diff options
Diffstat (limited to 'drivers/net/e1000/e1000_hw.c')
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 5830 |
1 files changed, 5830 insertions, 0 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c new file mode 100644 index 00000000000..a5a89ecb6f3 --- /dev/null +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -0,0 +1,5830 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2006 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | */ | ||
28 | |||
29 | /* e1000_hw.c | ||
30 | * Shared functions for accessing and configuring the MAC | ||
31 | */ | ||
32 | |||
33 | #include "e1000.h" | ||
34 | |||
35 | static s32 e1000_check_downshift(struct e1000_hw *hw); | ||
36 | static s32 e1000_check_polarity(struct e1000_hw *hw, | ||
37 | e1000_rev_polarity *polarity); | ||
38 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw); | ||
39 | static void e1000_clear_vfta(struct e1000_hw *hw); | ||
40 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, | ||
41 | bool link_up); | ||
42 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); | ||
43 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw); | ||
44 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); | ||
45 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | ||
46 | u16 *max_length); | ||
47 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); | ||
48 | static s32 e1000_id_led_init(struct e1000_hw *hw); | ||
49 | static void e1000_init_rx_addrs(struct e1000_hw *hw); | ||
50 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | ||
51 | struct e1000_phy_info *phy_info); | ||
52 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | ||
53 | struct e1000_phy_info *phy_info); | ||
54 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); | ||
55 | static s32 e1000_wait_autoneg(struct e1000_hw *hw); | ||
56 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); | ||
57 | static s32 e1000_set_phy_type(struct e1000_hw *hw); | ||
58 | static void e1000_phy_init_script(struct e1000_hw *hw); | ||
59 | static s32 e1000_setup_copper_link(struct e1000_hw *hw); | ||
60 | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); | ||
61 | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); | ||
62 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); | ||
63 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); | ||
64 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | ||
65 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | ||
66 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); | ||
67 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); | ||
68 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); | ||
69 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, | ||
70 | u16 words, u16 *data); | ||
71 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | ||
72 | u16 words, u16 *data); | ||
73 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); | ||
74 | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); | ||
75 | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); | ||
76 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); | ||
77 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | ||
78 | u16 phy_data); | ||
79 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | ||
80 | u16 *phy_data); | ||
81 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); | ||
82 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw); | ||
83 | static void e1000_release_eeprom(struct e1000_hw *hw); | ||
84 | static void e1000_standby_eeprom(struct e1000_hw *hw); | ||
85 | static s32 e1000_set_vco_speed(struct e1000_hw *hw); | ||
86 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); | ||
87 | static s32 e1000_set_phy_mode(struct e1000_hw *hw); | ||
88 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | ||
89 | u16 *data); | ||
90 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | ||
91 | u16 *data); | ||
92 | |||
93 | /* IGP cable length table */ | ||
94 | static const | ||
95 | u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { | ||
96 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | ||
97 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | ||
98 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | ||
99 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | ||
100 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | ||
101 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, | ||
102 | 100, | ||
103 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | ||
104 | 110, 110, | ||
105 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, | ||
106 | 120, 120 | ||
107 | }; | ||
108 | |||
109 | static DEFINE_SPINLOCK(e1000_eeprom_lock); | ||
110 | |||
111 | /** | ||
112 | * e1000_set_phy_type - Set the phy type member in the hw struct. | ||
113 | * @hw: Struct containing variables accessed by shared code | ||
114 | */ | ||
115 | static s32 e1000_set_phy_type(struct e1000_hw *hw) | ||
116 | { | ||
117 | e_dbg("e1000_set_phy_type"); | ||
118 | |||
119 | if (hw->mac_type == e1000_undefined) | ||
120 | return -E1000_ERR_PHY_TYPE; | ||
121 | |||
122 | switch (hw->phy_id) { | ||
123 | case M88E1000_E_PHY_ID: | ||
124 | case M88E1000_I_PHY_ID: | ||
125 | case M88E1011_I_PHY_ID: | ||
126 | case M88E1111_I_PHY_ID: | ||
127 | case M88E1118_E_PHY_ID: | ||
128 | hw->phy_type = e1000_phy_m88; | ||
129 | break; | ||
130 | case IGP01E1000_I_PHY_ID: | ||
131 | if (hw->mac_type == e1000_82541 || | ||
132 | hw->mac_type == e1000_82541_rev_2 || | ||
133 | hw->mac_type == e1000_82547 || | ||
134 | hw->mac_type == e1000_82547_rev_2) | ||
135 | hw->phy_type = e1000_phy_igp; | ||
136 | break; | ||
137 | case RTL8211B_PHY_ID: | ||
138 | hw->phy_type = e1000_phy_8211; | ||
139 | break; | ||
140 | case RTL8201N_PHY_ID: | ||
141 | hw->phy_type = e1000_phy_8201; | ||
142 | break; | ||
143 | default: | ||
144 | /* Should never have loaded on this device */ | ||
145 | hw->phy_type = e1000_phy_undefined; | ||
146 | return -E1000_ERR_PHY_TYPE; | ||
147 | } | ||
148 | |||
149 | return E1000_SUCCESS; | ||
150 | } | ||
151 | |||
152 | /** | ||
153 | * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY | ||
154 | * @hw: Struct containing variables accessed by shared code | ||
155 | */ | ||
156 | static void e1000_phy_init_script(struct e1000_hw *hw) | ||
157 | { | ||
158 | u32 ret_val; | ||
159 | u16 phy_saved_data; | ||
160 | |||
161 | e_dbg("e1000_phy_init_script"); | ||
162 | |||
163 | if (hw->phy_init_script) { | ||
164 | msleep(20); | ||
165 | |||
166 | /* Save off the current value of register 0x2F5B to be restored at | ||
167 | * the end of this routine. */ | ||
168 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
169 | |||
170 | /* Disabled the PHY transmitter */ | ||
171 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
172 | msleep(20); | ||
173 | |||
174 | e1000_write_phy_reg(hw, 0x0000, 0x0140); | ||
175 | msleep(5); | ||
176 | |||
177 | switch (hw->mac_type) { | ||
178 | case e1000_82541: | ||
179 | case e1000_82547: | ||
180 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | ||
181 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | ||
182 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | ||
183 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | ||
184 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | ||
185 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | ||
186 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | ||
187 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | ||
188 | e1000_write_phy_reg(hw, 0x2010, 0x0008); | ||
189 | break; | ||
190 | |||
191 | case e1000_82541_rev_2: | ||
192 | case e1000_82547_rev_2: | ||
193 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); | ||
194 | break; | ||
195 | default: | ||
196 | break; | ||
197 | } | ||
198 | |||
199 | e1000_write_phy_reg(hw, 0x0000, 0x3300); | ||
200 | msleep(20); | ||
201 | |||
202 | /* Now enable the transmitter */ | ||
203 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
204 | |||
205 | if (hw->mac_type == e1000_82547) { | ||
206 | u16 fused, fine, coarse; | ||
207 | |||
208 | /* Move to analog registers page */ | ||
209 | e1000_read_phy_reg(hw, | ||
210 | IGP01E1000_ANALOG_SPARE_FUSE_STATUS, | ||
211 | &fused); | ||
212 | |||
213 | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | ||
214 | e1000_read_phy_reg(hw, | ||
215 | IGP01E1000_ANALOG_FUSE_STATUS, | ||
216 | &fused); | ||
217 | |||
218 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | ||
219 | coarse = | ||
220 | fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | ||
221 | |||
222 | if (coarse > | ||
223 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | ||
224 | coarse -= | ||
225 | IGP01E1000_ANALOG_FUSE_COARSE_10; | ||
226 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | ||
227 | } else if (coarse == | ||
228 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | ||
229 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | ||
230 | |||
231 | fused = | ||
232 | (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | ||
233 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | ||
234 | (coarse & | ||
235 | IGP01E1000_ANALOG_FUSE_COARSE_MASK); | ||
236 | |||
237 | e1000_write_phy_reg(hw, | ||
238 | IGP01E1000_ANALOG_FUSE_CONTROL, | ||
239 | fused); | ||
240 | e1000_write_phy_reg(hw, | ||
241 | IGP01E1000_ANALOG_FUSE_BYPASS, | ||
242 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | ||
243 | } | ||
244 | } | ||
245 | } | ||
246 | } | ||
247 | |||
248 | /** | ||
249 | * e1000_set_mac_type - Set the mac type member in the hw struct. | ||
250 | * @hw: Struct containing variables accessed by shared code | ||
251 | */ | ||
252 | s32 e1000_set_mac_type(struct e1000_hw *hw) | ||
253 | { | ||
254 | e_dbg("e1000_set_mac_type"); | ||
255 | |||
256 | switch (hw->device_id) { | ||
257 | case E1000_DEV_ID_82542: | ||
258 | switch (hw->revision_id) { | ||
259 | case E1000_82542_2_0_REV_ID: | ||
260 | hw->mac_type = e1000_82542_rev2_0; | ||
261 | break; | ||
262 | case E1000_82542_2_1_REV_ID: | ||
263 | hw->mac_type = e1000_82542_rev2_1; | ||
264 | break; | ||
265 | default: | ||
266 | /* Invalid 82542 revision ID */ | ||
267 | return -E1000_ERR_MAC_TYPE; | ||
268 | } | ||
269 | break; | ||
270 | case E1000_DEV_ID_82543GC_FIBER: | ||
271 | case E1000_DEV_ID_82543GC_COPPER: | ||
272 | hw->mac_type = e1000_82543; | ||
273 | break; | ||
274 | case E1000_DEV_ID_82544EI_COPPER: | ||
275 | case E1000_DEV_ID_82544EI_FIBER: | ||
276 | case E1000_DEV_ID_82544GC_COPPER: | ||
277 | case E1000_DEV_ID_82544GC_LOM: | ||
278 | hw->mac_type = e1000_82544; | ||
279 | break; | ||
280 | case E1000_DEV_ID_82540EM: | ||
281 | case E1000_DEV_ID_82540EM_LOM: | ||
282 | case E1000_DEV_ID_82540EP: | ||
283 | case E1000_DEV_ID_82540EP_LOM: | ||
284 | case E1000_DEV_ID_82540EP_LP: | ||
285 | hw->mac_type = e1000_82540; | ||
286 | break; | ||
287 | case E1000_DEV_ID_82545EM_COPPER: | ||
288 | case E1000_DEV_ID_82545EM_FIBER: | ||
289 | hw->mac_type = e1000_82545; | ||
290 | break; | ||
291 | case E1000_DEV_ID_82545GM_COPPER: | ||
292 | case E1000_DEV_ID_82545GM_FIBER: | ||
293 | case E1000_DEV_ID_82545GM_SERDES: | ||
294 | hw->mac_type = e1000_82545_rev_3; | ||
295 | break; | ||
296 | case E1000_DEV_ID_82546EB_COPPER: | ||
297 | case E1000_DEV_ID_82546EB_FIBER: | ||
298 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
299 | hw->mac_type = e1000_82546; | ||
300 | break; | ||
301 | case E1000_DEV_ID_82546GB_COPPER: | ||
302 | case E1000_DEV_ID_82546GB_FIBER: | ||
303 | case E1000_DEV_ID_82546GB_SERDES: | ||
304 | case E1000_DEV_ID_82546GB_PCIE: | ||
305 | case E1000_DEV_ID_82546GB_QUAD_COPPER: | ||
306 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | ||
307 | hw->mac_type = e1000_82546_rev_3; | ||
308 | break; | ||
309 | case E1000_DEV_ID_82541EI: | ||
310 | case E1000_DEV_ID_82541EI_MOBILE: | ||
311 | case E1000_DEV_ID_82541ER_LOM: | ||
312 | hw->mac_type = e1000_82541; | ||
313 | break; | ||
314 | case E1000_DEV_ID_82541ER: | ||
315 | case E1000_DEV_ID_82541GI: | ||
316 | case E1000_DEV_ID_82541GI_LF: | ||
317 | case E1000_DEV_ID_82541GI_MOBILE: | ||
318 | hw->mac_type = e1000_82541_rev_2; | ||
319 | break; | ||
320 | case E1000_DEV_ID_82547EI: | ||
321 | case E1000_DEV_ID_82547EI_MOBILE: | ||
322 | hw->mac_type = e1000_82547; | ||
323 | break; | ||
324 | case E1000_DEV_ID_82547GI: | ||
325 | hw->mac_type = e1000_82547_rev_2; | ||
326 | break; | ||
327 | case E1000_DEV_ID_INTEL_CE4100_GBE: | ||
328 | hw->mac_type = e1000_ce4100; | ||
329 | break; | ||
330 | default: | ||
331 | /* Should never have loaded on this device */ | ||
332 | return -E1000_ERR_MAC_TYPE; | ||
333 | } | ||
334 | |||
335 | switch (hw->mac_type) { | ||
336 | case e1000_82541: | ||
337 | case e1000_82547: | ||
338 | case e1000_82541_rev_2: | ||
339 | case e1000_82547_rev_2: | ||
340 | hw->asf_firmware_present = true; | ||
341 | break; | ||
342 | default: | ||
343 | break; | ||
344 | } | ||
345 | |||
346 | /* The 82543 chip does not count tx_carrier_errors properly in | ||
347 | * FD mode | ||
348 | */ | ||
349 | if (hw->mac_type == e1000_82543) | ||
350 | hw->bad_tx_carr_stats_fd = true; | ||
351 | |||
352 | if (hw->mac_type > e1000_82544) | ||
353 | hw->has_smbus = true; | ||
354 | |||
355 | return E1000_SUCCESS; | ||
356 | } | ||
357 | |||
358 | /** | ||
359 | * e1000_set_media_type - Set media type and TBI compatibility. | ||
360 | * @hw: Struct containing variables accessed by shared code | ||
361 | */ | ||
362 | void e1000_set_media_type(struct e1000_hw *hw) | ||
363 | { | ||
364 | u32 status; | ||
365 | |||
366 | e_dbg("e1000_set_media_type"); | ||
367 | |||
368 | if (hw->mac_type != e1000_82543) { | ||
369 | /* tbi_compatibility is only valid on 82543 */ | ||
370 | hw->tbi_compatibility_en = false; | ||
371 | } | ||
372 | |||
373 | switch (hw->device_id) { | ||
374 | case E1000_DEV_ID_82545GM_SERDES: | ||
375 | case E1000_DEV_ID_82546GB_SERDES: | ||
376 | hw->media_type = e1000_media_type_internal_serdes; | ||
377 | break; | ||
378 | default: | ||
379 | switch (hw->mac_type) { | ||
380 | case e1000_82542_rev2_0: | ||
381 | case e1000_82542_rev2_1: | ||
382 | hw->media_type = e1000_media_type_fiber; | ||
383 | break; | ||
384 | case e1000_ce4100: | ||
385 | hw->media_type = e1000_media_type_copper; | ||
386 | break; | ||
387 | default: | ||
388 | status = er32(STATUS); | ||
389 | if (status & E1000_STATUS_TBIMODE) { | ||
390 | hw->media_type = e1000_media_type_fiber; | ||
391 | /* tbi_compatibility not valid on fiber */ | ||
392 | hw->tbi_compatibility_en = false; | ||
393 | } else { | ||
394 | hw->media_type = e1000_media_type_copper; | ||
395 | } | ||
396 | break; | ||
397 | } | ||
398 | } | ||
399 | } | ||
400 | |||
401 | /** | ||
402 | * e1000_reset_hw: reset the hardware completely | ||
403 | * @hw: Struct containing variables accessed by shared code | ||
404 | * | ||
405 | * Reset the transmit and receive units; mask and clear all interrupts. | ||
406 | */ | ||
407 | s32 e1000_reset_hw(struct e1000_hw *hw) | ||
408 | { | ||
409 | u32 ctrl; | ||
410 | u32 ctrl_ext; | ||
411 | u32 icr; | ||
412 | u32 manc; | ||
413 | u32 led_ctrl; | ||
414 | s32 ret_val; | ||
415 | |||
416 | e_dbg("e1000_reset_hw"); | ||
417 | |||
418 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | ||
419 | if (hw->mac_type == e1000_82542_rev2_0) { | ||
420 | e_dbg("Disabling MWI on 82542 rev 2.0\n"); | ||
421 | e1000_pci_clear_mwi(hw); | ||
422 | } | ||
423 | |||
424 | /* Clear interrupt mask to stop board from generating interrupts */ | ||
425 | e_dbg("Masking off all interrupts\n"); | ||
426 | ew32(IMC, 0xffffffff); | ||
427 | |||
428 | /* Disable the Transmit and Receive units. Then delay to allow | ||
429 | * any pending transactions to complete before we hit the MAC with | ||
430 | * the global reset. | ||
431 | */ | ||
432 | ew32(RCTL, 0); | ||
433 | ew32(TCTL, E1000_TCTL_PSP); | ||
434 | E1000_WRITE_FLUSH(); | ||
435 | |||
436 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | ||
437 | hw->tbi_compatibility_on = false; | ||
438 | |||
439 | /* Delay to allow any outstanding PCI transactions to complete before | ||
440 | * resetting the device | ||
441 | */ | ||
442 | msleep(10); | ||
443 | |||
444 | ctrl = er32(CTRL); | ||
445 | |||
446 | /* Must reset the PHY before resetting the MAC */ | ||
447 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
448 | ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); | ||
449 | E1000_WRITE_FLUSH(); | ||
450 | msleep(5); | ||
451 | } | ||
452 | |||
453 | /* Issue a global reset to the MAC. This will reset the chip's | ||
454 | * transmit, receive, DMA, and link units. It will not effect | ||
455 | * the current PCI configuration. The global reset bit is self- | ||
456 | * clearing, and should clear within a microsecond. | ||
457 | */ | ||
458 | e_dbg("Issuing a global reset to MAC\n"); | ||
459 | |||
460 | switch (hw->mac_type) { | ||
461 | case e1000_82544: | ||
462 | case e1000_82540: | ||
463 | case e1000_82545: | ||
464 | case e1000_82546: | ||
465 | case e1000_82541: | ||
466 | case e1000_82541_rev_2: | ||
467 | /* These controllers can't ack the 64-bit write when issuing the | ||
468 | * reset, so use IO-mapping as a workaround to issue the reset */ | ||
469 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | ||
470 | break; | ||
471 | case e1000_82545_rev_3: | ||
472 | case e1000_82546_rev_3: | ||
473 | /* Reset is performed on a shadow of the control register */ | ||
474 | ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); | ||
475 | break; | ||
476 | case e1000_ce4100: | ||
477 | default: | ||
478 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | ||
479 | break; | ||
480 | } | ||
481 | |||
482 | /* After MAC reset, force reload of EEPROM to restore power-on settings to | ||
483 | * device. Later controllers reload the EEPROM automatically, so just wait | ||
484 | * for reload to complete. | ||
485 | */ | ||
486 | switch (hw->mac_type) { | ||
487 | case e1000_82542_rev2_0: | ||
488 | case e1000_82542_rev2_1: | ||
489 | case e1000_82543: | ||
490 | case e1000_82544: | ||
491 | /* Wait for reset to complete */ | ||
492 | udelay(10); | ||
493 | ctrl_ext = er32(CTRL_EXT); | ||
494 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
495 | ew32(CTRL_EXT, ctrl_ext); | ||
496 | E1000_WRITE_FLUSH(); | ||
497 | /* Wait for EEPROM reload */ | ||
498 | msleep(2); | ||
499 | break; | ||
500 | case e1000_82541: | ||
501 | case e1000_82541_rev_2: | ||
502 | case e1000_82547: | ||
503 | case e1000_82547_rev_2: | ||
504 | /* Wait for EEPROM reload */ | ||
505 | msleep(20); | ||
506 | break; | ||
507 | default: | ||
508 | /* Auto read done will delay 5ms or poll based on mac type */ | ||
509 | ret_val = e1000_get_auto_rd_done(hw); | ||
510 | if (ret_val) | ||
511 | return ret_val; | ||
512 | break; | ||
513 | } | ||
514 | |||
515 | /* Disable HW ARPs on ASF enabled adapters */ | ||
516 | if (hw->mac_type >= e1000_82540) { | ||
517 | manc = er32(MANC); | ||
518 | manc &= ~(E1000_MANC_ARP_EN); | ||
519 | ew32(MANC, manc); | ||
520 | } | ||
521 | |||
522 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
523 | e1000_phy_init_script(hw); | ||
524 | |||
525 | /* Configure activity LED after PHY reset */ | ||
526 | led_ctrl = er32(LEDCTL); | ||
527 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
528 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
529 | ew32(LEDCTL, led_ctrl); | ||
530 | } | ||
531 | |||
532 | /* Clear interrupt mask to stop board from generating interrupts */ | ||
533 | e_dbg("Masking off all interrupts\n"); | ||
534 | ew32(IMC, 0xffffffff); | ||
535 | |||
536 | /* Clear any pending interrupt events. */ | ||
537 | icr = er32(ICR); | ||
538 | |||
539 | /* If MWI was previously enabled, reenable it. */ | ||
540 | if (hw->mac_type == e1000_82542_rev2_0) { | ||
541 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | ||
542 | e1000_pci_set_mwi(hw); | ||
543 | } | ||
544 | |||
545 | return E1000_SUCCESS; | ||
546 | } | ||
547 | |||
548 | /** | ||
549 | * e1000_init_hw: Performs basic configuration of the adapter. | ||
550 | * @hw: Struct containing variables accessed by shared code | ||
551 | * | ||
552 | * Assumes that the controller has previously been reset and is in a | ||
553 | * post-reset uninitialized state. Initializes the receive address registers, | ||
554 | * multicast table, and VLAN filter table. Calls routines to setup link | ||
555 | * configuration and flow control settings. Clears all on-chip counters. Leaves | ||
556 | * the transmit and receive units disabled and uninitialized. | ||
557 | */ | ||
558 | s32 e1000_init_hw(struct e1000_hw *hw) | ||
559 | { | ||
560 | u32 ctrl; | ||
561 | u32 i; | ||
562 | s32 ret_val; | ||
563 | u32 mta_size; | ||
564 | u32 ctrl_ext; | ||
565 | |||
566 | e_dbg("e1000_init_hw"); | ||
567 | |||
568 | /* Initialize Identification LED */ | ||
569 | ret_val = e1000_id_led_init(hw); | ||
570 | if (ret_val) { | ||
571 | e_dbg("Error Initializing Identification LED\n"); | ||
572 | return ret_val; | ||
573 | } | ||
574 | |||
575 | /* Set the media type and TBI compatibility */ | ||
576 | e1000_set_media_type(hw); | ||
577 | |||
578 | /* Disabling VLAN filtering. */ | ||
579 | e_dbg("Initializing the IEEE VLAN\n"); | ||
580 | if (hw->mac_type < e1000_82545_rev_3) | ||
581 | ew32(VET, 0); | ||
582 | e1000_clear_vfta(hw); | ||
583 | |||
584 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | ||
585 | if (hw->mac_type == e1000_82542_rev2_0) { | ||
586 | e_dbg("Disabling MWI on 82542 rev 2.0\n"); | ||
587 | e1000_pci_clear_mwi(hw); | ||
588 | ew32(RCTL, E1000_RCTL_RST); | ||
589 | E1000_WRITE_FLUSH(); | ||
590 | msleep(5); | ||
591 | } | ||
592 | |||
593 | /* Setup the receive address. This involves initializing all of the Receive | ||
594 | * Address Registers (RARs 0 - 15). | ||
595 | */ | ||
596 | e1000_init_rx_addrs(hw); | ||
597 | |||
598 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | ||
599 | if (hw->mac_type == e1000_82542_rev2_0) { | ||
600 | ew32(RCTL, 0); | ||
601 | E1000_WRITE_FLUSH(); | ||
602 | msleep(1); | ||
603 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | ||
604 | e1000_pci_set_mwi(hw); | ||
605 | } | ||
606 | |||
607 | /* Zero out the Multicast HASH table */ | ||
608 | e_dbg("Zeroing the MTA\n"); | ||
609 | mta_size = E1000_MC_TBL_SIZE; | ||
610 | for (i = 0; i < mta_size; i++) { | ||
611 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | ||
612 | /* use write flush to prevent Memory Write Block (MWB) from | ||
613 | * occurring when accessing our register space */ | ||
614 | E1000_WRITE_FLUSH(); | ||
615 | } | ||
616 | |||
617 | /* Set the PCI priority bit correctly in the CTRL register. This | ||
618 | * determines if the adapter gives priority to receives, or if it | ||
619 | * gives equal priority to transmits and receives. Valid only on | ||
620 | * 82542 and 82543 silicon. | ||
621 | */ | ||
622 | if (hw->dma_fairness && hw->mac_type <= e1000_82543) { | ||
623 | ctrl = er32(CTRL); | ||
624 | ew32(CTRL, ctrl | E1000_CTRL_PRIOR); | ||
625 | } | ||
626 | |||
627 | switch (hw->mac_type) { | ||
628 | case e1000_82545_rev_3: | ||
629 | case e1000_82546_rev_3: | ||
630 | break; | ||
631 | default: | ||
632 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ | ||
633 | if (hw->bus_type == e1000_bus_type_pcix | ||
634 | && e1000_pcix_get_mmrbc(hw) > 2048) | ||
635 | e1000_pcix_set_mmrbc(hw, 2048); | ||
636 | break; | ||
637 | } | ||
638 | |||
639 | /* Call a subroutine to configure the link and setup flow control. */ | ||
640 | ret_val = e1000_setup_link(hw); | ||
641 | |||
642 | /* Set the transmit descriptor write-back policy */ | ||
643 | if (hw->mac_type > e1000_82544) { | ||
644 | ctrl = er32(TXDCTL); | ||
645 | ctrl = | ||
646 | (ctrl & ~E1000_TXDCTL_WTHRESH) | | ||
647 | E1000_TXDCTL_FULL_TX_DESC_WB; | ||
648 | ew32(TXDCTL, ctrl); | ||
649 | } | ||
650 | |||
651 | /* Clear all of the statistics registers (clear on read). It is | ||
652 | * important that we do this after we have tried to establish link | ||
653 | * because the symbol error count will increment wildly if there | ||
654 | * is no link. | ||
655 | */ | ||
656 | e1000_clear_hw_cntrs(hw); | ||
657 | |||
658 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || | ||
659 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | ||
660 | ctrl_ext = er32(CTRL_EXT); | ||
661 | /* Relaxed ordering must be disabled to avoid a parity | ||
662 | * error crash in a PCI slot. */ | ||
663 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | ||
664 | ew32(CTRL_EXT, ctrl_ext); | ||
665 | } | ||
666 | |||
667 | return ret_val; | ||
668 | } | ||
669 | |||
670 | /** | ||
671 | * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. | ||
672 | * @hw: Struct containing variables accessed by shared code. | ||
673 | */ | ||
674 | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) | ||
675 | { | ||
676 | u16 eeprom_data; | ||
677 | s32 ret_val; | ||
678 | |||
679 | e_dbg("e1000_adjust_serdes_amplitude"); | ||
680 | |||
681 | if (hw->media_type != e1000_media_type_internal_serdes) | ||
682 | return E1000_SUCCESS; | ||
683 | |||
684 | switch (hw->mac_type) { | ||
685 | case e1000_82545_rev_3: | ||
686 | case e1000_82546_rev_3: | ||
687 | break; | ||
688 | default: | ||
689 | return E1000_SUCCESS; | ||
690 | } | ||
691 | |||
692 | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, | ||
693 | &eeprom_data); | ||
694 | if (ret_val) { | ||
695 | return ret_val; | ||
696 | } | ||
697 | |||
698 | if (eeprom_data != EEPROM_RESERVED_WORD) { | ||
699 | /* Adjust SERDES output amplitude only. */ | ||
700 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; | ||
701 | ret_val = | ||
702 | e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); | ||
703 | if (ret_val) | ||
704 | return ret_val; | ||
705 | } | ||
706 | |||
707 | return E1000_SUCCESS; | ||
708 | } | ||
709 | |||
710 | /** | ||
711 | * e1000_setup_link - Configures flow control and link settings. | ||
712 | * @hw: Struct containing variables accessed by shared code | ||
713 | * | ||
714 | * Determines which flow control settings to use. Calls the appropriate media- | ||
715 | * specific link configuration function. Configures the flow control settings. | ||
716 | * Assuming the adapter has a valid link partner, a valid link should be | ||
717 | * established. Assumes the hardware has previously been reset and the | ||
718 | * transmitter and receiver are not enabled. | ||
719 | */ | ||
720 | s32 e1000_setup_link(struct e1000_hw *hw) | ||
721 | { | ||
722 | u32 ctrl_ext; | ||
723 | s32 ret_val; | ||
724 | u16 eeprom_data; | ||
725 | |||
726 | e_dbg("e1000_setup_link"); | ||
727 | |||
728 | /* Read and store word 0x0F of the EEPROM. This word contains bits | ||
729 | * that determine the hardware's default PAUSE (flow control) mode, | ||
730 | * a bit that determines whether the HW defaults to enabling or | ||
731 | * disabling auto-negotiation, and the direction of the | ||
732 | * SW defined pins. If there is no SW over-ride of the flow | ||
733 | * control setting, then the variable hw->fc will | ||
734 | * be initialized based on a value in the EEPROM. | ||
735 | */ | ||
736 | if (hw->fc == E1000_FC_DEFAULT) { | ||
737 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | ||
738 | 1, &eeprom_data); | ||
739 | if (ret_val) { | ||
740 | e_dbg("EEPROM Read Error\n"); | ||
741 | return -E1000_ERR_EEPROM; | ||
742 | } | ||
743 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | ||
744 | hw->fc = E1000_FC_NONE; | ||
745 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | ||
746 | EEPROM_WORD0F_ASM_DIR) | ||
747 | hw->fc = E1000_FC_TX_PAUSE; | ||
748 | else | ||
749 | hw->fc = E1000_FC_FULL; | ||
750 | } | ||
751 | |||
752 | /* We want to save off the original Flow Control configuration just | ||
753 | * in case we get disconnected and then reconnected into a different | ||
754 | * hub or switch with different Flow Control capabilities. | ||
755 | */ | ||
756 | if (hw->mac_type == e1000_82542_rev2_0) | ||
757 | hw->fc &= (~E1000_FC_TX_PAUSE); | ||
758 | |||
759 | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | ||
760 | hw->fc &= (~E1000_FC_RX_PAUSE); | ||
761 | |||
762 | hw->original_fc = hw->fc; | ||
763 | |||
764 | e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc); | ||
765 | |||
766 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial | ||
767 | * polarity value for the SW controlled pins, and setup the | ||
768 | * Extended Device Control reg with that info. | ||
769 | * This is needed because one of the SW controlled pins is used for | ||
770 | * signal detection. So this should be done before e1000_setup_pcs_link() | ||
771 | * or e1000_phy_setup() is called. | ||
772 | */ | ||
773 | if (hw->mac_type == e1000_82543) { | ||
774 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | ||
775 | 1, &eeprom_data); | ||
776 | if (ret_val) { | ||
777 | e_dbg("EEPROM Read Error\n"); | ||
778 | return -E1000_ERR_EEPROM; | ||
779 | } | ||
780 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | ||
781 | SWDPIO__EXT_SHIFT); | ||
782 | ew32(CTRL_EXT, ctrl_ext); | ||
783 | } | ||
784 | |||
785 | /* Call the necessary subroutine to configure the link. */ | ||
786 | ret_val = (hw->media_type == e1000_media_type_copper) ? | ||
787 | e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); | ||
788 | |||
789 | /* Initialize the flow control address, type, and PAUSE timer | ||
790 | * registers to their default values. This is done even if flow | ||
791 | * control is disabled, because it does not hurt anything to | ||
792 | * initialize these registers. | ||
793 | */ | ||
794 | e_dbg("Initializing the Flow Control address, type and timer regs\n"); | ||
795 | |||
796 | ew32(FCT, FLOW_CONTROL_TYPE); | ||
797 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
798 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
799 | |||
800 | ew32(FCTTV, hw->fc_pause_time); | ||
801 | |||
802 | /* Set the flow control receive threshold registers. Normally, | ||
803 | * these registers will be set to a default threshold that may be | ||
804 | * adjusted later by the driver's runtime code. However, if the | ||
805 | * ability to transmit pause frames in not enabled, then these | ||
806 | * registers will be set to 0. | ||
807 | */ | ||
808 | if (!(hw->fc & E1000_FC_TX_PAUSE)) { | ||
809 | ew32(FCRTL, 0); | ||
810 | ew32(FCRTH, 0); | ||
811 | } else { | ||
812 | /* We need to set up the Receive Threshold high and low water marks | ||
813 | * as well as (optionally) enabling the transmission of XON frames. | ||
814 | */ | ||
815 | if (hw->fc_send_xon) { | ||
816 | ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); | ||
817 | ew32(FCRTH, hw->fc_high_water); | ||
818 | } else { | ||
819 | ew32(FCRTL, hw->fc_low_water); | ||
820 | ew32(FCRTH, hw->fc_high_water); | ||
821 | } | ||
822 | } | ||
823 | return ret_val; | ||
824 | } | ||
825 | |||
826 | /** | ||
827 | * e1000_setup_fiber_serdes_link - prepare fiber or serdes link | ||
828 | * @hw: Struct containing variables accessed by shared code | ||
829 | * | ||
830 | * Manipulates Physical Coding Sublayer functions in order to configure | ||
831 | * link. Assumes the hardware has been previously reset and the transmitter | ||
832 | * and receiver are not enabled. | ||
833 | */ | ||
834 | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | ||
835 | { | ||
836 | u32 ctrl; | ||
837 | u32 status; | ||
838 | u32 txcw = 0; | ||
839 | u32 i; | ||
840 | u32 signal = 0; | ||
841 | s32 ret_val; | ||
842 | |||
843 | e_dbg("e1000_setup_fiber_serdes_link"); | ||
844 | |||
845 | /* On adapters with a MAC newer than 82544, SWDP 1 will be | ||
846 | * set when the optics detect a signal. On older adapters, it will be | ||
847 | * cleared when there is a signal. This applies to fiber media only. | ||
848 | * If we're on serdes media, adjust the output amplitude to value | ||
849 | * set in the EEPROM. | ||
850 | */ | ||
851 | ctrl = er32(CTRL); | ||
852 | if (hw->media_type == e1000_media_type_fiber) | ||
853 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | ||
854 | |||
855 | ret_val = e1000_adjust_serdes_amplitude(hw); | ||
856 | if (ret_val) | ||
857 | return ret_val; | ||
858 | |||
859 | /* Take the link out of reset */ | ||
860 | ctrl &= ~(E1000_CTRL_LRST); | ||
861 | |||
862 | /* Adjust VCO speed to improve BER performance */ | ||
863 | ret_val = e1000_set_vco_speed(hw); | ||
864 | if (ret_val) | ||
865 | return ret_val; | ||
866 | |||
867 | e1000_config_collision_dist(hw); | ||
868 | |||
869 | /* Check for a software override of the flow control settings, and setup | ||
870 | * the device accordingly. If auto-negotiation is enabled, then software | ||
871 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit | ||
872 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if | ||
873 | * auto-negotiation is disabled, then software will have to manually | ||
874 | * configure the two flow control enable bits in the CTRL register. | ||
875 | * | ||
876 | * The possible values of the "fc" parameter are: | ||
877 | * 0: Flow control is completely disabled | ||
878 | * 1: Rx flow control is enabled (we can receive pause frames, but | ||
879 | * not send pause frames). | ||
880 | * 2: Tx flow control is enabled (we can send pause frames but we do | ||
881 | * not support receiving pause frames). | ||
882 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
883 | */ | ||
884 | switch (hw->fc) { | ||
885 | case E1000_FC_NONE: | ||
886 | /* Flow control is completely disabled by a software over-ride. */ | ||
887 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | ||
888 | break; | ||
889 | case E1000_FC_RX_PAUSE: | ||
890 | /* RX Flow control is enabled and TX Flow control is disabled by a | ||
891 | * software over-ride. Since there really isn't a way to advertise | ||
892 | * that we are capable of RX Pause ONLY, we will advertise that we | ||
893 | * support both symmetric and asymmetric RX PAUSE. Later, we will | ||
894 | * disable the adapter's ability to send PAUSE frames. | ||
895 | */ | ||
896 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
897 | break; | ||
898 | case E1000_FC_TX_PAUSE: | ||
899 | /* TX Flow control is enabled, and RX Flow control is disabled, by a | ||
900 | * software over-ride. | ||
901 | */ | ||
902 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | ||
903 | break; | ||
904 | case E1000_FC_FULL: | ||
905 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ | ||
906 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
907 | break; | ||
908 | default: | ||
909 | e_dbg("Flow control param set incorrectly\n"); | ||
910 | return -E1000_ERR_CONFIG; | ||
911 | break; | ||
912 | } | ||
913 | |||
914 | /* Since auto-negotiation is enabled, take the link out of reset (the link | ||
915 | * will be in reset, because we previously reset the chip). This will | ||
916 | * restart auto-negotiation. If auto-negotiation is successful then the | ||
917 | * link-up status bit will be set and the flow control enable bits (RFCE | ||
918 | * and TFCE) will be set according to their negotiated value. | ||
919 | */ | ||
920 | e_dbg("Auto-negotiation enabled\n"); | ||
921 | |||
922 | ew32(TXCW, txcw); | ||
923 | ew32(CTRL, ctrl); | ||
924 | E1000_WRITE_FLUSH(); | ||
925 | |||
926 | hw->txcw = txcw; | ||
927 | msleep(1); | ||
928 | |||
929 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | ||
930 | * indication in the Device Status Register. Time-out if a link isn't | ||
931 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in | ||
932 | * less than 500 milliseconds even if the other end is doing it in SW). | ||
933 | * For internal serdes, we just assume a signal is present, then poll. | ||
934 | */ | ||
935 | if (hw->media_type == e1000_media_type_internal_serdes || | ||
936 | (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { | ||
937 | e_dbg("Looking for Link\n"); | ||
938 | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | ||
939 | msleep(10); | ||
940 | status = er32(STATUS); | ||
941 | if (status & E1000_STATUS_LU) | ||
942 | break; | ||
943 | } | ||
944 | if (i == (LINK_UP_TIMEOUT / 10)) { | ||
945 | e_dbg("Never got a valid link from auto-neg!!!\n"); | ||
946 | hw->autoneg_failed = 1; | ||
947 | /* AutoNeg failed to achieve a link, so we'll call | ||
948 | * e1000_check_for_link. This routine will force the link up if | ||
949 | * we detect a signal. This will allow us to communicate with | ||
950 | * non-autonegotiating link partners. | ||
951 | */ | ||
952 | ret_val = e1000_check_for_link(hw); | ||
953 | if (ret_val) { | ||
954 | e_dbg("Error while checking for link\n"); | ||
955 | return ret_val; | ||
956 | } | ||
957 | hw->autoneg_failed = 0; | ||
958 | } else { | ||
959 | hw->autoneg_failed = 0; | ||
960 | e_dbg("Valid Link Found\n"); | ||
961 | } | ||
962 | } else { | ||
963 | e_dbg("No Signal Detected\n"); | ||
964 | } | ||
965 | return E1000_SUCCESS; | ||
966 | } | ||
967 | |||
968 | /** | ||
969 | * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series. | ||
970 | * @hw: Struct containing variables accessed by shared code | ||
971 | * | ||
972 | * Commits changes to PHY configuration by calling e1000_phy_reset(). | ||
973 | */ | ||
974 | static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw) | ||
975 | { | ||
976 | s32 ret_val; | ||
977 | |||
978 | /* SW reset the PHY so all changes take effect */ | ||
979 | ret_val = e1000_phy_reset(hw); | ||
980 | if (ret_val) { | ||
981 | e_dbg("Error Resetting the PHY\n"); | ||
982 | return ret_val; | ||
983 | } | ||
984 | |||
985 | return E1000_SUCCESS; | ||
986 | } | ||
987 | |||
988 | static s32 gbe_dhg_phy_setup(struct e1000_hw *hw) | ||
989 | { | ||
990 | s32 ret_val; | ||
991 | u32 ctrl_aux; | ||
992 | |||
993 | switch (hw->phy_type) { | ||
994 | case e1000_phy_8211: | ||
995 | ret_val = e1000_copper_link_rtl_setup(hw); | ||
996 | if (ret_val) { | ||
997 | e_dbg("e1000_copper_link_rtl_setup failed!\n"); | ||
998 | return ret_val; | ||
999 | } | ||
1000 | break; | ||
1001 | case e1000_phy_8201: | ||
1002 | /* Set RMII mode */ | ||
1003 | ctrl_aux = er32(CTL_AUX); | ||
1004 | ctrl_aux |= E1000_CTL_AUX_RMII; | ||
1005 | ew32(CTL_AUX, ctrl_aux); | ||
1006 | E1000_WRITE_FLUSH(); | ||
1007 | |||
1008 | /* Disable the J/K bits required for receive */ | ||
1009 | ctrl_aux = er32(CTL_AUX); | ||
1010 | ctrl_aux |= 0x4; | ||
1011 | ctrl_aux &= ~0x2; | ||
1012 | ew32(CTL_AUX, ctrl_aux); | ||
1013 | E1000_WRITE_FLUSH(); | ||
1014 | ret_val = e1000_copper_link_rtl_setup(hw); | ||
1015 | |||
1016 | if (ret_val) { | ||
1017 | e_dbg("e1000_copper_link_rtl_setup failed!\n"); | ||
1018 | return ret_val; | ||
1019 | } | ||
1020 | break; | ||
1021 | default: | ||
1022 | e_dbg("Error Resetting the PHY\n"); | ||
1023 | return E1000_ERR_PHY_TYPE; | ||
1024 | } | ||
1025 | |||
1026 | return E1000_SUCCESS; | ||
1027 | } | ||
1028 | |||
1029 | /** | ||
1030 | * e1000_copper_link_preconfig - early configuration for copper | ||
1031 | * @hw: Struct containing variables accessed by shared code | ||
1032 | * | ||
1033 | * Make sure we have a valid PHY and change PHY mode before link setup. | ||
1034 | */ | ||
1035 | static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) | ||
1036 | { | ||
1037 | u32 ctrl; | ||
1038 | s32 ret_val; | ||
1039 | u16 phy_data; | ||
1040 | |||
1041 | e_dbg("e1000_copper_link_preconfig"); | ||
1042 | |||
1043 | ctrl = er32(CTRL); | ||
1044 | /* With 82543, we need to force speed and duplex on the MAC equal to what | ||
1045 | * the PHY speed and duplex configuration is. In addition, we need to | ||
1046 | * perform a hardware reset on the PHY to take it out of reset. | ||
1047 | */ | ||
1048 | if (hw->mac_type > e1000_82543) { | ||
1049 | ctrl |= E1000_CTRL_SLU; | ||
1050 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1051 | ew32(CTRL, ctrl); | ||
1052 | } else { | ||
1053 | ctrl |= | ||
1054 | (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | ||
1055 | ew32(CTRL, ctrl); | ||
1056 | ret_val = e1000_phy_hw_reset(hw); | ||
1057 | if (ret_val) | ||
1058 | return ret_val; | ||
1059 | } | ||
1060 | |||
1061 | /* Make sure we have a valid PHY */ | ||
1062 | ret_val = e1000_detect_gig_phy(hw); | ||
1063 | if (ret_val) { | ||
1064 | e_dbg("Error, did not detect valid phy.\n"); | ||
1065 | return ret_val; | ||
1066 | } | ||
1067 | e_dbg("Phy ID = %x\n", hw->phy_id); | ||
1068 | |||
1069 | /* Set PHY to class A mode (if necessary) */ | ||
1070 | ret_val = e1000_set_phy_mode(hw); | ||
1071 | if (ret_val) | ||
1072 | return ret_val; | ||
1073 | |||
1074 | if ((hw->mac_type == e1000_82545_rev_3) || | ||
1075 | (hw->mac_type == e1000_82546_rev_3)) { | ||
1076 | ret_val = | ||
1077 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1078 | phy_data |= 0x00000008; | ||
1079 | ret_val = | ||
1080 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1081 | } | ||
1082 | |||
1083 | if (hw->mac_type <= e1000_82543 || | ||
1084 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | ||
1085 | hw->mac_type == e1000_82541_rev_2 | ||
1086 | || hw->mac_type == e1000_82547_rev_2) | ||
1087 | hw->phy_reset_disable = false; | ||
1088 | |||
1089 | return E1000_SUCCESS; | ||
1090 | } | ||
1091 | |||
1092 | /** | ||
1093 | * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. | ||
1094 | * @hw: Struct containing variables accessed by shared code | ||
1095 | */ | ||
1096 | static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) | ||
1097 | { | ||
1098 | u32 led_ctrl; | ||
1099 | s32 ret_val; | ||
1100 | u16 phy_data; | ||
1101 | |||
1102 | e_dbg("e1000_copper_link_igp_setup"); | ||
1103 | |||
1104 | if (hw->phy_reset_disable) | ||
1105 | return E1000_SUCCESS; | ||
1106 | |||
1107 | ret_val = e1000_phy_reset(hw); | ||
1108 | if (ret_val) { | ||
1109 | e_dbg("Error Resetting the PHY\n"); | ||
1110 | return ret_val; | ||
1111 | } | ||
1112 | |||
1113 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | ||
1114 | msleep(15); | ||
1115 | /* Configure activity LED after PHY reset */ | ||
1116 | led_ctrl = er32(LEDCTL); | ||
1117 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
1118 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
1119 | ew32(LEDCTL, led_ctrl); | ||
1120 | |||
1121 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ | ||
1122 | if (hw->phy_type == e1000_phy_igp) { | ||
1123 | /* disable lplu d3 during driver init */ | ||
1124 | ret_val = e1000_set_d3_lplu_state(hw, false); | ||
1125 | if (ret_val) { | ||
1126 | e_dbg("Error Disabling LPLU D3\n"); | ||
1127 | return ret_val; | ||
1128 | } | ||
1129 | } | ||
1130 | |||
1131 | /* Configure mdi-mdix settings */ | ||
1132 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
1133 | if (ret_val) | ||
1134 | return ret_val; | ||
1135 | |||
1136 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
1137 | hw->dsp_config_state = e1000_dsp_config_disabled; | ||
1138 | /* Force MDI for earlier revs of the IGP PHY */ | ||
1139 | phy_data &= | ||
1140 | ~(IGP01E1000_PSCR_AUTO_MDIX | | ||
1141 | IGP01E1000_PSCR_FORCE_MDI_MDIX); | ||
1142 | hw->mdix = 1; | ||
1143 | |||
1144 | } else { | ||
1145 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
1146 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1147 | |||
1148 | switch (hw->mdix) { | ||
1149 | case 1: | ||
1150 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1151 | break; | ||
1152 | case 2: | ||
1153 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1154 | break; | ||
1155 | case 0: | ||
1156 | default: | ||
1157 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
1158 | break; | ||
1159 | } | ||
1160 | } | ||
1161 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | ||
1162 | if (ret_val) | ||
1163 | return ret_val; | ||
1164 | |||
1165 | /* set auto-master slave resolution settings */ | ||
1166 | if (hw->autoneg) { | ||
1167 | e1000_ms_type phy_ms_setting = hw->master_slave; | ||
1168 | |||
1169 | if (hw->ffe_config_state == e1000_ffe_config_active) | ||
1170 | hw->ffe_config_state = e1000_ffe_config_enabled; | ||
1171 | |||
1172 | if (hw->dsp_config_state == e1000_dsp_config_activated) | ||
1173 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
1174 | |||
1175 | /* when autonegotiation advertisement is only 1000Mbps then we | ||
1176 | * should disable SmartSpeed and enable Auto MasterSlave | ||
1177 | * resolution as hardware default. */ | ||
1178 | if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
1179 | /* Disable SmartSpeed */ | ||
1180 | ret_val = | ||
1181 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1182 | &phy_data); | ||
1183 | if (ret_val) | ||
1184 | return ret_val; | ||
1185 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1186 | ret_val = | ||
1187 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1188 | phy_data); | ||
1189 | if (ret_val) | ||
1190 | return ret_val; | ||
1191 | /* Set auto Master/Slave resolution process */ | ||
1192 | ret_val = | ||
1193 | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1194 | if (ret_val) | ||
1195 | return ret_val; | ||
1196 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1197 | ret_val = | ||
1198 | e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1199 | if (ret_val) | ||
1200 | return ret_val; | ||
1201 | } | ||
1202 | |||
1203 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1204 | if (ret_val) | ||
1205 | return ret_val; | ||
1206 | |||
1207 | /* load defaults for future use */ | ||
1208 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | ||
1209 | ((phy_data & CR_1000T_MS_VALUE) ? | ||
1210 | e1000_ms_force_master : | ||
1211 | e1000_ms_force_slave) : e1000_ms_auto; | ||
1212 | |||
1213 | switch (phy_ms_setting) { | ||
1214 | case e1000_ms_force_master: | ||
1215 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | ||
1216 | break; | ||
1217 | case e1000_ms_force_slave: | ||
1218 | phy_data |= CR_1000T_MS_ENABLE; | ||
1219 | phy_data &= ~(CR_1000T_MS_VALUE); | ||
1220 | break; | ||
1221 | case e1000_ms_auto: | ||
1222 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1223 | default: | ||
1224 | break; | ||
1225 | } | ||
1226 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1227 | if (ret_val) | ||
1228 | return ret_val; | ||
1229 | } | ||
1230 | |||
1231 | return E1000_SUCCESS; | ||
1232 | } | ||
1233 | |||
1234 | /** | ||
1235 | * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. | ||
1236 | * @hw: Struct containing variables accessed by shared code | ||
1237 | */ | ||
1238 | static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) | ||
1239 | { | ||
1240 | s32 ret_val; | ||
1241 | u16 phy_data; | ||
1242 | |||
1243 | e_dbg("e1000_copper_link_mgp_setup"); | ||
1244 | |||
1245 | if (hw->phy_reset_disable) | ||
1246 | return E1000_SUCCESS; | ||
1247 | |||
1248 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
1249 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1250 | if (ret_val) | ||
1251 | return ret_val; | ||
1252 | |||
1253 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1254 | |||
1255 | /* Options: | ||
1256 | * MDI/MDI-X = 0 (default) | ||
1257 | * 0 - Auto for all speeds | ||
1258 | * 1 - MDI mode | ||
1259 | * 2 - MDI-X mode | ||
1260 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
1261 | */ | ||
1262 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1263 | |||
1264 | switch (hw->mdix) { | ||
1265 | case 1: | ||
1266 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
1267 | break; | ||
1268 | case 2: | ||
1269 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
1270 | break; | ||
1271 | case 3: | ||
1272 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
1273 | break; | ||
1274 | case 0: | ||
1275 | default: | ||
1276 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
1277 | break; | ||
1278 | } | ||
1279 | |||
1280 | /* Options: | ||
1281 | * disable_polarity_correction = 0 (default) | ||
1282 | * Automatic Correction for Reversed Cable Polarity | ||
1283 | * 0 - Disabled | ||
1284 | * 1 - Enabled | ||
1285 | */ | ||
1286 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
1287 | if (hw->disable_polarity_correction == 1) | ||
1288 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
1289 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1290 | if (ret_val) | ||
1291 | return ret_val; | ||
1292 | |||
1293 | if (hw->phy_revision < M88E1011_I_REV_4) { | ||
1294 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
1295 | * to 25MHz clock. | ||
1296 | */ | ||
1297 | ret_val = | ||
1298 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
1299 | &phy_data); | ||
1300 | if (ret_val) | ||
1301 | return ret_val; | ||
1302 | |||
1303 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1304 | |||
1305 | if ((hw->phy_revision == E1000_REVISION_2) && | ||
1306 | (hw->phy_id == M88E1111_I_PHY_ID)) { | ||
1307 | /* Vidalia Phy, set the downshift counter to 5x */ | ||
1308 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); | ||
1309 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | ||
1310 | ret_val = e1000_write_phy_reg(hw, | ||
1311 | M88E1000_EXT_PHY_SPEC_CTRL, | ||
1312 | phy_data); | ||
1313 | if (ret_val) | ||
1314 | return ret_val; | ||
1315 | } else { | ||
1316 | /* Configure Master and Slave downshift values */ | ||
1317 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
1318 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | ||
1319 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | ||
1320 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | ||
1321 | ret_val = e1000_write_phy_reg(hw, | ||
1322 | M88E1000_EXT_PHY_SPEC_CTRL, | ||
1323 | phy_data); | ||
1324 | if (ret_val) | ||
1325 | return ret_val; | ||
1326 | } | ||
1327 | } | ||
1328 | |||
1329 | /* SW Reset the PHY so all changes take effect */ | ||
1330 | ret_val = e1000_phy_reset(hw); | ||
1331 | if (ret_val) { | ||
1332 | e_dbg("Error Resetting the PHY\n"); | ||
1333 | return ret_val; | ||
1334 | } | ||
1335 | |||
1336 | return E1000_SUCCESS; | ||
1337 | } | ||
1338 | |||
1339 | /** | ||
1340 | * e1000_copper_link_autoneg - setup auto-neg | ||
1341 | * @hw: Struct containing variables accessed by shared code | ||
1342 | * | ||
1343 | * Setup auto-negotiation and flow control advertisements, | ||
1344 | * and then perform auto-negotiation. | ||
1345 | */ | ||
1346 | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) | ||
1347 | { | ||
1348 | s32 ret_val; | ||
1349 | u16 phy_data; | ||
1350 | |||
1351 | e_dbg("e1000_copper_link_autoneg"); | ||
1352 | |||
1353 | /* Perform some bounds checking on the hw->autoneg_advertised | ||
1354 | * parameter. If this variable is zero, then set it to the default. | ||
1355 | */ | ||
1356 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1357 | |||
1358 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
1359 | * by the calling code so we set to advertise full capability. | ||
1360 | */ | ||
1361 | if (hw->autoneg_advertised == 0) | ||
1362 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1363 | |||
1364 | /* IFE/RTL8201N PHY only supports 10/100 */ | ||
1365 | if (hw->phy_type == e1000_phy_8201) | ||
1366 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; | ||
1367 | |||
1368 | e_dbg("Reconfiguring auto-neg advertisement params\n"); | ||
1369 | ret_val = e1000_phy_setup_autoneg(hw); | ||
1370 | if (ret_val) { | ||
1371 | e_dbg("Error Setting up Auto-Negotiation\n"); | ||
1372 | return ret_val; | ||
1373 | } | ||
1374 | e_dbg("Restarting Auto-Neg\n"); | ||
1375 | |||
1376 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
1377 | * the Auto Neg Restart bit in the PHY control register. | ||
1378 | */ | ||
1379 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
1380 | if (ret_val) | ||
1381 | return ret_val; | ||
1382 | |||
1383 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
1384 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
1385 | if (ret_val) | ||
1386 | return ret_val; | ||
1387 | |||
1388 | /* Does the user want to wait for Auto-Neg to complete here, or | ||
1389 | * check at a later time (for example, callback routine). | ||
1390 | */ | ||
1391 | if (hw->wait_autoneg_complete) { | ||
1392 | ret_val = e1000_wait_autoneg(hw); | ||
1393 | if (ret_val) { | ||
1394 | e_dbg | ||
1395 | ("Error while waiting for autoneg to complete\n"); | ||
1396 | return ret_val; | ||
1397 | } | ||
1398 | } | ||
1399 | |||
1400 | hw->get_link_status = true; | ||
1401 | |||
1402 | return E1000_SUCCESS; | ||
1403 | } | ||
1404 | |||
1405 | /** | ||
1406 | * e1000_copper_link_postconfig - post link setup | ||
1407 | * @hw: Struct containing variables accessed by shared code | ||
1408 | * | ||
1409 | * Config the MAC and the PHY after link is up. | ||
1410 | * 1) Set up the MAC to the current PHY speed/duplex | ||
1411 | * if we are on 82543. If we | ||
1412 | * are on newer silicon, we only need to configure | ||
1413 | * collision distance in the Transmit Control Register. | ||
1414 | * 2) Set up flow control on the MAC to that established with | ||
1415 | * the link partner. | ||
1416 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. | ||
1417 | */ | ||
1418 | static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) | ||
1419 | { | ||
1420 | s32 ret_val; | ||
1421 | e_dbg("e1000_copper_link_postconfig"); | ||
1422 | |||
1423 | if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) { | ||
1424 | e1000_config_collision_dist(hw); | ||
1425 | } else { | ||
1426 | ret_val = e1000_config_mac_to_phy(hw); | ||
1427 | if (ret_val) { | ||
1428 | e_dbg("Error configuring MAC to PHY settings\n"); | ||
1429 | return ret_val; | ||
1430 | } | ||
1431 | } | ||
1432 | ret_val = e1000_config_fc_after_link_up(hw); | ||
1433 | if (ret_val) { | ||
1434 | e_dbg("Error Configuring Flow Control\n"); | ||
1435 | return ret_val; | ||
1436 | } | ||
1437 | |||
1438 | /* Config DSP to improve Giga link quality */ | ||
1439 | if (hw->phy_type == e1000_phy_igp) { | ||
1440 | ret_val = e1000_config_dsp_after_link_change(hw, true); | ||
1441 | if (ret_val) { | ||
1442 | e_dbg("Error Configuring DSP after link up\n"); | ||
1443 | return ret_val; | ||
1444 | } | ||
1445 | } | ||
1446 | |||
1447 | return E1000_SUCCESS; | ||
1448 | } | ||
1449 | |||
1450 | /** | ||
1451 | * e1000_setup_copper_link - phy/speed/duplex setting | ||
1452 | * @hw: Struct containing variables accessed by shared code | ||
1453 | * | ||
1454 | * Detects which PHY is present and sets up the speed and duplex | ||
1455 | */ | ||
1456 | static s32 e1000_setup_copper_link(struct e1000_hw *hw) | ||
1457 | { | ||
1458 | s32 ret_val; | ||
1459 | u16 i; | ||
1460 | u16 phy_data; | ||
1461 | |||
1462 | e_dbg("e1000_setup_copper_link"); | ||
1463 | |||
1464 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | ||
1465 | ret_val = e1000_copper_link_preconfig(hw); | ||
1466 | if (ret_val) | ||
1467 | return ret_val; | ||
1468 | |||
1469 | if (hw->phy_type == e1000_phy_igp) { | ||
1470 | ret_val = e1000_copper_link_igp_setup(hw); | ||
1471 | if (ret_val) | ||
1472 | return ret_val; | ||
1473 | } else if (hw->phy_type == e1000_phy_m88) { | ||
1474 | ret_val = e1000_copper_link_mgp_setup(hw); | ||
1475 | if (ret_val) | ||
1476 | return ret_val; | ||
1477 | } else { | ||
1478 | ret_val = gbe_dhg_phy_setup(hw); | ||
1479 | if (ret_val) { | ||
1480 | e_dbg("gbe_dhg_phy_setup failed!\n"); | ||
1481 | return ret_val; | ||
1482 | } | ||
1483 | } | ||
1484 | |||
1485 | if (hw->autoneg) { | ||
1486 | /* Setup autoneg and flow control advertisement | ||
1487 | * and perform autonegotiation */ | ||
1488 | ret_val = e1000_copper_link_autoneg(hw); | ||
1489 | if (ret_val) | ||
1490 | return ret_val; | ||
1491 | } else { | ||
1492 | /* PHY will be set to 10H, 10F, 100H,or 100F | ||
1493 | * depending on value from forced_speed_duplex. */ | ||
1494 | e_dbg("Forcing speed and duplex\n"); | ||
1495 | ret_val = e1000_phy_force_speed_duplex(hw); | ||
1496 | if (ret_val) { | ||
1497 | e_dbg("Error Forcing Speed and Duplex\n"); | ||
1498 | return ret_val; | ||
1499 | } | ||
1500 | } | ||
1501 | |||
1502 | /* Check link status. Wait up to 100 microseconds for link to become | ||
1503 | * valid. | ||
1504 | */ | ||
1505 | for (i = 0; i < 10; i++) { | ||
1506 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
1507 | if (ret_val) | ||
1508 | return ret_val; | ||
1509 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
1510 | if (ret_val) | ||
1511 | return ret_val; | ||
1512 | |||
1513 | if (phy_data & MII_SR_LINK_STATUS) { | ||
1514 | /* Config the MAC and PHY after link is up */ | ||
1515 | ret_val = e1000_copper_link_postconfig(hw); | ||
1516 | if (ret_val) | ||
1517 | return ret_val; | ||
1518 | |||
1519 | e_dbg("Valid link established!!!\n"); | ||
1520 | return E1000_SUCCESS; | ||
1521 | } | ||
1522 | udelay(10); | ||
1523 | } | ||
1524 | |||
1525 | e_dbg("Unable to establish link!!!\n"); | ||
1526 | return E1000_SUCCESS; | ||
1527 | } | ||
1528 | |||
1529 | /** | ||
1530 | * e1000_phy_setup_autoneg - phy settings | ||
1531 | * @hw: Struct containing variables accessed by shared code | ||
1532 | * | ||
1533 | * Configures PHY autoneg and flow control advertisement settings | ||
1534 | */ | ||
1535 | s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | ||
1536 | { | ||
1537 | s32 ret_val; | ||
1538 | u16 mii_autoneg_adv_reg; | ||
1539 | u16 mii_1000t_ctrl_reg; | ||
1540 | |||
1541 | e_dbg("e1000_phy_setup_autoneg"); | ||
1542 | |||
1543 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||
1544 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | ||
1545 | if (ret_val) | ||
1546 | return ret_val; | ||
1547 | |||
1548 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||
1549 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | ||
1550 | if (ret_val) | ||
1551 | return ret_val; | ||
1552 | else if (hw->phy_type == e1000_phy_8201) | ||
1553 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | ||
1554 | |||
1555 | /* Need to parse both autoneg_advertised and fc and set up | ||
1556 | * the appropriate PHY registers. First we will parse for | ||
1557 | * autoneg_advertised software override. Since we can advertise | ||
1558 | * a plethora of combinations, we need to check each bit | ||
1559 | * individually. | ||
1560 | */ | ||
1561 | |||
1562 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | ||
1563 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||
1564 | * the 1000Base-T Control Register (Address 9). | ||
1565 | */ | ||
1566 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | ||
1567 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | ||
1568 | |||
1569 | e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised); | ||
1570 | |||
1571 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||
1572 | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { | ||
1573 | e_dbg("Advertise 10mb Half duplex\n"); | ||
1574 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
1575 | } | ||
1576 | |||
1577 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||
1578 | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { | ||
1579 | e_dbg("Advertise 10mb Full duplex\n"); | ||
1580 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
1581 | } | ||
1582 | |||
1583 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||
1584 | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { | ||
1585 | e_dbg("Advertise 100mb Half duplex\n"); | ||
1586 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | ||
1587 | } | ||
1588 | |||
1589 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||
1590 | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { | ||
1591 | e_dbg("Advertise 100mb Full duplex\n"); | ||
1592 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
1593 | } | ||
1594 | |||
1595 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||
1596 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { | ||
1597 | e_dbg | ||
1598 | ("Advertise 1000mb Half duplex requested, request denied!\n"); | ||
1599 | } | ||
1600 | |||
1601 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||
1602 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { | ||
1603 | e_dbg("Advertise 1000mb Full duplex\n"); | ||
1604 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | ||
1605 | } | ||
1606 | |||
1607 | /* Check for a software override of the flow control settings, and | ||
1608 | * setup the PHY advertisement registers accordingly. If | ||
1609 | * auto-negotiation is enabled, then software will have to set the | ||
1610 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
1611 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | ||
1612 | * | ||
1613 | * The possible values of the "fc" parameter are: | ||
1614 | * 0: Flow control is completely disabled | ||
1615 | * 1: Rx flow control is enabled (we can receive pause frames | ||
1616 | * but not send pause frames). | ||
1617 | * 2: Tx flow control is enabled (we can send pause frames | ||
1618 | * but we do not support receiving pause frames). | ||
1619 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
1620 | * other: No software override. The flow control configuration | ||
1621 | * in the EEPROM is used. | ||
1622 | */ | ||
1623 | switch (hw->fc) { | ||
1624 | case E1000_FC_NONE: /* 0 */ | ||
1625 | /* Flow control (RX & TX) is completely disabled by a | ||
1626 | * software over-ride. | ||
1627 | */ | ||
1628 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1629 | break; | ||
1630 | case E1000_FC_RX_PAUSE: /* 1 */ | ||
1631 | /* RX Flow control is enabled, and TX Flow control is | ||
1632 | * disabled, by a software over-ride. | ||
1633 | */ | ||
1634 | /* Since there really isn't a way to advertise that we are | ||
1635 | * capable of RX Pause ONLY, we will advertise that we | ||
1636 | * support both symmetric and asymmetric RX PAUSE. Later | ||
1637 | * (in e1000_config_fc_after_link_up) we will disable the | ||
1638 | *hw's ability to send PAUSE frames. | ||
1639 | */ | ||
1640 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1641 | break; | ||
1642 | case E1000_FC_TX_PAUSE: /* 2 */ | ||
1643 | /* TX Flow control is enabled, and RX Flow control is | ||
1644 | * disabled, by a software over-ride. | ||
1645 | */ | ||
1646 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
1647 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
1648 | break; | ||
1649 | case E1000_FC_FULL: /* 3 */ | ||
1650 | /* Flow control (both RX and TX) is enabled by a software | ||
1651 | * over-ride. | ||
1652 | */ | ||
1653 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1654 | break; | ||
1655 | default: | ||
1656 | e_dbg("Flow control param set incorrectly\n"); | ||
1657 | return -E1000_ERR_CONFIG; | ||
1658 | } | ||
1659 | |||
1660 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | ||
1661 | if (ret_val) | ||
1662 | return ret_val; | ||
1663 | |||
1664 | e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||
1665 | |||
1666 | if (hw->phy_type == e1000_phy_8201) { | ||
1667 | mii_1000t_ctrl_reg = 0; | ||
1668 | } else { | ||
1669 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, | ||
1670 | mii_1000t_ctrl_reg); | ||
1671 | if (ret_val) | ||
1672 | return ret_val; | ||
1673 | } | ||
1674 | |||
1675 | return E1000_SUCCESS; | ||
1676 | } | ||
1677 | |||
1678 | /** | ||
1679 | * e1000_phy_force_speed_duplex - force link settings | ||
1680 | * @hw: Struct containing variables accessed by shared code | ||
1681 | * | ||
1682 | * Force PHY speed and duplex settings to hw->forced_speed_duplex | ||
1683 | */ | ||
1684 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | ||
1685 | { | ||
1686 | u32 ctrl; | ||
1687 | s32 ret_val; | ||
1688 | u16 mii_ctrl_reg; | ||
1689 | u16 mii_status_reg; | ||
1690 | u16 phy_data; | ||
1691 | u16 i; | ||
1692 | |||
1693 | e_dbg("e1000_phy_force_speed_duplex"); | ||
1694 | |||
1695 | /* Turn off Flow control if we are forcing speed and duplex. */ | ||
1696 | hw->fc = E1000_FC_NONE; | ||
1697 | |||
1698 | e_dbg("hw->fc = %d\n", hw->fc); | ||
1699 | |||
1700 | /* Read the Device Control Register. */ | ||
1701 | ctrl = er32(CTRL); | ||
1702 | |||
1703 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | ||
1704 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1705 | ctrl &= ~(DEVICE_SPEED_MASK); | ||
1706 | |||
1707 | /* Clear the Auto Speed Detect Enable bit. */ | ||
1708 | ctrl &= ~E1000_CTRL_ASDE; | ||
1709 | |||
1710 | /* Read the MII Control Register. */ | ||
1711 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); | ||
1712 | if (ret_val) | ||
1713 | return ret_val; | ||
1714 | |||
1715 | /* We need to disable autoneg in order to force link and duplex. */ | ||
1716 | |||
1717 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; | ||
1718 | |||
1719 | /* Are we forcing Full or Half Duplex? */ | ||
1720 | if (hw->forced_speed_duplex == e1000_100_full || | ||
1721 | hw->forced_speed_duplex == e1000_10_full) { | ||
1722 | /* We want to force full duplex so we SET the full duplex bits in the | ||
1723 | * Device and MII Control Registers. | ||
1724 | */ | ||
1725 | ctrl |= E1000_CTRL_FD; | ||
1726 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; | ||
1727 | e_dbg("Full Duplex\n"); | ||
1728 | } else { | ||
1729 | /* We want to force half duplex so we CLEAR the full duplex bits in | ||
1730 | * the Device and MII Control Registers. | ||
1731 | */ | ||
1732 | ctrl &= ~E1000_CTRL_FD; | ||
1733 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; | ||
1734 | e_dbg("Half Duplex\n"); | ||
1735 | } | ||
1736 | |||
1737 | /* Are we forcing 100Mbps??? */ | ||
1738 | if (hw->forced_speed_duplex == e1000_100_full || | ||
1739 | hw->forced_speed_duplex == e1000_100_half) { | ||
1740 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | ||
1741 | ctrl |= E1000_CTRL_SPD_100; | ||
1742 | mii_ctrl_reg |= MII_CR_SPEED_100; | ||
1743 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | ||
1744 | e_dbg("Forcing 100mb "); | ||
1745 | } else { | ||
1746 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | ||
1747 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1748 | mii_ctrl_reg |= MII_CR_SPEED_10; | ||
1749 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | ||
1750 | e_dbg("Forcing 10mb "); | ||
1751 | } | ||
1752 | |||
1753 | e1000_config_collision_dist(hw); | ||
1754 | |||
1755 | /* Write the configured values back to the Device Control Reg. */ | ||
1756 | ew32(CTRL, ctrl); | ||
1757 | |||
1758 | if (hw->phy_type == e1000_phy_m88) { | ||
1759 | ret_val = | ||
1760 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1761 | if (ret_val) | ||
1762 | return ret_val; | ||
1763 | |||
1764 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | ||
1765 | * forced whenever speed are duplex are forced. | ||
1766 | */ | ||
1767 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1768 | ret_val = | ||
1769 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1770 | if (ret_val) | ||
1771 | return ret_val; | ||
1772 | |||
1773 | e_dbg("M88E1000 PSCR: %x\n", phy_data); | ||
1774 | |||
1775 | /* Need to reset the PHY or these changes will be ignored */ | ||
1776 | mii_ctrl_reg |= MII_CR_RESET; | ||
1777 | |||
1778 | /* Disable MDI-X support for 10/100 */ | ||
1779 | } else { | ||
1780 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | ||
1781 | * forced whenever speed or duplex are forced. | ||
1782 | */ | ||
1783 | ret_val = | ||
1784 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
1785 | if (ret_val) | ||
1786 | return ret_val; | ||
1787 | |||
1788 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1789 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1790 | |||
1791 | ret_val = | ||
1792 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | ||
1793 | if (ret_val) | ||
1794 | return ret_val; | ||
1795 | } | ||
1796 | |||
1797 | /* Write back the modified PHY MII control register. */ | ||
1798 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); | ||
1799 | if (ret_val) | ||
1800 | return ret_val; | ||
1801 | |||
1802 | udelay(1); | ||
1803 | |||
1804 | /* The wait_autoneg_complete flag may be a little misleading here. | ||
1805 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | ||
1806 | * But we do want to delay for a period while forcing only so we | ||
1807 | * don't generate false No Link messages. So we will wait here | ||
1808 | * only if the user has set wait_autoneg_complete to 1, which is | ||
1809 | * the default. | ||
1810 | */ | ||
1811 | if (hw->wait_autoneg_complete) { | ||
1812 | /* We will wait for autoneg to complete. */ | ||
1813 | e_dbg("Waiting for forced speed/duplex link.\n"); | ||
1814 | mii_status_reg = 0; | ||
1815 | |||
1816 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | ||
1817 | for (i = PHY_FORCE_TIME; i > 0; i--) { | ||
1818 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | ||
1819 | * to be set. | ||
1820 | */ | ||
1821 | ret_val = | ||
1822 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1823 | if (ret_val) | ||
1824 | return ret_val; | ||
1825 | |||
1826 | ret_val = | ||
1827 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1828 | if (ret_val) | ||
1829 | return ret_val; | ||
1830 | |||
1831 | if (mii_status_reg & MII_SR_LINK_STATUS) | ||
1832 | break; | ||
1833 | msleep(100); | ||
1834 | } | ||
1835 | if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { | ||
1836 | /* We didn't get link. Reset the DSP and wait again for link. */ | ||
1837 | ret_val = e1000_phy_reset_dsp(hw); | ||
1838 | if (ret_val) { | ||
1839 | e_dbg("Error Resetting PHY DSP\n"); | ||
1840 | return ret_val; | ||
1841 | } | ||
1842 | } | ||
1843 | /* This loop will early-out if the link condition has been met. */ | ||
1844 | for (i = PHY_FORCE_TIME; i > 0; i--) { | ||
1845 | if (mii_status_reg & MII_SR_LINK_STATUS) | ||
1846 | break; | ||
1847 | msleep(100); | ||
1848 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | ||
1849 | * to be set. | ||
1850 | */ | ||
1851 | ret_val = | ||
1852 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1853 | if (ret_val) | ||
1854 | return ret_val; | ||
1855 | |||
1856 | ret_val = | ||
1857 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1858 | if (ret_val) | ||
1859 | return ret_val; | ||
1860 | } | ||
1861 | } | ||
1862 | |||
1863 | if (hw->phy_type == e1000_phy_m88) { | ||
1864 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | ||
1865 | * Extended PHY Specific Control Register to 25MHz clock. This value | ||
1866 | * defaults back to a 2.5MHz clock when the PHY is reset. | ||
1867 | */ | ||
1868 | ret_val = | ||
1869 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
1870 | &phy_data); | ||
1871 | if (ret_val) | ||
1872 | return ret_val; | ||
1873 | |||
1874 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1875 | ret_val = | ||
1876 | e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
1877 | phy_data); | ||
1878 | if (ret_val) | ||
1879 | return ret_val; | ||
1880 | |||
1881 | /* In addition, because of the s/w reset above, we need to enable CRS on | ||
1882 | * TX. This must be set for both full and half duplex operation. | ||
1883 | */ | ||
1884 | ret_val = | ||
1885 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1886 | if (ret_val) | ||
1887 | return ret_val; | ||
1888 | |||
1889 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1890 | ret_val = | ||
1891 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1892 | if (ret_val) | ||
1893 | return ret_val; | ||
1894 | |||
1895 | if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) | ||
1896 | && (!hw->autoneg) | ||
1897 | && (hw->forced_speed_duplex == e1000_10_full | ||
1898 | || hw->forced_speed_duplex == e1000_10_half)) { | ||
1899 | ret_val = e1000_polarity_reversal_workaround(hw); | ||
1900 | if (ret_val) | ||
1901 | return ret_val; | ||
1902 | } | ||
1903 | } | ||
1904 | return E1000_SUCCESS; | ||
1905 | } | ||
1906 | |||
1907 | /** | ||
1908 | * e1000_config_collision_dist - set collision distance register | ||
1909 | * @hw: Struct containing variables accessed by shared code | ||
1910 | * | ||
1911 | * Sets the collision distance in the Transmit Control register. | ||
1912 | * Link should have been established previously. Reads the speed and duplex | ||
1913 | * information from the Device Status register. | ||
1914 | */ | ||
1915 | void e1000_config_collision_dist(struct e1000_hw *hw) | ||
1916 | { | ||
1917 | u32 tctl, coll_dist; | ||
1918 | |||
1919 | e_dbg("e1000_config_collision_dist"); | ||
1920 | |||
1921 | if (hw->mac_type < e1000_82543) | ||
1922 | coll_dist = E1000_COLLISION_DISTANCE_82542; | ||
1923 | else | ||
1924 | coll_dist = E1000_COLLISION_DISTANCE; | ||
1925 | |||
1926 | tctl = er32(TCTL); | ||
1927 | |||
1928 | tctl &= ~E1000_TCTL_COLD; | ||
1929 | tctl |= coll_dist << E1000_COLD_SHIFT; | ||
1930 | |||
1931 | ew32(TCTL, tctl); | ||
1932 | E1000_WRITE_FLUSH(); | ||
1933 | } | ||
1934 | |||
1935 | /** | ||
1936 | * e1000_config_mac_to_phy - sync phy and mac settings | ||
1937 | * @hw: Struct containing variables accessed by shared code | ||
1938 | * @mii_reg: data to write to the MII control register | ||
1939 | * | ||
1940 | * Sets MAC speed and duplex settings to reflect the those in the PHY | ||
1941 | * The contents of the PHY register containing the needed information need to | ||
1942 | * be passed in. | ||
1943 | */ | ||
1944 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) | ||
1945 | { | ||
1946 | u32 ctrl; | ||
1947 | s32 ret_val; | ||
1948 | u16 phy_data; | ||
1949 | |||
1950 | e_dbg("e1000_config_mac_to_phy"); | ||
1951 | |||
1952 | /* 82544 or newer MAC, Auto Speed Detection takes care of | ||
1953 | * MAC speed/duplex configuration.*/ | ||
1954 | if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) | ||
1955 | return E1000_SUCCESS; | ||
1956 | |||
1957 | /* Read the Device Control Register and set the bits to Force Speed | ||
1958 | * and Duplex. | ||
1959 | */ | ||
1960 | ctrl = er32(CTRL); | ||
1961 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1962 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | ||
1963 | |||
1964 | switch (hw->phy_type) { | ||
1965 | case e1000_phy_8201: | ||
1966 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
1967 | if (ret_val) | ||
1968 | return ret_val; | ||
1969 | |||
1970 | if (phy_data & RTL_PHY_CTRL_FD) | ||
1971 | ctrl |= E1000_CTRL_FD; | ||
1972 | else | ||
1973 | ctrl &= ~E1000_CTRL_FD; | ||
1974 | |||
1975 | if (phy_data & RTL_PHY_CTRL_SPD_100) | ||
1976 | ctrl |= E1000_CTRL_SPD_100; | ||
1977 | else | ||
1978 | ctrl |= E1000_CTRL_SPD_10; | ||
1979 | |||
1980 | e1000_config_collision_dist(hw); | ||
1981 | break; | ||
1982 | default: | ||
1983 | /* Set up duplex in the Device Control and Transmit Control | ||
1984 | * registers depending on negotiated values. | ||
1985 | */ | ||
1986 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
1987 | &phy_data); | ||
1988 | if (ret_val) | ||
1989 | return ret_val; | ||
1990 | |||
1991 | if (phy_data & M88E1000_PSSR_DPLX) | ||
1992 | ctrl |= E1000_CTRL_FD; | ||
1993 | else | ||
1994 | ctrl &= ~E1000_CTRL_FD; | ||
1995 | |||
1996 | e1000_config_collision_dist(hw); | ||
1997 | |||
1998 | /* Set up speed in the Device Control register depending on | ||
1999 | * negotiated values. | ||
2000 | */ | ||
2001 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | ||
2002 | ctrl |= E1000_CTRL_SPD_1000; | ||
2003 | else if ((phy_data & M88E1000_PSSR_SPEED) == | ||
2004 | M88E1000_PSSR_100MBS) | ||
2005 | ctrl |= E1000_CTRL_SPD_100; | ||
2006 | } | ||
2007 | |||
2008 | /* Write the configured values back to the Device Control Reg. */ | ||
2009 | ew32(CTRL, ctrl); | ||
2010 | return E1000_SUCCESS; | ||
2011 | } | ||
2012 | |||
2013 | /** | ||
2014 | * e1000_force_mac_fc - force flow control settings | ||
2015 | * @hw: Struct containing variables accessed by shared code | ||
2016 | * | ||
2017 | * Forces the MAC's flow control settings. | ||
2018 | * Sets the TFCE and RFCE bits in the device control register to reflect | ||
2019 | * the adapter settings. TFCE and RFCE need to be explicitly set by | ||
2020 | * software when a Copper PHY is used because autonegotiation is managed | ||
2021 | * by the PHY rather than the MAC. Software must also configure these | ||
2022 | * bits when link is forced on a fiber connection. | ||
2023 | */ | ||
2024 | s32 e1000_force_mac_fc(struct e1000_hw *hw) | ||
2025 | { | ||
2026 | u32 ctrl; | ||
2027 | |||
2028 | e_dbg("e1000_force_mac_fc"); | ||
2029 | |||
2030 | /* Get the current configuration of the Device Control Register */ | ||
2031 | ctrl = er32(CTRL); | ||
2032 | |||
2033 | /* Because we didn't get link via the internal auto-negotiation | ||
2034 | * mechanism (we either forced link or we got link via PHY | ||
2035 | * auto-neg), we have to manually enable/disable transmit an | ||
2036 | * receive flow control. | ||
2037 | * | ||
2038 | * The "Case" statement below enables/disable flow control | ||
2039 | * according to the "hw->fc" parameter. | ||
2040 | * | ||
2041 | * The possible values of the "fc" parameter are: | ||
2042 | * 0: Flow control is completely disabled | ||
2043 | * 1: Rx flow control is enabled (we can receive pause | ||
2044 | * frames but not send pause frames). | ||
2045 | * 2: Tx flow control is enabled (we can send pause frames | ||
2046 | * frames but we do not receive pause frames). | ||
2047 | * 3: Both Rx and TX flow control (symmetric) is enabled. | ||
2048 | * other: No other values should be possible at this point. | ||
2049 | */ | ||
2050 | |||
2051 | switch (hw->fc) { | ||
2052 | case E1000_FC_NONE: | ||
2053 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
2054 | break; | ||
2055 | case E1000_FC_RX_PAUSE: | ||
2056 | ctrl &= (~E1000_CTRL_TFCE); | ||
2057 | ctrl |= E1000_CTRL_RFCE; | ||
2058 | break; | ||
2059 | case E1000_FC_TX_PAUSE: | ||
2060 | ctrl &= (~E1000_CTRL_RFCE); | ||
2061 | ctrl |= E1000_CTRL_TFCE; | ||
2062 | break; | ||
2063 | case E1000_FC_FULL: | ||
2064 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
2065 | break; | ||
2066 | default: | ||
2067 | e_dbg("Flow control param set incorrectly\n"); | ||
2068 | return -E1000_ERR_CONFIG; | ||
2069 | } | ||
2070 | |||
2071 | /* Disable TX Flow Control for 82542 (rev 2.0) */ | ||
2072 | if (hw->mac_type == e1000_82542_rev2_0) | ||
2073 | ctrl &= (~E1000_CTRL_TFCE); | ||
2074 | |||
2075 | ew32(CTRL, ctrl); | ||
2076 | return E1000_SUCCESS; | ||
2077 | } | ||
2078 | |||
2079 | /** | ||
2080 | * e1000_config_fc_after_link_up - configure flow control after autoneg | ||
2081 | * @hw: Struct containing variables accessed by shared code | ||
2082 | * | ||
2083 | * Configures flow control settings after link is established | ||
2084 | * Should be called immediately after a valid link has been established. | ||
2085 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | ||
2086 | * and autonegotiation is enabled, the MAC flow control settings will be set | ||
2087 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | ||
2088 | * and RFCE bits will be automatically set to the negotiated flow control mode. | ||
2089 | */ | ||
2090 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) | ||
2091 | { | ||
2092 | s32 ret_val; | ||
2093 | u16 mii_status_reg; | ||
2094 | u16 mii_nway_adv_reg; | ||
2095 | u16 mii_nway_lp_ability_reg; | ||
2096 | u16 speed; | ||
2097 | u16 duplex; | ||
2098 | |||
2099 | e_dbg("e1000_config_fc_after_link_up"); | ||
2100 | |||
2101 | /* Check for the case where we have fiber media and auto-neg failed | ||
2102 | * so we had to force link. In this case, we need to force the | ||
2103 | * configuration of the MAC to match the "fc" parameter. | ||
2104 | */ | ||
2105 | if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) | ||
2106 | || ((hw->media_type == e1000_media_type_internal_serdes) | ||
2107 | && (hw->autoneg_failed)) | ||
2108 | || ((hw->media_type == e1000_media_type_copper) | ||
2109 | && (!hw->autoneg))) { | ||
2110 | ret_val = e1000_force_mac_fc(hw); | ||
2111 | if (ret_val) { | ||
2112 | e_dbg("Error forcing flow control settings\n"); | ||
2113 | return ret_val; | ||
2114 | } | ||
2115 | } | ||
2116 | |||
2117 | /* Check for the case where we have copper media and auto-neg is | ||
2118 | * enabled. In this case, we need to check and see if Auto-Neg | ||
2119 | * has completed, and if so, how the PHY and link partner has | ||
2120 | * flow control configured. | ||
2121 | */ | ||
2122 | if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { | ||
2123 | /* Read the MII Status Register and check to see if AutoNeg | ||
2124 | * has completed. We read this twice because this reg has | ||
2125 | * some "sticky" (latched) bits. | ||
2126 | */ | ||
2127 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
2128 | if (ret_val) | ||
2129 | return ret_val; | ||
2130 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
2131 | if (ret_val) | ||
2132 | return ret_val; | ||
2133 | |||
2134 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | ||
2135 | /* The AutoNeg process has completed, so we now need to | ||
2136 | * read both the Auto Negotiation Advertisement Register | ||
2137 | * (Address 4) and the Auto_Negotiation Base Page Ability | ||
2138 | * Register (Address 5) to determine how flow control was | ||
2139 | * negotiated. | ||
2140 | */ | ||
2141 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, | ||
2142 | &mii_nway_adv_reg); | ||
2143 | if (ret_val) | ||
2144 | return ret_val; | ||
2145 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, | ||
2146 | &mii_nway_lp_ability_reg); | ||
2147 | if (ret_val) | ||
2148 | return ret_val; | ||
2149 | |||
2150 | /* Two bits in the Auto Negotiation Advertisement Register | ||
2151 | * (Address 4) and two bits in the Auto Negotiation Base | ||
2152 | * Page Ability Register (Address 5) determine flow control | ||
2153 | * for both the PHY and the link partner. The following | ||
2154 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
2155 | * 1999, describes these PAUSE resolution bits and how flow | ||
2156 | * control is determined based upon these settings. | ||
2157 | * NOTE: DC = Don't Care | ||
2158 | * | ||
2159 | * LOCAL DEVICE | LINK PARTNER | ||
2160 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
2161 | *-------|---------|-------|---------|-------------------- | ||
2162 | * 0 | 0 | DC | DC | E1000_FC_NONE | ||
2163 | * 0 | 1 | 0 | DC | E1000_FC_NONE | ||
2164 | * 0 | 1 | 1 | 0 | E1000_FC_NONE | ||
2165 | * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE | ||
2166 | * 1 | 0 | 0 | DC | E1000_FC_NONE | ||
2167 | * 1 | DC | 1 | DC | E1000_FC_FULL | ||
2168 | * 1 | 1 | 0 | 0 | E1000_FC_NONE | ||
2169 | * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE | ||
2170 | * | ||
2171 | */ | ||
2172 | /* Are both PAUSE bits set to 1? If so, this implies | ||
2173 | * Symmetric Flow Control is enabled at both ends. The | ||
2174 | * ASM_DIR bits are irrelevant per the spec. | ||
2175 | * | ||
2176 | * For Symmetric Flow Control: | ||
2177 | * | ||
2178 | * LOCAL DEVICE | LINK PARTNER | ||
2179 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
2180 | *-------|---------|-------|---------|-------------------- | ||
2181 | * 1 | DC | 1 | DC | E1000_FC_FULL | ||
2182 | * | ||
2183 | */ | ||
2184 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
2185 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
2186 | /* Now we need to check if the user selected RX ONLY | ||
2187 | * of pause frames. In this case, we had to advertise | ||
2188 | * FULL flow control because we could not advertise RX | ||
2189 | * ONLY. Hence, we must now check to see if we need to | ||
2190 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
2191 | */ | ||
2192 | if (hw->original_fc == E1000_FC_FULL) { | ||
2193 | hw->fc = E1000_FC_FULL; | ||
2194 | e_dbg("Flow Control = FULL.\n"); | ||
2195 | } else { | ||
2196 | hw->fc = E1000_FC_RX_PAUSE; | ||
2197 | e_dbg | ||
2198 | ("Flow Control = RX PAUSE frames only.\n"); | ||
2199 | } | ||
2200 | } | ||
2201 | /* For receiving PAUSE frames ONLY. | ||
2202 | * | ||
2203 | * LOCAL DEVICE | LINK PARTNER | ||
2204 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
2205 | *-------|---------|-------|---------|-------------------- | ||
2206 | * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE | ||
2207 | * | ||
2208 | */ | ||
2209 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
2210 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
2211 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
2212 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) | ||
2213 | { | ||
2214 | hw->fc = E1000_FC_TX_PAUSE; | ||
2215 | e_dbg | ||
2216 | ("Flow Control = TX PAUSE frames only.\n"); | ||
2217 | } | ||
2218 | /* For transmitting PAUSE frames ONLY. | ||
2219 | * | ||
2220 | * LOCAL DEVICE | LINK PARTNER | ||
2221 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
2222 | *-------|---------|-------|---------|-------------------- | ||
2223 | * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE | ||
2224 | * | ||
2225 | */ | ||
2226 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
2227 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
2228 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
2229 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) | ||
2230 | { | ||
2231 | hw->fc = E1000_FC_RX_PAUSE; | ||
2232 | e_dbg | ||
2233 | ("Flow Control = RX PAUSE frames only.\n"); | ||
2234 | } | ||
2235 | /* Per the IEEE spec, at this point flow control should be | ||
2236 | * disabled. However, we want to consider that we could | ||
2237 | * be connected to a legacy switch that doesn't advertise | ||
2238 | * desired flow control, but can be forced on the link | ||
2239 | * partner. So if we advertised no flow control, that is | ||
2240 | * what we will resolve to. If we advertised some kind of | ||
2241 | * receive capability (Rx Pause Only or Full Flow Control) | ||
2242 | * and the link partner advertised none, we will configure | ||
2243 | * ourselves to enable Rx Flow Control only. We can do | ||
2244 | * this safely for two reasons: If the link partner really | ||
2245 | * didn't want flow control enabled, and we enable Rx, no | ||
2246 | * harm done since we won't be receiving any PAUSE frames | ||
2247 | * anyway. If the intent on the link partner was to have | ||
2248 | * flow control enabled, then by us enabling RX only, we | ||
2249 | * can at least receive pause frames and process them. | ||
2250 | * This is a good idea because in most cases, since we are | ||
2251 | * predominantly a server NIC, more times than not we will | ||
2252 | * be asked to delay transmission of packets than asking | ||
2253 | * our link partner to pause transmission of frames. | ||
2254 | */ | ||
2255 | else if ((hw->original_fc == E1000_FC_NONE || | ||
2256 | hw->original_fc == E1000_FC_TX_PAUSE) || | ||
2257 | hw->fc_strict_ieee) { | ||
2258 | hw->fc = E1000_FC_NONE; | ||
2259 | e_dbg("Flow Control = NONE.\n"); | ||
2260 | } else { | ||
2261 | hw->fc = E1000_FC_RX_PAUSE; | ||
2262 | e_dbg | ||
2263 | ("Flow Control = RX PAUSE frames only.\n"); | ||
2264 | } | ||
2265 | |||
2266 | /* Now we need to do one last check... If we auto- | ||
2267 | * negotiated to HALF DUPLEX, flow control should not be | ||
2268 | * enabled per IEEE 802.3 spec. | ||
2269 | */ | ||
2270 | ret_val = | ||
2271 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
2272 | if (ret_val) { | ||
2273 | e_dbg | ||
2274 | ("Error getting link speed and duplex\n"); | ||
2275 | return ret_val; | ||
2276 | } | ||
2277 | |||
2278 | if (duplex == HALF_DUPLEX) | ||
2279 | hw->fc = E1000_FC_NONE; | ||
2280 | |||
2281 | /* Now we call a subroutine to actually force the MAC | ||
2282 | * controller to use the correct flow control settings. | ||
2283 | */ | ||
2284 | ret_val = e1000_force_mac_fc(hw); | ||
2285 | if (ret_val) { | ||
2286 | e_dbg | ||
2287 | ("Error forcing flow control settings\n"); | ||
2288 | return ret_val; | ||
2289 | } | ||
2290 | } else { | ||
2291 | e_dbg | ||
2292 | ("Copper PHY and Auto Neg has not completed.\n"); | ||
2293 | } | ||
2294 | } | ||
2295 | return E1000_SUCCESS; | ||
2296 | } | ||
2297 | |||
2298 | /** | ||
2299 | * e1000_check_for_serdes_link_generic - Check for link (Serdes) | ||
2300 | * @hw: pointer to the HW structure | ||
2301 | * | ||
2302 | * Checks for link up on the hardware. If link is not up and we have | ||
2303 | * a signal, then we need to force link up. | ||
2304 | */ | ||
2305 | static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) | ||
2306 | { | ||
2307 | u32 rxcw; | ||
2308 | u32 ctrl; | ||
2309 | u32 status; | ||
2310 | s32 ret_val = E1000_SUCCESS; | ||
2311 | |||
2312 | e_dbg("e1000_check_for_serdes_link_generic"); | ||
2313 | |||
2314 | ctrl = er32(CTRL); | ||
2315 | status = er32(STATUS); | ||
2316 | rxcw = er32(RXCW); | ||
2317 | |||
2318 | /* | ||
2319 | * If we don't have link (auto-negotiation failed or link partner | ||
2320 | * cannot auto-negotiate), and our link partner is not trying to | ||
2321 | * auto-negotiate with us (we are receiving idles or data), | ||
2322 | * we need to force link up. We also need to give auto-negotiation | ||
2323 | * time to complete. | ||
2324 | */ | ||
2325 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | ||
2326 | if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { | ||
2327 | if (hw->autoneg_failed == 0) { | ||
2328 | hw->autoneg_failed = 1; | ||
2329 | goto out; | ||
2330 | } | ||
2331 | e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n"); | ||
2332 | |||
2333 | /* Disable auto-negotiation in the TXCW register */ | ||
2334 | ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | ||
2335 | |||
2336 | /* Force link-up and also force full-duplex. */ | ||
2337 | ctrl = er32(CTRL); | ||
2338 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
2339 | ew32(CTRL, ctrl); | ||
2340 | |||
2341 | /* Configure Flow Control after forcing link up. */ | ||
2342 | ret_val = e1000_config_fc_after_link_up(hw); | ||
2343 | if (ret_val) { | ||
2344 | e_dbg("Error configuring flow control\n"); | ||
2345 | goto out; | ||
2346 | } | ||
2347 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
2348 | /* | ||
2349 | * If we are forcing link and we are receiving /C/ ordered | ||
2350 | * sets, re-enable auto-negotiation in the TXCW register | ||
2351 | * and disable forced link in the Device Control register | ||
2352 | * in an attempt to auto-negotiate with our link partner. | ||
2353 | */ | ||
2354 | e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n"); | ||
2355 | ew32(TXCW, hw->txcw); | ||
2356 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
2357 | |||
2358 | hw->serdes_has_link = true; | ||
2359 | } else if (!(E1000_TXCW_ANE & er32(TXCW))) { | ||
2360 | /* | ||
2361 | * If we force link for non-auto-negotiation switch, check | ||
2362 | * link status based on MAC synchronization for internal | ||
2363 | * serdes media type. | ||
2364 | */ | ||
2365 | /* SYNCH bit and IV bit are sticky. */ | ||
2366 | udelay(10); | ||
2367 | rxcw = er32(RXCW); | ||
2368 | if (rxcw & E1000_RXCW_SYNCH) { | ||
2369 | if (!(rxcw & E1000_RXCW_IV)) { | ||
2370 | hw->serdes_has_link = true; | ||
2371 | e_dbg("SERDES: Link up - forced.\n"); | ||
2372 | } | ||
2373 | } else { | ||
2374 | hw->serdes_has_link = false; | ||
2375 | e_dbg("SERDES: Link down - force failed.\n"); | ||
2376 | } | ||
2377 | } | ||
2378 | |||
2379 | if (E1000_TXCW_ANE & er32(TXCW)) { | ||
2380 | status = er32(STATUS); | ||
2381 | if (status & E1000_STATUS_LU) { | ||
2382 | /* SYNCH bit and IV bit are sticky, so reread rxcw. */ | ||
2383 | udelay(10); | ||
2384 | rxcw = er32(RXCW); | ||
2385 | if (rxcw & E1000_RXCW_SYNCH) { | ||
2386 | if (!(rxcw & E1000_RXCW_IV)) { | ||
2387 | hw->serdes_has_link = true; | ||
2388 | e_dbg("SERDES: Link up - autoneg " | ||
2389 | "completed successfully.\n"); | ||
2390 | } else { | ||
2391 | hw->serdes_has_link = false; | ||
2392 | e_dbg("SERDES: Link down - invalid" | ||
2393 | "codewords detected in autoneg.\n"); | ||
2394 | } | ||
2395 | } else { | ||
2396 | hw->serdes_has_link = false; | ||
2397 | e_dbg("SERDES: Link down - no sync.\n"); | ||
2398 | } | ||
2399 | } else { | ||
2400 | hw->serdes_has_link = false; | ||
2401 | e_dbg("SERDES: Link down - autoneg failed\n"); | ||
2402 | } | ||
2403 | } | ||
2404 | |||
2405 | out: | ||
2406 | return ret_val; | ||
2407 | } | ||
2408 | |||
2409 | /** | ||
2410 | * e1000_check_for_link | ||
2411 | * @hw: Struct containing variables accessed by shared code | ||
2412 | * | ||
2413 | * Checks to see if the link status of the hardware has changed. | ||
2414 | * Called by any function that needs to check the link status of the adapter. | ||
2415 | */ | ||
2416 | s32 e1000_check_for_link(struct e1000_hw *hw) | ||
2417 | { | ||
2418 | u32 rxcw = 0; | ||
2419 | u32 ctrl; | ||
2420 | u32 status; | ||
2421 | u32 rctl; | ||
2422 | u32 icr; | ||
2423 | u32 signal = 0; | ||
2424 | s32 ret_val; | ||
2425 | u16 phy_data; | ||
2426 | |||
2427 | e_dbg("e1000_check_for_link"); | ||
2428 | |||
2429 | ctrl = er32(CTRL); | ||
2430 | status = er32(STATUS); | ||
2431 | |||
2432 | /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be | ||
2433 | * set when the optics detect a signal. On older adapters, it will be | ||
2434 | * cleared when there is a signal. This applies to fiber media only. | ||
2435 | */ | ||
2436 | if ((hw->media_type == e1000_media_type_fiber) || | ||
2437 | (hw->media_type == e1000_media_type_internal_serdes)) { | ||
2438 | rxcw = er32(RXCW); | ||
2439 | |||
2440 | if (hw->media_type == e1000_media_type_fiber) { | ||
2441 | signal = | ||
2442 | (hw->mac_type > | ||
2443 | e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | ||
2444 | if (status & E1000_STATUS_LU) | ||
2445 | hw->get_link_status = false; | ||
2446 | } | ||
2447 | } | ||
2448 | |||
2449 | /* If we have a copper PHY then we only want to go out to the PHY | ||
2450 | * registers to see if Auto-Neg has completed and/or if our link | ||
2451 | * status has changed. The get_link_status flag will be set if we | ||
2452 | * receive a Link Status Change interrupt or we have Rx Sequence | ||
2453 | * Errors. | ||
2454 | */ | ||
2455 | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | ||
2456 | /* First we want to see if the MII Status Register reports | ||
2457 | * link. If so, then we want to get the current speed/duplex | ||
2458 | * of the PHY. | ||
2459 | * Read the register twice since the link bit is sticky. | ||
2460 | */ | ||
2461 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2462 | if (ret_val) | ||
2463 | return ret_val; | ||
2464 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2465 | if (ret_val) | ||
2466 | return ret_val; | ||
2467 | |||
2468 | if (phy_data & MII_SR_LINK_STATUS) { | ||
2469 | hw->get_link_status = false; | ||
2470 | /* Check if there was DownShift, must be checked immediately after | ||
2471 | * link-up */ | ||
2472 | e1000_check_downshift(hw); | ||
2473 | |||
2474 | /* If we are on 82544 or 82543 silicon and speed/duplex | ||
2475 | * are forced to 10H or 10F, then we will implement the polarity | ||
2476 | * reversal workaround. We disable interrupts first, and upon | ||
2477 | * returning, place the devices interrupt state to its previous | ||
2478 | * value except for the link status change interrupt which will | ||
2479 | * happen due to the execution of this workaround. | ||
2480 | */ | ||
2481 | |||
2482 | if ((hw->mac_type == e1000_82544 | ||
2483 | || hw->mac_type == e1000_82543) && (!hw->autoneg) | ||
2484 | && (hw->forced_speed_duplex == e1000_10_full | ||
2485 | || hw->forced_speed_duplex == e1000_10_half)) { | ||
2486 | ew32(IMC, 0xffffffff); | ||
2487 | ret_val = | ||
2488 | e1000_polarity_reversal_workaround(hw); | ||
2489 | icr = er32(ICR); | ||
2490 | ew32(ICS, (icr & ~E1000_ICS_LSC)); | ||
2491 | ew32(IMS, IMS_ENABLE_MASK); | ||
2492 | } | ||
2493 | |||
2494 | } else { | ||
2495 | /* No link detected */ | ||
2496 | e1000_config_dsp_after_link_change(hw, false); | ||
2497 | return 0; | ||
2498 | } | ||
2499 | |||
2500 | /* If we are forcing speed/duplex, then we simply return since | ||
2501 | * we have already determined whether we have link or not. | ||
2502 | */ | ||
2503 | if (!hw->autoneg) | ||
2504 | return -E1000_ERR_CONFIG; | ||
2505 | |||
2506 | /* optimize the dsp settings for the igp phy */ | ||
2507 | e1000_config_dsp_after_link_change(hw, true); | ||
2508 | |||
2509 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we | ||
2510 | * have Si on board that is 82544 or newer, Auto | ||
2511 | * Speed Detection takes care of MAC speed/duplex | ||
2512 | * configuration. So we only need to configure Collision | ||
2513 | * Distance in the MAC. Otherwise, we need to force | ||
2514 | * speed/duplex on the MAC to the current PHY speed/duplex | ||
2515 | * settings. | ||
2516 | */ | ||
2517 | if ((hw->mac_type >= e1000_82544) && | ||
2518 | (hw->mac_type != e1000_ce4100)) | ||
2519 | e1000_config_collision_dist(hw); | ||
2520 | else { | ||
2521 | ret_val = e1000_config_mac_to_phy(hw); | ||
2522 | if (ret_val) { | ||
2523 | e_dbg | ||
2524 | ("Error configuring MAC to PHY settings\n"); | ||
2525 | return ret_val; | ||
2526 | } | ||
2527 | } | ||
2528 | |||
2529 | /* Configure Flow Control now that Auto-Neg has completed. First, we | ||
2530 | * need to restore the desired flow control settings because we may | ||
2531 | * have had to re-autoneg with a different link partner. | ||
2532 | */ | ||
2533 | ret_val = e1000_config_fc_after_link_up(hw); | ||
2534 | if (ret_val) { | ||
2535 | e_dbg("Error configuring flow control\n"); | ||
2536 | return ret_val; | ||
2537 | } | ||
2538 | |||
2539 | /* At this point we know that we are on copper and we have | ||
2540 | * auto-negotiated link. These are conditions for checking the link | ||
2541 | * partner capability register. We use the link speed to determine if | ||
2542 | * TBI compatibility needs to be turned on or off. If the link is not | ||
2543 | * at gigabit speed, then TBI compatibility is not needed. If we are | ||
2544 | * at gigabit speed, we turn on TBI compatibility. | ||
2545 | */ | ||
2546 | if (hw->tbi_compatibility_en) { | ||
2547 | u16 speed, duplex; | ||
2548 | ret_val = | ||
2549 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
2550 | if (ret_val) { | ||
2551 | e_dbg | ||
2552 | ("Error getting link speed and duplex\n"); | ||
2553 | return ret_val; | ||
2554 | } | ||
2555 | if (speed != SPEED_1000) { | ||
2556 | /* If link speed is not set to gigabit speed, we do not need | ||
2557 | * to enable TBI compatibility. | ||
2558 | */ | ||
2559 | if (hw->tbi_compatibility_on) { | ||
2560 | /* If we previously were in the mode, turn it off. */ | ||
2561 | rctl = er32(RCTL); | ||
2562 | rctl &= ~E1000_RCTL_SBP; | ||
2563 | ew32(RCTL, rctl); | ||
2564 | hw->tbi_compatibility_on = false; | ||
2565 | } | ||
2566 | } else { | ||
2567 | /* If TBI compatibility is was previously off, turn it on. For | ||
2568 | * compatibility with a TBI link partner, we will store bad | ||
2569 | * packets. Some frames have an additional byte on the end and | ||
2570 | * will look like CRC errors to to the hardware. | ||
2571 | */ | ||
2572 | if (!hw->tbi_compatibility_on) { | ||
2573 | hw->tbi_compatibility_on = true; | ||
2574 | rctl = er32(RCTL); | ||
2575 | rctl |= E1000_RCTL_SBP; | ||
2576 | ew32(RCTL, rctl); | ||
2577 | } | ||
2578 | } | ||
2579 | } | ||
2580 | } | ||
2581 | |||
2582 | if ((hw->media_type == e1000_media_type_fiber) || | ||
2583 | (hw->media_type == e1000_media_type_internal_serdes)) | ||
2584 | e1000_check_for_serdes_link_generic(hw); | ||
2585 | |||
2586 | return E1000_SUCCESS; | ||
2587 | } | ||
2588 | |||
2589 | /** | ||
2590 | * e1000_get_speed_and_duplex | ||
2591 | * @hw: Struct containing variables accessed by shared code | ||
2592 | * @speed: Speed of the connection | ||
2593 | * @duplex: Duplex setting of the connection | ||
2594 | |||
2595 | * Detects the current speed and duplex settings of the hardware. | ||
2596 | */ | ||
2597 | s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) | ||
2598 | { | ||
2599 | u32 status; | ||
2600 | s32 ret_val; | ||
2601 | u16 phy_data; | ||
2602 | |||
2603 | e_dbg("e1000_get_speed_and_duplex"); | ||
2604 | |||
2605 | if (hw->mac_type >= e1000_82543) { | ||
2606 | status = er32(STATUS); | ||
2607 | if (status & E1000_STATUS_SPEED_1000) { | ||
2608 | *speed = SPEED_1000; | ||
2609 | e_dbg("1000 Mbs, "); | ||
2610 | } else if (status & E1000_STATUS_SPEED_100) { | ||
2611 | *speed = SPEED_100; | ||
2612 | e_dbg("100 Mbs, "); | ||
2613 | } else { | ||
2614 | *speed = SPEED_10; | ||
2615 | e_dbg("10 Mbs, "); | ||
2616 | } | ||
2617 | |||
2618 | if (status & E1000_STATUS_FD) { | ||
2619 | *duplex = FULL_DUPLEX; | ||
2620 | e_dbg("Full Duplex\n"); | ||
2621 | } else { | ||
2622 | *duplex = HALF_DUPLEX; | ||
2623 | e_dbg(" Half Duplex\n"); | ||
2624 | } | ||
2625 | } else { | ||
2626 | e_dbg("1000 Mbs, Full Duplex\n"); | ||
2627 | *speed = SPEED_1000; | ||
2628 | *duplex = FULL_DUPLEX; | ||
2629 | } | ||
2630 | |||
2631 | /* IGP01 PHY may advertise full duplex operation after speed downgrade even | ||
2632 | * if it is operating at half duplex. Here we set the duplex settings to | ||
2633 | * match the duplex in the link partner's capabilities. | ||
2634 | */ | ||
2635 | if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | ||
2636 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); | ||
2637 | if (ret_val) | ||
2638 | return ret_val; | ||
2639 | |||
2640 | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | ||
2641 | *duplex = HALF_DUPLEX; | ||
2642 | else { | ||
2643 | ret_val = | ||
2644 | e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); | ||
2645 | if (ret_val) | ||
2646 | return ret_val; | ||
2647 | if ((*speed == SPEED_100 | ||
2648 | && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) | ||
2649 | || (*speed == SPEED_10 | ||
2650 | && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | ||
2651 | *duplex = HALF_DUPLEX; | ||
2652 | } | ||
2653 | } | ||
2654 | |||
2655 | return E1000_SUCCESS; | ||
2656 | } | ||
2657 | |||
2658 | /** | ||
2659 | * e1000_wait_autoneg | ||
2660 | * @hw: Struct containing variables accessed by shared code | ||
2661 | * | ||
2662 | * Blocks until autoneg completes or times out (~4.5 seconds) | ||
2663 | */ | ||
2664 | static s32 e1000_wait_autoneg(struct e1000_hw *hw) | ||
2665 | { | ||
2666 | s32 ret_val; | ||
2667 | u16 i; | ||
2668 | u16 phy_data; | ||
2669 | |||
2670 | e_dbg("e1000_wait_autoneg"); | ||
2671 | e_dbg("Waiting for Auto-Neg to complete.\n"); | ||
2672 | |||
2673 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | ||
2674 | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { | ||
2675 | /* Read the MII Status Register and wait for Auto-Neg | ||
2676 | * Complete bit to be set. | ||
2677 | */ | ||
2678 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2679 | if (ret_val) | ||
2680 | return ret_val; | ||
2681 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2682 | if (ret_val) | ||
2683 | return ret_val; | ||
2684 | if (phy_data & MII_SR_AUTONEG_COMPLETE) { | ||
2685 | return E1000_SUCCESS; | ||
2686 | } | ||
2687 | msleep(100); | ||
2688 | } | ||
2689 | return E1000_SUCCESS; | ||
2690 | } | ||
2691 | |||
2692 | /** | ||
2693 | * e1000_raise_mdi_clk - Raises the Management Data Clock | ||
2694 | * @hw: Struct containing variables accessed by shared code | ||
2695 | * @ctrl: Device control register's current value | ||
2696 | */ | ||
2697 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | ||
2698 | { | ||
2699 | /* Raise the clock input to the Management Data Clock (by setting the MDC | ||
2700 | * bit), and then delay 10 microseconds. | ||
2701 | */ | ||
2702 | ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); | ||
2703 | E1000_WRITE_FLUSH(); | ||
2704 | udelay(10); | ||
2705 | } | ||
2706 | |||
2707 | /** | ||
2708 | * e1000_lower_mdi_clk - Lowers the Management Data Clock | ||
2709 | * @hw: Struct containing variables accessed by shared code | ||
2710 | * @ctrl: Device control register's current value | ||
2711 | */ | ||
2712 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | ||
2713 | { | ||
2714 | /* Lower the clock input to the Management Data Clock (by clearing the MDC | ||
2715 | * bit), and then delay 10 microseconds. | ||
2716 | */ | ||
2717 | ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); | ||
2718 | E1000_WRITE_FLUSH(); | ||
2719 | udelay(10); | ||
2720 | } | ||
2721 | |||
2722 | /** | ||
2723 | * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY | ||
2724 | * @hw: Struct containing variables accessed by shared code | ||
2725 | * @data: Data to send out to the PHY | ||
2726 | * @count: Number of bits to shift out | ||
2727 | * | ||
2728 | * Bits are shifted out in MSB to LSB order. | ||
2729 | */ | ||
2730 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) | ||
2731 | { | ||
2732 | u32 ctrl; | ||
2733 | u32 mask; | ||
2734 | |||
2735 | /* We need to shift "count" number of bits out to the PHY. So, the value | ||
2736 | * in the "data" parameter will be shifted out to the PHY one bit at a | ||
2737 | * time. In order to do this, "data" must be broken down into bits. | ||
2738 | */ | ||
2739 | mask = 0x01; | ||
2740 | mask <<= (count - 1); | ||
2741 | |||
2742 | ctrl = er32(CTRL); | ||
2743 | |||
2744 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | ||
2745 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | ||
2746 | |||
2747 | while (mask) { | ||
2748 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | ||
2749 | * then raising and lowering the Management Data Clock. A "0" is | ||
2750 | * shifted out to the PHY by setting the MDIO bit to "0" and then | ||
2751 | * raising and lowering the clock. | ||
2752 | */ | ||
2753 | if (data & mask) | ||
2754 | ctrl |= E1000_CTRL_MDIO; | ||
2755 | else | ||
2756 | ctrl &= ~E1000_CTRL_MDIO; | ||
2757 | |||
2758 | ew32(CTRL, ctrl); | ||
2759 | E1000_WRITE_FLUSH(); | ||
2760 | |||
2761 | udelay(10); | ||
2762 | |||
2763 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2764 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2765 | |||
2766 | mask = mask >> 1; | ||
2767 | } | ||
2768 | } | ||
2769 | |||
2770 | /** | ||
2771 | * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY | ||
2772 | * @hw: Struct containing variables accessed by shared code | ||
2773 | * | ||
2774 | * Bits are shifted in in MSB to LSB order. | ||
2775 | */ | ||
2776 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) | ||
2777 | { | ||
2778 | u32 ctrl; | ||
2779 | u16 data = 0; | ||
2780 | u8 i; | ||
2781 | |||
2782 | /* In order to read a register from the PHY, we need to shift in a total | ||
2783 | * of 18 bits from the PHY. The first two bit (turnaround) times are used | ||
2784 | * to avoid contention on the MDIO pin when a read operation is performed. | ||
2785 | * These two bits are ignored by us and thrown away. Bits are "shifted in" | ||
2786 | * by raising the input to the Management Data Clock (setting the MDC bit), | ||
2787 | * and then reading the value of the MDIO bit. | ||
2788 | */ | ||
2789 | ctrl = er32(CTRL); | ||
2790 | |||
2791 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | ||
2792 | ctrl &= ~E1000_CTRL_MDIO_DIR; | ||
2793 | ctrl &= ~E1000_CTRL_MDIO; | ||
2794 | |||
2795 | ew32(CTRL, ctrl); | ||
2796 | E1000_WRITE_FLUSH(); | ||
2797 | |||
2798 | /* Raise and Lower the clock before reading in the data. This accounts for | ||
2799 | * the turnaround bits. The first clock occurred when we clocked out the | ||
2800 | * last bit of the Register Address. | ||
2801 | */ | ||
2802 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2803 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2804 | |||
2805 | for (data = 0, i = 0; i < 16; i++) { | ||
2806 | data = data << 1; | ||
2807 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2808 | ctrl = er32(CTRL); | ||
2809 | /* Check to see if we shifted in a "1". */ | ||
2810 | if (ctrl & E1000_CTRL_MDIO) | ||
2811 | data |= 1; | ||
2812 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2813 | } | ||
2814 | |||
2815 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2816 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2817 | |||
2818 | return data; | ||
2819 | } | ||
2820 | |||
2821 | |||
2822 | /** | ||
2823 | * e1000_read_phy_reg - read a phy register | ||
2824 | * @hw: Struct containing variables accessed by shared code | ||
2825 | * @reg_addr: address of the PHY register to read | ||
2826 | * | ||
2827 | * Reads the value from a PHY register, if the value is on a specific non zero | ||
2828 | * page, sets the page first. | ||
2829 | */ | ||
2830 | s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) | ||
2831 | { | ||
2832 | u32 ret_val; | ||
2833 | |||
2834 | e_dbg("e1000_read_phy_reg"); | ||
2835 | |||
2836 | if ((hw->phy_type == e1000_phy_igp) && | ||
2837 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | ||
2838 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
2839 | (u16) reg_addr); | ||
2840 | if (ret_val) | ||
2841 | return ret_val; | ||
2842 | } | ||
2843 | |||
2844 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | ||
2845 | phy_data); | ||
2846 | |||
2847 | return ret_val; | ||
2848 | } | ||
2849 | |||
2850 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | ||
2851 | u16 *phy_data) | ||
2852 | { | ||
2853 | u32 i; | ||
2854 | u32 mdic = 0; | ||
2855 | const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; | ||
2856 | |||
2857 | e_dbg("e1000_read_phy_reg_ex"); | ||
2858 | |||
2859 | if (reg_addr > MAX_PHY_REG_ADDRESS) { | ||
2860 | e_dbg("PHY Address %d is out of range\n", reg_addr); | ||
2861 | return -E1000_ERR_PARAM; | ||
2862 | } | ||
2863 | |||
2864 | if (hw->mac_type > e1000_82543) { | ||
2865 | /* Set up Op-code, Phy Address, and register address in the MDI | ||
2866 | * Control register. The MAC will take care of interfacing with the | ||
2867 | * PHY to retrieve the desired data. | ||
2868 | */ | ||
2869 | if (hw->mac_type == e1000_ce4100) { | ||
2870 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | ||
2871 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | ||
2872 | (INTEL_CE_GBE_MDIC_OP_READ) | | ||
2873 | (INTEL_CE_GBE_MDIC_GO)); | ||
2874 | |||
2875 | writel(mdic, E1000_MDIO_CMD); | ||
2876 | |||
2877 | /* Poll the ready bit to see if the MDI read | ||
2878 | * completed | ||
2879 | */ | ||
2880 | for (i = 0; i < 64; i++) { | ||
2881 | udelay(50); | ||
2882 | mdic = readl(E1000_MDIO_CMD); | ||
2883 | if (!(mdic & INTEL_CE_GBE_MDIC_GO)) | ||
2884 | break; | ||
2885 | } | ||
2886 | |||
2887 | if (mdic & INTEL_CE_GBE_MDIC_GO) { | ||
2888 | e_dbg("MDI Read did not complete\n"); | ||
2889 | return -E1000_ERR_PHY; | ||
2890 | } | ||
2891 | |||
2892 | mdic = readl(E1000_MDIO_STS); | ||
2893 | if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) { | ||
2894 | e_dbg("MDI Read Error\n"); | ||
2895 | return -E1000_ERR_PHY; | ||
2896 | } | ||
2897 | *phy_data = (u16) mdic; | ||
2898 | } else { | ||
2899 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | ||
2900 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | ||
2901 | (E1000_MDIC_OP_READ)); | ||
2902 | |||
2903 | ew32(MDIC, mdic); | ||
2904 | |||
2905 | /* Poll the ready bit to see if the MDI read | ||
2906 | * completed | ||
2907 | */ | ||
2908 | for (i = 0; i < 64; i++) { | ||
2909 | udelay(50); | ||
2910 | mdic = er32(MDIC); | ||
2911 | if (mdic & E1000_MDIC_READY) | ||
2912 | break; | ||
2913 | } | ||
2914 | if (!(mdic & E1000_MDIC_READY)) { | ||
2915 | e_dbg("MDI Read did not complete\n"); | ||
2916 | return -E1000_ERR_PHY; | ||
2917 | } | ||
2918 | if (mdic & E1000_MDIC_ERROR) { | ||
2919 | e_dbg("MDI Error\n"); | ||
2920 | return -E1000_ERR_PHY; | ||
2921 | } | ||
2922 | *phy_data = (u16) mdic; | ||
2923 | } | ||
2924 | } else { | ||
2925 | /* We must first send a preamble through the MDIO pin to signal the | ||
2926 | * beginning of an MII instruction. This is done by sending 32 | ||
2927 | * consecutive "1" bits. | ||
2928 | */ | ||
2929 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | ||
2930 | |||
2931 | /* Now combine the next few fields that are required for a read | ||
2932 | * operation. We use this method instead of calling the | ||
2933 | * e1000_shift_out_mdi_bits routine five different times. The format of | ||
2934 | * a MII read instruction consists of a shift out of 14 bits and is | ||
2935 | * defined as follows: | ||
2936 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | ||
2937 | * followed by a shift in of 18 bits. This first two bits shifted in | ||
2938 | * are TurnAround bits used to avoid contention on the MDIO pin when a | ||
2939 | * READ operation is performed. These two bits are thrown away | ||
2940 | * followed by a shift in of 16 bits which contains the desired data. | ||
2941 | */ | ||
2942 | mdic = ((reg_addr) | (phy_addr << 5) | | ||
2943 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | ||
2944 | |||
2945 | e1000_shift_out_mdi_bits(hw, mdic, 14); | ||
2946 | |||
2947 | /* Now that we've shifted out the read command to the MII, we need to | ||
2948 | * "shift in" the 16-bit value (18 total bits) of the requested PHY | ||
2949 | * register address. | ||
2950 | */ | ||
2951 | *phy_data = e1000_shift_in_mdi_bits(hw); | ||
2952 | } | ||
2953 | return E1000_SUCCESS; | ||
2954 | } | ||
2955 | |||
2956 | /** | ||
2957 | * e1000_write_phy_reg - write a phy register | ||
2958 | * | ||
2959 | * @hw: Struct containing variables accessed by shared code | ||
2960 | * @reg_addr: address of the PHY register to write | ||
2961 | * @data: data to write to the PHY | ||
2962 | |||
2963 | * Writes a value to a PHY register | ||
2964 | */ | ||
2965 | s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) | ||
2966 | { | ||
2967 | u32 ret_val; | ||
2968 | |||
2969 | e_dbg("e1000_write_phy_reg"); | ||
2970 | |||
2971 | if ((hw->phy_type == e1000_phy_igp) && | ||
2972 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | ||
2973 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
2974 | (u16) reg_addr); | ||
2975 | if (ret_val) | ||
2976 | return ret_val; | ||
2977 | } | ||
2978 | |||
2979 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | ||
2980 | phy_data); | ||
2981 | |||
2982 | return ret_val; | ||
2983 | } | ||
2984 | |||
2985 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | ||
2986 | u16 phy_data) | ||
2987 | { | ||
2988 | u32 i; | ||
2989 | u32 mdic = 0; | ||
2990 | const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; | ||
2991 | |||
2992 | e_dbg("e1000_write_phy_reg_ex"); | ||
2993 | |||
2994 | if (reg_addr > MAX_PHY_REG_ADDRESS) { | ||
2995 | e_dbg("PHY Address %d is out of range\n", reg_addr); | ||
2996 | return -E1000_ERR_PARAM; | ||
2997 | } | ||
2998 | |||
2999 | if (hw->mac_type > e1000_82543) { | ||
3000 | /* Set up Op-code, Phy Address, register address, and data | ||
3001 | * intended for the PHY register in the MDI Control register. | ||
3002 | * The MAC will take care of interfacing with the PHY to send | ||
3003 | * the desired data. | ||
3004 | */ | ||
3005 | if (hw->mac_type == e1000_ce4100) { | ||
3006 | mdic = (((u32) phy_data) | | ||
3007 | (reg_addr << E1000_MDIC_REG_SHIFT) | | ||
3008 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | ||
3009 | (INTEL_CE_GBE_MDIC_OP_WRITE) | | ||
3010 | (INTEL_CE_GBE_MDIC_GO)); | ||
3011 | |||
3012 | writel(mdic, E1000_MDIO_CMD); | ||
3013 | |||
3014 | /* Poll the ready bit to see if the MDI read | ||
3015 | * completed | ||
3016 | */ | ||
3017 | for (i = 0; i < 640; i++) { | ||
3018 | udelay(5); | ||
3019 | mdic = readl(E1000_MDIO_CMD); | ||
3020 | if (!(mdic & INTEL_CE_GBE_MDIC_GO)) | ||
3021 | break; | ||
3022 | } | ||
3023 | if (mdic & INTEL_CE_GBE_MDIC_GO) { | ||
3024 | e_dbg("MDI Write did not complete\n"); | ||
3025 | return -E1000_ERR_PHY; | ||
3026 | } | ||
3027 | } else { | ||
3028 | mdic = (((u32) phy_data) | | ||
3029 | (reg_addr << E1000_MDIC_REG_SHIFT) | | ||
3030 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | ||
3031 | (E1000_MDIC_OP_WRITE)); | ||
3032 | |||
3033 | ew32(MDIC, mdic); | ||
3034 | |||
3035 | /* Poll the ready bit to see if the MDI read | ||
3036 | * completed | ||
3037 | */ | ||
3038 | for (i = 0; i < 641; i++) { | ||
3039 | udelay(5); | ||
3040 | mdic = er32(MDIC); | ||
3041 | if (mdic & E1000_MDIC_READY) | ||
3042 | break; | ||
3043 | } | ||
3044 | if (!(mdic & E1000_MDIC_READY)) { | ||
3045 | e_dbg("MDI Write did not complete\n"); | ||
3046 | return -E1000_ERR_PHY; | ||
3047 | } | ||
3048 | } | ||
3049 | } else { | ||
3050 | /* We'll need to use the SW defined pins to shift the write command | ||
3051 | * out to the PHY. We first send a preamble to the PHY to signal the | ||
3052 | * beginning of the MII instruction. This is done by sending 32 | ||
3053 | * consecutive "1" bits. | ||
3054 | */ | ||
3055 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | ||
3056 | |||
3057 | /* Now combine the remaining required fields that will indicate a | ||
3058 | * write operation. We use this method instead of calling the | ||
3059 | * e1000_shift_out_mdi_bits routine for each field in the command. The | ||
3060 | * format of a MII write instruction is as follows: | ||
3061 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | ||
3062 | */ | ||
3063 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | ||
3064 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | ||
3065 | mdic <<= 16; | ||
3066 | mdic |= (u32) phy_data; | ||
3067 | |||
3068 | e1000_shift_out_mdi_bits(hw, mdic, 32); | ||
3069 | } | ||
3070 | |||
3071 | return E1000_SUCCESS; | ||
3072 | } | ||
3073 | |||
3074 | /** | ||
3075 | * e1000_phy_hw_reset - reset the phy, hardware style | ||
3076 | * @hw: Struct containing variables accessed by shared code | ||
3077 | * | ||
3078 | * Returns the PHY to the power-on reset state | ||
3079 | */ | ||
3080 | s32 e1000_phy_hw_reset(struct e1000_hw *hw) | ||
3081 | { | ||
3082 | u32 ctrl, ctrl_ext; | ||
3083 | u32 led_ctrl; | ||
3084 | |||
3085 | e_dbg("e1000_phy_hw_reset"); | ||
3086 | |||
3087 | e_dbg("Resetting Phy...\n"); | ||
3088 | |||
3089 | if (hw->mac_type > e1000_82543) { | ||
3090 | /* Read the device control register and assert the E1000_CTRL_PHY_RST | ||
3091 | * bit. Then, take it out of reset. | ||
3092 | * For e1000 hardware, we delay for 10ms between the assert | ||
3093 | * and deassert. | ||
3094 | */ | ||
3095 | ctrl = er32(CTRL); | ||
3096 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); | ||
3097 | E1000_WRITE_FLUSH(); | ||
3098 | |||
3099 | msleep(10); | ||
3100 | |||
3101 | ew32(CTRL, ctrl); | ||
3102 | E1000_WRITE_FLUSH(); | ||
3103 | |||
3104 | } else { | ||
3105 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | ||
3106 | * bit to put the PHY into reset. Then, take it out of reset. | ||
3107 | */ | ||
3108 | ctrl_ext = er32(CTRL_EXT); | ||
3109 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | ||
3110 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | ||
3111 | ew32(CTRL_EXT, ctrl_ext); | ||
3112 | E1000_WRITE_FLUSH(); | ||
3113 | msleep(10); | ||
3114 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | ||
3115 | ew32(CTRL_EXT, ctrl_ext); | ||
3116 | E1000_WRITE_FLUSH(); | ||
3117 | } | ||
3118 | udelay(150); | ||
3119 | |||
3120 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
3121 | /* Configure activity LED after PHY reset */ | ||
3122 | led_ctrl = er32(LEDCTL); | ||
3123 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
3124 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
3125 | ew32(LEDCTL, led_ctrl); | ||
3126 | } | ||
3127 | |||
3128 | /* Wait for FW to finish PHY configuration. */ | ||
3129 | return e1000_get_phy_cfg_done(hw); | ||
3130 | } | ||
3131 | |||
3132 | /** | ||
3133 | * e1000_phy_reset - reset the phy to commit settings | ||
3134 | * @hw: Struct containing variables accessed by shared code | ||
3135 | * | ||
3136 | * Resets the PHY | ||
3137 | * Sets bit 15 of the MII Control register | ||
3138 | */ | ||
3139 | s32 e1000_phy_reset(struct e1000_hw *hw) | ||
3140 | { | ||
3141 | s32 ret_val; | ||
3142 | u16 phy_data; | ||
3143 | |||
3144 | e_dbg("e1000_phy_reset"); | ||
3145 | |||
3146 | switch (hw->phy_type) { | ||
3147 | case e1000_phy_igp: | ||
3148 | ret_val = e1000_phy_hw_reset(hw); | ||
3149 | if (ret_val) | ||
3150 | return ret_val; | ||
3151 | break; | ||
3152 | default: | ||
3153 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
3154 | if (ret_val) | ||
3155 | return ret_val; | ||
3156 | |||
3157 | phy_data |= MII_CR_RESET; | ||
3158 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
3159 | if (ret_val) | ||
3160 | return ret_val; | ||
3161 | |||
3162 | udelay(1); | ||
3163 | break; | ||
3164 | } | ||
3165 | |||
3166 | if (hw->phy_type == e1000_phy_igp) | ||
3167 | e1000_phy_init_script(hw); | ||
3168 | |||
3169 | return E1000_SUCCESS; | ||
3170 | } | ||
3171 | |||
3172 | /** | ||
3173 | * e1000_detect_gig_phy - check the phy type | ||
3174 | * @hw: Struct containing variables accessed by shared code | ||
3175 | * | ||
3176 | * Probes the expected PHY address for known PHY IDs | ||
3177 | */ | ||
3178 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw) | ||
3179 | { | ||
3180 | s32 phy_init_status, ret_val; | ||
3181 | u16 phy_id_high, phy_id_low; | ||
3182 | bool match = false; | ||
3183 | |||
3184 | e_dbg("e1000_detect_gig_phy"); | ||
3185 | |||
3186 | if (hw->phy_id != 0) | ||
3187 | return E1000_SUCCESS; | ||
3188 | |||
3189 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | ||
3190 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | ||
3191 | if (ret_val) | ||
3192 | return ret_val; | ||
3193 | |||
3194 | hw->phy_id = (u32) (phy_id_high << 16); | ||
3195 | udelay(20); | ||
3196 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); | ||
3197 | if (ret_val) | ||
3198 | return ret_val; | ||
3199 | |||
3200 | hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK); | ||
3201 | hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK; | ||
3202 | |||
3203 | switch (hw->mac_type) { | ||
3204 | case e1000_82543: | ||
3205 | if (hw->phy_id == M88E1000_E_PHY_ID) | ||
3206 | match = true; | ||
3207 | break; | ||
3208 | case e1000_82544: | ||
3209 | if (hw->phy_id == M88E1000_I_PHY_ID) | ||
3210 | match = true; | ||
3211 | break; | ||
3212 | case e1000_82540: | ||
3213 | case e1000_82545: | ||
3214 | case e1000_82545_rev_3: | ||
3215 | case e1000_82546: | ||
3216 | case e1000_82546_rev_3: | ||
3217 | if (hw->phy_id == M88E1011_I_PHY_ID) | ||
3218 | match = true; | ||
3219 | break; | ||
3220 | case e1000_ce4100: | ||
3221 | if ((hw->phy_id == RTL8211B_PHY_ID) || | ||
3222 | (hw->phy_id == RTL8201N_PHY_ID) || | ||
3223 | (hw->phy_id == M88E1118_E_PHY_ID)) | ||
3224 | match = true; | ||
3225 | break; | ||
3226 | case e1000_82541: | ||
3227 | case e1000_82541_rev_2: | ||
3228 | case e1000_82547: | ||
3229 | case e1000_82547_rev_2: | ||
3230 | if (hw->phy_id == IGP01E1000_I_PHY_ID) | ||
3231 | match = true; | ||
3232 | break; | ||
3233 | default: | ||
3234 | e_dbg("Invalid MAC type %d\n", hw->mac_type); | ||
3235 | return -E1000_ERR_CONFIG; | ||
3236 | } | ||
3237 | phy_init_status = e1000_set_phy_type(hw); | ||
3238 | |||
3239 | if ((match) && (phy_init_status == E1000_SUCCESS)) { | ||
3240 | e_dbg("PHY ID 0x%X detected\n", hw->phy_id); | ||
3241 | return E1000_SUCCESS; | ||
3242 | } | ||
3243 | e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id); | ||
3244 | return -E1000_ERR_PHY; | ||
3245 | } | ||
3246 | |||
3247 | /** | ||
3248 | * e1000_phy_reset_dsp - reset DSP | ||
3249 | * @hw: Struct containing variables accessed by shared code | ||
3250 | * | ||
3251 | * Resets the PHY's DSP | ||
3252 | */ | ||
3253 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) | ||
3254 | { | ||
3255 | s32 ret_val; | ||
3256 | e_dbg("e1000_phy_reset_dsp"); | ||
3257 | |||
3258 | do { | ||
3259 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); | ||
3260 | if (ret_val) | ||
3261 | break; | ||
3262 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); | ||
3263 | if (ret_val) | ||
3264 | break; | ||
3265 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); | ||
3266 | if (ret_val) | ||
3267 | break; | ||
3268 | ret_val = E1000_SUCCESS; | ||
3269 | } while (0); | ||
3270 | |||
3271 | return ret_val; | ||
3272 | } | ||
3273 | |||
3274 | /** | ||
3275 | * e1000_phy_igp_get_info - get igp specific registers | ||
3276 | * @hw: Struct containing variables accessed by shared code | ||
3277 | * @phy_info: PHY information structure | ||
3278 | * | ||
3279 | * Get PHY information from various PHY registers for igp PHY only. | ||
3280 | */ | ||
3281 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | ||
3282 | struct e1000_phy_info *phy_info) | ||
3283 | { | ||
3284 | s32 ret_val; | ||
3285 | u16 phy_data, min_length, max_length, average; | ||
3286 | e1000_rev_polarity polarity; | ||
3287 | |||
3288 | e_dbg("e1000_phy_igp_get_info"); | ||
3289 | |||
3290 | /* The downshift status is checked only once, after link is established, | ||
3291 | * and it stored in the hw->speed_downgraded parameter. */ | ||
3292 | phy_info->downshift = (e1000_downshift) hw->speed_downgraded; | ||
3293 | |||
3294 | /* IGP01E1000 does not need to support it. */ | ||
3295 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | ||
3296 | |||
3297 | /* IGP01E1000 always correct polarity reversal */ | ||
3298 | phy_info->polarity_correction = e1000_polarity_reversal_enabled; | ||
3299 | |||
3300 | /* Check polarity status */ | ||
3301 | ret_val = e1000_check_polarity(hw, &polarity); | ||
3302 | if (ret_val) | ||
3303 | return ret_val; | ||
3304 | |||
3305 | phy_info->cable_polarity = polarity; | ||
3306 | |||
3307 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); | ||
3308 | if (ret_val) | ||
3309 | return ret_val; | ||
3310 | |||
3311 | phy_info->mdix_mode = | ||
3312 | (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> | ||
3313 | IGP01E1000_PSSR_MDIX_SHIFT); | ||
3314 | |||
3315 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
3316 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
3317 | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ | ||
3318 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
3319 | if (ret_val) | ||
3320 | return ret_val; | ||
3321 | |||
3322 | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | ||
3323 | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? | ||
3324 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | ||
3325 | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> | ||
3326 | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | ||
3327 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | ||
3328 | |||
3329 | /* Get cable length */ | ||
3330 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | ||
3331 | if (ret_val) | ||
3332 | return ret_val; | ||
3333 | |||
3334 | /* Translate to old method */ | ||
3335 | average = (max_length + min_length) / 2; | ||
3336 | |||
3337 | if (average <= e1000_igp_cable_length_50) | ||
3338 | phy_info->cable_length = e1000_cable_length_50; | ||
3339 | else if (average <= e1000_igp_cable_length_80) | ||
3340 | phy_info->cable_length = e1000_cable_length_50_80; | ||
3341 | else if (average <= e1000_igp_cable_length_110) | ||
3342 | phy_info->cable_length = e1000_cable_length_80_110; | ||
3343 | else if (average <= e1000_igp_cable_length_140) | ||
3344 | phy_info->cable_length = e1000_cable_length_110_140; | ||
3345 | else | ||
3346 | phy_info->cable_length = e1000_cable_length_140; | ||
3347 | } | ||
3348 | |||
3349 | return E1000_SUCCESS; | ||
3350 | } | ||
3351 | |||
3352 | /** | ||
3353 | * e1000_phy_m88_get_info - get m88 specific registers | ||
3354 | * @hw: Struct containing variables accessed by shared code | ||
3355 | * @phy_info: PHY information structure | ||
3356 | * | ||
3357 | * Get PHY information from various PHY registers for m88 PHY only. | ||
3358 | */ | ||
3359 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | ||
3360 | struct e1000_phy_info *phy_info) | ||
3361 | { | ||
3362 | s32 ret_val; | ||
3363 | u16 phy_data; | ||
3364 | e1000_rev_polarity polarity; | ||
3365 | |||
3366 | e_dbg("e1000_phy_m88_get_info"); | ||
3367 | |||
3368 | /* The downshift status is checked only once, after link is established, | ||
3369 | * and it stored in the hw->speed_downgraded parameter. */ | ||
3370 | phy_info->downshift = (e1000_downshift) hw->speed_downgraded; | ||
3371 | |||
3372 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
3373 | if (ret_val) | ||
3374 | return ret_val; | ||
3375 | |||
3376 | phy_info->extended_10bt_distance = | ||
3377 | ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> | ||
3378 | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? | ||
3379 | e1000_10bt_ext_dist_enable_lower : | ||
3380 | e1000_10bt_ext_dist_enable_normal; | ||
3381 | |||
3382 | phy_info->polarity_correction = | ||
3383 | ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> | ||
3384 | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? | ||
3385 | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | ||
3386 | |||
3387 | /* Check polarity status */ | ||
3388 | ret_val = e1000_check_polarity(hw, &polarity); | ||
3389 | if (ret_val) | ||
3390 | return ret_val; | ||
3391 | phy_info->cable_polarity = polarity; | ||
3392 | |||
3393 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
3394 | if (ret_val) | ||
3395 | return ret_val; | ||
3396 | |||
3397 | phy_info->mdix_mode = | ||
3398 | (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> | ||
3399 | M88E1000_PSSR_MDIX_SHIFT); | ||
3400 | |||
3401 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | ||
3402 | /* Cable Length Estimation and Local/Remote Receiver Information | ||
3403 | * are only valid at 1000 Mbps. | ||
3404 | */ | ||
3405 | phy_info->cable_length = | ||
3406 | (e1000_cable_length) ((phy_data & | ||
3407 | M88E1000_PSSR_CABLE_LENGTH) >> | ||
3408 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); | ||
3409 | |||
3410 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
3411 | if (ret_val) | ||
3412 | return ret_val; | ||
3413 | |||
3414 | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | ||
3415 | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? | ||
3416 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | ||
3417 | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> | ||
3418 | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | ||
3419 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | ||
3420 | |||
3421 | } | ||
3422 | |||
3423 | return E1000_SUCCESS; | ||
3424 | } | ||
3425 | |||
3426 | /** | ||
3427 | * e1000_phy_get_info - request phy info | ||
3428 | * @hw: Struct containing variables accessed by shared code | ||
3429 | * @phy_info: PHY information structure | ||
3430 | * | ||
3431 | * Get PHY information from various PHY registers | ||
3432 | */ | ||
3433 | s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) | ||
3434 | { | ||
3435 | s32 ret_val; | ||
3436 | u16 phy_data; | ||
3437 | |||
3438 | e_dbg("e1000_phy_get_info"); | ||
3439 | |||
3440 | phy_info->cable_length = e1000_cable_length_undefined; | ||
3441 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; | ||
3442 | phy_info->cable_polarity = e1000_rev_polarity_undefined; | ||
3443 | phy_info->downshift = e1000_downshift_undefined; | ||
3444 | phy_info->polarity_correction = e1000_polarity_reversal_undefined; | ||
3445 | phy_info->mdix_mode = e1000_auto_x_mode_undefined; | ||
3446 | phy_info->local_rx = e1000_1000t_rx_status_undefined; | ||
3447 | phy_info->remote_rx = e1000_1000t_rx_status_undefined; | ||
3448 | |||
3449 | if (hw->media_type != e1000_media_type_copper) { | ||
3450 | e_dbg("PHY info is only valid for copper media\n"); | ||
3451 | return -E1000_ERR_CONFIG; | ||
3452 | } | ||
3453 | |||
3454 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3455 | if (ret_val) | ||
3456 | return ret_val; | ||
3457 | |||
3458 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3459 | if (ret_val) | ||
3460 | return ret_val; | ||
3461 | |||
3462 | if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { | ||
3463 | e_dbg("PHY info is only valid if link is up\n"); | ||
3464 | return -E1000_ERR_CONFIG; | ||
3465 | } | ||
3466 | |||
3467 | if (hw->phy_type == e1000_phy_igp) | ||
3468 | return e1000_phy_igp_get_info(hw, phy_info); | ||
3469 | else if ((hw->phy_type == e1000_phy_8211) || | ||
3470 | (hw->phy_type == e1000_phy_8201)) | ||
3471 | return E1000_SUCCESS; | ||
3472 | else | ||
3473 | return e1000_phy_m88_get_info(hw, phy_info); | ||
3474 | } | ||
3475 | |||
3476 | s32 e1000_validate_mdi_setting(struct e1000_hw *hw) | ||
3477 | { | ||
3478 | e_dbg("e1000_validate_mdi_settings"); | ||
3479 | |||
3480 | if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | ||
3481 | e_dbg("Invalid MDI setting detected\n"); | ||
3482 | hw->mdix = 1; | ||
3483 | return -E1000_ERR_CONFIG; | ||
3484 | } | ||
3485 | return E1000_SUCCESS; | ||
3486 | } | ||
3487 | |||
3488 | /** | ||
3489 | * e1000_init_eeprom_params - initialize sw eeprom vars | ||
3490 | * @hw: Struct containing variables accessed by shared code | ||
3491 | * | ||
3492 | * Sets up eeprom variables in the hw struct. Must be called after mac_type | ||
3493 | * is configured. | ||
3494 | */ | ||
3495 | s32 e1000_init_eeprom_params(struct e1000_hw *hw) | ||
3496 | { | ||
3497 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3498 | u32 eecd = er32(EECD); | ||
3499 | s32 ret_val = E1000_SUCCESS; | ||
3500 | u16 eeprom_size; | ||
3501 | |||
3502 | e_dbg("e1000_init_eeprom_params"); | ||
3503 | |||
3504 | switch (hw->mac_type) { | ||
3505 | case e1000_82542_rev2_0: | ||
3506 | case e1000_82542_rev2_1: | ||
3507 | case e1000_82543: | ||
3508 | case e1000_82544: | ||
3509 | eeprom->type = e1000_eeprom_microwire; | ||
3510 | eeprom->word_size = 64; | ||
3511 | eeprom->opcode_bits = 3; | ||
3512 | eeprom->address_bits = 6; | ||
3513 | eeprom->delay_usec = 50; | ||
3514 | break; | ||
3515 | case e1000_82540: | ||
3516 | case e1000_82545: | ||
3517 | case e1000_82545_rev_3: | ||
3518 | case e1000_82546: | ||
3519 | case e1000_82546_rev_3: | ||
3520 | eeprom->type = e1000_eeprom_microwire; | ||
3521 | eeprom->opcode_bits = 3; | ||
3522 | eeprom->delay_usec = 50; | ||
3523 | if (eecd & E1000_EECD_SIZE) { | ||
3524 | eeprom->word_size = 256; | ||
3525 | eeprom->address_bits = 8; | ||
3526 | } else { | ||
3527 | eeprom->word_size = 64; | ||
3528 | eeprom->address_bits = 6; | ||
3529 | } | ||
3530 | break; | ||
3531 | case e1000_82541: | ||
3532 | case e1000_82541_rev_2: | ||
3533 | case e1000_82547: | ||
3534 | case e1000_82547_rev_2: | ||
3535 | if (eecd & E1000_EECD_TYPE) { | ||
3536 | eeprom->type = e1000_eeprom_spi; | ||
3537 | eeprom->opcode_bits = 8; | ||
3538 | eeprom->delay_usec = 1; | ||
3539 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
3540 | eeprom->page_size = 32; | ||
3541 | eeprom->address_bits = 16; | ||
3542 | } else { | ||
3543 | eeprom->page_size = 8; | ||
3544 | eeprom->address_bits = 8; | ||
3545 | } | ||
3546 | } else { | ||
3547 | eeprom->type = e1000_eeprom_microwire; | ||
3548 | eeprom->opcode_bits = 3; | ||
3549 | eeprom->delay_usec = 50; | ||
3550 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
3551 | eeprom->word_size = 256; | ||
3552 | eeprom->address_bits = 8; | ||
3553 | } else { | ||
3554 | eeprom->word_size = 64; | ||
3555 | eeprom->address_bits = 6; | ||
3556 | } | ||
3557 | } | ||
3558 | break; | ||
3559 | default: | ||
3560 | break; | ||
3561 | } | ||
3562 | |||
3563 | if (eeprom->type == e1000_eeprom_spi) { | ||
3564 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to | ||
3565 | * 32KB (incremented by powers of 2). | ||
3566 | */ | ||
3567 | /* Set to default value for initial eeprom read. */ | ||
3568 | eeprom->word_size = 64; | ||
3569 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); | ||
3570 | if (ret_val) | ||
3571 | return ret_val; | ||
3572 | eeprom_size = | ||
3573 | (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; | ||
3574 | /* 256B eeprom size was not supported in earlier hardware, so we | ||
3575 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) | ||
3576 | * is never the result used in the shifting logic below. */ | ||
3577 | if (eeprom_size) | ||
3578 | eeprom_size++; | ||
3579 | |||
3580 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | ||
3581 | } | ||
3582 | return ret_val; | ||
3583 | } | ||
3584 | |||
3585 | /** | ||
3586 | * e1000_raise_ee_clk - Raises the EEPROM's clock input. | ||
3587 | * @hw: Struct containing variables accessed by shared code | ||
3588 | * @eecd: EECD's current value | ||
3589 | */ | ||
3590 | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) | ||
3591 | { | ||
3592 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | ||
3593 | * wait <delay> microseconds. | ||
3594 | */ | ||
3595 | *eecd = *eecd | E1000_EECD_SK; | ||
3596 | ew32(EECD, *eecd); | ||
3597 | E1000_WRITE_FLUSH(); | ||
3598 | udelay(hw->eeprom.delay_usec); | ||
3599 | } | ||
3600 | |||
3601 | /** | ||
3602 | * e1000_lower_ee_clk - Lowers the EEPROM's clock input. | ||
3603 | * @hw: Struct containing variables accessed by shared code | ||
3604 | * @eecd: EECD's current value | ||
3605 | */ | ||
3606 | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) | ||
3607 | { | ||
3608 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then | ||
3609 | * wait 50 microseconds. | ||
3610 | */ | ||
3611 | *eecd = *eecd & ~E1000_EECD_SK; | ||
3612 | ew32(EECD, *eecd); | ||
3613 | E1000_WRITE_FLUSH(); | ||
3614 | udelay(hw->eeprom.delay_usec); | ||
3615 | } | ||
3616 | |||
3617 | /** | ||
3618 | * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. | ||
3619 | * @hw: Struct containing variables accessed by shared code | ||
3620 | * @data: data to send to the EEPROM | ||
3621 | * @count: number of bits to shift out | ||
3622 | */ | ||
3623 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) | ||
3624 | { | ||
3625 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3626 | u32 eecd; | ||
3627 | u32 mask; | ||
3628 | |||
3629 | /* We need to shift "count" bits out to the EEPROM. So, value in the | ||
3630 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | ||
3631 | * In order to do this, "data" must be broken down into bits. | ||
3632 | */ | ||
3633 | mask = 0x01 << (count - 1); | ||
3634 | eecd = er32(EECD); | ||
3635 | if (eeprom->type == e1000_eeprom_microwire) { | ||
3636 | eecd &= ~E1000_EECD_DO; | ||
3637 | } else if (eeprom->type == e1000_eeprom_spi) { | ||
3638 | eecd |= E1000_EECD_DO; | ||
3639 | } | ||
3640 | do { | ||
3641 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | ||
3642 | * and then raising and then lowering the clock (the SK bit controls | ||
3643 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM | ||
3644 | * by setting "DI" to "0" and then raising and then lowering the clock. | ||
3645 | */ | ||
3646 | eecd &= ~E1000_EECD_DI; | ||
3647 | |||
3648 | if (data & mask) | ||
3649 | eecd |= E1000_EECD_DI; | ||
3650 | |||
3651 | ew32(EECD, eecd); | ||
3652 | E1000_WRITE_FLUSH(); | ||
3653 | |||
3654 | udelay(eeprom->delay_usec); | ||
3655 | |||
3656 | e1000_raise_ee_clk(hw, &eecd); | ||
3657 | e1000_lower_ee_clk(hw, &eecd); | ||
3658 | |||
3659 | mask = mask >> 1; | ||
3660 | |||
3661 | } while (mask); | ||
3662 | |||
3663 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | ||
3664 | eecd &= ~E1000_EECD_DI; | ||
3665 | ew32(EECD, eecd); | ||
3666 | } | ||
3667 | |||
3668 | /** | ||
3669 | * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM | ||
3670 | * @hw: Struct containing variables accessed by shared code | ||
3671 | * @count: number of bits to shift in | ||
3672 | */ | ||
3673 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) | ||
3674 | { | ||
3675 | u32 eecd; | ||
3676 | u32 i; | ||
3677 | u16 data; | ||
3678 | |||
3679 | /* In order to read a register from the EEPROM, we need to shift 'count' | ||
3680 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock | ||
3681 | * input to the EEPROM (setting the SK bit), and then reading the value of | ||
3682 | * the "DO" bit. During this "shifting in" process the "DI" bit should | ||
3683 | * always be clear. | ||
3684 | */ | ||
3685 | |||
3686 | eecd = er32(EECD); | ||
3687 | |||
3688 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | ||
3689 | data = 0; | ||
3690 | |||
3691 | for (i = 0; i < count; i++) { | ||
3692 | data = data << 1; | ||
3693 | e1000_raise_ee_clk(hw, &eecd); | ||
3694 | |||
3695 | eecd = er32(EECD); | ||
3696 | |||
3697 | eecd &= ~(E1000_EECD_DI); | ||
3698 | if (eecd & E1000_EECD_DO) | ||
3699 | data |= 1; | ||
3700 | |||
3701 | e1000_lower_ee_clk(hw, &eecd); | ||
3702 | } | ||
3703 | |||
3704 | return data; | ||
3705 | } | ||
3706 | |||
3707 | /** | ||
3708 | * e1000_acquire_eeprom - Prepares EEPROM for access | ||
3709 | * @hw: Struct containing variables accessed by shared code | ||
3710 | * | ||
3711 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | ||
3712 | * function should be called before issuing a command to the EEPROM. | ||
3713 | */ | ||
3714 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw) | ||
3715 | { | ||
3716 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3717 | u32 eecd, i = 0; | ||
3718 | |||
3719 | e_dbg("e1000_acquire_eeprom"); | ||
3720 | |||
3721 | eecd = er32(EECD); | ||
3722 | |||
3723 | /* Request EEPROM Access */ | ||
3724 | if (hw->mac_type > e1000_82544) { | ||
3725 | eecd |= E1000_EECD_REQ; | ||
3726 | ew32(EECD, eecd); | ||
3727 | eecd = er32(EECD); | ||
3728 | while ((!(eecd & E1000_EECD_GNT)) && | ||
3729 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | ||
3730 | i++; | ||
3731 | udelay(5); | ||
3732 | eecd = er32(EECD); | ||
3733 | } | ||
3734 | if (!(eecd & E1000_EECD_GNT)) { | ||
3735 | eecd &= ~E1000_EECD_REQ; | ||
3736 | ew32(EECD, eecd); | ||
3737 | e_dbg("Could not acquire EEPROM grant\n"); | ||
3738 | return -E1000_ERR_EEPROM; | ||
3739 | } | ||
3740 | } | ||
3741 | |||
3742 | /* Setup EEPROM for Read/Write */ | ||
3743 | |||
3744 | if (eeprom->type == e1000_eeprom_microwire) { | ||
3745 | /* Clear SK and DI */ | ||
3746 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | ||
3747 | ew32(EECD, eecd); | ||
3748 | |||
3749 | /* Set CS */ | ||
3750 | eecd |= E1000_EECD_CS; | ||
3751 | ew32(EECD, eecd); | ||
3752 | } else if (eeprom->type == e1000_eeprom_spi) { | ||
3753 | /* Clear SK and CS */ | ||
3754 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
3755 | ew32(EECD, eecd); | ||
3756 | E1000_WRITE_FLUSH(); | ||
3757 | udelay(1); | ||
3758 | } | ||
3759 | |||
3760 | return E1000_SUCCESS; | ||
3761 | } | ||
3762 | |||
3763 | /** | ||
3764 | * e1000_standby_eeprom - Returns EEPROM to a "standby" state | ||
3765 | * @hw: Struct containing variables accessed by shared code | ||
3766 | */ | ||
3767 | static void e1000_standby_eeprom(struct e1000_hw *hw) | ||
3768 | { | ||
3769 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3770 | u32 eecd; | ||
3771 | |||
3772 | eecd = er32(EECD); | ||
3773 | |||
3774 | if (eeprom->type == e1000_eeprom_microwire) { | ||
3775 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
3776 | ew32(EECD, eecd); | ||
3777 | E1000_WRITE_FLUSH(); | ||
3778 | udelay(eeprom->delay_usec); | ||
3779 | |||
3780 | /* Clock high */ | ||
3781 | eecd |= E1000_EECD_SK; | ||
3782 | ew32(EECD, eecd); | ||
3783 | E1000_WRITE_FLUSH(); | ||
3784 | udelay(eeprom->delay_usec); | ||
3785 | |||
3786 | /* Select EEPROM */ | ||
3787 | eecd |= E1000_EECD_CS; | ||
3788 | ew32(EECD, eecd); | ||
3789 | E1000_WRITE_FLUSH(); | ||
3790 | udelay(eeprom->delay_usec); | ||
3791 | |||
3792 | /* Clock low */ | ||
3793 | eecd &= ~E1000_EECD_SK; | ||
3794 | ew32(EECD, eecd); | ||
3795 | E1000_WRITE_FLUSH(); | ||
3796 | udelay(eeprom->delay_usec); | ||
3797 | } else if (eeprom->type == e1000_eeprom_spi) { | ||
3798 | /* Toggle CS to flush commands */ | ||
3799 | eecd |= E1000_EECD_CS; | ||
3800 | ew32(EECD, eecd); | ||
3801 | E1000_WRITE_FLUSH(); | ||
3802 | udelay(eeprom->delay_usec); | ||
3803 | eecd &= ~E1000_EECD_CS; | ||
3804 | ew32(EECD, eecd); | ||
3805 | E1000_WRITE_FLUSH(); | ||
3806 | udelay(eeprom->delay_usec); | ||
3807 | } | ||
3808 | } | ||
3809 | |||
3810 | /** | ||
3811 | * e1000_release_eeprom - drop chip select | ||
3812 | * @hw: Struct containing variables accessed by shared code | ||
3813 | * | ||
3814 | * Terminates a command by inverting the EEPROM's chip select pin | ||
3815 | */ | ||
3816 | static void e1000_release_eeprom(struct e1000_hw *hw) | ||
3817 | { | ||
3818 | u32 eecd; | ||
3819 | |||
3820 | e_dbg("e1000_release_eeprom"); | ||
3821 | |||
3822 | eecd = er32(EECD); | ||
3823 | |||
3824 | if (hw->eeprom.type == e1000_eeprom_spi) { | ||
3825 | eecd |= E1000_EECD_CS; /* Pull CS high */ | ||
3826 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ | ||
3827 | |||
3828 | ew32(EECD, eecd); | ||
3829 | E1000_WRITE_FLUSH(); | ||
3830 | |||
3831 | udelay(hw->eeprom.delay_usec); | ||
3832 | } else if (hw->eeprom.type == e1000_eeprom_microwire) { | ||
3833 | /* cleanup eeprom */ | ||
3834 | |||
3835 | /* CS on Microwire is active-high */ | ||
3836 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | ||
3837 | |||
3838 | ew32(EECD, eecd); | ||
3839 | |||
3840 | /* Rising edge of clock */ | ||
3841 | eecd |= E1000_EECD_SK; | ||
3842 | ew32(EECD, eecd); | ||
3843 | E1000_WRITE_FLUSH(); | ||
3844 | udelay(hw->eeprom.delay_usec); | ||
3845 | |||
3846 | /* Falling edge of clock */ | ||
3847 | eecd &= ~E1000_EECD_SK; | ||
3848 | ew32(EECD, eecd); | ||
3849 | E1000_WRITE_FLUSH(); | ||
3850 | udelay(hw->eeprom.delay_usec); | ||
3851 | } | ||
3852 | |||
3853 | /* Stop requesting EEPROM access */ | ||
3854 | if (hw->mac_type > e1000_82544) { | ||
3855 | eecd &= ~E1000_EECD_REQ; | ||
3856 | ew32(EECD, eecd); | ||
3857 | } | ||
3858 | } | ||
3859 | |||
3860 | /** | ||
3861 | * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. | ||
3862 | * @hw: Struct containing variables accessed by shared code | ||
3863 | */ | ||
3864 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) | ||
3865 | { | ||
3866 | u16 retry_count = 0; | ||
3867 | u8 spi_stat_reg; | ||
3868 | |||
3869 | e_dbg("e1000_spi_eeprom_ready"); | ||
3870 | |||
3871 | /* Read "Status Register" repeatedly until the LSB is cleared. The | ||
3872 | * EEPROM will signal that the command has been completed by clearing | ||
3873 | * bit 0 of the internal status register. If it's not cleared within | ||
3874 | * 5 milliseconds, then error out. | ||
3875 | */ | ||
3876 | retry_count = 0; | ||
3877 | do { | ||
3878 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | ||
3879 | hw->eeprom.opcode_bits); | ||
3880 | spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8); | ||
3881 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | ||
3882 | break; | ||
3883 | |||
3884 | udelay(5); | ||
3885 | retry_count += 5; | ||
3886 | |||
3887 | e1000_standby_eeprom(hw); | ||
3888 | } while (retry_count < EEPROM_MAX_RETRY_SPI); | ||
3889 | |||
3890 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | ||
3891 | * only 0-5mSec on 5V devices) | ||
3892 | */ | ||
3893 | if (retry_count >= EEPROM_MAX_RETRY_SPI) { | ||
3894 | e_dbg("SPI EEPROM Status error\n"); | ||
3895 | return -E1000_ERR_EEPROM; | ||
3896 | } | ||
3897 | |||
3898 | return E1000_SUCCESS; | ||
3899 | } | ||
3900 | |||
3901 | /** | ||
3902 | * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. | ||
3903 | * @hw: Struct containing variables accessed by shared code | ||
3904 | * @offset: offset of word in the EEPROM to read | ||
3905 | * @data: word read from the EEPROM | ||
3906 | * @words: number of words to read | ||
3907 | */ | ||
3908 | s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
3909 | { | ||
3910 | s32 ret; | ||
3911 | spin_lock(&e1000_eeprom_lock); | ||
3912 | ret = e1000_do_read_eeprom(hw, offset, words, data); | ||
3913 | spin_unlock(&e1000_eeprom_lock); | ||
3914 | return ret; | ||
3915 | } | ||
3916 | |||
3917 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | ||
3918 | u16 *data) | ||
3919 | { | ||
3920 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3921 | u32 i = 0; | ||
3922 | |||
3923 | e_dbg("e1000_read_eeprom"); | ||
3924 | |||
3925 | if (hw->mac_type == e1000_ce4100) { | ||
3926 | GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words, | ||
3927 | data); | ||
3928 | return E1000_SUCCESS; | ||
3929 | } | ||
3930 | |||
3931 | /* If eeprom is not yet detected, do so now */ | ||
3932 | if (eeprom->word_size == 0) | ||
3933 | e1000_init_eeprom_params(hw); | ||
3934 | |||
3935 | /* A check for invalid values: offset too large, too many words, and not | ||
3936 | * enough words. | ||
3937 | */ | ||
3938 | if ((offset >= eeprom->word_size) | ||
3939 | || (words > eeprom->word_size - offset) || (words == 0)) { | ||
3940 | e_dbg("\"words\" parameter out of bounds. Words = %d," | ||
3941 | "size = %d\n", offset, eeprom->word_size); | ||
3942 | return -E1000_ERR_EEPROM; | ||
3943 | } | ||
3944 | |||
3945 | /* EEPROM's that don't use EERD to read require us to bit-bang the SPI | ||
3946 | * directly. In this case, we need to acquire the EEPROM so that | ||
3947 | * FW or other port software does not interrupt. | ||
3948 | */ | ||
3949 | /* Prepare the EEPROM for bit-bang reading */ | ||
3950 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
3951 | return -E1000_ERR_EEPROM; | ||
3952 | |||
3953 | /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have | ||
3954 | * acquired the EEPROM at this point, so any returns should release it */ | ||
3955 | if (eeprom->type == e1000_eeprom_spi) { | ||
3956 | u16 word_in; | ||
3957 | u8 read_opcode = EEPROM_READ_OPCODE_SPI; | ||
3958 | |||
3959 | if (e1000_spi_eeprom_ready(hw)) { | ||
3960 | e1000_release_eeprom(hw); | ||
3961 | return -E1000_ERR_EEPROM; | ||
3962 | } | ||
3963 | |||
3964 | e1000_standby_eeprom(hw); | ||
3965 | |||
3966 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | ||
3967 | if ((eeprom->address_bits == 8) && (offset >= 128)) | ||
3968 | read_opcode |= EEPROM_A8_OPCODE_SPI; | ||
3969 | |||
3970 | /* Send the READ command (opcode + addr) */ | ||
3971 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | ||
3972 | e1000_shift_out_ee_bits(hw, (u16) (offset * 2), | ||
3973 | eeprom->address_bits); | ||
3974 | |||
3975 | /* Read the data. The address of the eeprom internally increments with | ||
3976 | * each byte (spi) being read, saving on the overhead of eeprom setup | ||
3977 | * and tear-down. The address counter will roll over if reading beyond | ||
3978 | * the size of the eeprom, thus allowing the entire memory to be read | ||
3979 | * starting from any offset. */ | ||
3980 | for (i = 0; i < words; i++) { | ||
3981 | word_in = e1000_shift_in_ee_bits(hw, 16); | ||
3982 | data[i] = (word_in >> 8) | (word_in << 8); | ||
3983 | } | ||
3984 | } else if (eeprom->type == e1000_eeprom_microwire) { | ||
3985 | for (i = 0; i < words; i++) { | ||
3986 | /* Send the READ command (opcode + addr) */ | ||
3987 | e1000_shift_out_ee_bits(hw, | ||
3988 | EEPROM_READ_OPCODE_MICROWIRE, | ||
3989 | eeprom->opcode_bits); | ||
3990 | e1000_shift_out_ee_bits(hw, (u16) (offset + i), | ||
3991 | eeprom->address_bits); | ||
3992 | |||
3993 | /* Read the data. For microwire, each word requires the overhead | ||
3994 | * of eeprom setup and tear-down. */ | ||
3995 | data[i] = e1000_shift_in_ee_bits(hw, 16); | ||
3996 | e1000_standby_eeprom(hw); | ||
3997 | } | ||
3998 | } | ||
3999 | |||
4000 | /* End this read operation */ | ||
4001 | e1000_release_eeprom(hw); | ||
4002 | |||
4003 | return E1000_SUCCESS; | ||
4004 | } | ||
4005 | |||
4006 | /** | ||
4007 | * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum | ||
4008 | * @hw: Struct containing variables accessed by shared code | ||
4009 | * | ||
4010 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | ||
4011 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | ||
4012 | * valid. | ||
4013 | */ | ||
4014 | s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) | ||
4015 | { | ||
4016 | u16 checksum = 0; | ||
4017 | u16 i, eeprom_data; | ||
4018 | |||
4019 | e_dbg("e1000_validate_eeprom_checksum"); | ||
4020 | |||
4021 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
4022 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||
4023 | e_dbg("EEPROM Read Error\n"); | ||
4024 | return -E1000_ERR_EEPROM; | ||
4025 | } | ||
4026 | checksum += eeprom_data; | ||
4027 | } | ||
4028 | |||
4029 | #ifdef CONFIG_PARISC | ||
4030 | /* This is a signature and not a checksum on HP c8000 */ | ||
4031 | if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6)) | ||
4032 | return E1000_SUCCESS; | ||
4033 | |||
4034 | #endif | ||
4035 | if (checksum == (u16) EEPROM_SUM) | ||
4036 | return E1000_SUCCESS; | ||
4037 | else { | ||
4038 | e_dbg("EEPROM Checksum Invalid\n"); | ||
4039 | return -E1000_ERR_EEPROM; | ||
4040 | } | ||
4041 | } | ||
4042 | |||
4043 | /** | ||
4044 | * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum | ||
4045 | * @hw: Struct containing variables accessed by shared code | ||
4046 | * | ||
4047 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | ||
4048 | * Writes the difference to word offset 63 of the EEPROM. | ||
4049 | */ | ||
4050 | s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) | ||
4051 | { | ||
4052 | u16 checksum = 0; | ||
4053 | u16 i, eeprom_data; | ||
4054 | |||
4055 | e_dbg("e1000_update_eeprom_checksum"); | ||
4056 | |||
4057 | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { | ||
4058 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||
4059 | e_dbg("EEPROM Read Error\n"); | ||
4060 | return -E1000_ERR_EEPROM; | ||
4061 | } | ||
4062 | checksum += eeprom_data; | ||
4063 | } | ||
4064 | checksum = (u16) EEPROM_SUM - checksum; | ||
4065 | if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | ||
4066 | e_dbg("EEPROM Write Error\n"); | ||
4067 | return -E1000_ERR_EEPROM; | ||
4068 | } | ||
4069 | return E1000_SUCCESS; | ||
4070 | } | ||
4071 | |||
4072 | /** | ||
4073 | * e1000_write_eeprom - write words to the different EEPROM types. | ||
4074 | * @hw: Struct containing variables accessed by shared code | ||
4075 | * @offset: offset within the EEPROM to be written to | ||
4076 | * @words: number of words to write | ||
4077 | * @data: 16 bit word to be written to the EEPROM | ||
4078 | * | ||
4079 | * If e1000_update_eeprom_checksum is not called after this function, the | ||
4080 | * EEPROM will most likely contain an invalid checksum. | ||
4081 | */ | ||
4082 | s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
4083 | { | ||
4084 | s32 ret; | ||
4085 | spin_lock(&e1000_eeprom_lock); | ||
4086 | ret = e1000_do_write_eeprom(hw, offset, words, data); | ||
4087 | spin_unlock(&e1000_eeprom_lock); | ||
4088 | return ret; | ||
4089 | } | ||
4090 | |||
4091 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | ||
4092 | u16 *data) | ||
4093 | { | ||
4094 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
4095 | s32 status = 0; | ||
4096 | |||
4097 | e_dbg("e1000_write_eeprom"); | ||
4098 | |||
4099 | if (hw->mac_type == e1000_ce4100) { | ||
4100 | GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words, | ||
4101 | data); | ||
4102 | return E1000_SUCCESS; | ||
4103 | } | ||
4104 | |||
4105 | /* If eeprom is not yet detected, do so now */ | ||
4106 | if (eeprom->word_size == 0) | ||
4107 | e1000_init_eeprom_params(hw); | ||
4108 | |||
4109 | /* A check for invalid values: offset too large, too many words, and not | ||
4110 | * enough words. | ||
4111 | */ | ||
4112 | if ((offset >= eeprom->word_size) | ||
4113 | || (words > eeprom->word_size - offset) || (words == 0)) { | ||
4114 | e_dbg("\"words\" parameter out of bounds\n"); | ||
4115 | return -E1000_ERR_EEPROM; | ||
4116 | } | ||
4117 | |||
4118 | /* Prepare the EEPROM for writing */ | ||
4119 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
4120 | return -E1000_ERR_EEPROM; | ||
4121 | |||
4122 | if (eeprom->type == e1000_eeprom_microwire) { | ||
4123 | status = e1000_write_eeprom_microwire(hw, offset, words, data); | ||
4124 | } else { | ||
4125 | status = e1000_write_eeprom_spi(hw, offset, words, data); | ||
4126 | msleep(10); | ||
4127 | } | ||
4128 | |||
4129 | /* Done with writing */ | ||
4130 | e1000_release_eeprom(hw); | ||
4131 | |||
4132 | return status; | ||
4133 | } | ||
4134 | |||
4135 | /** | ||
4136 | * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. | ||
4137 | * @hw: Struct containing variables accessed by shared code | ||
4138 | * @offset: offset within the EEPROM to be written to | ||
4139 | * @words: number of words to write | ||
4140 | * @data: pointer to array of 8 bit words to be written to the EEPROM | ||
4141 | */ | ||
4142 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, | ||
4143 | u16 *data) | ||
4144 | { | ||
4145 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
4146 | u16 widx = 0; | ||
4147 | |||
4148 | e_dbg("e1000_write_eeprom_spi"); | ||
4149 | |||
4150 | while (widx < words) { | ||
4151 | u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; | ||
4152 | |||
4153 | if (e1000_spi_eeprom_ready(hw)) | ||
4154 | return -E1000_ERR_EEPROM; | ||
4155 | |||
4156 | e1000_standby_eeprom(hw); | ||
4157 | |||
4158 | /* Send the WRITE ENABLE command (8 bit opcode ) */ | ||
4159 | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, | ||
4160 | eeprom->opcode_bits); | ||
4161 | |||
4162 | e1000_standby_eeprom(hw); | ||
4163 | |||
4164 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | ||
4165 | if ((eeprom->address_bits == 8) && (offset >= 128)) | ||
4166 | write_opcode |= EEPROM_A8_OPCODE_SPI; | ||
4167 | |||
4168 | /* Send the Write command (8-bit opcode + addr) */ | ||
4169 | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | ||
4170 | |||
4171 | e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2), | ||
4172 | eeprom->address_bits); | ||
4173 | |||
4174 | /* Send the data */ | ||
4175 | |||
4176 | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ | ||
4177 | while (widx < words) { | ||
4178 | u16 word_out = data[widx]; | ||
4179 | word_out = (word_out >> 8) | (word_out << 8); | ||
4180 | e1000_shift_out_ee_bits(hw, word_out, 16); | ||
4181 | widx++; | ||
4182 | |||
4183 | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE | ||
4184 | * operation, while the smaller eeproms are capable of an 8-byte | ||
4185 | * PAGE WRITE operation. Break the inner loop to pass new address | ||
4186 | */ | ||
4187 | if ((((offset + widx) * 2) % eeprom->page_size) == 0) { | ||
4188 | e1000_standby_eeprom(hw); | ||
4189 | break; | ||
4190 | } | ||
4191 | } | ||
4192 | } | ||
4193 | |||
4194 | return E1000_SUCCESS; | ||
4195 | } | ||
4196 | |||
4197 | /** | ||
4198 | * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. | ||
4199 | * @hw: Struct containing variables accessed by shared code | ||
4200 | * @offset: offset within the EEPROM to be written to | ||
4201 | * @words: number of words to write | ||
4202 | * @data: pointer to array of 8 bit words to be written to the EEPROM | ||
4203 | */ | ||
4204 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | ||
4205 | u16 words, u16 *data) | ||
4206 | { | ||
4207 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
4208 | u32 eecd; | ||
4209 | u16 words_written = 0; | ||
4210 | u16 i = 0; | ||
4211 | |||
4212 | e_dbg("e1000_write_eeprom_microwire"); | ||
4213 | |||
4214 | /* Send the write enable command to the EEPROM (3-bit opcode plus | ||
4215 | * 6/8-bit dummy address beginning with 11). It's less work to include | ||
4216 | * the 11 of the dummy address as part of the opcode than it is to shift | ||
4217 | * it over the correct number of bits for the address. This puts the | ||
4218 | * EEPROM into write/erase mode. | ||
4219 | */ | ||
4220 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, | ||
4221 | (u16) (eeprom->opcode_bits + 2)); | ||
4222 | |||
4223 | e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); | ||
4224 | |||
4225 | /* Prepare the EEPROM */ | ||
4226 | e1000_standby_eeprom(hw); | ||
4227 | |||
4228 | while (words_written < words) { | ||
4229 | /* Send the Write command (3-bit opcode + addr) */ | ||
4230 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, | ||
4231 | eeprom->opcode_bits); | ||
4232 | |||
4233 | e1000_shift_out_ee_bits(hw, (u16) (offset + words_written), | ||
4234 | eeprom->address_bits); | ||
4235 | |||
4236 | /* Send the data */ | ||
4237 | e1000_shift_out_ee_bits(hw, data[words_written], 16); | ||
4238 | |||
4239 | /* Toggle the CS line. This in effect tells the EEPROM to execute | ||
4240 | * the previous command. | ||
4241 | */ | ||
4242 | e1000_standby_eeprom(hw); | ||
4243 | |||
4244 | /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will | ||
4245 | * signal that the command has been completed by raising the DO signal. | ||
4246 | * If DO does not go high in 10 milliseconds, then error out. | ||
4247 | */ | ||
4248 | for (i = 0; i < 200; i++) { | ||
4249 | eecd = er32(EECD); | ||
4250 | if (eecd & E1000_EECD_DO) | ||
4251 | break; | ||
4252 | udelay(50); | ||
4253 | } | ||
4254 | if (i == 200) { | ||
4255 | e_dbg("EEPROM Write did not complete\n"); | ||
4256 | return -E1000_ERR_EEPROM; | ||
4257 | } | ||
4258 | |||
4259 | /* Recover from write */ | ||
4260 | e1000_standby_eeprom(hw); | ||
4261 | |||
4262 | words_written++; | ||
4263 | } | ||
4264 | |||
4265 | /* Send the write disable command to the EEPROM (3-bit opcode plus | ||
4266 | * 6/8-bit dummy address beginning with 10). It's less work to include | ||
4267 | * the 10 of the dummy address as part of the opcode than it is to shift | ||
4268 | * it over the correct number of bits for the address. This takes the | ||
4269 | * EEPROM out of write/erase mode. | ||
4270 | */ | ||
4271 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, | ||
4272 | (u16) (eeprom->opcode_bits + 2)); | ||
4273 | |||
4274 | e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); | ||
4275 | |||
4276 | return E1000_SUCCESS; | ||
4277 | } | ||
4278 | |||
4279 | /** | ||
4280 | * e1000_read_mac_addr - read the adapters MAC from eeprom | ||
4281 | * @hw: Struct containing variables accessed by shared code | ||
4282 | * | ||
4283 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | ||
4284 | * second function of dual function devices | ||
4285 | */ | ||
4286 | s32 e1000_read_mac_addr(struct e1000_hw *hw) | ||
4287 | { | ||
4288 | u16 offset; | ||
4289 | u16 eeprom_data, i; | ||
4290 | |||
4291 | e_dbg("e1000_read_mac_addr"); | ||
4292 | |||
4293 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | ||
4294 | offset = i >> 1; | ||
4295 | if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | ||
4296 | e_dbg("EEPROM Read Error\n"); | ||
4297 | return -E1000_ERR_EEPROM; | ||
4298 | } | ||
4299 | hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF); | ||
4300 | hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8); | ||
4301 | } | ||
4302 | |||
4303 | switch (hw->mac_type) { | ||
4304 | default: | ||
4305 | break; | ||
4306 | case e1000_82546: | ||
4307 | case e1000_82546_rev_3: | ||
4308 | if (er32(STATUS) & E1000_STATUS_FUNC_1) | ||
4309 | hw->perm_mac_addr[5] ^= 0x01; | ||
4310 | break; | ||
4311 | } | ||
4312 | |||
4313 | for (i = 0; i < NODE_ADDRESS_SIZE; i++) | ||
4314 | hw->mac_addr[i] = hw->perm_mac_addr[i]; | ||
4315 | return E1000_SUCCESS; | ||
4316 | } | ||
4317 | |||
4318 | /** | ||
4319 | * e1000_init_rx_addrs - Initializes receive address filters. | ||
4320 | * @hw: Struct containing variables accessed by shared code | ||
4321 | * | ||
4322 | * Places the MAC address in receive address register 0 and clears the rest | ||
4323 | * of the receive address registers. Clears the multicast table. Assumes | ||
4324 | * the receiver is in reset when the routine is called. | ||
4325 | */ | ||
4326 | static void e1000_init_rx_addrs(struct e1000_hw *hw) | ||
4327 | { | ||
4328 | u32 i; | ||
4329 | u32 rar_num; | ||
4330 | |||
4331 | e_dbg("e1000_init_rx_addrs"); | ||
4332 | |||
4333 | /* Setup the receive address. */ | ||
4334 | e_dbg("Programming MAC Address into RAR[0]\n"); | ||
4335 | |||
4336 | e1000_rar_set(hw, hw->mac_addr, 0); | ||
4337 | |||
4338 | rar_num = E1000_RAR_ENTRIES; | ||
4339 | |||
4340 | /* Zero out the other 15 receive addresses. */ | ||
4341 | e_dbg("Clearing RAR[1-15]\n"); | ||
4342 | for (i = 1; i < rar_num; i++) { | ||
4343 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | ||
4344 | E1000_WRITE_FLUSH(); | ||
4345 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | ||
4346 | E1000_WRITE_FLUSH(); | ||
4347 | } | ||
4348 | } | ||
4349 | |||
4350 | /** | ||
4351 | * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table | ||
4352 | * @hw: Struct containing variables accessed by shared code | ||
4353 | * @mc_addr: the multicast address to hash | ||
4354 | */ | ||
4355 | u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | ||
4356 | { | ||
4357 | u32 hash_value = 0; | ||
4358 | |||
4359 | /* The portion of the address that is used for the hash table is | ||
4360 | * determined by the mc_filter_type setting. | ||
4361 | */ | ||
4362 | switch (hw->mc_filter_type) { | ||
4363 | /* [0] [1] [2] [3] [4] [5] | ||
4364 | * 01 AA 00 12 34 56 | ||
4365 | * LSB MSB | ||
4366 | */ | ||
4367 | case 0: | ||
4368 | /* [47:36] i.e. 0x563 for above example address */ | ||
4369 | hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); | ||
4370 | break; | ||
4371 | case 1: | ||
4372 | /* [46:35] i.e. 0xAC6 for above example address */ | ||
4373 | hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); | ||
4374 | break; | ||
4375 | case 2: | ||
4376 | /* [45:34] i.e. 0x5D8 for above example address */ | ||
4377 | hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); | ||
4378 | break; | ||
4379 | case 3: | ||
4380 | /* [43:32] i.e. 0x634 for above example address */ | ||
4381 | hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); | ||
4382 | break; | ||
4383 | } | ||
4384 | |||
4385 | hash_value &= 0xFFF; | ||
4386 | return hash_value; | ||
4387 | } | ||
4388 | |||
4389 | /** | ||
4390 | * e1000_rar_set - Puts an ethernet address into a receive address register. | ||
4391 | * @hw: Struct containing variables accessed by shared code | ||
4392 | * @addr: Address to put into receive address register | ||
4393 | * @index: Receive address register to write | ||
4394 | */ | ||
4395 | void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | ||
4396 | { | ||
4397 | u32 rar_low, rar_high; | ||
4398 | |||
4399 | /* HW expects these in little endian so we reverse the byte order | ||
4400 | * from network order (big endian) to little endian | ||
4401 | */ | ||
4402 | rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | | ||
4403 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
4404 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
4405 | |||
4406 | /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx | ||
4407 | * unit hang. | ||
4408 | * | ||
4409 | * Description: | ||
4410 | * If there are any Rx frames queued up or otherwise present in the HW | ||
4411 | * before RSS is enabled, and then we enable RSS, the HW Rx unit will | ||
4412 | * hang. To work around this issue, we have to disable receives and | ||
4413 | * flush out all Rx frames before we enable RSS. To do so, we modify we | ||
4414 | * redirect all Rx traffic to manageability and then reset the HW. | ||
4415 | * This flushes away Rx frames, and (since the redirections to | ||
4416 | * manageability persists across resets) keeps new ones from coming in | ||
4417 | * while we work. Then, we clear the Address Valid AV bit for all MAC | ||
4418 | * addresses and undo the re-direction to manageability. | ||
4419 | * Now, frames are coming in again, but the MAC won't accept them, so | ||
4420 | * far so good. We now proceed to initialize RSS (if necessary) and | ||
4421 | * configure the Rx unit. Last, we re-enable the AV bits and continue | ||
4422 | * on our merry way. | ||
4423 | */ | ||
4424 | switch (hw->mac_type) { | ||
4425 | default: | ||
4426 | /* Indicate to hardware the Address is Valid. */ | ||
4427 | rar_high |= E1000_RAH_AV; | ||
4428 | break; | ||
4429 | } | ||
4430 | |||
4431 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | ||
4432 | E1000_WRITE_FLUSH(); | ||
4433 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | ||
4434 | E1000_WRITE_FLUSH(); | ||
4435 | } | ||
4436 | |||
4437 | /** | ||
4438 | * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. | ||
4439 | * @hw: Struct containing variables accessed by shared code | ||
4440 | * @offset: Offset in VLAN filer table to write | ||
4441 | * @value: Value to write into VLAN filter table | ||
4442 | */ | ||
4443 | void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | ||
4444 | { | ||
4445 | u32 temp; | ||
4446 | |||
4447 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | ||
4448 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | ||
4449 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | ||
4450 | E1000_WRITE_FLUSH(); | ||
4451 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | ||
4452 | E1000_WRITE_FLUSH(); | ||
4453 | } else { | ||
4454 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | ||
4455 | E1000_WRITE_FLUSH(); | ||
4456 | } | ||
4457 | } | ||
4458 | |||
4459 | /** | ||
4460 | * e1000_clear_vfta - Clears the VLAN filer table | ||
4461 | * @hw: Struct containing variables accessed by shared code | ||
4462 | */ | ||
4463 | static void e1000_clear_vfta(struct e1000_hw *hw) | ||
4464 | { | ||
4465 | u32 offset; | ||
4466 | u32 vfta_value = 0; | ||
4467 | u32 vfta_offset = 0; | ||
4468 | u32 vfta_bit_in_reg = 0; | ||
4469 | |||
4470 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
4471 | /* If the offset we want to clear is the same offset of the | ||
4472 | * manageability VLAN ID, then clear all bits except that of the | ||
4473 | * manageability unit */ | ||
4474 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | ||
4475 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | ||
4476 | E1000_WRITE_FLUSH(); | ||
4477 | } | ||
4478 | } | ||
4479 | |||
4480 | static s32 e1000_id_led_init(struct e1000_hw *hw) | ||
4481 | { | ||
4482 | u32 ledctl; | ||
4483 | const u32 ledctl_mask = 0x000000FF; | ||
4484 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
4485 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
4486 | u16 eeprom_data, i, temp; | ||
4487 | const u16 led_mask = 0x0F; | ||
4488 | |||
4489 | e_dbg("e1000_id_led_init"); | ||
4490 | |||
4491 | if (hw->mac_type < e1000_82540) { | ||
4492 | /* Nothing to do */ | ||
4493 | return E1000_SUCCESS; | ||
4494 | } | ||
4495 | |||
4496 | ledctl = er32(LEDCTL); | ||
4497 | hw->ledctl_default = ledctl; | ||
4498 | hw->ledctl_mode1 = hw->ledctl_default; | ||
4499 | hw->ledctl_mode2 = hw->ledctl_default; | ||
4500 | |||
4501 | if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { | ||
4502 | e_dbg("EEPROM Read Error\n"); | ||
4503 | return -E1000_ERR_EEPROM; | ||
4504 | } | ||
4505 | |||
4506 | if ((eeprom_data == ID_LED_RESERVED_0000) || | ||
4507 | (eeprom_data == ID_LED_RESERVED_FFFF)) { | ||
4508 | eeprom_data = ID_LED_DEFAULT; | ||
4509 | } | ||
4510 | |||
4511 | for (i = 0; i < 4; i++) { | ||
4512 | temp = (eeprom_data >> (i << 2)) & led_mask; | ||
4513 | switch (temp) { | ||
4514 | case ID_LED_ON1_DEF2: | ||
4515 | case ID_LED_ON1_ON2: | ||
4516 | case ID_LED_ON1_OFF2: | ||
4517 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
4518 | hw->ledctl_mode1 |= ledctl_on << (i << 3); | ||
4519 | break; | ||
4520 | case ID_LED_OFF1_DEF2: | ||
4521 | case ID_LED_OFF1_ON2: | ||
4522 | case ID_LED_OFF1_OFF2: | ||
4523 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
4524 | hw->ledctl_mode1 |= ledctl_off << (i << 3); | ||
4525 | break; | ||
4526 | default: | ||
4527 | /* Do nothing */ | ||
4528 | break; | ||
4529 | } | ||
4530 | switch (temp) { | ||
4531 | case ID_LED_DEF1_ON2: | ||
4532 | case ID_LED_ON1_ON2: | ||
4533 | case ID_LED_OFF1_ON2: | ||
4534 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
4535 | hw->ledctl_mode2 |= ledctl_on << (i << 3); | ||
4536 | break; | ||
4537 | case ID_LED_DEF1_OFF2: | ||
4538 | case ID_LED_ON1_OFF2: | ||
4539 | case ID_LED_OFF1_OFF2: | ||
4540 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
4541 | hw->ledctl_mode2 |= ledctl_off << (i << 3); | ||
4542 | break; | ||
4543 | default: | ||
4544 | /* Do nothing */ | ||
4545 | break; | ||
4546 | } | ||
4547 | } | ||
4548 | return E1000_SUCCESS; | ||
4549 | } | ||
4550 | |||
4551 | /** | ||
4552 | * e1000_setup_led | ||
4553 | * @hw: Struct containing variables accessed by shared code | ||
4554 | * | ||
4555 | * Prepares SW controlable LED for use and saves the current state of the LED. | ||
4556 | */ | ||
4557 | s32 e1000_setup_led(struct e1000_hw *hw) | ||
4558 | { | ||
4559 | u32 ledctl; | ||
4560 | s32 ret_val = E1000_SUCCESS; | ||
4561 | |||
4562 | e_dbg("e1000_setup_led"); | ||
4563 | |||
4564 | switch (hw->mac_type) { | ||
4565 | case e1000_82542_rev2_0: | ||
4566 | case e1000_82542_rev2_1: | ||
4567 | case e1000_82543: | ||
4568 | case e1000_82544: | ||
4569 | /* No setup necessary */ | ||
4570 | break; | ||
4571 | case e1000_82541: | ||
4572 | case e1000_82547: | ||
4573 | case e1000_82541_rev_2: | ||
4574 | case e1000_82547_rev_2: | ||
4575 | /* Turn off PHY Smart Power Down (if enabled) */ | ||
4576 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
4577 | &hw->phy_spd_default); | ||
4578 | if (ret_val) | ||
4579 | return ret_val; | ||
4580 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
4581 | (u16) (hw->phy_spd_default & | ||
4582 | ~IGP01E1000_GMII_SPD)); | ||
4583 | if (ret_val) | ||
4584 | return ret_val; | ||
4585 | /* Fall Through */ | ||
4586 | default: | ||
4587 | if (hw->media_type == e1000_media_type_fiber) { | ||
4588 | ledctl = er32(LEDCTL); | ||
4589 | /* Save current LEDCTL settings */ | ||
4590 | hw->ledctl_default = ledctl; | ||
4591 | /* Turn off LED0 */ | ||
4592 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | ||
4593 | E1000_LEDCTL_LED0_BLINK | | ||
4594 | E1000_LEDCTL_LED0_MODE_MASK); | ||
4595 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | ||
4596 | E1000_LEDCTL_LED0_MODE_SHIFT); | ||
4597 | ew32(LEDCTL, ledctl); | ||
4598 | } else if (hw->media_type == e1000_media_type_copper) | ||
4599 | ew32(LEDCTL, hw->ledctl_mode1); | ||
4600 | break; | ||
4601 | } | ||
4602 | |||
4603 | return E1000_SUCCESS; | ||
4604 | } | ||
4605 | |||
4606 | /** | ||
4607 | * e1000_cleanup_led - Restores the saved state of the SW controlable LED. | ||
4608 | * @hw: Struct containing variables accessed by shared code | ||
4609 | */ | ||
4610 | s32 e1000_cleanup_led(struct e1000_hw *hw) | ||
4611 | { | ||
4612 | s32 ret_val = E1000_SUCCESS; | ||
4613 | |||
4614 | e_dbg("e1000_cleanup_led"); | ||
4615 | |||
4616 | switch (hw->mac_type) { | ||
4617 | case e1000_82542_rev2_0: | ||
4618 | case e1000_82542_rev2_1: | ||
4619 | case e1000_82543: | ||
4620 | case e1000_82544: | ||
4621 | /* No cleanup necessary */ | ||
4622 | break; | ||
4623 | case e1000_82541: | ||
4624 | case e1000_82547: | ||
4625 | case e1000_82541_rev_2: | ||
4626 | case e1000_82547_rev_2: | ||
4627 | /* Turn on PHY Smart Power Down (if previously enabled) */ | ||
4628 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
4629 | hw->phy_spd_default); | ||
4630 | if (ret_val) | ||
4631 | return ret_val; | ||
4632 | /* Fall Through */ | ||
4633 | default: | ||
4634 | /* Restore LEDCTL settings */ | ||
4635 | ew32(LEDCTL, hw->ledctl_default); | ||
4636 | break; | ||
4637 | } | ||
4638 | |||
4639 | return E1000_SUCCESS; | ||
4640 | } | ||
4641 | |||
4642 | /** | ||
4643 | * e1000_led_on - Turns on the software controllable LED | ||
4644 | * @hw: Struct containing variables accessed by shared code | ||
4645 | */ | ||
4646 | s32 e1000_led_on(struct e1000_hw *hw) | ||
4647 | { | ||
4648 | u32 ctrl = er32(CTRL); | ||
4649 | |||
4650 | e_dbg("e1000_led_on"); | ||
4651 | |||
4652 | switch (hw->mac_type) { | ||
4653 | case e1000_82542_rev2_0: | ||
4654 | case e1000_82542_rev2_1: | ||
4655 | case e1000_82543: | ||
4656 | /* Set SW Defineable Pin 0 to turn on the LED */ | ||
4657 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4658 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4659 | break; | ||
4660 | case e1000_82544: | ||
4661 | if (hw->media_type == e1000_media_type_fiber) { | ||
4662 | /* Set SW Defineable Pin 0 to turn on the LED */ | ||
4663 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4664 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4665 | } else { | ||
4666 | /* Clear SW Defineable Pin 0 to turn on the LED */ | ||
4667 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4668 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4669 | } | ||
4670 | break; | ||
4671 | default: | ||
4672 | if (hw->media_type == e1000_media_type_fiber) { | ||
4673 | /* Clear SW Defineable Pin 0 to turn on the LED */ | ||
4674 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4675 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4676 | } else if (hw->media_type == e1000_media_type_copper) { | ||
4677 | ew32(LEDCTL, hw->ledctl_mode2); | ||
4678 | return E1000_SUCCESS; | ||
4679 | } | ||
4680 | break; | ||
4681 | } | ||
4682 | |||
4683 | ew32(CTRL, ctrl); | ||
4684 | |||
4685 | return E1000_SUCCESS; | ||
4686 | } | ||
4687 | |||
4688 | /** | ||
4689 | * e1000_led_off - Turns off the software controllable LED | ||
4690 | * @hw: Struct containing variables accessed by shared code | ||
4691 | */ | ||
4692 | s32 e1000_led_off(struct e1000_hw *hw) | ||
4693 | { | ||
4694 | u32 ctrl = er32(CTRL); | ||
4695 | |||
4696 | e_dbg("e1000_led_off"); | ||
4697 | |||
4698 | switch (hw->mac_type) { | ||
4699 | case e1000_82542_rev2_0: | ||
4700 | case e1000_82542_rev2_1: | ||
4701 | case e1000_82543: | ||
4702 | /* Clear SW Defineable Pin 0 to turn off the LED */ | ||
4703 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4704 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4705 | break; | ||
4706 | case e1000_82544: | ||
4707 | if (hw->media_type == e1000_media_type_fiber) { | ||
4708 | /* Clear SW Defineable Pin 0 to turn off the LED */ | ||
4709 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4710 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4711 | } else { | ||
4712 | /* Set SW Defineable Pin 0 to turn off the LED */ | ||
4713 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4714 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4715 | } | ||
4716 | break; | ||
4717 | default: | ||
4718 | if (hw->media_type == e1000_media_type_fiber) { | ||
4719 | /* Set SW Defineable Pin 0 to turn off the LED */ | ||
4720 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4721 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4722 | } else if (hw->media_type == e1000_media_type_copper) { | ||
4723 | ew32(LEDCTL, hw->ledctl_mode1); | ||
4724 | return E1000_SUCCESS; | ||
4725 | } | ||
4726 | break; | ||
4727 | } | ||
4728 | |||
4729 | ew32(CTRL, ctrl); | ||
4730 | |||
4731 | return E1000_SUCCESS; | ||
4732 | } | ||
4733 | |||
4734 | /** | ||
4735 | * e1000_clear_hw_cntrs - Clears all hardware statistics counters. | ||
4736 | * @hw: Struct containing variables accessed by shared code | ||
4737 | */ | ||
4738 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw) | ||
4739 | { | ||
4740 | volatile u32 temp; | ||
4741 | |||
4742 | temp = er32(CRCERRS); | ||
4743 | temp = er32(SYMERRS); | ||
4744 | temp = er32(MPC); | ||
4745 | temp = er32(SCC); | ||
4746 | temp = er32(ECOL); | ||
4747 | temp = er32(MCC); | ||
4748 | temp = er32(LATECOL); | ||
4749 | temp = er32(COLC); | ||
4750 | temp = er32(DC); | ||
4751 | temp = er32(SEC); | ||
4752 | temp = er32(RLEC); | ||
4753 | temp = er32(XONRXC); | ||
4754 | temp = er32(XONTXC); | ||
4755 | temp = er32(XOFFRXC); | ||
4756 | temp = er32(XOFFTXC); | ||
4757 | temp = er32(FCRUC); | ||
4758 | |||
4759 | temp = er32(PRC64); | ||
4760 | temp = er32(PRC127); | ||
4761 | temp = er32(PRC255); | ||
4762 | temp = er32(PRC511); | ||
4763 | temp = er32(PRC1023); | ||
4764 | temp = er32(PRC1522); | ||
4765 | |||
4766 | temp = er32(GPRC); | ||
4767 | temp = er32(BPRC); | ||
4768 | temp = er32(MPRC); | ||
4769 | temp = er32(GPTC); | ||
4770 | temp = er32(GORCL); | ||
4771 | temp = er32(GORCH); | ||
4772 | temp = er32(GOTCL); | ||
4773 | temp = er32(GOTCH); | ||
4774 | temp = er32(RNBC); | ||
4775 | temp = er32(RUC); | ||
4776 | temp = er32(RFC); | ||
4777 | temp = er32(ROC); | ||
4778 | temp = er32(RJC); | ||
4779 | temp = er32(TORL); | ||
4780 | temp = er32(TORH); | ||
4781 | temp = er32(TOTL); | ||
4782 | temp = er32(TOTH); | ||
4783 | temp = er32(TPR); | ||
4784 | temp = er32(TPT); | ||
4785 | |||
4786 | temp = er32(PTC64); | ||
4787 | temp = er32(PTC127); | ||
4788 | temp = er32(PTC255); | ||
4789 | temp = er32(PTC511); | ||
4790 | temp = er32(PTC1023); | ||
4791 | temp = er32(PTC1522); | ||
4792 | |||
4793 | temp = er32(MPTC); | ||
4794 | temp = er32(BPTC); | ||
4795 | |||
4796 | if (hw->mac_type < e1000_82543) | ||
4797 | return; | ||
4798 | |||
4799 | temp = er32(ALGNERRC); | ||
4800 | temp = er32(RXERRC); | ||
4801 | temp = er32(TNCRS); | ||
4802 | temp = er32(CEXTERR); | ||
4803 | temp = er32(TSCTC); | ||
4804 | temp = er32(TSCTFC); | ||
4805 | |||
4806 | if (hw->mac_type <= e1000_82544) | ||
4807 | return; | ||
4808 | |||
4809 | temp = er32(MGTPRC); | ||
4810 | temp = er32(MGTPDC); | ||
4811 | temp = er32(MGTPTC); | ||
4812 | } | ||
4813 | |||
4814 | /** | ||
4815 | * e1000_reset_adaptive - Resets Adaptive IFS to its default state. | ||
4816 | * @hw: Struct containing variables accessed by shared code | ||
4817 | * | ||
4818 | * Call this after e1000_init_hw. You may override the IFS defaults by setting | ||
4819 | * hw->ifs_params_forced to true. However, you must initialize hw-> | ||
4820 | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio | ||
4821 | * before calling this function. | ||
4822 | */ | ||
4823 | void e1000_reset_adaptive(struct e1000_hw *hw) | ||
4824 | { | ||
4825 | e_dbg("e1000_reset_adaptive"); | ||
4826 | |||
4827 | if (hw->adaptive_ifs) { | ||
4828 | if (!hw->ifs_params_forced) { | ||
4829 | hw->current_ifs_val = 0; | ||
4830 | hw->ifs_min_val = IFS_MIN; | ||
4831 | hw->ifs_max_val = IFS_MAX; | ||
4832 | hw->ifs_step_size = IFS_STEP; | ||
4833 | hw->ifs_ratio = IFS_RATIO; | ||
4834 | } | ||
4835 | hw->in_ifs_mode = false; | ||
4836 | ew32(AIT, 0); | ||
4837 | } else { | ||
4838 | e_dbg("Not in Adaptive IFS mode!\n"); | ||
4839 | } | ||
4840 | } | ||
4841 | |||
4842 | /** | ||
4843 | * e1000_update_adaptive - update adaptive IFS | ||
4844 | * @hw: Struct containing variables accessed by shared code | ||
4845 | * @tx_packets: Number of transmits since last callback | ||
4846 | * @total_collisions: Number of collisions since last callback | ||
4847 | * | ||
4848 | * Called during the callback/watchdog routine to update IFS value based on | ||
4849 | * the ratio of transmits to collisions. | ||
4850 | */ | ||
4851 | void e1000_update_adaptive(struct e1000_hw *hw) | ||
4852 | { | ||
4853 | e_dbg("e1000_update_adaptive"); | ||
4854 | |||
4855 | if (hw->adaptive_ifs) { | ||
4856 | if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) { | ||
4857 | if (hw->tx_packet_delta > MIN_NUM_XMITS) { | ||
4858 | hw->in_ifs_mode = true; | ||
4859 | if (hw->current_ifs_val < hw->ifs_max_val) { | ||
4860 | if (hw->current_ifs_val == 0) | ||
4861 | hw->current_ifs_val = | ||
4862 | hw->ifs_min_val; | ||
4863 | else | ||
4864 | hw->current_ifs_val += | ||
4865 | hw->ifs_step_size; | ||
4866 | ew32(AIT, hw->current_ifs_val); | ||
4867 | } | ||
4868 | } | ||
4869 | } else { | ||
4870 | if (hw->in_ifs_mode | ||
4871 | && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { | ||
4872 | hw->current_ifs_val = 0; | ||
4873 | hw->in_ifs_mode = false; | ||
4874 | ew32(AIT, 0); | ||
4875 | } | ||
4876 | } | ||
4877 | } else { | ||
4878 | e_dbg("Not in Adaptive IFS mode!\n"); | ||
4879 | } | ||
4880 | } | ||
4881 | |||
4882 | /** | ||
4883 | * e1000_tbi_adjust_stats | ||
4884 | * @hw: Struct containing variables accessed by shared code | ||
4885 | * @frame_len: The length of the frame in question | ||
4886 | * @mac_addr: The Ethernet destination address of the frame in question | ||
4887 | * | ||
4888 | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT | ||
4889 | */ | ||
4890 | void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, | ||
4891 | u32 frame_len, u8 *mac_addr) | ||
4892 | { | ||
4893 | u64 carry_bit; | ||
4894 | |||
4895 | /* First adjust the frame length. */ | ||
4896 | frame_len--; | ||
4897 | /* We need to adjust the statistics counters, since the hardware | ||
4898 | * counters overcount this packet as a CRC error and undercount | ||
4899 | * the packet as a good packet | ||
4900 | */ | ||
4901 | /* This packet should not be counted as a CRC error. */ | ||
4902 | stats->crcerrs--; | ||
4903 | /* This packet does count as a Good Packet Received. */ | ||
4904 | stats->gprc++; | ||
4905 | |||
4906 | /* Adjust the Good Octets received counters */ | ||
4907 | carry_bit = 0x80000000 & stats->gorcl; | ||
4908 | stats->gorcl += frame_len; | ||
4909 | /* If the high bit of Gorcl (the low 32 bits of the Good Octets | ||
4910 | * Received Count) was one before the addition, | ||
4911 | * AND it is zero after, then we lost the carry out, | ||
4912 | * need to add one to Gorch (Good Octets Received Count High). | ||
4913 | * This could be simplified if all environments supported | ||
4914 | * 64-bit integers. | ||
4915 | */ | ||
4916 | if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) | ||
4917 | stats->gorch++; | ||
4918 | /* Is this a broadcast or multicast? Check broadcast first, | ||
4919 | * since the test for a multicast frame will test positive on | ||
4920 | * a broadcast frame. | ||
4921 | */ | ||
4922 | if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff)) | ||
4923 | /* Broadcast packet */ | ||
4924 | stats->bprc++; | ||
4925 | else if (*mac_addr & 0x01) | ||
4926 | /* Multicast packet */ | ||
4927 | stats->mprc++; | ||
4928 | |||
4929 | if (frame_len == hw->max_frame_size) { | ||
4930 | /* In this case, the hardware has overcounted the number of | ||
4931 | * oversize frames. | ||
4932 | */ | ||
4933 | if (stats->roc > 0) | ||
4934 | stats->roc--; | ||
4935 | } | ||
4936 | |||
4937 | /* Adjust the bin counters when the extra byte put the frame in the | ||
4938 | * wrong bin. Remember that the frame_len was adjusted above. | ||
4939 | */ | ||
4940 | if (frame_len == 64) { | ||
4941 | stats->prc64++; | ||
4942 | stats->prc127--; | ||
4943 | } else if (frame_len == 127) { | ||
4944 | stats->prc127++; | ||
4945 | stats->prc255--; | ||
4946 | } else if (frame_len == 255) { | ||
4947 | stats->prc255++; | ||
4948 | stats->prc511--; | ||
4949 | } else if (frame_len == 511) { | ||
4950 | stats->prc511++; | ||
4951 | stats->prc1023--; | ||
4952 | } else if (frame_len == 1023) { | ||
4953 | stats->prc1023++; | ||
4954 | stats->prc1522--; | ||
4955 | } else if (frame_len == 1522) { | ||
4956 | stats->prc1522++; | ||
4957 | } | ||
4958 | } | ||
4959 | |||
4960 | /** | ||
4961 | * e1000_get_bus_info | ||
4962 | * @hw: Struct containing variables accessed by shared code | ||
4963 | * | ||
4964 | * Gets the current PCI bus type, speed, and width of the hardware | ||
4965 | */ | ||
4966 | void e1000_get_bus_info(struct e1000_hw *hw) | ||
4967 | { | ||
4968 | u32 status; | ||
4969 | |||
4970 | switch (hw->mac_type) { | ||
4971 | case e1000_82542_rev2_0: | ||
4972 | case e1000_82542_rev2_1: | ||
4973 | hw->bus_type = e1000_bus_type_pci; | ||
4974 | hw->bus_speed = e1000_bus_speed_unknown; | ||
4975 | hw->bus_width = e1000_bus_width_unknown; | ||
4976 | break; | ||
4977 | default: | ||
4978 | status = er32(STATUS); | ||
4979 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | ||
4980 | e1000_bus_type_pcix : e1000_bus_type_pci; | ||
4981 | |||
4982 | if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { | ||
4983 | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? | ||
4984 | e1000_bus_speed_66 : e1000_bus_speed_120; | ||
4985 | } else if (hw->bus_type == e1000_bus_type_pci) { | ||
4986 | hw->bus_speed = (status & E1000_STATUS_PCI66) ? | ||
4987 | e1000_bus_speed_66 : e1000_bus_speed_33; | ||
4988 | } else { | ||
4989 | switch (status & E1000_STATUS_PCIX_SPEED) { | ||
4990 | case E1000_STATUS_PCIX_SPEED_66: | ||
4991 | hw->bus_speed = e1000_bus_speed_66; | ||
4992 | break; | ||
4993 | case E1000_STATUS_PCIX_SPEED_100: | ||
4994 | hw->bus_speed = e1000_bus_speed_100; | ||
4995 | break; | ||
4996 | case E1000_STATUS_PCIX_SPEED_133: | ||
4997 | hw->bus_speed = e1000_bus_speed_133; | ||
4998 | break; | ||
4999 | default: | ||
5000 | hw->bus_speed = e1000_bus_speed_reserved; | ||
5001 | break; | ||
5002 | } | ||
5003 | } | ||
5004 | hw->bus_width = (status & E1000_STATUS_BUS64) ? | ||
5005 | e1000_bus_width_64 : e1000_bus_width_32; | ||
5006 | break; | ||
5007 | } | ||
5008 | } | ||
5009 | |||
5010 | /** | ||
5011 | * e1000_write_reg_io | ||
5012 | * @hw: Struct containing variables accessed by shared code | ||
5013 | * @offset: offset to write to | ||
5014 | * @value: value to write | ||
5015 | * | ||
5016 | * Writes a value to one of the devices registers using port I/O (as opposed to | ||
5017 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | ||
5018 | */ | ||
5019 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) | ||
5020 | { | ||
5021 | unsigned long io_addr = hw->io_base; | ||
5022 | unsigned long io_data = hw->io_base + 4; | ||
5023 | |||
5024 | e1000_io_write(hw, io_addr, offset); | ||
5025 | e1000_io_write(hw, io_data, value); | ||
5026 | } | ||
5027 | |||
5028 | /** | ||
5029 | * e1000_get_cable_length - Estimates the cable length. | ||
5030 | * @hw: Struct containing variables accessed by shared code | ||
5031 | * @min_length: The estimated minimum length | ||
5032 | * @max_length: The estimated maximum length | ||
5033 | * | ||
5034 | * returns: - E1000_ERR_XXX | ||
5035 | * E1000_SUCCESS | ||
5036 | * | ||
5037 | * This function always returns a ranged length (minimum & maximum). | ||
5038 | * So for M88 phy's, this function interprets the one value returned from the | ||
5039 | * register to the minimum and maximum range. | ||
5040 | * For IGP phy's, the function calculates the range by the AGC registers. | ||
5041 | */ | ||
5042 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | ||
5043 | u16 *max_length) | ||
5044 | { | ||
5045 | s32 ret_val; | ||
5046 | u16 agc_value = 0; | ||
5047 | u16 i, phy_data; | ||
5048 | u16 cable_length; | ||
5049 | |||
5050 | e_dbg("e1000_get_cable_length"); | ||
5051 | |||
5052 | *min_length = *max_length = 0; | ||
5053 | |||
5054 | /* Use old method for Phy older than IGP */ | ||
5055 | if (hw->phy_type == e1000_phy_m88) { | ||
5056 | |||
5057 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
5058 | &phy_data); | ||
5059 | if (ret_val) | ||
5060 | return ret_val; | ||
5061 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
5062 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
5063 | |||
5064 | /* Convert the enum value to ranged values */ | ||
5065 | switch (cable_length) { | ||
5066 | case e1000_cable_length_50: | ||
5067 | *min_length = 0; | ||
5068 | *max_length = e1000_igp_cable_length_50; | ||
5069 | break; | ||
5070 | case e1000_cable_length_50_80: | ||
5071 | *min_length = e1000_igp_cable_length_50; | ||
5072 | *max_length = e1000_igp_cable_length_80; | ||
5073 | break; | ||
5074 | case e1000_cable_length_80_110: | ||
5075 | *min_length = e1000_igp_cable_length_80; | ||
5076 | *max_length = e1000_igp_cable_length_110; | ||
5077 | break; | ||
5078 | case e1000_cable_length_110_140: | ||
5079 | *min_length = e1000_igp_cable_length_110; | ||
5080 | *max_length = e1000_igp_cable_length_140; | ||
5081 | break; | ||
5082 | case e1000_cable_length_140: | ||
5083 | *min_length = e1000_igp_cable_length_140; | ||
5084 | *max_length = e1000_igp_cable_length_170; | ||
5085 | break; | ||
5086 | default: | ||
5087 | return -E1000_ERR_PHY; | ||
5088 | break; | ||
5089 | } | ||
5090 | } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | ||
5091 | u16 cur_agc_value; | ||
5092 | u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | ||
5093 | static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { | ||
5094 | IGP01E1000_PHY_AGC_A, | ||
5095 | IGP01E1000_PHY_AGC_B, | ||
5096 | IGP01E1000_PHY_AGC_C, | ||
5097 | IGP01E1000_PHY_AGC_D | ||
5098 | }; | ||
5099 | /* Read the AGC registers for all channels */ | ||
5100 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
5101 | |||
5102 | ret_val = | ||
5103 | e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | ||
5104 | if (ret_val) | ||
5105 | return ret_val; | ||
5106 | |||
5107 | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | ||
5108 | |||
5109 | /* Value bound check. */ | ||
5110 | if ((cur_agc_value >= | ||
5111 | IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) | ||
5112 | || (cur_agc_value == 0)) | ||
5113 | return -E1000_ERR_PHY; | ||
5114 | |||
5115 | agc_value += cur_agc_value; | ||
5116 | |||
5117 | /* Update minimal AGC value. */ | ||
5118 | if (min_agc_value > cur_agc_value) | ||
5119 | min_agc_value = cur_agc_value; | ||
5120 | } | ||
5121 | |||
5122 | /* Remove the minimal AGC result for length < 50m */ | ||
5123 | if (agc_value < | ||
5124 | IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | ||
5125 | agc_value -= min_agc_value; | ||
5126 | |||
5127 | /* Get the average length of the remaining 3 channels */ | ||
5128 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | ||
5129 | } else { | ||
5130 | /* Get the average length of all the 4 channels. */ | ||
5131 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; | ||
5132 | } | ||
5133 | |||
5134 | /* Set the range of the calculated length. */ | ||
5135 | *min_length = ((e1000_igp_cable_length_table[agc_value] - | ||
5136 | IGP01E1000_AGC_RANGE) > 0) ? | ||
5137 | (e1000_igp_cable_length_table[agc_value] - | ||
5138 | IGP01E1000_AGC_RANGE) : 0; | ||
5139 | *max_length = e1000_igp_cable_length_table[agc_value] + | ||
5140 | IGP01E1000_AGC_RANGE; | ||
5141 | } | ||
5142 | |||
5143 | return E1000_SUCCESS; | ||
5144 | } | ||
5145 | |||
5146 | /** | ||
5147 | * e1000_check_polarity - Check the cable polarity | ||
5148 | * @hw: Struct containing variables accessed by shared code | ||
5149 | * @polarity: output parameter : 0 - Polarity is not reversed | ||
5150 | * 1 - Polarity is reversed. | ||
5151 | * | ||
5152 | * returns: - E1000_ERR_XXX | ||
5153 | * E1000_SUCCESS | ||
5154 | * | ||
5155 | * For phy's older than IGP, this function simply reads the polarity bit in the | ||
5156 | * Phy Status register. For IGP phy's, this bit is valid only if link speed is | ||
5157 | * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will | ||
5158 | * return 0. If the link speed is 1000 Mbps the polarity status is in the | ||
5159 | * IGP01E1000_PHY_PCS_INIT_REG. | ||
5160 | */ | ||
5161 | static s32 e1000_check_polarity(struct e1000_hw *hw, | ||
5162 | e1000_rev_polarity *polarity) | ||
5163 | { | ||
5164 | s32 ret_val; | ||
5165 | u16 phy_data; | ||
5166 | |||
5167 | e_dbg("e1000_check_polarity"); | ||
5168 | |||
5169 | if (hw->phy_type == e1000_phy_m88) { | ||
5170 | /* return the Polarity bit in the Status register. */ | ||
5171 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
5172 | &phy_data); | ||
5173 | if (ret_val) | ||
5174 | return ret_val; | ||
5175 | *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> | ||
5176 | M88E1000_PSSR_REV_POLARITY_SHIFT) ? | ||
5177 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | ||
5178 | |||
5179 | } else if (hw->phy_type == e1000_phy_igp) { | ||
5180 | /* Read the Status register to check the speed */ | ||
5181 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | ||
5182 | &phy_data); | ||
5183 | if (ret_val) | ||
5184 | return ret_val; | ||
5185 | |||
5186 | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to | ||
5187 | * find the polarity status */ | ||
5188 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
5189 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
5190 | |||
5191 | /* Read the GIG initialization PCS register (0x00B4) */ | ||
5192 | ret_val = | ||
5193 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | ||
5194 | &phy_data); | ||
5195 | if (ret_val) | ||
5196 | return ret_val; | ||
5197 | |||
5198 | /* Check the polarity bits */ | ||
5199 | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? | ||
5200 | e1000_rev_polarity_reversed : | ||
5201 | e1000_rev_polarity_normal; | ||
5202 | } else { | ||
5203 | /* For 10 Mbps, read the polarity bit in the status register. (for | ||
5204 | * 100 Mbps this bit is always 0) */ | ||
5205 | *polarity = | ||
5206 | (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? | ||
5207 | e1000_rev_polarity_reversed : | ||
5208 | e1000_rev_polarity_normal; | ||
5209 | } | ||
5210 | } | ||
5211 | return E1000_SUCCESS; | ||
5212 | } | ||
5213 | |||
5214 | /** | ||
5215 | * e1000_check_downshift - Check if Downshift occurred | ||
5216 | * @hw: Struct containing variables accessed by shared code | ||
5217 | * @downshift: output parameter : 0 - No Downshift occurred. | ||
5218 | * 1 - Downshift occurred. | ||
5219 | * | ||
5220 | * returns: - E1000_ERR_XXX | ||
5221 | * E1000_SUCCESS | ||
5222 | * | ||
5223 | * For phy's older than IGP, this function reads the Downshift bit in the Phy | ||
5224 | * Specific Status register. For IGP phy's, it reads the Downgrade bit in the | ||
5225 | * Link Health register. In IGP this bit is latched high, so the driver must | ||
5226 | * read it immediately after link is established. | ||
5227 | */ | ||
5228 | static s32 e1000_check_downshift(struct e1000_hw *hw) | ||
5229 | { | ||
5230 | s32 ret_val; | ||
5231 | u16 phy_data; | ||
5232 | |||
5233 | e_dbg("e1000_check_downshift"); | ||
5234 | |||
5235 | if (hw->phy_type == e1000_phy_igp) { | ||
5236 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | ||
5237 | &phy_data); | ||
5238 | if (ret_val) | ||
5239 | return ret_val; | ||
5240 | |||
5241 | hw->speed_downgraded = | ||
5242 | (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | ||
5243 | } else if (hw->phy_type == e1000_phy_m88) { | ||
5244 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
5245 | &phy_data); | ||
5246 | if (ret_val) | ||
5247 | return ret_val; | ||
5248 | |||
5249 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | ||
5250 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | ||
5251 | } | ||
5252 | |||
5253 | return E1000_SUCCESS; | ||
5254 | } | ||
5255 | |||
5256 | /** | ||
5257 | * e1000_config_dsp_after_link_change | ||
5258 | * @hw: Struct containing variables accessed by shared code | ||
5259 | * @link_up: was link up at the time this was called | ||
5260 | * | ||
5261 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
5262 | * E1000_SUCCESS at any other case. | ||
5263 | * | ||
5264 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | ||
5265 | * gigabit link is achieved to improve link quality. | ||
5266 | */ | ||
5267 | |||
5268 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) | ||
5269 | { | ||
5270 | s32 ret_val; | ||
5271 | u16 phy_data, phy_saved_data, speed, duplex, i; | ||
5272 | static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { | ||
5273 | IGP01E1000_PHY_AGC_PARAM_A, | ||
5274 | IGP01E1000_PHY_AGC_PARAM_B, | ||
5275 | IGP01E1000_PHY_AGC_PARAM_C, | ||
5276 | IGP01E1000_PHY_AGC_PARAM_D | ||
5277 | }; | ||
5278 | u16 min_length, max_length; | ||
5279 | |||
5280 | e_dbg("e1000_config_dsp_after_link_change"); | ||
5281 | |||
5282 | if (hw->phy_type != e1000_phy_igp) | ||
5283 | return E1000_SUCCESS; | ||
5284 | |||
5285 | if (link_up) { | ||
5286 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
5287 | if (ret_val) { | ||
5288 | e_dbg("Error getting link speed and duplex\n"); | ||
5289 | return ret_val; | ||
5290 | } | ||
5291 | |||
5292 | if (speed == SPEED_1000) { | ||
5293 | |||
5294 | ret_val = | ||
5295 | e1000_get_cable_length(hw, &min_length, | ||
5296 | &max_length); | ||
5297 | if (ret_val) | ||
5298 | return ret_val; | ||
5299 | |||
5300 | if ((hw->dsp_config_state == e1000_dsp_config_enabled) | ||
5301 | && min_length >= e1000_igp_cable_length_50) { | ||
5302 | |||
5303 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
5304 | ret_val = | ||
5305 | e1000_read_phy_reg(hw, | ||
5306 | dsp_reg_array[i], | ||
5307 | &phy_data); | ||
5308 | if (ret_val) | ||
5309 | return ret_val; | ||
5310 | |||
5311 | phy_data &= | ||
5312 | ~IGP01E1000_PHY_EDAC_MU_INDEX; | ||
5313 | |||
5314 | ret_val = | ||
5315 | e1000_write_phy_reg(hw, | ||
5316 | dsp_reg_array | ||
5317 | [i], phy_data); | ||
5318 | if (ret_val) | ||
5319 | return ret_val; | ||
5320 | } | ||
5321 | hw->dsp_config_state = | ||
5322 | e1000_dsp_config_activated; | ||
5323 | } | ||
5324 | |||
5325 | if ((hw->ffe_config_state == e1000_ffe_config_enabled) | ||
5326 | && (min_length < e1000_igp_cable_length_50)) { | ||
5327 | |||
5328 | u16 ffe_idle_err_timeout = | ||
5329 | FFE_IDLE_ERR_COUNT_TIMEOUT_20; | ||
5330 | u32 idle_errs = 0; | ||
5331 | |||
5332 | /* clear previous idle error counts */ | ||
5333 | ret_val = | ||
5334 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, | ||
5335 | &phy_data); | ||
5336 | if (ret_val) | ||
5337 | return ret_val; | ||
5338 | |||
5339 | for (i = 0; i < ffe_idle_err_timeout; i++) { | ||
5340 | udelay(1000); | ||
5341 | ret_val = | ||
5342 | e1000_read_phy_reg(hw, | ||
5343 | PHY_1000T_STATUS, | ||
5344 | &phy_data); | ||
5345 | if (ret_val) | ||
5346 | return ret_val; | ||
5347 | |||
5348 | idle_errs += | ||
5349 | (phy_data & | ||
5350 | SR_1000T_IDLE_ERROR_CNT); | ||
5351 | if (idle_errs > | ||
5352 | SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) | ||
5353 | { | ||
5354 | hw->ffe_config_state = | ||
5355 | e1000_ffe_config_active; | ||
5356 | |||
5357 | ret_val = | ||
5358 | e1000_write_phy_reg(hw, | ||
5359 | IGP01E1000_PHY_DSP_FFE, | ||
5360 | IGP01E1000_PHY_DSP_FFE_CM_CP); | ||
5361 | if (ret_val) | ||
5362 | return ret_val; | ||
5363 | break; | ||
5364 | } | ||
5365 | |||
5366 | if (idle_errs) | ||
5367 | ffe_idle_err_timeout = | ||
5368 | FFE_IDLE_ERR_COUNT_TIMEOUT_100; | ||
5369 | } | ||
5370 | } | ||
5371 | } | ||
5372 | } else { | ||
5373 | if (hw->dsp_config_state == e1000_dsp_config_activated) { | ||
5374 | /* Save off the current value of register 0x2F5B to be restored at | ||
5375 | * the end of the routines. */ | ||
5376 | ret_val = | ||
5377 | e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
5378 | |||
5379 | if (ret_val) | ||
5380 | return ret_val; | ||
5381 | |||
5382 | /* Disable the PHY transmitter */ | ||
5383 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
5384 | |||
5385 | if (ret_val) | ||
5386 | return ret_val; | ||
5387 | |||
5388 | mdelay(20); | ||
5389 | |||
5390 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5391 | IGP01E1000_IEEE_FORCE_GIGA); | ||
5392 | if (ret_val) | ||
5393 | return ret_val; | ||
5394 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
5395 | ret_val = | ||
5396 | e1000_read_phy_reg(hw, dsp_reg_array[i], | ||
5397 | &phy_data); | ||
5398 | if (ret_val) | ||
5399 | return ret_val; | ||
5400 | |||
5401 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | ||
5402 | phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | ||
5403 | |||
5404 | ret_val = | ||
5405 | e1000_write_phy_reg(hw, dsp_reg_array[i], | ||
5406 | phy_data); | ||
5407 | if (ret_val) | ||
5408 | return ret_val; | ||
5409 | } | ||
5410 | |||
5411 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5412 | IGP01E1000_IEEE_RESTART_AUTONEG); | ||
5413 | if (ret_val) | ||
5414 | return ret_val; | ||
5415 | |||
5416 | mdelay(20); | ||
5417 | |||
5418 | /* Now enable the transmitter */ | ||
5419 | ret_val = | ||
5420 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
5421 | |||
5422 | if (ret_val) | ||
5423 | return ret_val; | ||
5424 | |||
5425 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
5426 | } | ||
5427 | |||
5428 | if (hw->ffe_config_state == e1000_ffe_config_active) { | ||
5429 | /* Save off the current value of register 0x2F5B to be restored at | ||
5430 | * the end of the routines. */ | ||
5431 | ret_val = | ||
5432 | e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
5433 | |||
5434 | if (ret_val) | ||
5435 | return ret_val; | ||
5436 | |||
5437 | /* Disable the PHY transmitter */ | ||
5438 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
5439 | |||
5440 | if (ret_val) | ||
5441 | return ret_val; | ||
5442 | |||
5443 | mdelay(20); | ||
5444 | |||
5445 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5446 | IGP01E1000_IEEE_FORCE_GIGA); | ||
5447 | if (ret_val) | ||
5448 | return ret_val; | ||
5449 | ret_val = | ||
5450 | e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | ||
5451 | IGP01E1000_PHY_DSP_FFE_DEFAULT); | ||
5452 | if (ret_val) | ||
5453 | return ret_val; | ||
5454 | |||
5455 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5456 | IGP01E1000_IEEE_RESTART_AUTONEG); | ||
5457 | if (ret_val) | ||
5458 | return ret_val; | ||
5459 | |||
5460 | mdelay(20); | ||
5461 | |||
5462 | /* Now enable the transmitter */ | ||
5463 | ret_val = | ||
5464 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
5465 | |||
5466 | if (ret_val) | ||
5467 | return ret_val; | ||
5468 | |||
5469 | hw->ffe_config_state = e1000_ffe_config_enabled; | ||
5470 | } | ||
5471 | } | ||
5472 | return E1000_SUCCESS; | ||
5473 | } | ||
5474 | |||
5475 | /** | ||
5476 | * e1000_set_phy_mode - Set PHY to class A mode | ||
5477 | * @hw: Struct containing variables accessed by shared code | ||
5478 | * | ||
5479 | * Assumes the following operations will follow to enable the new class mode. | ||
5480 | * 1. Do a PHY soft reset | ||
5481 | * 2. Restart auto-negotiation or force link. | ||
5482 | */ | ||
5483 | static s32 e1000_set_phy_mode(struct e1000_hw *hw) | ||
5484 | { | ||
5485 | s32 ret_val; | ||
5486 | u16 eeprom_data; | ||
5487 | |||
5488 | e_dbg("e1000_set_phy_mode"); | ||
5489 | |||
5490 | if ((hw->mac_type == e1000_82545_rev_3) && | ||
5491 | (hw->media_type == e1000_media_type_copper)) { | ||
5492 | ret_val = | ||
5493 | e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, | ||
5494 | &eeprom_data); | ||
5495 | if (ret_val) { | ||
5496 | return ret_val; | ||
5497 | } | ||
5498 | |||
5499 | if ((eeprom_data != EEPROM_RESERVED_WORD) && | ||
5500 | (eeprom_data & EEPROM_PHY_CLASS_A)) { | ||
5501 | ret_val = | ||
5502 | e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, | ||
5503 | 0x000B); | ||
5504 | if (ret_val) | ||
5505 | return ret_val; | ||
5506 | ret_val = | ||
5507 | e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, | ||
5508 | 0x8104); | ||
5509 | if (ret_val) | ||
5510 | return ret_val; | ||
5511 | |||
5512 | hw->phy_reset_disable = false; | ||
5513 | } | ||
5514 | } | ||
5515 | |||
5516 | return E1000_SUCCESS; | ||
5517 | } | ||
5518 | |||
5519 | /** | ||
5520 | * e1000_set_d3_lplu_state - set d3 link power state | ||
5521 | * @hw: Struct containing variables accessed by shared code | ||
5522 | * @active: true to enable lplu false to disable lplu. | ||
5523 | * | ||
5524 | * This function sets the lplu state according to the active flag. When | ||
5525 | * activating lplu this function also disables smart speed and vise versa. | ||
5526 | * lplu will not be activated unless the device autonegotiation advertisement | ||
5527 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
5528 | * | ||
5529 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
5530 | * E1000_SUCCESS at any other case. | ||
5531 | */ | ||
5532 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) | ||
5533 | { | ||
5534 | s32 ret_val; | ||
5535 | u16 phy_data; | ||
5536 | e_dbg("e1000_set_d3_lplu_state"); | ||
5537 | |||
5538 | if (hw->phy_type != e1000_phy_igp) | ||
5539 | return E1000_SUCCESS; | ||
5540 | |||
5541 | /* During driver activity LPLU should not be used or it will attain link | ||
5542 | * from the lowest speeds starting from 10Mbps. The capability is used for | ||
5543 | * Dx transitions and states */ | ||
5544 | if (hw->mac_type == e1000_82541_rev_2 | ||
5545 | || hw->mac_type == e1000_82547_rev_2) { | ||
5546 | ret_val = | ||
5547 | e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | ||
5548 | if (ret_val) | ||
5549 | return ret_val; | ||
5550 | } | ||
5551 | |||
5552 | if (!active) { | ||
5553 | if (hw->mac_type == e1000_82541_rev_2 || | ||
5554 | hw->mac_type == e1000_82547_rev_2) { | ||
5555 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
5556 | ret_val = | ||
5557 | e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
5558 | phy_data); | ||
5559 | if (ret_val) | ||
5560 | return ret_val; | ||
5561 | } | ||
5562 | |||
5563 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | ||
5564 | * Dx states where the power conservation is most important. During | ||
5565 | * driver activity we should enable SmartSpeed, so performance is | ||
5566 | * maintained. */ | ||
5567 | if (hw->smart_speed == e1000_smart_speed_on) { | ||
5568 | ret_val = | ||
5569 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5570 | &phy_data); | ||
5571 | if (ret_val) | ||
5572 | return ret_val; | ||
5573 | |||
5574 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
5575 | ret_val = | ||
5576 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5577 | phy_data); | ||
5578 | if (ret_val) | ||
5579 | return ret_val; | ||
5580 | } else if (hw->smart_speed == e1000_smart_speed_off) { | ||
5581 | ret_val = | ||
5582 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5583 | &phy_data); | ||
5584 | if (ret_val) | ||
5585 | return ret_val; | ||
5586 | |||
5587 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5588 | ret_val = | ||
5589 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5590 | phy_data); | ||
5591 | if (ret_val) | ||
5592 | return ret_val; | ||
5593 | } | ||
5594 | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) | ||
5595 | || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) | ||
5596 | || (hw->autoneg_advertised == | ||
5597 | AUTONEG_ADVERTISE_10_100_ALL)) { | ||
5598 | |||
5599 | if (hw->mac_type == e1000_82541_rev_2 || | ||
5600 | hw->mac_type == e1000_82547_rev_2) { | ||
5601 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | ||
5602 | ret_val = | ||
5603 | e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
5604 | phy_data); | ||
5605 | if (ret_val) | ||
5606 | return ret_val; | ||
5607 | } | ||
5608 | |||
5609 | /* When LPLU is enabled we should disable SmartSpeed */ | ||
5610 | ret_val = | ||
5611 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5612 | &phy_data); | ||
5613 | if (ret_val) | ||
5614 | return ret_val; | ||
5615 | |||
5616 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5617 | ret_val = | ||
5618 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5619 | phy_data); | ||
5620 | if (ret_val) | ||
5621 | return ret_val; | ||
5622 | |||
5623 | } | ||
5624 | return E1000_SUCCESS; | ||
5625 | } | ||
5626 | |||
5627 | /** | ||
5628 | * e1000_set_vco_speed | ||
5629 | * @hw: Struct containing variables accessed by shared code | ||
5630 | * | ||
5631 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | ||
5632 | */ | ||
5633 | static s32 e1000_set_vco_speed(struct e1000_hw *hw) | ||
5634 | { | ||
5635 | s32 ret_val; | ||
5636 | u16 default_page = 0; | ||
5637 | u16 phy_data; | ||
5638 | |||
5639 | e_dbg("e1000_set_vco_speed"); | ||
5640 | |||
5641 | switch (hw->mac_type) { | ||
5642 | case e1000_82545_rev_3: | ||
5643 | case e1000_82546_rev_3: | ||
5644 | break; | ||
5645 | default: | ||
5646 | return E1000_SUCCESS; | ||
5647 | } | ||
5648 | |||
5649 | /* Set PHY register 30, page 5, bit 8 to 0 */ | ||
5650 | |||
5651 | ret_val = | ||
5652 | e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); | ||
5653 | if (ret_val) | ||
5654 | return ret_val; | ||
5655 | |||
5656 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); | ||
5657 | if (ret_val) | ||
5658 | return ret_val; | ||
5659 | |||
5660 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | ||
5661 | if (ret_val) | ||
5662 | return ret_val; | ||
5663 | |||
5664 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | ||
5665 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | ||
5666 | if (ret_val) | ||
5667 | return ret_val; | ||
5668 | |||
5669 | /* Set PHY register 30, page 4, bit 11 to 1 */ | ||
5670 | |||
5671 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); | ||
5672 | if (ret_val) | ||
5673 | return ret_val; | ||
5674 | |||
5675 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | ||
5676 | if (ret_val) | ||
5677 | return ret_val; | ||
5678 | |||
5679 | phy_data |= M88E1000_PHY_VCO_REG_BIT11; | ||
5680 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | ||
5681 | if (ret_val) | ||
5682 | return ret_val; | ||
5683 | |||
5684 | ret_val = | ||
5685 | e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); | ||
5686 | if (ret_val) | ||
5687 | return ret_val; | ||
5688 | |||
5689 | return E1000_SUCCESS; | ||
5690 | } | ||
5691 | |||
5692 | |||
5693 | /** | ||
5694 | * e1000_enable_mng_pass_thru - check for bmc pass through | ||
5695 | * @hw: Struct containing variables accessed by shared code | ||
5696 | * | ||
5697 | * Verifies the hardware needs to allow ARPs to be processed by the host | ||
5698 | * returns: - true/false | ||
5699 | */ | ||
5700 | u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) | ||
5701 | { | ||
5702 | u32 manc; | ||
5703 | |||
5704 | if (hw->asf_firmware_present) { | ||
5705 | manc = er32(MANC); | ||
5706 | |||
5707 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | ||
5708 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | ||
5709 | return false; | ||
5710 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | ||
5711 | return true; | ||
5712 | } | ||
5713 | return false; | ||
5714 | } | ||
5715 | |||
5716 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) | ||
5717 | { | ||
5718 | s32 ret_val; | ||
5719 | u16 mii_status_reg; | ||
5720 | u16 i; | ||
5721 | |||
5722 | /* Polarity reversal workaround for forced 10F/10H links. */ | ||
5723 | |||
5724 | /* Disable the transmitter on the PHY */ | ||
5725 | |||
5726 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | ||
5727 | if (ret_val) | ||
5728 | return ret_val; | ||
5729 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); | ||
5730 | if (ret_val) | ||
5731 | return ret_val; | ||
5732 | |||
5733 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | ||
5734 | if (ret_val) | ||
5735 | return ret_val; | ||
5736 | |||
5737 | /* This loop will early-out if the NO link condition has been met. */ | ||
5738 | for (i = PHY_FORCE_TIME; i > 0; i--) { | ||
5739 | /* Read the MII Status Register and wait for Link Status bit | ||
5740 | * to be clear. | ||
5741 | */ | ||
5742 | |||
5743 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5744 | if (ret_val) | ||
5745 | return ret_val; | ||
5746 | |||
5747 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5748 | if (ret_val) | ||
5749 | return ret_val; | ||
5750 | |||
5751 | if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) | ||
5752 | break; | ||
5753 | mdelay(100); | ||
5754 | } | ||
5755 | |||
5756 | /* Recommended delay time after link has been lost */ | ||
5757 | mdelay(1000); | ||
5758 | |||
5759 | /* Now we will re-enable th transmitter on the PHY */ | ||
5760 | |||
5761 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | ||
5762 | if (ret_val) | ||
5763 | return ret_val; | ||
5764 | mdelay(50); | ||
5765 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); | ||
5766 | if (ret_val) | ||
5767 | return ret_val; | ||
5768 | mdelay(50); | ||
5769 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); | ||
5770 | if (ret_val) | ||
5771 | return ret_val; | ||
5772 | mdelay(50); | ||
5773 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); | ||
5774 | if (ret_val) | ||
5775 | return ret_val; | ||
5776 | |||
5777 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | ||
5778 | if (ret_val) | ||
5779 | return ret_val; | ||
5780 | |||
5781 | /* This loop will early-out if the link condition has been met. */ | ||
5782 | for (i = PHY_FORCE_TIME; i > 0; i--) { | ||
5783 | /* Read the MII Status Register and wait for Link Status bit | ||
5784 | * to be set. | ||
5785 | */ | ||
5786 | |||
5787 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5788 | if (ret_val) | ||
5789 | return ret_val; | ||
5790 | |||
5791 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5792 | if (ret_val) | ||
5793 | return ret_val; | ||
5794 | |||
5795 | if (mii_status_reg & MII_SR_LINK_STATUS) | ||
5796 | break; | ||
5797 | mdelay(100); | ||
5798 | } | ||
5799 | return E1000_SUCCESS; | ||
5800 | } | ||
5801 | |||
5802 | /** | ||
5803 | * e1000_get_auto_rd_done | ||
5804 | * @hw: Struct containing variables accessed by shared code | ||
5805 | * | ||
5806 | * Check for EEPROM Auto Read bit done. | ||
5807 | * returns: - E1000_ERR_RESET if fail to reset MAC | ||
5808 | * E1000_SUCCESS at any other case. | ||
5809 | */ | ||
5810 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) | ||
5811 | { | ||
5812 | e_dbg("e1000_get_auto_rd_done"); | ||
5813 | msleep(5); | ||
5814 | return E1000_SUCCESS; | ||
5815 | } | ||
5816 | |||
5817 | /** | ||
5818 | * e1000_get_phy_cfg_done | ||
5819 | * @hw: Struct containing variables accessed by shared code | ||
5820 | * | ||
5821 | * Checks if the PHY configuration is done | ||
5822 | * returns: - E1000_ERR_RESET if fail to reset MAC | ||
5823 | * E1000_SUCCESS at any other case. | ||
5824 | */ | ||
5825 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) | ||
5826 | { | ||
5827 | e_dbg("e1000_get_phy_cfg_done"); | ||
5828 | mdelay(10); | ||
5829 | return E1000_SUCCESS; | ||
5830 | } | ||