats_lock, flags); | ||
| 3386 | |||
| 3387 | /* these counters are modified from e1000_tbi_adjust_stats, | ||
| 3388 | * called from the interrupt context, so they must only | ||
| 3389 | * be written while holding adapter->stats_lock | ||
| 3390 | */ | ||
| 3391 | |||
| 3392 | adapter->stats.crcerrs += er32(CRCERRS); | ||
| 3393 | adapter->stats.gprc += er32(GPRC); | ||
| 3394 | adapter->stats.gorcl += er32(GORCL); | ||
| 3395 | adapter->stats.gorch += er32(GORCH); | ||
| 3396 | adapter->stats.bprc += er32(BPRC); | ||
| 3397 | adapter->stats.mprc += er32(MPRC); | ||
| 3398 | adapter->stats.roc += er32(ROC); | ||
| 3399 | |||
| 3400 | adapter->stats.prc64 += er32(PRC64); | ||
| 3401 | adapter->stats.prc127 += er32(PRC127); | ||
| 3402 | adapter->stats.prc255 += er32(PRC255); | ||
| 3403 | adapter->stats.prc511 += er32(PRC511); | ||
| 3404 | adapter->stats.prc1023 += er32(PRC1023); | ||
| 3405 | adapter->stats.prc1522 += er32(PRC1522); | ||
| 3406 | |||
| 3407 | adapter->stats.symerrs += er32(SYMERRS); | ||
| 3408 | adapter->stats.mpc += er32(MPC); | ||
| 3409 | adapter->stats.scc += er32(SCC); | ||
| 3410 | adapter->stats.ecol += er32(ECOL); | ||
| 3411 | adapter->stats.mcc += er32(MCC); | ||
| 3412 | adapter->stats.latecol += er32(LATECOL); | ||
| 3413 | adapter->stats.dc += er32(DC); | ||
| 3414 | adapter->stats.sec += er32(SEC); | ||
| 3415 | adapter->stats.rlec += er32(RLEC); | ||
| 3416 | adapter->stats.xonrxc += er32(XONRXC); | ||
| 3417 | adapter->stats.xontxc += er32(XONTXC); | ||
| 3418 | adapter->stats.xoffrxc += er32(XOFFRXC); | ||
| 3419 | adapter->stats.xofftxc += er32(XOFFTXC); | ||
| 3420 | adapter->stats.fcruc += er32(FCRUC); | ||
| 3421 | adapter->stats.gptc += er32(GPTC); | ||
| 3422 | adapter->stats.gotcl += er32(GOTCL); | ||
| 3423 | adapter->stats.gotch += er32(GOTCH); | ||
| 3424 | adapter->stats.rnbc += er32(RNBC); | ||
| 3425 | adapter->stats.ruc += er32(RUC); | ||
| 3426 | adapter->stats.rfc += er32(RFC); | ||
| 3427 | adapter->stats.rjc += er32(RJC); | ||
| 3428 | adapter->stats.torl += er32(TORL); | ||
| 3429 | adapter->stats.torh += er32(TORH); | ||
| 3430 | adapter->stats.totl += er32(TOTL); | ||
| 3431 | adapter->stats.toth += er32(TOTH); | ||
| 3432 | adapter->stats.tpr += er32(TPR); | ||
| 3433 | |||
| 3434 | adapter->stats.ptc64 += er32(PTC64); | ||
| 3435 | adapter->stats.ptc127 += er32(PTC127); | ||
| 3436 | adapter->stats.ptc255 += er32(PTC255); | ||
| 3437 | adapter->stats.ptc511 += er32(PTC511); | ||
| 3438 | adapter->stats.ptc1023 += er32(PTC1023); | ||
| 3439 | adapter->stats.ptc1522 += er32(PTC1522); | ||
| 3440 | |||
| 3441 | adapter->stats.mptc += er32(MPTC); | ||
| 3442 | adapter->stats.bptc += er32(BPTC); | ||
| 3443 | |||
| 3444 | /* used for adaptive IFS */ | ||
| 3445 | |||
| 3446 | hw->tx_packet_delta = er32(TPT); | ||
| 3447 | adapter->stats.tpt += hw->tx_packet_delta; | ||
| 3448 | hw->collision_delta = er32(COLC); | ||
| 3449 | adapter->stats.colc += hw->collision_delta; | ||
| 3450 | |||
| 3451 | if (hw->mac_type >= e1000_82543) { | ||
| 3452 | adapter->stats.algnerrc += er32(ALGNERRC); | ||
| 3453 | adapter->stats.rxerrc += er32(RXERRC); | ||
| 3454 | adapter->stats.tncrs += er32(TNCRS); | ||
| 3455 | adapter->stats.cexterr += er32(CEXTERR); | ||
| 3456 | adapter->stats.tsctc += er32(TSCTC); | ||
| 3457 | adapter->stats.tsctfc += er32(TSCTFC); | ||
| 3458 | } | ||
| 3459 | |||
| 3460 | /* Fill out the OS statistics structure */ | ||
| 3461 | netdev->stats.multicast = adapter->stats.mprc; | ||
| 3462 | netdev->stats.collisions = adapter->stats.colc; | ||
| 3463 | |||
| 3464 | /* Rx Errors */ | ||
| 3465 | |||
| 3466 | /* RLEC on some newer hardware can be incorrect so build | ||
| 3467 | * our own version based on RUC and ROC */ | ||
| 3468 | netdev->stats.rx_errors = adapter->stats.rxerrc + | ||
| 3469 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
| 3470 | adapter->stats.ruc + adapter->stats.roc + | ||
| 3471 | adapter->stats.cexterr; | ||
| 3472 | adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; | ||
| 3473 | netdev->stats.rx_length_errors = adapter->stats.rlerrc; | ||
| 3474 | netdev->stats.rx_crc_errors = adapter->stats.crcerrs; | ||
| 3475 | netdev->stats.rx_frame_errors = adapter->stats.algnerrc; | ||
| 3476 | netdev->stats.rx_missed_errors = adapter->stats.mpc; | ||
| 3477 | |||
| 3478 | /* Tx Errors */ | ||
| 3479 | adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; | ||
| 3480 | netdev->stats.tx_errors = adapter->stats.txerrc; | ||
| 3481 | netdev->stats.tx_aborted_errors = adapter->stats.ecol; | ||
| 3482 | netdev->stats.tx_window_errors = adapter->stats.latecol; | ||
| 3483 | netdev->stats.tx_carrier_errors = adapter->stats.tncrs; | ||
| 3484 | if (hw->bad_tx_carr_stats_fd && | ||
| 3485 | adapter->link_duplex == FULL_DUPLEX) { | ||
| 3486 | netdev->stats.tx_carrier_errors = 0; | ||
| 3487 | adapter->stats.tncrs = 0; | ||
| 3488 | } | ||
| 3489 | |||
| 3490 | /* Tx Dropped needs to be maintained elsewhere */ | ||
| 3491 | |||
| 3492 | /* Phy Stats */ | ||
| 3493 | if (hw->media_type == e1000_media_type_copper) { | ||
| 3494 | if ((adapter->link_speed == SPEED_1000) && | ||
| 3495 | (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { | ||
| 3496 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | ||
| 3497 | adapter->phy_stats.idle_errors += phy_tmp; | ||
| 3498 | } | ||
| 3499 | |||
| 3500 | if ((hw->mac_type <= e1000_82546) && | ||
| 3501 | (hw->phy_type == e1000_phy_m88) && | ||
| 3502 | !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) | ||
| 3503 | adapter->phy_stats.receive_errors += phy_tmp; | ||
| 3504 | } | ||
| 3505 | |||
| 3506 | /* Management Stats */ | ||
| 3507 | if (hw->has_smbus) { | ||
| 3508 | adapter->stats.mgptc += er32(MGTPTC); | ||
| 3509 | adapter->stats.mgprc += er32(MGTPRC); | ||
| 3510 | adapter->stats.mgpdc += er32(MGTPDC); | ||
| 3511 | } | ||
| 3512 | |||
| 3513 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
| 3514 | } | ||
| 3515 | |||
| 3516 | /** | ||
| 3517 | * e1000_intr - Interrupt Handler | ||
| 3518 | * @irq: interrupt number | ||
| 3519 | * @data: pointer to a network interface device structure | ||
| 3520 | **/ | ||
| 3521 | |||
| 3522 | static irqreturn_t e1000_intr(int irq, void *data) | ||
| 3523 | { | ||
| 3524 | struct net_device *netdev = data; | ||
| 3525 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 3526 | struct e1000_hw *hw = &adapter->hw; | ||
| 3527 | u32 icr = er32(ICR); | ||
| 3528 | |||
| 3529 | if (unlikely((!icr))) | ||
| 3530 | return IRQ_NONE; /* Not our interrupt */ | ||
| 3531 | |||
| 3532 | /* | ||
| 3533 | * we might have caused the interrupt, but the above | ||
| 3534 | * read cleared it, and just in case the driver is | ||
| 3535 | * down there is nothing to do so return handled | ||
| 3536 | */ | ||
| 3537 | if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) | ||
| 3538 | return IRQ_HANDLED; | ||
| 3539 | |||
| 3540 | if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { | ||
| 3541 | hw->get_link_status = 1; | ||
| 3542 | /* guard against interrupt when we're going down */ | ||
| 3543 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 3544 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
| 3545 | } | ||
| 3546 | |||
| 3547 | /* disable interrupts, without the synchronize_irq bit */ | ||
| 3548 | ew32(IMC, ~0); | ||
| 3549 | E1000_WRITE_FLUSH(); | ||
| 3550 | |||
| 3551 | if (likely(napi_schedule_prep(&adapter->napi))) { | ||
| 3552 | adapter->total_tx_bytes = 0; | ||
| 3553 | adapter->total_tx_packets = 0; | ||
| 3554 | adapter->total_rx_bytes = 0; | ||
| 3555 | adapter->total_rx_packets = 0; | ||
| 3556 | __napi_schedule(&adapter->napi); | ||
| 3557 | } else { | ||
| 3558 | /* this really should not happen! if it does it is basically a | ||
| 3559 | * bug, but not a hard error, so enable ints and continue */ | ||
| 3560 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 3561 | e1000_irq_enable(adapter); | ||
| 3562 | } | ||
| 3563 | |||
| 3564 | return IRQ_HANDLED; | ||
| 3565 | } | ||
| 3566 | |||
| 3567 | /** | ||
| 3568 | * e1000_clean - NAPI Rx polling callback | ||
| 3569 | * @adapter: board private structure | ||
| 3570 | **/ | ||
| 3571 | static int e1000_clean(struct napi_struct *napi, int budget) | ||
| 3572 | { | ||
| 3573 | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | ||
| 3574 | int tx_clean_complete = 0, work_done = 0; | ||
| 3575 | |||
| 3576 | tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); | ||
| 3577 | |||
| 3578 | adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); | ||
| 3579 | |||
| 3580 | if (!tx_clean_complete) | ||
| 3581 | work_done = budget; | ||
| 3582 | |||
| 3583 | /* If budget not fully consumed, exit the polling mode */ | ||
| 3584 | if (work_done < budget) { | ||
| 3585 | if (likely(adapter->itr_setting & 3)) | ||
| 3586 | e1000_set_itr(adapter); | ||
| 3587 | napi_complete(napi); | ||
| 3588 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 3589 | e1000_irq_enable(adapter); | ||
| 3590 | } | ||
| 3591 | |||
| 3592 | return work_done; | ||
| 3593 | } | ||
| 3594 | |||
| 3595 | /** | ||
| 3596 | * e1000_clean_tx_irq - Reclaim resources after transmit completes | ||
| 3597 | * @adapter: board private structure | ||
| 3598 | **/ | ||
| 3599 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, | ||
| 3600 | struct e1000_tx_ring *tx_ring) | ||
| 3601 | { | ||
| 3602 | struct e1000_hw *hw = &adapter->hw; | ||
| 3603 | struct net_device *netdev = adapter->netdev; | ||
| 3604 | struct e1000_tx_desc *tx_desc, *eop_desc; | ||
| 3605 | struct e1000_buffer *buffer_info; | ||
| 3606 | unsigned int i, eop; | ||
| 3607 | unsigned int count = 0; | ||
| 3608 | unsigned int total_tx_bytes=0, total_tx_packets=0; | ||
| 3609 | |||
| 3610 | i = tx_ring->next_to_clean; | ||
| 3611 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
| 3612 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
| 3613 | |||
| 3614 | while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && | ||
| 3615 | (count < tx_ring->count)) { | ||
| 3616 | bool cleaned = false; | ||
| 3617 | rmb(); /* read buffer_info after eop_desc */ | ||
| 3618 | for ( ; !cleaned; count++) { | ||
| 3619 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
| 3620 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 3621 | cleaned = (i == eop); | ||
| 3622 | |||
| 3623 | if (cleaned) { | ||
| 3624 | struct sk_buff *skb = buffer_info->skb; | ||
| 3625 | unsigned int segs, bytecount; | ||
| 3626 | segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
| 3627 | /* multiply data chunks by size of headers */ | ||
| 3628 | bytecount = ((segs - 1) * skb_headlen(skb)) + | ||
| 3629 | skb->len; | ||
| 3630 | total_tx_packets += segs; | ||
| 3631 | total_tx_bytes += bytecount; | ||
| 3632 | } | ||
| 3633 | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | ||
| 3634 | tx_desc->upper.data = 0; | ||
| 3635 | |||
| 3636 | if (unlikely(++i == tx_ring->count)) i = 0; | ||
| 3637 | } | ||
| 3638 | |||
| 3639 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
| 3640 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
| 3641 | } | ||
| 3642 | |||
| 3643 | tx_ring->next_to_clean = i; | ||
| 3644 | |||
| 3645 | #define TX_WAKE_THRESHOLD 32 | ||
| 3646 | if (unlikely(count && netif_carrier_ok(netdev) && | ||
| 3647 | E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { | ||
| 3648 | /* Make sure that anybody stopping the queue after this | ||
| 3649 | * sees the new next_to_clean. | ||
| 3650 | */ | ||
| 3651 | smp_mb(); | ||
| 3652 | |||
| 3653 | if (netif_queue_stopped(netdev) && | ||
| 3654 | !(test_bit(__E1000_DOWN, &adapter->flags))) { | ||
| 3655 | netif_wake_queue(netdev); | ||
| 3656 | ++adapter->restart_queue; | ||
| 3657 | } | ||
| 3658 | } | ||
| 3659 | |||
| 3660 | if (adapter->detect_tx_hung) { | ||
| 3661 | /* Detect a transmit hang in hardware, this serializes the | ||
| 3662 | * check with the clearing of time_stamp and movement of i */ | ||
| 3663 | adapter->detect_tx_hung = false; | ||
| 3664 | if (tx_ring->buffer_info[eop].time_stamp && | ||
| 3665 | time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + | ||
| 3666 | (adapter->tx_timeout_factor * HZ)) && | ||
| 3667 | !(er32(STATUS) & E1000_STATUS_TXOFF)) { | ||
| 3668 | |||
| 3669 | /* detected Tx unit hang */ | ||
| 3670 | e_err(drv, "Detected Tx Unit Hang\n" | ||
| 3671 | " Tx Queue <%lu>\n" | ||
| 3672 | " TDH <%x>\n" | ||
| 3673 | " TDT <%x>\n" | ||
| 3674 | " next_to_use <%x>\n" | ||
| 3675 | " next_to_clean <%x>\n" | ||
| 3676 | "buffer_info[next_to_clean]\n" | ||
| 3677 | " time_stamp <%lx>\n" | ||
| 3678 | " next_to_watch <%x>\n" | ||
| 3679 | " jiffies <%lx>\n" | ||
| 3680 | " next_to_watch.status <%x>\n", | ||
| 3681 | (unsigned long)((tx_ring - adapter->tx_ring) / | ||
| 3682 | sizeof(struct e1000_tx_ring)), | ||
| 3683 | readl(hw->hw_addr + tx_ring->tdh), | ||
| 3684 | readl(hw->hw_addr + tx_ring->tdt), | ||
| 3685 | tx_ring->next_to_use, | ||
| 3686 | tx_ring->next_to_clean, | ||
| 3687 | tx_ring->buffer_info[eop].time_stamp, | ||
| 3688 | eop, | ||
| 3689 | jiffies, | ||
| 3690 | eop_desc->upper.fields.status); | ||
| 3691 | netif_stop_queue(netdev); | ||
| 3692 | } | ||
| 3693 | } | ||
| 3694 | adapter->total_tx_bytes += total_tx_bytes; | ||
| 3695 | adapter->total_tx_packets += total_tx_packets; | ||
| 3696 | netdev->stats.tx_bytes += total_tx_bytes; | ||
| 3697 | netdev->stats.tx_packets += total_tx_packets; | ||
| 3698 | return count < tx_ring->count; | ||
| 3699 | } | ||
| 3700 | |||
| 3701 | /** | ||
| 3702 | * e1000_rx_checksum - Receive Checksum Offload for 82543 | ||
| 3703 | * @adapter: board private structure | ||
| 3704 | * @status_err: receive descriptor status and error fields | ||
| 3705 | * @csum: receive descriptor csum field | ||
| 3706 | * @sk_buff: socket buffer with received data | ||
| 3707 | **/ | ||
| 3708 | |||
| 3709 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | ||
| 3710 | u32 csum, struct sk_buff *skb) | ||
| 3711 | { | ||
| 3712 | struct e1000_hw *hw = &adapter->hw; | ||
| 3713 | u16 status = (u16)status_err; | ||
| 3714 | u8 errors = (u8)(status_err >> 24); | ||
| 3715 | |||
| 3716 | skb_checksum_none_assert(skb); | ||
| 3717 | |||
| 3718 | /* 82543 or newer only */ | ||
| 3719 | if (unlikely(hw->mac_type < e1000_82543)) return; | ||
| 3720 | /* Ignore Checksum bit is set */ | ||
| 3721 | if (unlikely(status & E1000_RXD_STAT_IXSM)) return; | ||
| 3722 | /* TCP/UDP checksum error bit is set */ | ||
| 3723 | if (unlikely(errors & E1000_RXD_ERR_TCPE)) { | ||
| 3724 | /* let the stack verify checksum errors */ | ||
| 3725 | adapter->hw_csum_err++; | ||
| 3726 | return; | ||
| 3727 | } | ||
| 3728 | /* TCP/UDP Checksum has not been calculated */ | ||
| 3729 | if (!(status & E1000_RXD_STAT_TCPCS)) | ||
| 3730 | return; | ||
| 3731 | |||
| 3732 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
| 3733 | if (likely(status & E1000_RXD_STAT_TCPCS)) { | ||
| 3734 | /* TCP checksum is good */ | ||
| 3735 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
| 3736 | } | ||
| 3737 | adapter->hw_csum_good++; | ||
| 3738 | } | ||
| 3739 | |||
| 3740 | /** | ||
| 3741 | * e1000_consume_page - helper function | ||
| 3742 | **/ | ||
| 3743 | static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, | ||
| 3744 | u16 length) | ||
| 3745 | { | ||
| 3746 | bi->page = NULL; | ||
| 3747 | skb->len += length; | ||
| 3748 | skb->data_len += length; | ||
| 3749 | skb->truesize += length; | ||
| 3750 | } | ||
| 3751 | |||
| 3752 | /** | ||
| 3753 | * e1000_receive_skb - helper function to handle rx indications | ||
| 3754 | * @adapter: board private structure | ||
| 3755 | * @status: descriptor status field as written by hardware | ||
| 3756 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | ||
| 3757 | * @skb: pointer to sk_buff to be indicated to stack | ||
| 3758 | */ | ||
| 3759 | static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, | ||
| 3760 | __le16 vlan, struct sk_buff *skb) | ||
| 3761 | { | ||
| 3762 | skb->protocol = eth_type_trans(skb, adapter->netdev); | ||
| 3763 | |||
| 3764 | if (status & E1000_RXD_STAT_VP) { | ||
| 3765 | u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; | ||
| 3766 | |||
| 3767 | __vlan_hwaccel_put_tag(skb, vid); | ||
| 3768 | } | ||
| 3769 | napi_gro_receive(&adapter->napi, skb); | ||
| 3770 | } | ||
| 3771 | |||
| 3772 | /** | ||
| 3773 | * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy | ||
| 3774 | * @adapter: board private structure | ||
| 3775 | * @rx_ring: ring to clean | ||
| 3776 | * @work_done: amount of napi work completed this call | ||
| 3777 | * @work_to_do: max amount of work allowed for this call to do | ||
| 3778 | * | ||
| 3779 | * the return value indicates whether actual cleaning was done, there | ||
| 3780 | * is no guarantee that everything was cleaned | ||
| 3781 | */ | ||
| 3782 | static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, | ||
| 3783 | struct e1000_rx_ring *rx_ring, | ||
| 3784 | int *work_done, int work_to_do) | ||
| 3785 | { | ||
| 3786 | struct e1000_hw *hw = &adapter->hw; | ||
| 3787 | struct net_device *netdev = adapter->netdev; | ||
| 3788 | struct pci_dev *pdev = adapter->pdev; | ||
| 3789 | struct e1000_rx_desc *rx_desc, *next_rxd; | ||
| 3790 | struct e1000_buffer *buffer_info, *next_buffer; | ||
| 3791 | unsigned long irq_flags; | ||
| 3792 | u32 length; | ||
| 3793 | unsigned int i; | ||
| 3794 | int cleaned_count = 0; | ||
| 3795 | bool cleaned = false; | ||
| 3796 | unsigned int total_rx_bytes=0, total_rx_packets=0; | ||
| 3797 | |||
| 3798 | i = rx_ring->next_to_clean; | ||
| 3799 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
| 3800 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 3801 | |||
| 3802 | while (rx_desc->status & E1000_RXD_STAT_DD) { | ||
| 3803 | struct sk_buff *skb; | ||
| 3804 | u8 status; | ||
| 3805 | |||
| 3806 | if (*work_done >= work_to_do) | ||
| 3807 | break; | ||
| 3808 | (*work_done)++; | ||
| 3809 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
| 3810 | |||
| 3811 | status = rx_desc->status; | ||
| 3812 | skb = buffer_info->skb; | ||
| 3813 | buffer_info->skb = NULL; | ||
| 3814 | |||
| 3815 | if (++i == rx_ring->count) i = 0; | ||
| 3816 | next_rxd = E1000_RX_DESC(*rx_ring, i); | ||
| 3817 | prefetch(next_rxd); | ||
| 3818 | |||
| 3819 | next_buffer = &rx_ring->buffer_info[i]; | ||
| 3820 | |||
| 3821 | cleaned = true; | ||
| 3822 | cleaned_count++; | ||
| 3823 | dma_unmap_page(&pdev->dev, buffer_info->dma, | ||
| 3824 | buffer_info->length, DMA_FROM_DEVICE); | ||
| 3825 | buffer_info->dma = 0; | ||
| 3826 | |||
| 3827 | length = le16_to_cpu(rx_desc->length); | ||
| 3828 | |||
| 3829 | /* errors is only valid for DD + EOP descriptors */ | ||
| 3830 | if (unlikely((status & E1000_RXD_STAT_EOP) && | ||
| 3831 | (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { | ||
| 3832 | u8 last_byte = *(skb->data + length - 1); | ||
| 3833 | if (TBI_ACCEPT(hw, status, rx_desc->errors, length, | ||
| 3834 | last_byte)) { | ||
| 3835 | spin_lock_irqsave(&adapter->stats_lock, | ||
| 3836 | irq_flags); | ||
| 3837 | e1000_tbi_adjust_stats(hw, &adapter->stats, | ||
| 3838 | length, skb->data); | ||
| 3839 | spin_unlock_irqrestore(&adapter->stats_lock, | ||
| 3840 | irq_flags); | ||
| 3841 | length--; | ||
| 3842 | } else { | ||
| 3843 | /* recycle both page and skb */ | ||
| 3844 | buffer_info->skb = skb; | ||
| 3845 | /* an error means any chain goes out the window | ||
| 3846 | * too */ | ||
| 3847 | if (rx_ring->rx_skb_top) | ||
| 3848 | dev_kfree_skb(rx_ring->rx_skb_top); | ||
| 3849 | rx_ring->rx_skb_top = NULL; | ||
| 3850 | goto next_desc; | ||
| 3851 | } | ||
| 3852 | } | ||
| 3853 | |||
| 3854 | #define rxtop rx_ring->rx_skb_top | ||
| 3855 | if (!(status & E1000_RXD_STAT_EOP)) { | ||
| 3856 | /* this descriptor is only the beginning (or middle) */ | ||
| 3857 | if (!rxtop) { | ||
| 3858 | /* this is the beginning of a chain */ | ||
| 3859 | rxtop = skb; | ||
| 3860 | skb_fill_page_desc(rxtop, 0, buffer_info->page, | ||
| 3861 | 0, length); | ||
| 3862 | } else { | ||
| 3863 | /* this is the middle of a chain */ | ||
| 3864 | skb_fill_page_desc(rxtop, | ||
| 3865 | skb_shinfo(rxtop)->nr_frags, | ||
| 3866 | buffer_info->page, 0, length); | ||
| 3867 | /* re-use the skb, only consumed the page */ | ||
| 3868 | buffer_info->skb = skb; | ||
| 3869 | } | ||
| 3870 | e1000_consume_page(buffer_info, rxtop, length); | ||
| 3871 | goto next_desc; | ||
| 3872 | } else { | ||
| 3873 | if (rxtop) { | ||
| 3874 | /* end of the chain */ | ||
| 3875 | skb_fill_page_desc(rxtop, | ||
| 3876 | skb_shinfo(rxtop)->nr_frags, | ||
| 3877 | buffer_info->page, 0, length); | ||
| 3878 | /* re-use the current skb, we only consumed the | ||
| 3879 | * page */ | ||
| 3880 | buffer_info->skb = skb; | ||
| 3881 | skb = rxtop; | ||
| 3882 | rxtop = NULL; | ||
| 3883 | e1000_consume_page(buffer_info, skb, length); | ||
| 3884 | } else { | ||
| 3885 | /* no chain, got EOP, this buf is the packet | ||
| 3886 | * copybreak to save the put_page/alloc_page */ | ||
| 3887 | if (length <= copybreak && | ||
| 3888 | skb_tailroom(skb) >= length) { | ||
| 3889 | u8 *vaddr; | ||
| 3890 | vaddr = kmap_atomic(buffer_info->page, | ||
| 3891 | KM_SKB_DATA_SOFTIRQ); | ||
| 3892 | memcpy(skb_tail_pointer(skb), vaddr, length); | ||
| 3893 | kunmap_atomic(vaddr, | ||
| 3894 | KM_SKB_DATA_SOFTIRQ); | ||
| 3895 | /* re-use the page, so don't erase | ||
| 3896 | * buffer_info->page */ | ||
| 3897 | skb_put(skb, length); | ||
| 3898 | } else { | ||
| 3899 | skb_fill_page_desc(skb, 0, | ||
| 3900 | buffer_info->page, 0, | ||
| 3901 | length); | ||
| 3902 | e1000_consume_page(buffer_info, skb, | ||
| 3903 | length); | ||
| 3904 | } | ||
| 3905 | } | ||
| 3906 | } | ||
| 3907 | |||
| 3908 | /* Receive Checksum Offload XXX recompute due to CRC strip? */ | ||
| 3909 | e1000_rx_checksum(adapter, | ||
| 3910 | (u32)(status) | | ||
| 3911 | ((u32)(rx_desc->errors) << 24), | ||
| 3912 | le16_to_cpu(rx_desc->csum), skb); | ||
| 3913 | |||
| 3914 | pskb_trim(skb, skb->len - 4); | ||
| 3915 | |||
| 3916 | /* probably a little skewed due to removing CRC */ | ||
| 3917 | total_rx_bytes += skb->len; | ||
| 3918 | total_rx_packets++; | ||
| 3919 | |||
| 3920 | /* eth type trans needs skb->data to point to something */ | ||
| 3921 | if (!pskb_may_pull(skb, ETH_HLEN)) { | ||
| 3922 | e_err(drv, "pskb_may_pull failed.\n"); | ||
| 3923 | dev_kfree_skb(skb); | ||
| 3924 | goto next_desc; | ||
| 3925 | } | ||
| 3926 | |||
| 3927 | e1000_receive_skb(adapter, status, rx_desc->special, skb); | ||
| 3928 | |||
| 3929 | next_desc: | ||
| 3930 | rx_desc->status = 0; | ||
| 3931 | |||
| 3932 | /* return some buffers to hardware, one at a time is too slow */ | ||
| 3933 | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | ||
| 3934 | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | ||
| 3935 | cleaned_count = 0; | ||
| 3936 | } | ||
| 3937 | |||
| 3938 | /* use prefetched values */ | ||
| 3939 | rx_desc = next_rxd; | ||
| 3940 | buffer_info = next_buffer; | ||
| 3941 | } | ||
| 3942 | rx_ring->next_to_clean = i; | ||
| 3943 | |||
| 3944 | cleaned_count = E1000_DESC_UNUSED(rx_ring); | ||
| 3945 | if (cleaned_count) | ||
| 3946 | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | ||
| 3947 | |||
| 3948 | adapter->total_rx_packets += total_rx_packets; | ||
| 3949 | adapter->total_rx_bytes += total_rx_bytes; | ||
| 3950 | netdev->stats.rx_bytes += total_rx_bytes; | ||
| 3951 | netdev->stats.rx_packets += total_rx_packets; | ||
| 3952 | return cleaned; | ||
| 3953 | } | ||
| 3954 | |||
| 3955 | /* | ||
| 3956 | * this should improve performance for small packets with large amounts | ||
| 3957 | * of reassembly being done in the stack | ||
| 3958 | */ | ||
| 3959 | static void e1000_check_copybreak(struct net_device *netdev, | ||
| 3960 | struct e1000_buffer *buffer_info, | ||
| 3961 | u32 length, struct sk_buff **skb) | ||
| 3962 | { | ||
| 3963 | struct sk_buff *new_skb; | ||
| 3964 | |||
| 3965 | if (length > copybreak) | ||
| 3966 | return; | ||
| 3967 | |||
| 3968 | new_skb = netdev_alloc_skb_ip_align(netdev, length); | ||
| 3969 | if (!new_skb) | ||
| 3970 | return; | ||
| 3971 | |||
| 3972 | skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN, | ||
| 3973 | (*skb)->data - NET_IP_ALIGN, | ||
| 3974 | length + NET_IP_ALIGN); | ||
| 3975 | /* save the skb in buffer_info as good */ | ||
| 3976 | buffer_info->skb = *skb; | ||
| 3977 | *skb = new_skb; | ||
| 3978 | } | ||
| 3979 | |||
| 3980 | /** | ||
| 3981 | * e1000_clean_rx_irq - Send received data up the network stack; legacy | ||
| 3982 | * @adapter: board private structure | ||
| 3983 | * @rx_ring: ring to clean | ||
| 3984 | * @work_done: amount of napi work completed this call | ||
| 3985 | * @work_to_do: max amount of work allowed for this call to do | ||
| 3986 | */ | ||
| 3987 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | ||
| 3988 | struct e1000_rx_ring *rx_ring, | ||
| 3989 | int *work_done, int work_to_do) | ||
| 3990 | { | ||
| 3991 | struct e1000_hw *hw = &adapter->hw; | ||
| 3992 | struct net_device *netdev = adapter->netdev; | ||
| 3993 | struct pci_dev *pdev = adapter->pdev; | ||
| 3994 | struct e1000_rx_desc *rx_desc, *next_rxd; | ||
| 3995 | struct e1000_buffer *buffer_info, *next_buffer; | ||
| 3996 | unsigned long flags; | ||
| 3997 | u32 length; | ||
| 3998 | unsigned int i; | ||
| 3999 | int cleaned_count = 0; | ||
| 4000 | bool cleaned = false; | ||
| 4001 | unsigned int total_rx_bytes=0, total_rx_packets=0; | ||
| 4002 | |||
| 4003 | i = rx_ring->next_to_clean; | ||
| 4004 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
| 4005 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 4006 | |||
| 4007 | while (rx_desc->status & E1000_RXD_STAT_DD) { | ||
| 4008 | struct sk_buff *skb; | ||
| 4009 | u8 status; | ||
| 4010 | |||
| 4011 | if (*work_done >= work_to_do) | ||
| 4012 | break; | ||
| 4013 | (*work_done)++; | ||
| 4014 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
| 4015 | |||
| 4016 | status = rx_desc->status; | ||
| 4017 | skb = buffer_info->skb; | ||
| 4018 | buffer_info->skb = NULL; | ||
| 4019 | |||
| 4020 | prefetch(skb->data - NET_IP_ALIGN); | ||
| 4021 | |||
| 4022 | if (++i == rx_ring->count) i = 0; | ||
| 4023 | next_rxd = E1000_RX_DESC(*rx_ring, i); | ||
| 4024 | prefetch(next_rxd); | ||
| 4025 | |||
| 4026 | next_buffer = &rx_ring->buffer_info[i]; | ||
| 4027 | |||
| 4028 | cleaned = true; | ||
| 4029 | cleaned_count++; | ||
| 4030 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
| 4031 | buffer_info->length, DMA_FROM_DEVICE); | ||
| 4032 | buffer_info->dma = 0; | ||
| 4033 | |||
| 4034 | length = le16_to_cpu(rx_desc->length); | ||
| 4035 | /* !EOP means multiple descriptors were used to store a single | ||
| 4036 | * packet, if thats the case we need to toss it. In fact, we | ||
| 4037 | * to toss every packet with the EOP bit clear and the next | ||
| 4038 | * frame that _does_ have the EOP bit set, as it is by | ||
| 4039 | * definition only a frame fragment | ||
| 4040 | */ | ||
| 4041 | if (unlikely(!(status & E1000_RXD_STAT_EOP))) | ||
| 4042 | adapter->discarding = true; | ||
| 4043 | |||
| 4044 | if (adapter->discarding) { | ||
| 4045 | /* All receives must fit into a single buffer */ | ||
| 4046 | e_dbg("Receive packet consumed multiple buffers\n"); | ||
| 4047 | /* recycle */ | ||
| 4048 | buffer_info->skb = skb; | ||
| 4049 | if (status & E1000_RXD_STAT_EOP) | ||
| 4050 | adapter->discarding = false; | ||
| 4051 | goto next_desc; | ||
| 4052 | } | ||
| 4053 | |||
| 4054 | if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { | ||
| 4055 | u8 last_byte = *(skb->data + length - 1); | ||
| 4056 | if (TBI_ACCEPT(hw, status, rx_desc->errors, length, | ||
| 4057 | last_byte)) { | ||
| 4058 | spin_lock_irqsave(&adapter->stats_lock, flags); | ||
| 4059 | e1000_tbi_adjust_stats(hw, &adapter->stats, | ||
| 4060 | length, skb->data); | ||
| 4061 | spin_unlock_irqrestore(&adapter->stats_lock, | ||
| 4062 | flags); | ||
| 4063 | length--; | ||
| 4064 | } else { | ||
| 4065 | /* recycle */ | ||
| 4066 | buffer_info->skb = skb; | ||
| 4067 | goto next_desc; | ||
| 4068 | } | ||
| 4069 | } | ||
| 4070 | |||
| 4071 | /* adjust length to remove Ethernet CRC, this must be | ||
| 4072 | * done after the TBI_ACCEPT workaround above */ | ||
| 4073 | length -= 4; | ||
| 4074 | |||
| 4075 | /* probably a little skewed due to removing CRC */ | ||
| 4076 | total_rx_bytes += length; | ||
| 4077 | total_rx_packets++; | ||
| 4078 | |||
| 4079 | e1000_check_copybreak(netdev, buffer_info, length, &skb); | ||
| 4080 | |||
| 4081 | skb_put(skb, length); | ||
| 4082 | |||
| 4083 | /* Receive Checksum Offload */ | ||
| 4084 | e1000_rx_checksum(adapter, | ||
| 4085 | (u32)(status) | | ||
| 4086 | ((u32)(rx_desc->errors) << 24), | ||
| 4087 | le16_to_cpu(rx_desc->csum), skb); | ||
| 4088 | |||
| 4089 | e1000_receive_skb(adapter, status, rx_desc->special, skb); | ||
| 4090 | |||
| 4091 | next_desc: | ||
| 4092 | rx_desc->status = 0; | ||
| 4093 | |||
| 4094 | /* return some buffers to hardware, one at a time is too slow */ | ||
| 4095 | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | ||
| 4096 | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | ||
| 4097 | cleaned_count = 0; | ||
| 4098 | } | ||
| 4099 | |||
| 4100 | /* use prefetched values */ | ||
| 4101 | rx_desc = next_rxd; | ||
| 4102 | buffer_info = next_buffer; | ||
| 4103 | } | ||
| 4104 | rx_ring->next_to_clean = i; | ||
| 4105 | |||
| 4106 | cleaned_count = E1000_DESC_UNUSED(rx_ring); | ||
| 4107 | if (cleaned_count) | ||
| 4108 | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | ||
| 4109 | |||
| 4110 | adapter->total_rx_packets += total_rx_packets; | ||
| 4111 | adapter->total_rx_bytes += total_rx_bytes; | ||
| 4112 | netdev->stats.rx_bytes += total_rx_bytes; | ||
| 4113 | netdev->stats.rx_packets += total_rx_packets; | ||
| 4114 | return cleaned; | ||
| 4115 | } | ||
| 4116 | |||
| 4117 | /** | ||
| 4118 | * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers | ||
| 4119 | * @adapter: address of board private structure | ||
| 4120 | * @rx_ring: pointer to receive ring structure | ||
| 4121 | * @cleaned_count: number of buffers to allocate this pass | ||
| 4122 | **/ | ||
| 4123 | |||
| 4124 | static void | ||
| 4125 | e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, | ||
| 4126 | struct e1000_rx_ring *rx_ring, int cleaned_count) | ||
| 4127 | { | ||
| 4128 | struct net_device *netdev = adapter->netdev; | ||
| 4129 | struct pci_dev *pdev = adapter->pdev; | ||
| 4130 | struct e1000_rx_desc *rx_desc; | ||
| 4131 | struct e1000_buffer *buffer_info; | ||
| 4132 | struct sk_buff *skb; | ||
| 4133 | unsigned int i; | ||
| 4134 | unsigned int bufsz = 256 - 16 /*for skb_reserve */ ; | ||
| 4135 | |||
| 4136 | i = rx_ring->next_to_use; | ||
| 4137 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 4138 | |||
| 4139 | while (cleaned_count--) { | ||
| 4140 | skb = buffer_info->skb; | ||
| 4141 | if (skb) { | ||
| 4142 | skb_trim(skb, 0); | ||
| 4143 | goto check_page; | ||
| 4144 | } | ||
| 4145 | |||
| 4146 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
| 4147 | if (unlikely(!skb)) { | ||
| 4148 | /* Better luck next round */ | ||
| 4149 | adapter->alloc_rx_buff_failed++; | ||
| 4150 | break; | ||
| 4151 | } | ||
| 4152 | |||
| 4153 | /* Fix for errata 23, can't cross 64kB boundary */ | ||
| 4154 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | ||
| 4155 | struct sk_buff *oldskb = skb; | ||
| 4156 | e_err(rx_err, "skb align check failed: %u bytes at " | ||
| 4157 | "%p\n", bufsz, skb->data); | ||
| 4158 | /* Try again, without freeing the previous */ | ||
| 4159 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
| 4160 | /* Failed allocation, critical failure */ | ||
| 4161 | if (!skb) { | ||
| 4162 | dev_kfree_skb(oldskb); | ||
| 4163 | adapter->alloc_rx_buff_failed++; | ||
| 4164 | break; | ||
| 4165 | } | ||
| 4166 | |||
| 4167 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | ||
| 4168 | /* give up */ | ||
| 4169 | dev_kfree_skb(skb); | ||
| 4170 | dev_kfree_skb(oldskb); | ||
| 4171 | break; /* while (cleaned_count--) */ | ||
| 4172 | } | ||
| 4173 | |||
| 4174 | /* Use new allocation */ | ||
| 4175 | dev_kfree_skb(oldskb); | ||
| 4176 | } | ||
| 4177 | buffer_info->skb = skb; | ||
| 4178 | buffer_info->length = adapter->rx_buffer_len; | ||
| 4179 | check_page: | ||
| 4180 | /* allocate a new page if necessary */ | ||
| 4181 | if (!buffer_info->page) { | ||
| 4182 | buffer_info->page = alloc_page(GFP_ATOMIC); | ||
| 4183 | if (unlikely(!buffer_info->page)) { | ||
| 4184 | adapter->alloc_rx_buff_failed++; | ||
| 4185 | break; | ||
| 4186 | } | ||
| 4187 | } | ||
| 4188 | |||
| 4189 | if (!buffer_info->dma) { | ||
| 4190 | buffer_info->dma = dma_map_page(&pdev->dev, | ||
| 4191 | buffer_info->page, 0, | ||
| 4192 | buffer_info->length, | ||
| 4193 | DMA_FROM_DEVICE); | ||
| 4194 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | ||
| 4195 | put_page(buffer_info->page); | ||
| 4196 | dev_kfree_skb(skb); | ||
| 4197 | buffer_info->page = NULL; | ||
| 4198 | buffer_info->skb = NULL; | ||
| 4199 | buffer_info->dma = 0; | ||
| 4200 | adapter->alloc_rx_buff_failed++; | ||
| 4201 | break; /* while !buffer_info->skb */ | ||
| 4202 | } | ||
| 4203 | } | ||
| 4204 | |||
| 4205 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
| 4206 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
| 4207 | |||
| 4208 | if (unlikely(++i == rx_ring->count)) | ||
| 4209 | i = 0; | ||
| 4210 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 4211 | } | ||
| 4212 | |||
| 4213 | if (likely(rx_ring->next_to_use != i)) { | ||
| 4214 | rx_ring->next_to_use = i; | ||
| 4215 | if (unlikely(i-- == 0)) | ||
| 4216 | i = (rx_ring->count - 1); | ||
| 4217 | |||
| 4218 | /* Force memory writes to complete before letting h/w | ||
| 4219 | * know there are new descriptors to fetch. (Only | ||
| 4220 | * applicable for weak-ordered memory model archs, | ||
| 4221 | * such as IA-64). */ | ||
| 4222 | wmb(); | ||
| 4223 | writel(i, adapter->hw.hw_addr + rx_ring->rdt); | ||
| 4224 | } | ||
| 4225 | } | ||
| 4226 | |||
| 4227 | /** | ||
| 4228 | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | ||
| 4229 | * @adapter: address of board private structure | ||
| 4230 | **/ | ||
| 4231 | |||
| 4232 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | ||
| 4233 | struct e1000_rx_ring *rx_ring, | ||
| 4234 | int cleaned_count) | ||
| 4235 | { | ||
| 4236 | struct e1000_hw *hw = &adapter->hw; | ||
| 4237 | struct net_device *netdev = adapter->netdev; | ||
| 4238 | struct pci_dev *pdev = adapter->pdev; | ||
| 4239 | struct e1000_rx_desc *rx_desc; | ||
| 4240 | struct e1000_buffer *buffer_info; | ||
| 4241 | struct sk_buff *skb; | ||
| 4242 | unsigned int i; | ||
| 4243 | unsigned int bufsz = adapter->rx_buffer_len; | ||
| 4244 | |||
| 4245 | i = rx_ring->next_to_use; | ||
| 4246 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 4247 | |||
| 4248 | while (cleaned_count--) { | ||
| 4249 | skb = buffer_info->skb; | ||
| 4250 | if (skb) { | ||
| 4251 | skb_trim(skb, 0); | ||
| 4252 | goto map_skb; | ||
| 4253 | } | ||
| 4254 | |||
| 4255 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
| 4256 | if (unlikely(!skb)) { | ||
| 4257 | /* Better luck next round */ | ||
| 4258 | adapter->alloc_rx_buff_failed++; | ||
| 4259 | break; | ||
| 4260 | } | ||
| 4261 | |||
| 4262 | /* Fix for errata 23, can't cross 64kB boundary */ | ||
| 4263 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | ||
| 4264 | struct sk_buff *oldskb = skb; | ||
| 4265 | e_err(rx_err, "skb align check failed: %u bytes at " | ||
| 4266 | "%p\n", bufsz, skb->data); | ||
| 4267 | /* Try again, without freeing the previous */ | ||
| 4268 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
| 4269 | /* Failed allocation, critical failure */ | ||
| 4270 | if (!skb) { | ||
| 4271 | dev_kfree_skb(oldskb); | ||
| 4272 | adapter->alloc_rx_buff_failed++; | ||
| 4273 | break; | ||
| 4274 | } | ||
| 4275 | |||
| 4276 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | ||
| 4277 | /* give up */ | ||
| 4278 | dev_kfree_skb(skb); | ||
| 4279 | dev_kfree_skb(oldskb); | ||
| 4280 | adapter->alloc_rx_buff_failed++; | ||
| 4281 | break; /* while !buffer_info->skb */ | ||
| 4282 | } | ||
| 4283 | |||
| 4284 | /* Use new allocation */ | ||
| 4285 | dev_kfree_skb(oldskb); | ||
| 4286 | } | ||
| 4287 | buffer_info->skb = skb; | ||
| 4288 | buffer_info->length = adapter->rx_buffer_len; | ||
| 4289 | map_skb: | ||
| 4290 | buffer_info->dma = dma_map_single(&pdev->dev, | ||
| 4291 | skb->data, | ||
| 4292 | buffer_info->length, | ||
| 4293 | DMA_FROM_DEVICE); | ||
| 4294 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | ||
| 4295 | dev_kfree_skb(skb); | ||
| 4296 | buffer_info->skb = NULL; | ||
| 4297 | buffer_info->dma = 0; | ||
| 4298 | adapter->alloc_rx_buff_failed++; | ||
| 4299 | break; /* while !buffer_info->skb */ | ||
| 4300 | } | ||
| 4301 | |||
| 4302 | /* | ||
| 4303 | * XXX if it was allocated cleanly it will never map to a | ||
| 4304 | * boundary crossing | ||
| 4305 | */ | ||
| 4306 | |||
| 4307 | /* Fix for errata 23, can't cross 64kB boundary */ | ||
| 4308 | if (!e1000_check_64k_bound(adapter, | ||
| 4309 | (void *)(unsigned long)buffer_info->dma, | ||
| 4310 | adapter->rx_buffer_len)) { | ||
| 4311 | e_err(rx_err, "dma align check failed: %u bytes at " | ||
| 4312 | "%p\n", adapter->rx_buffer_len, | ||
| 4313 | (void *)(unsigned long)buffer_info->dma); | ||
| 4314 | dev_kfree_skb(skb); | ||
| 4315 | buffer_info->skb = NULL; | ||
| 4316 | |||
| 4317 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
| 4318 | adapter->rx_buffer_len, | ||
| 4319 | DMA_FROM_DEVICE); | ||
| 4320 | buffer_info->dma = 0; | ||
| 4321 | |||
| 4322 | adapter->alloc_rx_buff_failed++; | ||
| 4323 | break; /* while !buffer_info->skb */ | ||
| 4324 | } | ||
| 4325 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
| 4326 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
| 4327 | |||
| 4328 | if (unlikely(++i == rx_ring->count)) | ||
| 4329 | i = 0; | ||
| 4330 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 4331 | } | ||
| 4332 | |||
| 4333 | if (likely(rx_ring->next_to_use != i)) { | ||
| 4334 | rx_ring->next_to_use = i; | ||
| 4335 | if (unlikely(i-- == 0)) | ||
| 4336 | i = (rx_ring->count - 1); | ||
| 4337 | |||
| 4338 | /* Force memory writes to complete before letting h/w | ||
| 4339 | * know there are new descriptors to fetch. (Only | ||
| 4340 | * applicable for weak-ordered memory model archs, | ||
| 4341 | * such as IA-64). */ | ||
| 4342 | wmb(); | ||
| 4343 | writel(i, hw->hw_addr + rx_ring->rdt); | ||
| 4344 | } | ||
| 4345 | } | ||
| 4346 | |||
| 4347 | /** | ||
| 4348 | * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. | ||
| 4349 | * @adapter: | ||
| 4350 | **/ | ||
| 4351 | |||
| 4352 | static void e1000_smartspeed(struct e1000_adapter *adapter) | ||
| 4353 | { | ||
| 4354 | struct e1000_hw *hw = &adapter->hw; | ||
| 4355 | u16 phy_status; | ||
| 4356 | u16 phy_ctrl; | ||
| 4357 | |||
| 4358 | if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || | ||
| 4359 | !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) | ||
| 4360 | return; | ||
| 4361 | |||
| 4362 | if (adapter->smartspeed == 0) { | ||
| 4363 | /* If Master/Slave config fault is asserted twice, | ||
| 4364 | * we assume back-to-back */ | ||
| 4365 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); | ||
| 4366 | if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; | ||
| 4367 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); | ||
| 4368 | if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; | ||
| 4369 | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); | ||
| 4370 | if (phy_ctrl & CR_1000T_MS_ENABLE) { | ||
| 4371 | phy_ctrl &= ~CR_1000T_MS_ENABLE; | ||
| 4372 | e1000_write_phy_reg(hw, PHY_1000T_CTRL, | ||
| 4373 | phy_ctrl); | ||
| 4374 | adapter->smartspeed++; | ||
| 4375 | if (!e1000_phy_setup_autoneg(hw) && | ||
| 4376 | !e1000_read_phy_reg(hw, PHY_CTRL, | ||
| 4377 | &phy_ctrl)) { | ||
| 4378 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | | ||
| 4379 | MII_CR_RESTART_AUTO_NEG); | ||
| 4380 | e1000_write_phy_reg(hw, PHY_CTRL, | ||
| 4381 | phy_ctrl); | ||
| 4382 | } | ||
| 4383 | } | ||
| 4384 | return; | ||
| 4385 | } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { | ||
| 4386 | /* If still no link, perhaps using 2/3 pair cable */ | ||
| 4387 | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); | ||
| 4388 | phy_ctrl |= CR_1000T_MS_ENABLE; | ||
| 4389 | e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); | ||
| 4390 | if (!e1000_phy_setup_autoneg(hw) && | ||
| 4391 | !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { | ||
| 4392 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | | ||
| 4393 | MII_CR_RESTART_AUTO_NEG); | ||
| 4394 | e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); | ||
| 4395 | } | ||
| 4396 | } | ||
| 4397 | /* Restart process after E1000_SMARTSPEED_MAX iterations */ | ||
| 4398 | if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) | ||
| 4399 | adapter->smartspeed = 0; | ||
| 4400 | } | ||
| 4401 | |||
| 4402 | /** | ||
| 4403 | * e1000_ioctl - | ||
| 4404 | * @netdev: | ||
| 4405 | * @ifreq: | ||
| 4406 | * @cmd: | ||
| 4407 | **/ | ||
| 4408 | |||
| 4409 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
| 4410 | { | ||
| 4411 | switch (cmd) { | ||
| 4412 | case SIOCGMIIPHY: | ||
| 4413 | case SIOCGMIIREG: | ||
| 4414 | case SIOCSMIIREG: | ||
| 4415 | return e1000_mii_ioctl(netdev, ifr, cmd); | ||
| 4416 | default: | ||
| 4417 | return -EOPNOTSUPP; | ||
| 4418 | } | ||
| 4419 | } | ||
| 4420 | |||
| 4421 | /** | ||
| 4422 | * e1000_mii_ioctl - | ||
| 4423 | * @netdev: | ||
| 4424 | * @ifreq: | ||
| 4425 | * @cmd: | ||
| 4426 | **/ | ||
| 4427 | |||
| 4428 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | ||
| 4429 | int cmd) | ||
| 4430 | { | ||
| 4431 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 4432 | struct e1000_hw *hw = &adapter->hw; | ||
| 4433 | struct mii_ioctl_data *data = if_mii(ifr); | ||
| 4434 | int retval; | ||
| 4435 | u16 mii_reg; | ||
| 4436 | unsigned long flags; | ||
| 4437 | |||
| 4438 | if (hw->media_type != e1000_media_type_copper) | ||
| 4439 | return -EOPNOTSUPP; | ||
| 4440 | |||
| 4441 | switch (cmd) { | ||
| 4442 | case SIOCGMIIPHY: | ||
| 4443 | data->phy_id = hw->phy_addr; | ||
| 4444 | break; | ||
| 4445 | case SIOCGMIIREG: | ||
| 4446 | spin_lock_irqsave(&adapter->stats_lock, flags); | ||
| 4447 | if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, | ||
| 4448 | &data->val_out)) { | ||
| 4449 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
| 4450 | return -EIO; | ||
| 4451 | } | ||
| 4452 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
| 4453 | break; | ||
| 4454 | case SIOCSMIIREG: | ||
| 4455 | if (data->reg_num & ~(0x1F)) | ||
| 4456 | return -EFAULT; | ||
| 4457 | mii_reg = data->val_in; | ||
| 4458 | spin_lock_irqsave(&adapter->stats_lock, flags); | ||
| 4459 | if (e1000_write_phy_reg(hw, data->reg_num, | ||
| 4460 | mii_reg)) { | ||
| 4461 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
| 4462 | return -EIO; | ||
| 4463 | } | ||
| 4464 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
| 4465 | if (hw->media_type == e1000_media_type_copper) { | ||
| 4466 | switch (data->reg_num) { | ||
| 4467 | case PHY_CTRL: | ||
| 4468 | if (mii_reg & MII_CR_POWER_DOWN) | ||
| 4469 | break; | ||
| 4470 | if (mii_reg & MII_CR_AUTO_NEG_EN) { | ||
| 4471 | hw->autoneg = 1; | ||
| 4472 | hw->autoneg_advertised = 0x2F; | ||
| 4473 | } else { | ||
| 4474 | u32 speed; | ||
| 4475 | if (mii_reg & 0x40) | ||
| 4476 | speed = SPEED_1000; | ||
| 4477 | else if (mii_reg & 0x2000) | ||
| 4478 | speed = SPEED_100; | ||
| 4479 | else | ||
| 4480 | speed = SPEED_10; | ||
| 4481 | retval = e1000_set_spd_dplx( | ||
| 4482 | adapter, speed, | ||
| 4483 | ((mii_reg & 0x100) | ||
| 4484 | ? DUPLEX_FULL : | ||
| 4485 | DUPLEX_HALF)); | ||
| 4486 | if (retval) | ||
| 4487 | return retval; | ||
| 4488 | } | ||
| 4489 | if (netif_running(adapter->netdev)) | ||
| 4490 | e1000_reinit_locked(adapter); | ||
| 4491 | else | ||
| 4492 | e1000_reset(adapter); | ||
| 4493 | break; | ||
| 4494 | case M88E1000_PHY_SPEC_CTRL: | ||
| 4495 | case M88E1000_EXT_PHY_SPEC_CTRL: | ||
| 4496 | if (e1000_phy_reset(hw)) | ||
| 4497 | return -EIO; | ||
| 4498 | break; | ||
| 4499 | } | ||
| 4500 | } else { | ||
| 4501 | switch (data->reg_num) { | ||
| 4502 | case PHY_CTRL: | ||
| 4503 | if (mii_reg & MII_CR_POWER_DOWN) | ||
| 4504 | break; | ||
| 4505 | if (netif_running(adapter->netdev)) | ||
| 4506 | e1000_reinit_locked(adapter); | ||
| 4507 | else | ||
| 4508 | e1000_reset(adapter); | ||
| 4509 | break; | ||
| 4510 | } | ||
| 4511 | } | ||
| 4512 | break; | ||
| 4513 | default: | ||
| 4514 | return -EOPNOTSUPP; | ||
| 4515 | } | ||
| 4516 | return E1000_SUCCESS; | ||
| 4517 | } | ||
| 4518 | |||
| 4519 | void e1000_pci_set_mwi(struct e1000_hw *hw) | ||
| 4520 | { | ||
| 4521 | struct e1000_adapter *adapter = hw->back; | ||
| 4522 | int ret_val = pci_set_mwi(adapter->pdev); | ||
| 4523 | |||
| 4524 | if (ret_val) | ||
| 4525 | e_err(probe, "Error in setting MWI\n"); | ||
| 4526 | } | ||
| 4527 | |||
| 4528 | void e1000_pci_clear_mwi(struct e1000_hw *hw) | ||
| 4529 | { | ||
| 4530 | struct e1000_adapter *adapter = hw->back; | ||
| 4531 | |||
| 4532 | pci_clear_mwi(adapter->pdev); | ||
| 4533 | } | ||
| 4534 | |||
| 4535 | int e1000_pcix_get_mmrbc(struct e1000_hw *hw) | ||
| 4536 | { | ||
| 4537 | struct e1000_adapter *adapter = hw->back; | ||
| 4538 | return pcix_get_mmrbc(adapter->pdev); | ||
| 4539 | } | ||
| 4540 | |||
| 4541 | void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) | ||
| 4542 | { | ||
| 4543 | struct e1000_adapter *adapter = hw->back; | ||
| 4544 | pcix_set_mmrbc(adapter->pdev, mmrbc); | ||
| 4545 | } | ||
| 4546 | |||
| 4547 | void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) | ||
| 4548 | { | ||
| 4549 | outl(value, port); | ||
| 4550 | } | ||
| 4551 | |||
| 4552 | static bool e1000_vlan_used(struct e1000_adapter *adapter) | ||
| 4553 | { | ||
| 4554 | u16 vid; | ||
| 4555 | |||
| 4556 | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | ||
| 4557 | return true; | ||
| 4558 | return false; | ||
| 4559 | } | ||
| 4560 | |||
| 4561 | static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, | ||
| 4562 | bool filter_on) | ||
| 4563 | { | ||
| 4564 | struct e1000_hw *hw = &adapter->hw; | ||
| 4565 | u32 rctl; | ||
| 4566 | |||
| 4567 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 4568 | e1000_irq_disable(adapter); | ||
| 4569 | |||
| 4570 | if (filter_on) { | ||
| 4571 | /* enable VLAN receive filtering */ | ||
| 4572 | rctl = er32(RCTL); | ||
| 4573 | rctl &= ~E1000_RCTL_CFIEN; | ||
| 4574 | if (!(adapter->netdev->flags & IFF_PROMISC)) | ||
| 4575 | rctl |= E1000_RCTL_VFE; | ||
| 4576 | ew32(RCTL, rctl); | ||
| 4577 | e1000_update_mng_vlan(adapter); | ||
| 4578 | } else { | ||
| 4579 | /* disable VLAN receive filtering */ | ||
| 4580 | rctl = er32(RCTL); | ||
| 4581 | rctl &= ~E1000_RCTL_VFE; | ||
| 4582 | ew32(RCTL, rctl); | ||
| 4583 | } | ||
| 4584 | |||
| 4585 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 4586 | e1000_irq_enable(adapter); | ||
| 4587 | } | ||
| 4588 | |||
| 4589 | static void e1000_vlan_mode(struct net_device *netdev, u32 features) | ||
| 4590 | { | ||
| 4591 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 4592 | struct e1000_hw *hw = &adapter->hw; | ||
| 4593 | u32 ctrl; | ||
| 4594 | |||
| 4595 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 4596 | e1000_irq_disable(adapter); | ||
| 4597 | |||
| 4598 | ctrl = er32(CTRL); | ||
| 4599 | if (features & NETIF_F_HW_VLAN_RX) { | ||
| 4600 | /* enable VLAN tag insert/strip */ | ||
| 4601 | ctrl |= E1000_CTRL_VME; | ||
| 4602 | } else { | ||
| 4603 | /* disable VLAN tag insert/strip */ | ||
| 4604 | ctrl &= ~E1000_CTRL_VME; | ||
| 4605 | } | ||
| 4606 | ew32(CTRL, ctrl); | ||
| 4607 | |||
| 4608 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 4609 | e1000_irq_enable(adapter); | ||
| 4610 | } | ||
| 4611 | |||
| 4612 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
| 4613 | { | ||
| 4614 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 4615 | struct e1000_hw *hw = &adapter->hw; | ||
| 4616 | u32 vfta, index; | ||
| 4617 | |||
| 4618 | if ((hw->mng_cookie.status & | ||
| 4619 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | ||
| 4620 | (vid == adapter->mng_vlan_id)) | ||
| 4621 | return; | ||
| 4622 | |||
| 4623 | if (!e1000_vlan_used(adapter)) | ||
| 4624 | e1000_vlan_filter_on_off(adapter, true); | ||
| 4625 | |||
| 4626 | /* add VID to filter table */ | ||
| 4627 | index = (vid >> 5) & 0x7F; | ||
| 4628 | vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); | ||
| 4629 | vfta |= (1 << (vid & 0x1F)); | ||
| 4630 | e1000_write_vfta(hw, index, vfta); | ||
| 4631 | |||
| 4632 | set_bit(vid, adapter->active_vlans); | ||
| 4633 | } | ||
| 4634 | |||
| 4635 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
| 4636 | { | ||
| 4637 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 4638 | struct e1000_hw *hw = &adapter->hw; | ||
| 4639 | u32 vfta, index; | ||
| 4640 | |||
| 4641 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 4642 | e1000_irq_disable(adapter); | ||
| 4643 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
| 4644 | e1000_irq_enable(adapter); | ||
| 4645 | |||
| 4646 | /* remove VID from filter table */ | ||
| 4647 | index = (vid >> 5) & 0x7F; | ||
| 4648 | vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); | ||
| 4649 | vfta &= ~(1 << (vid & 0x1F)); | ||
| 4650 | e1000_write_vfta(hw, index, vfta); | ||
| 4651 | |||
| 4652 | clear_bit(vid, adapter->active_vlans); | ||
| 4653 | |||
| 4654 | if (!e1000_vlan_used(adapter)) | ||
| 4655 | e1000_vlan_filter_on_off(adapter, false); | ||
| 4656 | } | ||
| 4657 | |||
| 4658 | static void e1000_restore_vlan(struct e1000_adapter *adapter) | ||
| 4659 | { | ||
| 4660 | u16 vid; | ||
| 4661 | |||
| 4662 | if (!e1000_vlan_used(adapter)) | ||
| 4663 | return; | ||
| 4664 | |||
| 4665 | e1000_vlan_filter_on_off(adapter, true); | ||
| 4666 | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | ||
| 4667 | e1000_vlan_rx_add_vid(adapter->netdev, vid); | ||
| 4668 | } | ||
| 4669 | |||
| 4670 | int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) | ||
| 4671 | { | ||
| 4672 | struct e1000_hw *hw = &adapter->hw; | ||
| 4673 | |||
| 4674 | hw->autoneg = 0; | ||
| 4675 | |||
| 4676 | /* Make sure dplx is at most 1 bit and lsb of speed is not set | ||
| 4677 | * for the switch() below to work */ | ||
| 4678 | if ((spd & 1) || (dplx & ~1)) | ||
| 4679 | goto err_inval; | ||
| 4680 | |||
| 4681 | /* Fiber NICs only allow 1000 gbps Full duplex */ | ||
| 4682 | if ((hw->media_type == e1000_media_type_fiber) && | ||
| 4683 | spd != SPEED_1000 && | ||
| 4684 | dplx != DUPLEX_FULL) | ||
| 4685 | goto err_inval; | ||
| 4686 | |||
| 4687 | switch (spd + dplx) { | ||
| 4688 | case SPEED_10 + DUPLEX_HALF: | ||
| 4689 | hw->forced_speed_duplex = e1000_10_half; | ||
| 4690 | break; | ||
| 4691 | case SPEED_10 + DUPLEX_FULL: | ||
| 4692 | hw->forced_speed_duplex = e1000_10_full; | ||
| 4693 | break; | ||
| 4694 | case SPEED_100 + DUPLEX_HALF: | ||
| 4695 | hw->forced_speed_duplex = e1000_100_half; | ||
| 4696 | break; | ||
| 4697 | case SPEED_100 + DUPLEX_FULL: | ||
| 4698 | hw->forced_speed_duplex = e1000_100_full; | ||
| 4699 | break; | ||
| 4700 | case SPEED_1000 + DUPLEX_FULL: | ||
| 4701 | hw->autoneg = 1; | ||
| 4702 | hw->autoneg_advertised = ADVERTISE_1000_FULL; | ||
| 4703 | break; | ||
| 4704 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | ||
| 4705 | default: | ||
| 4706 | goto err_inval; | ||
| 4707 | } | ||
| 4708 | return 0; | ||
| 4709 | |||
| 4710 | err_inval: | ||
| 4711 | e_err(probe, "Unsupported Speed/Duplex configuration\n"); | ||
| 4712 | return -EINVAL; | ||
| 4713 | } | ||
| 4714 | |||
| 4715 | static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) | ||
| 4716 | { | ||
| 4717 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 4718 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 4719 | struct e1000_hw *hw = &adapter->hw; | ||
| 4720 | u32 ctrl, ctrl_ext, rctl, status; | ||
| 4721 | u32 wufc = adapter->wol; | ||
| 4722 | #ifdef CONFIG_PM | ||
| 4723 | int retval = 0; | ||
| 4724 | #endif | ||
| 4725 | |||
| 4726 | netif_device_detach(netdev); | ||
| 4727 | |||
| 4728 | if (netif_running(netdev)) { | ||
| 4729 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | ||
| 4730 | e1000_down(adapter); | ||
| 4731 | } | ||
| 4732 | |||
| 4733 | #ifdef CONFIG_PM | ||
| 4734 | retval = pci_save_state(pdev); | ||
| 4735 | if (retval) | ||
| 4736 | return retval; | ||
| 4737 | #endif | ||
| 4738 | |||
| 4739 | status = er32(STATUS); | ||
| 4740 | if (status & E1000_STATUS_LU) | ||
| 4741 | wufc &= ~E1000_WUFC_LNKC; | ||
| 4742 | |||
| 4743 | if (wufc) { | ||
| 4744 | e1000_setup_rctl(adapter); | ||
| 4745 | e1000_set_rx_mode(netdev); | ||
| 4746 | |||
| 4747 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
| 4748 | if (wufc & E1000_WUFC_MC) { | ||
| 4749 | rctl = er32(RCTL); | ||
| 4750 | rctl |= E1000_RCTL_MPE; | ||
| 4751 | ew32(RCTL, rctl); | ||
| 4752 | } | ||
| 4753 | |||
| 4754 | if (hw->mac_type >= e1000_82540) { | ||
| 4755 | ctrl = er32(CTRL); | ||
| 4756 | /* advertise wake from D3Cold */ | ||
| 4757 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
| 4758 | /* phy power management enable */ | ||
| 4759 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
| 4760 | ctrl |= E1000_CTRL_ADVD3WUC | | ||
| 4761 | E1000_CTRL_EN_PHY_PWR_MGMT; | ||
| 4762 | ew32(CTRL, ctrl); | ||
| 4763 | } | ||
| 4764 | |||
| 4765 | if (hw->media_type == e1000_media_type_fiber || | ||
| 4766 | hw->media_type == e1000_media_type_internal_serdes) { | ||
| 4767 | /* keep the laser running in D3 */ | ||
| 4768 | ctrl_ext = er32(CTRL_EXT); | ||
| 4769 | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | ||
| 4770 | ew32(CTRL_EXT, ctrl_ext); | ||
| 4771 | } | ||
| 4772 | |||
| 4773 | ew32(WUC, E1000_WUC_PME_EN); | ||
| 4774 | ew32(WUFC, wufc); | ||
| 4775 | } else { | ||
| 4776 | ew32(WUC, 0); | ||
| 4777 | ew32(WUFC, 0); | ||
| 4778 | } | ||
| 4779 | |||
| 4780 | e1000_release_manageability(adapter); | ||
| 4781 | |||
| 4782 | *enable_wake = !!wufc; | ||
| 4783 | |||
| 4784 | /* make sure adapter isn't asleep if manageability is enabled */ | ||
| 4785 | if (adapter->en_mng_pt) | ||
| 4786 | *enable_wake = true; | ||
| 4787 | |||
| 4788 | if (netif_running(netdev)) | ||
| 4789 | e1000_free_irq(adapter); | ||
| 4790 | |||
| 4791 | pci_disable_device(pdev); | ||
| 4792 | |||
| 4793 | return 0; | ||
| 4794 | } | ||
| 4795 | |||
| 4796 | #ifdef CONFIG_PM | ||
| 4797 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) | ||
| 4798 | { | ||
| 4799 | int retval; | ||
| 4800 | bool wake; | ||
| 4801 | |||
| 4802 | retval = __e1000_shutdown(pdev, &wake); | ||
| 4803 | if (retval) | ||
| 4804 | return retval; | ||
| 4805 | |||
| 4806 | if (wake) { | ||
| 4807 | pci_prepare_to_sleep(pdev); | ||
| 4808 | } else { | ||
| 4809 | pci_wake_from_d3(pdev, false); | ||
| 4810 | pci_set_power_state(pdev, PCI_D3hot); | ||
| 4811 | } | ||
| 4812 | |||
| 4813 | return 0; | ||
| 4814 | } | ||
| 4815 | |||
| 4816 | static int e1000_resume(struct pci_dev *pdev) | ||
| 4817 | { | ||
| 4818 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 4819 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 4820 | struct e1000_hw *hw = &adapter->hw; | ||
| 4821 | u32 err; | ||
| 4822 | |||
| 4823 | pci_set_power_state(pdev, PCI_D0); | ||
| 4824 | pci_restore_state(pdev); | ||
| 4825 | pci_save_state(pdev); | ||
| 4826 | |||
| 4827 | if (adapter->need_ioport) | ||
| 4828 | err = pci_enable_device(pdev); | ||
| 4829 | else | ||
| 4830 | err = pci_enable_device_mem(pdev); | ||
| 4831 | if (err) { | ||
| 4832 | pr_err("Cannot enable PCI device from suspend\n"); | ||
| 4833 | return err; | ||
| 4834 | } | ||
| 4835 | pci_set_master(pdev); | ||
| 4836 | |||
| 4837 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
| 4838 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
| 4839 | |||
| 4840 | if (netif_running(netdev)) { | ||
| 4841 | err = e1000_request_irq(adapter); | ||
| 4842 | if (err) | ||
| 4843 | return err; | ||
| 4844 | } | ||
| 4845 | |||
| 4846 | e1000_power_up_phy(adapter); | ||
| 4847 | e1000_reset(adapter); | ||
| 4848 | ew32(WUS, ~0); | ||
| 4849 | |||
| 4850 | e1000_init_manageability(adapter); | ||
| 4851 | |||
| 4852 | if (netif_running(netdev)) | ||
| 4853 | e1000_up(adapter); | ||
| 4854 | |||
| 4855 | netif_device_attach(netdev); | ||
| 4856 | |||
| 4857 | return 0; | ||
| 4858 | } | ||
| 4859 | #endif | ||
| 4860 | |||
| 4861 | static void e1000_shutdown(struct pci_dev *pdev) | ||
| 4862 | { | ||
| 4863 | bool wake; | ||
| 4864 | |||
| 4865 | __e1000_shutdown(pdev, &wake); | ||
| 4866 | |||
| 4867 | if (system_state == SYSTEM_POWER_OFF) { | ||
| 4868 | pci_wake_from_d3(pdev, wake); | ||
| 4869 | pci_set_power_state(pdev, PCI_D3hot); | ||
| 4870 | } | ||
| 4871 | } | ||
| 4872 | |||
| 4873 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
| 4874 | /* | ||
| 4875 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
| 4876 | * without having to re-enable interrupts. It's not called while | ||
| 4877 | * the interrupt routine is executing. | ||
| 4878 | */ | ||
| 4879 | static void e1000_netpoll(struct net_device *netdev) | ||
| 4880 | { | ||
| 4881 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 4882 | |||
| 4883 | disable_irq(adapter->pdev->irq); | ||
| 4884 | e1000_intr(adapter->pdev->irq, netdev); | ||
| 4885 | enable_irq(adapter->pdev->irq); | ||
| 4886 | } | ||
| 4887 | #endif | ||
| 4888 | |||
| 4889 | /** | ||
| 4890 | * e1000_io_error_detected - called when PCI error is detected | ||
| 4891 | * @pdev: Pointer to PCI device | ||
| 4892 | * @state: The current pci connection state | ||
| 4893 | * | ||
| 4894 | * This function is called after a PCI bus error affecting | ||
| 4895 | * this device has been detected. | ||
| 4896 | */ | ||
| 4897 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | ||
| 4898 | pci_channel_state_t state) | ||
| 4899 | { | ||
| 4900 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 4901 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 4902 | |||
| 4903 | netif_device_detach(netdev); | ||
| 4904 | |||
| 4905 | if (state == pci_channel_io_perm_failure) | ||
| 4906 | return PCI_ERS_RESULT_DISCONNECT; | ||
| 4907 | |||
| 4908 | if (netif_running(netdev)) | ||
| 4909 | e1000_down(adapter); | ||
| 4910 | pci_disable_device(pdev); | ||
| 4911 | |||
| 4912 | /* Request a slot slot reset. */ | ||
| 4913 | return PCI_ERS_RESULT_NEED_RESET; | ||
| 4914 | } | ||
| 4915 | |||
| 4916 | /** | ||
| 4917 | * e1000_io_slot_reset - called after the pci bus has been reset. | ||
| 4918 | * @pdev: Pointer to PCI device | ||
| 4919 | * | ||
| 4920 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
| 4921 | * resembles the first-half of the e1000_resume routine. | ||
| 4922 | */ | ||
| 4923 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | ||
| 4924 | { | ||
| 4925 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 4926 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 4927 | struct e1000_hw *hw = &adapter->hw; | ||
| 4928 | int err; | ||
| 4929 | |||
| 4930 | if (adapter->need_ioport) | ||
| 4931 | err = pci_enable_device(pdev); | ||
| 4932 | else | ||
| 4933 | err = pci_enable_device_mem(pdev); | ||
| 4934 | if (err) { | ||
| 4935 | pr_err("Cannot re-enable PCI device after reset.\n"); | ||
| 4936 | return PCI_ERS_RESULT_DISCONNECT; | ||
| 4937 | } | ||
| 4938 | pci_set_master(pdev); | ||
| 4939 | |||
| 4940 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
| 4941 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
| 4942 | |||
| 4943 | e1000_reset(adapter); | ||
| 4944 | ew32(WUS, ~0); | ||
| 4945 | |||
| 4946 | return PCI_ERS_RESULT_RECOVERED; | ||
| 4947 | } | ||
| 4948 | |||
| 4949 | /** | ||
| 4950 | * e1000_io_resume - called when traffic can start flowing again. | ||
| 4951 | * @pdev: Pointer to PCI device | ||
| 4952 | * | ||
| 4953 | * This callback is called when the error recovery driver tells us that | ||
| 4954 | * its OK to resume normal operation. Implementation resembles the | ||
| 4955 | * second-half of the e1000_resume routine. | ||
| 4956 | */ | ||
| 4957 | static void e1000_io_resume(struct pci_dev *pdev) | ||
| 4958 | { | ||
| 4959 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 4960 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 4961 | |||
| 4962 | e1000_init_manageability(adapter); | ||
| 4963 | |||
| 4964 | if (netif_running(netdev)) { | ||
| 4965 | if (e1000_up(adapter)) { | ||
| 4966 | pr_info("can't bring device back up after reset\n"); | ||
| 4967 | return; | ||
| 4968 | } | ||
| 4969 | } | ||
| 4970 | |||
| 4971 | netif_device_attach(netdev); | ||
| 4972 | } | ||
| 4973 | |||
| 4974 | /* e1000_main.c */ | ||
