diff options
Diffstat (limited to 'drivers/net/e1000/e1000_ethtool.c')
-rw-r--r-- | drivers/net/e1000/e1000_ethtool.c | 1863 |
1 files changed, 1863 insertions, 0 deletions
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c new file mode 100644 index 00000000000..5548d464261 --- /dev/null +++ b/drivers/net/e1000/e1000_ethtool.c | |||
@@ -0,0 +1,1863 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2006 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* ethtool support for e1000 */ | ||
30 | |||
31 | #include "e1000.h" | ||
32 | #include <asm/uaccess.h> | ||
33 | |||
34 | enum {NETDEV_STATS, E1000_STATS}; | ||
35 | |||
36 | struct e1000_stats { | ||
37 | char stat_string[ETH_GSTRING_LEN]; | ||
38 | int type; | ||
39 | int sizeof_stat; | ||
40 | int stat_offset; | ||
41 | }; | ||
42 | |||
43 | #define E1000_STAT(m) E1000_STATS, \ | ||
44 | sizeof(((struct e1000_adapter *)0)->m), \ | ||
45 | offsetof(struct e1000_adapter, m) | ||
46 | #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ | ||
47 | sizeof(((struct net_device *)0)->m), \ | ||
48 | offsetof(struct net_device, m) | ||
49 | |||
50 | static const struct e1000_stats e1000_gstrings_stats[] = { | ||
51 | { "rx_packets", E1000_STAT(stats.gprc) }, | ||
52 | { "tx_packets", E1000_STAT(stats.gptc) }, | ||
53 | { "rx_bytes", E1000_STAT(stats.gorcl) }, | ||
54 | { "tx_bytes", E1000_STAT(stats.gotcl) }, | ||
55 | { "rx_broadcast", E1000_STAT(stats.bprc) }, | ||
56 | { "tx_broadcast", E1000_STAT(stats.bptc) }, | ||
57 | { "rx_multicast", E1000_STAT(stats.mprc) }, | ||
58 | { "tx_multicast", E1000_STAT(stats.mptc) }, | ||
59 | { "rx_errors", E1000_STAT(stats.rxerrc) }, | ||
60 | { "tx_errors", E1000_STAT(stats.txerrc) }, | ||
61 | { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, | ||
62 | { "multicast", E1000_STAT(stats.mprc) }, | ||
63 | { "collisions", E1000_STAT(stats.colc) }, | ||
64 | { "rx_length_errors", E1000_STAT(stats.rlerrc) }, | ||
65 | { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, | ||
66 | { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, | ||
67 | { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, | ||
68 | { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, | ||
69 | { "rx_missed_errors", E1000_STAT(stats.mpc) }, | ||
70 | { "tx_aborted_errors", E1000_STAT(stats.ecol) }, | ||
71 | { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, | ||
72 | { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, | ||
73 | { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, | ||
74 | { "tx_window_errors", E1000_STAT(stats.latecol) }, | ||
75 | { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, | ||
76 | { "tx_deferred_ok", E1000_STAT(stats.dc) }, | ||
77 | { "tx_single_coll_ok", E1000_STAT(stats.scc) }, | ||
78 | { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, | ||
79 | { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, | ||
80 | { "tx_restart_queue", E1000_STAT(restart_queue) }, | ||
81 | { "rx_long_length_errors", E1000_STAT(stats.roc) }, | ||
82 | { "rx_short_length_errors", E1000_STAT(stats.ruc) }, | ||
83 | { "rx_align_errors", E1000_STAT(stats.algnerrc) }, | ||
84 | { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, | ||
85 | { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, | ||
86 | { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, | ||
87 | { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, | ||
88 | { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, | ||
89 | { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, | ||
90 | { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, | ||
91 | { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, | ||
92 | { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, | ||
93 | { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, | ||
94 | { "tx_smbus", E1000_STAT(stats.mgptc) }, | ||
95 | { "rx_smbus", E1000_STAT(stats.mgprc) }, | ||
96 | { "dropped_smbus", E1000_STAT(stats.mgpdc) }, | ||
97 | }; | ||
98 | |||
99 | #define E1000_QUEUE_STATS_LEN 0 | ||
100 | #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) | ||
101 | #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) | ||
102 | static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { | ||
103 | "Register test (offline)", "Eeprom test (offline)", | ||
104 | "Interrupt test (offline)", "Loopback test (offline)", | ||
105 | "Link test (on/offline)" | ||
106 | }; | ||
107 | #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) | ||
108 | |||
109 | static int e1000_get_settings(struct net_device *netdev, | ||
110 | struct ethtool_cmd *ecmd) | ||
111 | { | ||
112 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
113 | struct e1000_hw *hw = &adapter->hw; | ||
114 | |||
115 | if (hw->media_type == e1000_media_type_copper) { | ||
116 | |||
117 | ecmd->supported = (SUPPORTED_10baseT_Half | | ||
118 | SUPPORTED_10baseT_Full | | ||
119 | SUPPORTED_100baseT_Half | | ||
120 | SUPPORTED_100baseT_Full | | ||
121 | SUPPORTED_1000baseT_Full| | ||
122 | SUPPORTED_Autoneg | | ||
123 | SUPPORTED_TP); | ||
124 | ecmd->advertising = ADVERTISED_TP; | ||
125 | |||
126 | if (hw->autoneg == 1) { | ||
127 | ecmd->advertising |= ADVERTISED_Autoneg; | ||
128 | /* the e1000 autoneg seems to match ethtool nicely */ | ||
129 | ecmd->advertising |= hw->autoneg_advertised; | ||
130 | } | ||
131 | |||
132 | ecmd->port = PORT_TP; | ||
133 | ecmd->phy_address = hw->phy_addr; | ||
134 | |||
135 | if (hw->mac_type == e1000_82543) | ||
136 | ecmd->transceiver = XCVR_EXTERNAL; | ||
137 | else | ||
138 | ecmd->transceiver = XCVR_INTERNAL; | ||
139 | |||
140 | } else { | ||
141 | ecmd->supported = (SUPPORTED_1000baseT_Full | | ||
142 | SUPPORTED_FIBRE | | ||
143 | SUPPORTED_Autoneg); | ||
144 | |||
145 | ecmd->advertising = (ADVERTISED_1000baseT_Full | | ||
146 | ADVERTISED_FIBRE | | ||
147 | ADVERTISED_Autoneg); | ||
148 | |||
149 | ecmd->port = PORT_FIBRE; | ||
150 | |||
151 | if (hw->mac_type >= e1000_82545) | ||
152 | ecmd->transceiver = XCVR_INTERNAL; | ||
153 | else | ||
154 | ecmd->transceiver = XCVR_EXTERNAL; | ||
155 | } | ||
156 | |||
157 | if (er32(STATUS) & E1000_STATUS_LU) { | ||
158 | |||
159 | e1000_get_speed_and_duplex(hw, &adapter->link_speed, | ||
160 | &adapter->link_duplex); | ||
161 | ethtool_cmd_speed_set(ecmd, adapter->link_speed); | ||
162 | |||
163 | /* unfortunately FULL_DUPLEX != DUPLEX_FULL | ||
164 | * and HALF_DUPLEX != DUPLEX_HALF */ | ||
165 | |||
166 | if (adapter->link_duplex == FULL_DUPLEX) | ||
167 | ecmd->duplex = DUPLEX_FULL; | ||
168 | else | ||
169 | ecmd->duplex = DUPLEX_HALF; | ||
170 | } else { | ||
171 | ethtool_cmd_speed_set(ecmd, -1); | ||
172 | ecmd->duplex = -1; | ||
173 | } | ||
174 | |||
175 | ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || | ||
176 | hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; | ||
177 | return 0; | ||
178 | } | ||
179 | |||
180 | static int e1000_set_settings(struct net_device *netdev, | ||
181 | struct ethtool_cmd *ecmd) | ||
182 | { | ||
183 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
184 | struct e1000_hw *hw = &adapter->hw; | ||
185 | |||
186 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
187 | msleep(1); | ||
188 | |||
189 | if (ecmd->autoneg == AUTONEG_ENABLE) { | ||
190 | hw->autoneg = 1; | ||
191 | if (hw->media_type == e1000_media_type_fiber) | ||
192 | hw->autoneg_advertised = ADVERTISED_1000baseT_Full | | ||
193 | ADVERTISED_FIBRE | | ||
194 | ADVERTISED_Autoneg; | ||
195 | else | ||
196 | hw->autoneg_advertised = ecmd->advertising | | ||
197 | ADVERTISED_TP | | ||
198 | ADVERTISED_Autoneg; | ||
199 | ecmd->advertising = hw->autoneg_advertised; | ||
200 | } else { | ||
201 | u32 speed = ethtool_cmd_speed(ecmd); | ||
202 | if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { | ||
203 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
204 | return -EINVAL; | ||
205 | } | ||
206 | } | ||
207 | |||
208 | /* reset the link */ | ||
209 | |||
210 | if (netif_running(adapter->netdev)) { | ||
211 | e1000_down(adapter); | ||
212 | e1000_up(adapter); | ||
213 | } else | ||
214 | e1000_reset(adapter); | ||
215 | |||
216 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
217 | return 0; | ||
218 | } | ||
219 | |||
220 | static u32 e1000_get_link(struct net_device *netdev) | ||
221 | { | ||
222 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
223 | |||
224 | /* | ||
225 | * If the link is not reported up to netdev, interrupts are disabled, | ||
226 | * and so the physical link state may have changed since we last | ||
227 | * looked. Set get_link_status to make sure that the true link | ||
228 | * state is interrogated, rather than pulling a cached and possibly | ||
229 | * stale link state from the driver. | ||
230 | */ | ||
231 | if (!netif_carrier_ok(netdev)) | ||
232 | adapter->hw.get_link_status = 1; | ||
233 | |||
234 | return e1000_has_link(adapter); | ||
235 | } | ||
236 | |||
237 | static void e1000_get_pauseparam(struct net_device *netdev, | ||
238 | struct ethtool_pauseparam *pause) | ||
239 | { | ||
240 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
241 | struct e1000_hw *hw = &adapter->hw; | ||
242 | |||
243 | pause->autoneg = | ||
244 | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); | ||
245 | |||
246 | if (hw->fc == E1000_FC_RX_PAUSE) | ||
247 | pause->rx_pause = 1; | ||
248 | else if (hw->fc == E1000_FC_TX_PAUSE) | ||
249 | pause->tx_pause = 1; | ||
250 | else if (hw->fc == E1000_FC_FULL) { | ||
251 | pause->rx_pause = 1; | ||
252 | pause->tx_pause = 1; | ||
253 | } | ||
254 | } | ||
255 | |||
256 | static int e1000_set_pauseparam(struct net_device *netdev, | ||
257 | struct ethtool_pauseparam *pause) | ||
258 | { | ||
259 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
260 | struct e1000_hw *hw = &adapter->hw; | ||
261 | int retval = 0; | ||
262 | |||
263 | adapter->fc_autoneg = pause->autoneg; | ||
264 | |||
265 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
266 | msleep(1); | ||
267 | |||
268 | if (pause->rx_pause && pause->tx_pause) | ||
269 | hw->fc = E1000_FC_FULL; | ||
270 | else if (pause->rx_pause && !pause->tx_pause) | ||
271 | hw->fc = E1000_FC_RX_PAUSE; | ||
272 | else if (!pause->rx_pause && pause->tx_pause) | ||
273 | hw->fc = E1000_FC_TX_PAUSE; | ||
274 | else if (!pause->rx_pause && !pause->tx_pause) | ||
275 | hw->fc = E1000_FC_NONE; | ||
276 | |||
277 | hw->original_fc = hw->fc; | ||
278 | |||
279 | if (adapter->fc_autoneg == AUTONEG_ENABLE) { | ||
280 | if (netif_running(adapter->netdev)) { | ||
281 | e1000_down(adapter); | ||
282 | e1000_up(adapter); | ||
283 | } else | ||
284 | e1000_reset(adapter); | ||
285 | } else | ||
286 | retval = ((hw->media_type == e1000_media_type_fiber) ? | ||
287 | e1000_setup_link(hw) : e1000_force_mac_fc(hw)); | ||
288 | |||
289 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
290 | return retval; | ||
291 | } | ||
292 | |||
293 | static u32 e1000_get_msglevel(struct net_device *netdev) | ||
294 | { | ||
295 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
296 | return adapter->msg_enable; | ||
297 | } | ||
298 | |||
299 | static void e1000_set_msglevel(struct net_device *netdev, u32 data) | ||
300 | { | ||
301 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
302 | adapter->msg_enable = data; | ||
303 | } | ||
304 | |||
305 | static int e1000_get_regs_len(struct net_device *netdev) | ||
306 | { | ||
307 | #define E1000_REGS_LEN 32 | ||
308 | return E1000_REGS_LEN * sizeof(u32); | ||
309 | } | ||
310 | |||
311 | static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, | ||
312 | void *p) | ||
313 | { | ||
314 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
315 | struct e1000_hw *hw = &adapter->hw; | ||
316 | u32 *regs_buff = p; | ||
317 | u16 phy_data; | ||
318 | |||
319 | memset(p, 0, E1000_REGS_LEN * sizeof(u32)); | ||
320 | |||
321 | regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; | ||
322 | |||
323 | regs_buff[0] = er32(CTRL); | ||
324 | regs_buff[1] = er32(STATUS); | ||
325 | |||
326 | regs_buff[2] = er32(RCTL); | ||
327 | regs_buff[3] = er32(RDLEN); | ||
328 | regs_buff[4] = er32(RDH); | ||
329 | regs_buff[5] = er32(RDT); | ||
330 | regs_buff[6] = er32(RDTR); | ||
331 | |||
332 | regs_buff[7] = er32(TCTL); | ||
333 | regs_buff[8] = er32(TDLEN); | ||
334 | regs_buff[9] = er32(TDH); | ||
335 | regs_buff[10] = er32(TDT); | ||
336 | regs_buff[11] = er32(TIDV); | ||
337 | |||
338 | regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ | ||
339 | if (hw->phy_type == e1000_phy_igp) { | ||
340 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
341 | IGP01E1000_PHY_AGC_A); | ||
342 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & | ||
343 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
344 | regs_buff[13] = (u32)phy_data; /* cable length */ | ||
345 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
346 | IGP01E1000_PHY_AGC_B); | ||
347 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & | ||
348 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
349 | regs_buff[14] = (u32)phy_data; /* cable length */ | ||
350 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
351 | IGP01E1000_PHY_AGC_C); | ||
352 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & | ||
353 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
354 | regs_buff[15] = (u32)phy_data; /* cable length */ | ||
355 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
356 | IGP01E1000_PHY_AGC_D); | ||
357 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & | ||
358 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
359 | regs_buff[16] = (u32)phy_data; /* cable length */ | ||
360 | regs_buff[17] = 0; /* extended 10bt distance (not needed) */ | ||
361 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | ||
362 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & | ||
363 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
364 | regs_buff[18] = (u32)phy_data; /* cable polarity */ | ||
365 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
366 | IGP01E1000_PHY_PCS_INIT_REG); | ||
367 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & | ||
368 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
369 | regs_buff[19] = (u32)phy_data; /* cable polarity */ | ||
370 | regs_buff[20] = 0; /* polarity correction enabled (always) */ | ||
371 | regs_buff[22] = 0; /* phy receive errors (unavailable) */ | ||
372 | regs_buff[23] = regs_buff[18]; /* mdix mode */ | ||
373 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | ||
374 | } else { | ||
375 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
376 | regs_buff[13] = (u32)phy_data; /* cable length */ | ||
377 | regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
378 | regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
379 | regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
380 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
381 | regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ | ||
382 | regs_buff[18] = regs_buff[13]; /* cable polarity */ | ||
383 | regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
384 | regs_buff[20] = regs_buff[17]; /* polarity correction */ | ||
385 | /* phy receive errors */ | ||
386 | regs_buff[22] = adapter->phy_stats.receive_errors; | ||
387 | regs_buff[23] = regs_buff[13]; /* mdix mode */ | ||
388 | } | ||
389 | regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ | ||
390 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
391 | regs_buff[24] = (u32)phy_data; /* phy local receiver status */ | ||
392 | regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ | ||
393 | if (hw->mac_type >= e1000_82540 && | ||
394 | hw->media_type == e1000_media_type_copper) { | ||
395 | regs_buff[26] = er32(MANC); | ||
396 | } | ||
397 | } | ||
398 | |||
399 | static int e1000_get_eeprom_len(struct net_device *netdev) | ||
400 | { | ||
401 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
402 | struct e1000_hw *hw = &adapter->hw; | ||
403 | |||
404 | return hw->eeprom.word_size * 2; | ||
405 | } | ||
406 | |||
407 | static int e1000_get_eeprom(struct net_device *netdev, | ||
408 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
409 | { | ||
410 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
411 | struct e1000_hw *hw = &adapter->hw; | ||
412 | u16 *eeprom_buff; | ||
413 | int first_word, last_word; | ||
414 | int ret_val = 0; | ||
415 | u16 i; | ||
416 | |||
417 | if (eeprom->len == 0) | ||
418 | return -EINVAL; | ||
419 | |||
420 | eeprom->magic = hw->vendor_id | (hw->device_id << 16); | ||
421 | |||
422 | first_word = eeprom->offset >> 1; | ||
423 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
424 | |||
425 | eeprom_buff = kmalloc(sizeof(u16) * | ||
426 | (last_word - first_word + 1), GFP_KERNEL); | ||
427 | if (!eeprom_buff) | ||
428 | return -ENOMEM; | ||
429 | |||
430 | if (hw->eeprom.type == e1000_eeprom_spi) | ||
431 | ret_val = e1000_read_eeprom(hw, first_word, | ||
432 | last_word - first_word + 1, | ||
433 | eeprom_buff); | ||
434 | else { | ||
435 | for (i = 0; i < last_word - first_word + 1; i++) { | ||
436 | ret_val = e1000_read_eeprom(hw, first_word + i, 1, | ||
437 | &eeprom_buff[i]); | ||
438 | if (ret_val) | ||
439 | break; | ||
440 | } | ||
441 | } | ||
442 | |||
443 | /* Device's eeprom is always little-endian, word addressable */ | ||
444 | for (i = 0; i < last_word - first_word + 1; i++) | ||
445 | le16_to_cpus(&eeprom_buff[i]); | ||
446 | |||
447 | memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), | ||
448 | eeprom->len); | ||
449 | kfree(eeprom_buff); | ||
450 | |||
451 | return ret_val; | ||
452 | } | ||
453 | |||
454 | static int e1000_set_eeprom(struct net_device *netdev, | ||
455 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
456 | { | ||
457 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
458 | struct e1000_hw *hw = &adapter->hw; | ||
459 | u16 *eeprom_buff; | ||
460 | void *ptr; | ||
461 | int max_len, first_word, last_word, ret_val = 0; | ||
462 | u16 i; | ||
463 | |||
464 | if (eeprom->len == 0) | ||
465 | return -EOPNOTSUPP; | ||
466 | |||
467 | if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) | ||
468 | return -EFAULT; | ||
469 | |||
470 | max_len = hw->eeprom.word_size * 2; | ||
471 | |||
472 | first_word = eeprom->offset >> 1; | ||
473 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
474 | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | ||
475 | if (!eeprom_buff) | ||
476 | return -ENOMEM; | ||
477 | |||
478 | ptr = (void *)eeprom_buff; | ||
479 | |||
480 | if (eeprom->offset & 1) { | ||
481 | /* need read/modify/write of first changed EEPROM word */ | ||
482 | /* only the second byte of the word is being modified */ | ||
483 | ret_val = e1000_read_eeprom(hw, first_word, 1, | ||
484 | &eeprom_buff[0]); | ||
485 | ptr++; | ||
486 | } | ||
487 | if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { | ||
488 | /* need read/modify/write of last changed EEPROM word */ | ||
489 | /* only the first byte of the word is being modified */ | ||
490 | ret_val = e1000_read_eeprom(hw, last_word, 1, | ||
491 | &eeprom_buff[last_word - first_word]); | ||
492 | } | ||
493 | |||
494 | /* Device's eeprom is always little-endian, word addressable */ | ||
495 | for (i = 0; i < last_word - first_word + 1; i++) | ||
496 | le16_to_cpus(&eeprom_buff[i]); | ||
497 | |||
498 | memcpy(ptr, bytes, eeprom->len); | ||
499 | |||
500 | for (i = 0; i < last_word - first_word + 1; i++) | ||
501 | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | ||
502 | |||
503 | ret_val = e1000_write_eeprom(hw, first_word, | ||
504 | last_word - first_word + 1, eeprom_buff); | ||
505 | |||
506 | /* Update the checksum over the first part of the EEPROM if needed */ | ||
507 | if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) | ||
508 | e1000_update_eeprom_checksum(hw); | ||
509 | |||
510 | kfree(eeprom_buff); | ||
511 | return ret_val; | ||
512 | } | ||
513 | |||
514 | static void e1000_get_drvinfo(struct net_device *netdev, | ||
515 | struct ethtool_drvinfo *drvinfo) | ||
516 | { | ||
517 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
518 | char firmware_version[32]; | ||
519 | |||
520 | strncpy(drvinfo->driver, e1000_driver_name, 32); | ||
521 | strncpy(drvinfo->version, e1000_driver_version, 32); | ||
522 | |||
523 | sprintf(firmware_version, "N/A"); | ||
524 | strncpy(drvinfo->fw_version, firmware_version, 32); | ||
525 | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); | ||
526 | drvinfo->regdump_len = e1000_get_regs_len(netdev); | ||
527 | drvinfo->eedump_len = e1000_get_eeprom_len(netdev); | ||
528 | } | ||
529 | |||
530 | static void e1000_get_ringparam(struct net_device *netdev, | ||
531 | struct ethtool_ringparam *ring) | ||
532 | { | ||
533 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
534 | struct e1000_hw *hw = &adapter->hw; | ||
535 | e1000_mac_type mac_type = hw->mac_type; | ||
536 | struct e1000_tx_ring *txdr = adapter->tx_ring; | ||
537 | struct e1000_rx_ring *rxdr = adapter->rx_ring; | ||
538 | |||
539 | ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : | ||
540 | E1000_MAX_82544_RXD; | ||
541 | ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : | ||
542 | E1000_MAX_82544_TXD; | ||
543 | ring->rx_mini_max_pending = 0; | ||
544 | ring->rx_jumbo_max_pending = 0; | ||
545 | ring->rx_pending = rxdr->count; | ||
546 | ring->tx_pending = txdr->count; | ||
547 | ring->rx_mini_pending = 0; | ||
548 | ring->rx_jumbo_pending = 0; | ||
549 | } | ||
550 | |||
551 | static int e1000_set_ringparam(struct net_device *netdev, | ||
552 | struct ethtool_ringparam *ring) | ||
553 | { | ||
554 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
555 | struct e1000_hw *hw = &adapter->hw; | ||
556 | e1000_mac_type mac_type = hw->mac_type; | ||
557 | struct e1000_tx_ring *txdr, *tx_old; | ||
558 | struct e1000_rx_ring *rxdr, *rx_old; | ||
559 | int i, err; | ||
560 | |||
561 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | ||
562 | return -EINVAL; | ||
563 | |||
564 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
565 | msleep(1); | ||
566 | |||
567 | if (netif_running(adapter->netdev)) | ||
568 | e1000_down(adapter); | ||
569 | |||
570 | tx_old = adapter->tx_ring; | ||
571 | rx_old = adapter->rx_ring; | ||
572 | |||
573 | err = -ENOMEM; | ||
574 | txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); | ||
575 | if (!txdr) | ||
576 | goto err_alloc_tx; | ||
577 | |||
578 | rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); | ||
579 | if (!rxdr) | ||
580 | goto err_alloc_rx; | ||
581 | |||
582 | adapter->tx_ring = txdr; | ||
583 | adapter->rx_ring = rxdr; | ||
584 | |||
585 | rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD); | ||
586 | rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ? | ||
587 | E1000_MAX_RXD : E1000_MAX_82544_RXD)); | ||
588 | rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); | ||
589 | |||
590 | txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD); | ||
591 | txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ? | ||
592 | E1000_MAX_TXD : E1000_MAX_82544_TXD)); | ||
593 | txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); | ||
594 | |||
595 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
596 | txdr[i].count = txdr->count; | ||
597 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
598 | rxdr[i].count = rxdr->count; | ||
599 | |||
600 | if (netif_running(adapter->netdev)) { | ||
601 | /* Try to get new resources before deleting old */ | ||
602 | err = e1000_setup_all_rx_resources(adapter); | ||
603 | if (err) | ||
604 | goto err_setup_rx; | ||
605 | err = e1000_setup_all_tx_resources(adapter); | ||
606 | if (err) | ||
607 | goto err_setup_tx; | ||
608 | |||
609 | /* save the new, restore the old in order to free it, | ||
610 | * then restore the new back again */ | ||
611 | |||
612 | adapter->rx_ring = rx_old; | ||
613 | adapter->tx_ring = tx_old; | ||
614 | e1000_free_all_rx_resources(adapter); | ||
615 | e1000_free_all_tx_resources(adapter); | ||
616 | kfree(tx_old); | ||
617 | kfree(rx_old); | ||
618 | adapter->rx_ring = rxdr; | ||
619 | adapter->tx_ring = txdr; | ||
620 | err = e1000_up(adapter); | ||
621 | if (err) | ||
622 | goto err_setup; | ||
623 | } | ||
624 | |||
625 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
626 | return 0; | ||
627 | err_setup_tx: | ||
628 | e1000_free_all_rx_resources(adapter); | ||
629 | err_setup_rx: | ||
630 | adapter->rx_ring = rx_old; | ||
631 | adapter->tx_ring = tx_old; | ||
632 | kfree(rxdr); | ||
633 | err_alloc_rx: | ||
634 | kfree(txdr); | ||
635 | err_alloc_tx: | ||
636 | e1000_up(adapter); | ||
637 | err_setup: | ||
638 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
639 | return err; | ||
640 | } | ||
641 | |||
642 | static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, | ||
643 | u32 mask, u32 write) | ||
644 | { | ||
645 | struct e1000_hw *hw = &adapter->hw; | ||
646 | static const u32 test[] = | ||
647 | {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; | ||
648 | u8 __iomem *address = hw->hw_addr + reg; | ||
649 | u32 read; | ||
650 | int i; | ||
651 | |||
652 | for (i = 0; i < ARRAY_SIZE(test); i++) { | ||
653 | writel(write & test[i], address); | ||
654 | read = readl(address); | ||
655 | if (read != (write & test[i] & mask)) { | ||
656 | e_err(drv, "pattern test reg %04X failed: " | ||
657 | "got 0x%08X expected 0x%08X\n", | ||
658 | reg, read, (write & test[i] & mask)); | ||
659 | *data = reg; | ||
660 | return true; | ||
661 | } | ||
662 | } | ||
663 | return false; | ||
664 | } | ||
665 | |||
666 | static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, | ||
667 | u32 mask, u32 write) | ||
668 | { | ||
669 | struct e1000_hw *hw = &adapter->hw; | ||
670 | u8 __iomem *address = hw->hw_addr + reg; | ||
671 | u32 read; | ||
672 | |||
673 | writel(write & mask, address); | ||
674 | read = readl(address); | ||
675 | if ((read & mask) != (write & mask)) { | ||
676 | e_err(drv, "set/check reg %04X test failed: " | ||
677 | "got 0x%08X expected 0x%08X\n", | ||
678 | reg, (read & mask), (write & mask)); | ||
679 | *data = reg; | ||
680 | return true; | ||
681 | } | ||
682 | return false; | ||
683 | } | ||
684 | |||
685 | #define REG_PATTERN_TEST(reg, mask, write) \ | ||
686 | do { \ | ||
687 | if (reg_pattern_test(adapter, data, \ | ||
688 | (hw->mac_type >= e1000_82543) \ | ||
689 | ? E1000_##reg : E1000_82542_##reg, \ | ||
690 | mask, write)) \ | ||
691 | return 1; \ | ||
692 | } while (0) | ||
693 | |||
694 | #define REG_SET_AND_CHECK(reg, mask, write) \ | ||
695 | do { \ | ||
696 | if (reg_set_and_check(adapter, data, \ | ||
697 | (hw->mac_type >= e1000_82543) \ | ||
698 | ? E1000_##reg : E1000_82542_##reg, \ | ||
699 | mask, write)) \ | ||
700 | return 1; \ | ||
701 | } while (0) | ||
702 | |||
703 | static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) | ||
704 | { | ||
705 | u32 value, before, after; | ||
706 | u32 i, toggle; | ||
707 | struct e1000_hw *hw = &adapter->hw; | ||
708 | |||
709 | /* The status register is Read Only, so a write should fail. | ||
710 | * Some bits that get toggled are ignored. | ||
711 | */ | ||
712 | |||
713 | /* there are several bits on newer hardware that are r/w */ | ||
714 | toggle = 0xFFFFF833; | ||
715 | |||
716 | before = er32(STATUS); | ||
717 | value = (er32(STATUS) & toggle); | ||
718 | ew32(STATUS, toggle); | ||
719 | after = er32(STATUS) & toggle; | ||
720 | if (value != after) { | ||
721 | e_err(drv, "failed STATUS register test got: " | ||
722 | "0x%08X expected: 0x%08X\n", after, value); | ||
723 | *data = 1; | ||
724 | return 1; | ||
725 | } | ||
726 | /* restore previous status */ | ||
727 | ew32(STATUS, before); | ||
728 | |||
729 | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); | ||
730 | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); | ||
731 | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); | ||
732 | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); | ||
733 | |||
734 | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); | ||
735 | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | ||
736 | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); | ||
737 | REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); | ||
738 | REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); | ||
739 | REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); | ||
740 | REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); | ||
741 | REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); | ||
742 | REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | ||
743 | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); | ||
744 | |||
745 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); | ||
746 | |||
747 | before = 0x06DFB3FE; | ||
748 | REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); | ||
749 | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); | ||
750 | |||
751 | if (hw->mac_type >= e1000_82543) { | ||
752 | |||
753 | REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); | ||
754 | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | ||
755 | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | ||
756 | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | ||
757 | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); | ||
758 | value = E1000_RAR_ENTRIES; | ||
759 | for (i = 0; i < value; i++) { | ||
760 | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, | ||
761 | 0xFFFFFFFF); | ||
762 | } | ||
763 | |||
764 | } else { | ||
765 | |||
766 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); | ||
767 | REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); | ||
768 | REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); | ||
769 | REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); | ||
770 | |||
771 | } | ||
772 | |||
773 | value = E1000_MC_TBL_SIZE; | ||
774 | for (i = 0; i < value; i++) | ||
775 | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); | ||
776 | |||
777 | *data = 0; | ||
778 | return 0; | ||
779 | } | ||
780 | |||
781 | static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) | ||
782 | { | ||
783 | struct e1000_hw *hw = &adapter->hw; | ||
784 | u16 temp; | ||
785 | u16 checksum = 0; | ||
786 | u16 i; | ||
787 | |||
788 | *data = 0; | ||
789 | /* Read and add up the contents of the EEPROM */ | ||
790 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
791 | if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { | ||
792 | *data = 1; | ||
793 | break; | ||
794 | } | ||
795 | checksum += temp; | ||
796 | } | ||
797 | |||
798 | /* If Checksum is not Correct return error else test passed */ | ||
799 | if ((checksum != (u16)EEPROM_SUM) && !(*data)) | ||
800 | *data = 2; | ||
801 | |||
802 | return *data; | ||
803 | } | ||
804 | |||
805 | static irqreturn_t e1000_test_intr(int irq, void *data) | ||
806 | { | ||
807 | struct net_device *netdev = (struct net_device *)data; | ||
808 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
809 | struct e1000_hw *hw = &adapter->hw; | ||
810 | |||
811 | adapter->test_icr |= er32(ICR); | ||
812 | |||
813 | return IRQ_HANDLED; | ||
814 | } | ||
815 | |||
816 | static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) | ||
817 | { | ||
818 | struct net_device *netdev = adapter->netdev; | ||
819 | u32 mask, i = 0; | ||
820 | bool shared_int = true; | ||
821 | u32 irq = adapter->pdev->irq; | ||
822 | struct e1000_hw *hw = &adapter->hw; | ||
823 | |||
824 | *data = 0; | ||
825 | |||
826 | /* NOTE: we don't test MSI interrupts here, yet */ | ||
827 | /* Hook up test interrupt handler just for this test */ | ||
828 | if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, | ||
829 | netdev)) | ||
830 | shared_int = false; | ||
831 | else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, | ||
832 | netdev->name, netdev)) { | ||
833 | *data = 1; | ||
834 | return -1; | ||
835 | } | ||
836 | e_info(hw, "testing %s interrupt\n", (shared_int ? | ||
837 | "shared" : "unshared")); | ||
838 | |||
839 | /* Disable all the interrupts */ | ||
840 | ew32(IMC, 0xFFFFFFFF); | ||
841 | E1000_WRITE_FLUSH(); | ||
842 | msleep(10); | ||
843 | |||
844 | /* Test each interrupt */ | ||
845 | for (; i < 10; i++) { | ||
846 | |||
847 | /* Interrupt to test */ | ||
848 | mask = 1 << i; | ||
849 | |||
850 | if (!shared_int) { | ||
851 | /* Disable the interrupt to be reported in | ||
852 | * the cause register and then force the same | ||
853 | * interrupt and see if one gets posted. If | ||
854 | * an interrupt was posted to the bus, the | ||
855 | * test failed. | ||
856 | */ | ||
857 | adapter->test_icr = 0; | ||
858 | ew32(IMC, mask); | ||
859 | ew32(ICS, mask); | ||
860 | E1000_WRITE_FLUSH(); | ||
861 | msleep(10); | ||
862 | |||
863 | if (adapter->test_icr & mask) { | ||
864 | *data = 3; | ||
865 | break; | ||
866 | } | ||
867 | } | ||
868 | |||
869 | /* Enable the interrupt to be reported in | ||
870 | * the cause register and then force the same | ||
871 | * interrupt and see if one gets posted. If | ||
872 | * an interrupt was not posted to the bus, the | ||
873 | * test failed. | ||
874 | */ | ||
875 | adapter->test_icr = 0; | ||
876 | ew32(IMS, mask); | ||
877 | ew32(ICS, mask); | ||
878 | E1000_WRITE_FLUSH(); | ||
879 | msleep(10); | ||
880 | |||
881 | if (!(adapter->test_icr & mask)) { | ||
882 | *data = 4; | ||
883 | break; | ||
884 | } | ||
885 | |||
886 | if (!shared_int) { | ||
887 | /* Disable the other interrupts to be reported in | ||
888 | * the cause register and then force the other | ||
889 | * interrupts and see if any get posted. If | ||
890 | * an interrupt was posted to the bus, the | ||
891 | * test failed. | ||
892 | */ | ||
893 | adapter->test_icr = 0; | ||
894 | ew32(IMC, ~mask & 0x00007FFF); | ||
895 | ew32(ICS, ~mask & 0x00007FFF); | ||
896 | E1000_WRITE_FLUSH(); | ||
897 | msleep(10); | ||
898 | |||
899 | if (adapter->test_icr) { | ||
900 | *data = 5; | ||
901 | break; | ||
902 | } | ||
903 | } | ||
904 | } | ||
905 | |||
906 | /* Disable all the interrupts */ | ||
907 | ew32(IMC, 0xFFFFFFFF); | ||
908 | E1000_WRITE_FLUSH(); | ||
909 | msleep(10); | ||
910 | |||
911 | /* Unhook test interrupt handler */ | ||
912 | free_irq(irq, netdev); | ||
913 | |||
914 | return *data; | ||
915 | } | ||
916 | |||
917 | static void e1000_free_desc_rings(struct e1000_adapter *adapter) | ||
918 | { | ||
919 | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | ||
920 | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | ||
921 | struct pci_dev *pdev = adapter->pdev; | ||
922 | int i; | ||
923 | |||
924 | if (txdr->desc && txdr->buffer_info) { | ||
925 | for (i = 0; i < txdr->count; i++) { | ||
926 | if (txdr->buffer_info[i].dma) | ||
927 | dma_unmap_single(&pdev->dev, | ||
928 | txdr->buffer_info[i].dma, | ||
929 | txdr->buffer_info[i].length, | ||
930 | DMA_TO_DEVICE); | ||
931 | if (txdr->buffer_info[i].skb) | ||
932 | dev_kfree_skb(txdr->buffer_info[i].skb); | ||
933 | } | ||
934 | } | ||
935 | |||
936 | if (rxdr->desc && rxdr->buffer_info) { | ||
937 | for (i = 0; i < rxdr->count; i++) { | ||
938 | if (rxdr->buffer_info[i].dma) | ||
939 | dma_unmap_single(&pdev->dev, | ||
940 | rxdr->buffer_info[i].dma, | ||
941 | rxdr->buffer_info[i].length, | ||
942 | DMA_FROM_DEVICE); | ||
943 | if (rxdr->buffer_info[i].skb) | ||
944 | dev_kfree_skb(rxdr->buffer_info[i].skb); | ||
945 | } | ||
946 | } | ||
947 | |||
948 | if (txdr->desc) { | ||
949 | dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, | ||
950 | txdr->dma); | ||
951 | txdr->desc = NULL; | ||
952 | } | ||
953 | if (rxdr->desc) { | ||
954 | dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, | ||
955 | rxdr->dma); | ||
956 | rxdr->desc = NULL; | ||
957 | } | ||
958 | |||
959 | kfree(txdr->buffer_info); | ||
960 | txdr->buffer_info = NULL; | ||
961 | kfree(rxdr->buffer_info); | ||
962 | rxdr->buffer_info = NULL; | ||
963 | } | ||
964 | |||
965 | static int e1000_setup_desc_rings(struct e1000_adapter *adapter) | ||
966 | { | ||
967 | struct e1000_hw *hw = &adapter->hw; | ||
968 | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | ||
969 | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | ||
970 | struct pci_dev *pdev = adapter->pdev; | ||
971 | u32 rctl; | ||
972 | int i, ret_val; | ||
973 | |||
974 | /* Setup Tx descriptor ring and Tx buffers */ | ||
975 | |||
976 | if (!txdr->count) | ||
977 | txdr->count = E1000_DEFAULT_TXD; | ||
978 | |||
979 | txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer), | ||
980 | GFP_KERNEL); | ||
981 | if (!txdr->buffer_info) { | ||
982 | ret_val = 1; | ||
983 | goto err_nomem; | ||
984 | } | ||
985 | |||
986 | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | ||
987 | txdr->size = ALIGN(txdr->size, 4096); | ||
988 | txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, | ||
989 | GFP_KERNEL); | ||
990 | if (!txdr->desc) { | ||
991 | ret_val = 2; | ||
992 | goto err_nomem; | ||
993 | } | ||
994 | memset(txdr->desc, 0, txdr->size); | ||
995 | txdr->next_to_use = txdr->next_to_clean = 0; | ||
996 | |||
997 | ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); | ||
998 | ew32(TDBAH, ((u64)txdr->dma >> 32)); | ||
999 | ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); | ||
1000 | ew32(TDH, 0); | ||
1001 | ew32(TDT, 0); | ||
1002 | ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | | ||
1003 | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | | ||
1004 | E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); | ||
1005 | |||
1006 | for (i = 0; i < txdr->count; i++) { | ||
1007 | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); | ||
1008 | struct sk_buff *skb; | ||
1009 | unsigned int size = 1024; | ||
1010 | |||
1011 | skb = alloc_skb(size, GFP_KERNEL); | ||
1012 | if (!skb) { | ||
1013 | ret_val = 3; | ||
1014 | goto err_nomem; | ||
1015 | } | ||
1016 | skb_put(skb, size); | ||
1017 | txdr->buffer_info[i].skb = skb; | ||
1018 | txdr->buffer_info[i].length = skb->len; | ||
1019 | txdr->buffer_info[i].dma = | ||
1020 | dma_map_single(&pdev->dev, skb->data, skb->len, | ||
1021 | DMA_TO_DEVICE); | ||
1022 | tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); | ||
1023 | tx_desc->lower.data = cpu_to_le32(skb->len); | ||
1024 | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | | ||
1025 | E1000_TXD_CMD_IFCS | | ||
1026 | E1000_TXD_CMD_RPS); | ||
1027 | tx_desc->upper.data = 0; | ||
1028 | } | ||
1029 | |||
1030 | /* Setup Rx descriptor ring and Rx buffers */ | ||
1031 | |||
1032 | if (!rxdr->count) | ||
1033 | rxdr->count = E1000_DEFAULT_RXD; | ||
1034 | |||
1035 | rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer), | ||
1036 | GFP_KERNEL); | ||
1037 | if (!rxdr->buffer_info) { | ||
1038 | ret_val = 4; | ||
1039 | goto err_nomem; | ||
1040 | } | ||
1041 | |||
1042 | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); | ||
1043 | rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, | ||
1044 | GFP_KERNEL); | ||
1045 | if (!rxdr->desc) { | ||
1046 | ret_val = 5; | ||
1047 | goto err_nomem; | ||
1048 | } | ||
1049 | memset(rxdr->desc, 0, rxdr->size); | ||
1050 | rxdr->next_to_use = rxdr->next_to_clean = 0; | ||
1051 | |||
1052 | rctl = er32(RCTL); | ||
1053 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
1054 | ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); | ||
1055 | ew32(RDBAH, ((u64)rxdr->dma >> 32)); | ||
1056 | ew32(RDLEN, rxdr->size); | ||
1057 | ew32(RDH, 0); | ||
1058 | ew32(RDT, 0); | ||
1059 | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | | ||
1060 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
1061 | (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1062 | ew32(RCTL, rctl); | ||
1063 | |||
1064 | for (i = 0; i < rxdr->count; i++) { | ||
1065 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); | ||
1066 | struct sk_buff *skb; | ||
1067 | |||
1068 | skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL); | ||
1069 | if (!skb) { | ||
1070 | ret_val = 6; | ||
1071 | goto err_nomem; | ||
1072 | } | ||
1073 | skb_reserve(skb, NET_IP_ALIGN); | ||
1074 | rxdr->buffer_info[i].skb = skb; | ||
1075 | rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; | ||
1076 | rxdr->buffer_info[i].dma = | ||
1077 | dma_map_single(&pdev->dev, skb->data, | ||
1078 | E1000_RXBUFFER_2048, DMA_FROM_DEVICE); | ||
1079 | rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); | ||
1080 | memset(skb->data, 0x00, skb->len); | ||
1081 | } | ||
1082 | |||
1083 | return 0; | ||
1084 | |||
1085 | err_nomem: | ||
1086 | e1000_free_desc_rings(adapter); | ||
1087 | return ret_val; | ||
1088 | } | ||
1089 | |||
1090 | static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) | ||
1091 | { | ||
1092 | struct e1000_hw *hw = &adapter->hw; | ||
1093 | |||
1094 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
1095 | e1000_write_phy_reg(hw, 29, 0x001F); | ||
1096 | e1000_write_phy_reg(hw, 30, 0x8FFC); | ||
1097 | e1000_write_phy_reg(hw, 29, 0x001A); | ||
1098 | e1000_write_phy_reg(hw, 30, 0x8FF0); | ||
1099 | } | ||
1100 | |||
1101 | static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) | ||
1102 | { | ||
1103 | struct e1000_hw *hw = &adapter->hw; | ||
1104 | u16 phy_reg; | ||
1105 | |||
1106 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | ||
1107 | * Extended PHY Specific Control Register to 25MHz clock. This | ||
1108 | * value defaults back to a 2.5MHz clock when the PHY is reset. | ||
1109 | */ | ||
1110 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | ||
1111 | phy_reg |= M88E1000_EPSCR_TX_CLK_25; | ||
1112 | e1000_write_phy_reg(hw, | ||
1113 | M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); | ||
1114 | |||
1115 | /* In addition, because of the s/w reset above, we need to enable | ||
1116 | * CRS on TX. This must be set for both full and half duplex | ||
1117 | * operation. | ||
1118 | */ | ||
1119 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | ||
1120 | phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1121 | e1000_write_phy_reg(hw, | ||
1122 | M88E1000_PHY_SPEC_CTRL, phy_reg); | ||
1123 | } | ||
1124 | |||
1125 | static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) | ||
1126 | { | ||
1127 | struct e1000_hw *hw = &adapter->hw; | ||
1128 | u32 ctrl_reg; | ||
1129 | u16 phy_reg; | ||
1130 | |||
1131 | /* Setup the Device Control Register for PHY loopback test. */ | ||
1132 | |||
1133 | ctrl_reg = er32(CTRL); | ||
1134 | ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ | ||
1135 | E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1136 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1137 | E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ | ||
1138 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1139 | |||
1140 | ew32(CTRL, ctrl_reg); | ||
1141 | |||
1142 | /* Read the PHY Specific Control Register (0x10) */ | ||
1143 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | ||
1144 | |||
1145 | /* Clear Auto-Crossover bits in PHY Specific Control Register | ||
1146 | * (bits 6:5). | ||
1147 | */ | ||
1148 | phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1149 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); | ||
1150 | |||
1151 | /* Perform software reset on the PHY */ | ||
1152 | e1000_phy_reset(hw); | ||
1153 | |||
1154 | /* Have to setup TX_CLK and TX_CRS after software reset */ | ||
1155 | e1000_phy_reset_clk_and_crs(adapter); | ||
1156 | |||
1157 | e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); | ||
1158 | |||
1159 | /* Wait for reset to complete. */ | ||
1160 | udelay(500); | ||
1161 | |||
1162 | /* Have to setup TX_CLK and TX_CRS after software reset */ | ||
1163 | e1000_phy_reset_clk_and_crs(adapter); | ||
1164 | |||
1165 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
1166 | e1000_phy_disable_receiver(adapter); | ||
1167 | |||
1168 | /* Set the loopback bit in the PHY control register. */ | ||
1169 | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | ||
1170 | phy_reg |= MII_CR_LOOPBACK; | ||
1171 | e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); | ||
1172 | |||
1173 | /* Setup TX_CLK and TX_CRS one more time. */ | ||
1174 | e1000_phy_reset_clk_and_crs(adapter); | ||
1175 | |||
1176 | /* Check Phy Configuration */ | ||
1177 | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | ||
1178 | if (phy_reg != 0x4100) | ||
1179 | return 9; | ||
1180 | |||
1181 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | ||
1182 | if (phy_reg != 0x0070) | ||
1183 | return 10; | ||
1184 | |||
1185 | e1000_read_phy_reg(hw, 29, &phy_reg); | ||
1186 | if (phy_reg != 0x001A) | ||
1187 | return 11; | ||
1188 | |||
1189 | return 0; | ||
1190 | } | ||
1191 | |||
1192 | static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) | ||
1193 | { | ||
1194 | struct e1000_hw *hw = &adapter->hw; | ||
1195 | u32 ctrl_reg = 0; | ||
1196 | u32 stat_reg = 0; | ||
1197 | |||
1198 | hw->autoneg = false; | ||
1199 | |||
1200 | if (hw->phy_type == e1000_phy_m88) { | ||
1201 | /* Auto-MDI/MDIX Off */ | ||
1202 | e1000_write_phy_reg(hw, | ||
1203 | M88E1000_PHY_SPEC_CTRL, 0x0808); | ||
1204 | /* reset to update Auto-MDI/MDIX */ | ||
1205 | e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); | ||
1206 | /* autoneg off */ | ||
1207 | e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); | ||
1208 | } | ||
1209 | |||
1210 | ctrl_reg = er32(CTRL); | ||
1211 | |||
1212 | /* force 1000, set loopback */ | ||
1213 | e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); | ||
1214 | |||
1215 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
1216 | ctrl_reg = er32(CTRL); | ||
1217 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
1218 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1219 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1220 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | ||
1221 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1222 | |||
1223 | if (hw->media_type == e1000_media_type_copper && | ||
1224 | hw->phy_type == e1000_phy_m88) | ||
1225 | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ | ||
1226 | else { | ||
1227 | /* Set the ILOS bit on the fiber Nic is half | ||
1228 | * duplex link is detected. */ | ||
1229 | stat_reg = er32(STATUS); | ||
1230 | if ((stat_reg & E1000_STATUS_FD) == 0) | ||
1231 | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); | ||
1232 | } | ||
1233 | |||
1234 | ew32(CTRL, ctrl_reg); | ||
1235 | |||
1236 | /* Disable the receiver on the PHY so when a cable is plugged in, the | ||
1237 | * PHY does not begin to autoneg when a cable is reconnected to the NIC. | ||
1238 | */ | ||
1239 | if (hw->phy_type == e1000_phy_m88) | ||
1240 | e1000_phy_disable_receiver(adapter); | ||
1241 | |||
1242 | udelay(500); | ||
1243 | |||
1244 | return 0; | ||
1245 | } | ||
1246 | |||
1247 | static int e1000_set_phy_loopback(struct e1000_adapter *adapter) | ||
1248 | { | ||
1249 | struct e1000_hw *hw = &adapter->hw; | ||
1250 | u16 phy_reg = 0; | ||
1251 | u16 count = 0; | ||
1252 | |||
1253 | switch (hw->mac_type) { | ||
1254 | case e1000_82543: | ||
1255 | if (hw->media_type == e1000_media_type_copper) { | ||
1256 | /* Attempt to setup Loopback mode on Non-integrated PHY. | ||
1257 | * Some PHY registers get corrupted at random, so | ||
1258 | * attempt this 10 times. | ||
1259 | */ | ||
1260 | while (e1000_nonintegrated_phy_loopback(adapter) && | ||
1261 | count++ < 10); | ||
1262 | if (count < 11) | ||
1263 | return 0; | ||
1264 | } | ||
1265 | break; | ||
1266 | |||
1267 | case e1000_82544: | ||
1268 | case e1000_82540: | ||
1269 | case e1000_82545: | ||
1270 | case e1000_82545_rev_3: | ||
1271 | case e1000_82546: | ||
1272 | case e1000_82546_rev_3: | ||
1273 | case e1000_82541: | ||
1274 | case e1000_82541_rev_2: | ||
1275 | case e1000_82547: | ||
1276 | case e1000_82547_rev_2: | ||
1277 | return e1000_integrated_phy_loopback(adapter); | ||
1278 | break; | ||
1279 | default: | ||
1280 | /* Default PHY loopback work is to read the MII | ||
1281 | * control register and assert bit 14 (loopback mode). | ||
1282 | */ | ||
1283 | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | ||
1284 | phy_reg |= MII_CR_LOOPBACK; | ||
1285 | e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); | ||
1286 | return 0; | ||
1287 | break; | ||
1288 | } | ||
1289 | |||
1290 | return 8; | ||
1291 | } | ||
1292 | |||
1293 | static int e1000_setup_loopback_test(struct e1000_adapter *adapter) | ||
1294 | { | ||
1295 | struct e1000_hw *hw = &adapter->hw; | ||
1296 | u32 rctl; | ||
1297 | |||
1298 | if (hw->media_type == e1000_media_type_fiber || | ||
1299 | hw->media_type == e1000_media_type_internal_serdes) { | ||
1300 | switch (hw->mac_type) { | ||
1301 | case e1000_82545: | ||
1302 | case e1000_82546: | ||
1303 | case e1000_82545_rev_3: | ||
1304 | case e1000_82546_rev_3: | ||
1305 | return e1000_set_phy_loopback(adapter); | ||
1306 | break; | ||
1307 | default: | ||
1308 | rctl = er32(RCTL); | ||
1309 | rctl |= E1000_RCTL_LBM_TCVR; | ||
1310 | ew32(RCTL, rctl); | ||
1311 | return 0; | ||
1312 | } | ||
1313 | } else if (hw->media_type == e1000_media_type_copper) | ||
1314 | return e1000_set_phy_loopback(adapter); | ||
1315 | |||
1316 | return 7; | ||
1317 | } | ||
1318 | |||
1319 | static void e1000_loopback_cleanup(struct e1000_adapter *adapter) | ||
1320 | { | ||
1321 | struct e1000_hw *hw = &adapter->hw; | ||
1322 | u32 rctl; | ||
1323 | u16 phy_reg; | ||
1324 | |||
1325 | rctl = er32(RCTL); | ||
1326 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | ||
1327 | ew32(RCTL, rctl); | ||
1328 | |||
1329 | switch (hw->mac_type) { | ||
1330 | case e1000_82545: | ||
1331 | case e1000_82546: | ||
1332 | case e1000_82545_rev_3: | ||
1333 | case e1000_82546_rev_3: | ||
1334 | default: | ||
1335 | hw->autoneg = true; | ||
1336 | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | ||
1337 | if (phy_reg & MII_CR_LOOPBACK) { | ||
1338 | phy_reg &= ~MII_CR_LOOPBACK; | ||
1339 | e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); | ||
1340 | e1000_phy_reset(hw); | ||
1341 | } | ||
1342 | break; | ||
1343 | } | ||
1344 | } | ||
1345 | |||
1346 | static void e1000_create_lbtest_frame(struct sk_buff *skb, | ||
1347 | unsigned int frame_size) | ||
1348 | { | ||
1349 | memset(skb->data, 0xFF, frame_size); | ||
1350 | frame_size &= ~1; | ||
1351 | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); | ||
1352 | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); | ||
1353 | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); | ||
1354 | } | ||
1355 | |||
1356 | static int e1000_check_lbtest_frame(struct sk_buff *skb, | ||
1357 | unsigned int frame_size) | ||
1358 | { | ||
1359 | frame_size &= ~1; | ||
1360 | if (*(skb->data + 3) == 0xFF) { | ||
1361 | if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && | ||
1362 | (*(skb->data + frame_size / 2 + 12) == 0xAF)) { | ||
1363 | return 0; | ||
1364 | } | ||
1365 | } | ||
1366 | return 13; | ||
1367 | } | ||
1368 | |||
1369 | static int e1000_run_loopback_test(struct e1000_adapter *adapter) | ||
1370 | { | ||
1371 | struct e1000_hw *hw = &adapter->hw; | ||
1372 | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | ||
1373 | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | ||
1374 | struct pci_dev *pdev = adapter->pdev; | ||
1375 | int i, j, k, l, lc, good_cnt, ret_val=0; | ||
1376 | unsigned long time; | ||
1377 | |||
1378 | ew32(RDT, rxdr->count - 1); | ||
1379 | |||
1380 | /* Calculate the loop count based on the largest descriptor ring | ||
1381 | * The idea is to wrap the largest ring a number of times using 64 | ||
1382 | * send/receive pairs during each loop | ||
1383 | */ | ||
1384 | |||
1385 | if (rxdr->count <= txdr->count) | ||
1386 | lc = ((txdr->count / 64) * 2) + 1; | ||
1387 | else | ||
1388 | lc = ((rxdr->count / 64) * 2) + 1; | ||
1389 | |||
1390 | k = l = 0; | ||
1391 | for (j = 0; j <= lc; j++) { /* loop count loop */ | ||
1392 | for (i = 0; i < 64; i++) { /* send the packets */ | ||
1393 | e1000_create_lbtest_frame(txdr->buffer_info[i].skb, | ||
1394 | 1024); | ||
1395 | dma_sync_single_for_device(&pdev->dev, | ||
1396 | txdr->buffer_info[k].dma, | ||
1397 | txdr->buffer_info[k].length, | ||
1398 | DMA_TO_DEVICE); | ||
1399 | if (unlikely(++k == txdr->count)) k = 0; | ||
1400 | } | ||
1401 | ew32(TDT, k); | ||
1402 | E1000_WRITE_FLUSH(); | ||
1403 | msleep(200); | ||
1404 | time = jiffies; /* set the start time for the receive */ | ||
1405 | good_cnt = 0; | ||
1406 | do { /* receive the sent packets */ | ||
1407 | dma_sync_single_for_cpu(&pdev->dev, | ||
1408 | rxdr->buffer_info[l].dma, | ||
1409 | rxdr->buffer_info[l].length, | ||
1410 | DMA_FROM_DEVICE); | ||
1411 | |||
1412 | ret_val = e1000_check_lbtest_frame( | ||
1413 | rxdr->buffer_info[l].skb, | ||
1414 | 1024); | ||
1415 | if (!ret_val) | ||
1416 | good_cnt++; | ||
1417 | if (unlikely(++l == rxdr->count)) l = 0; | ||
1418 | /* time + 20 msecs (200 msecs on 2.4) is more than | ||
1419 | * enough time to complete the receives, if it's | ||
1420 | * exceeded, break and error off | ||
1421 | */ | ||
1422 | } while (good_cnt < 64 && jiffies < (time + 20)); | ||
1423 | if (good_cnt != 64) { | ||
1424 | ret_val = 13; /* ret_val is the same as mis-compare */ | ||
1425 | break; | ||
1426 | } | ||
1427 | if (jiffies >= (time + 2)) { | ||
1428 | ret_val = 14; /* error code for time out error */ | ||
1429 | break; | ||
1430 | } | ||
1431 | } /* end loop count loop */ | ||
1432 | return ret_val; | ||
1433 | } | ||
1434 | |||
1435 | static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) | ||
1436 | { | ||
1437 | *data = e1000_setup_desc_rings(adapter); | ||
1438 | if (*data) | ||
1439 | goto out; | ||
1440 | *data = e1000_setup_loopback_test(adapter); | ||
1441 | if (*data) | ||
1442 | goto err_loopback; | ||
1443 | *data = e1000_run_loopback_test(adapter); | ||
1444 | e1000_loopback_cleanup(adapter); | ||
1445 | |||
1446 | err_loopback: | ||
1447 | e1000_free_desc_rings(adapter); | ||
1448 | out: | ||
1449 | return *data; | ||
1450 | } | ||
1451 | |||
1452 | static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) | ||
1453 | { | ||
1454 | struct e1000_hw *hw = &adapter->hw; | ||
1455 | *data = 0; | ||
1456 | if (hw->media_type == e1000_media_type_internal_serdes) { | ||
1457 | int i = 0; | ||
1458 | hw->serdes_has_link = false; | ||
1459 | |||
1460 | /* On some blade server designs, link establishment | ||
1461 | * could take as long as 2-3 minutes */ | ||
1462 | do { | ||
1463 | e1000_check_for_link(hw); | ||
1464 | if (hw->serdes_has_link) | ||
1465 | return *data; | ||
1466 | msleep(20); | ||
1467 | } while (i++ < 3750); | ||
1468 | |||
1469 | *data = 1; | ||
1470 | } else { | ||
1471 | e1000_check_for_link(hw); | ||
1472 | if (hw->autoneg) /* if auto_neg is set wait for it */ | ||
1473 | msleep(4000); | ||
1474 | |||
1475 | if (!(er32(STATUS) & E1000_STATUS_LU)) { | ||
1476 | *data = 1; | ||
1477 | } | ||
1478 | } | ||
1479 | return *data; | ||
1480 | } | ||
1481 | |||
1482 | static int e1000_get_sset_count(struct net_device *netdev, int sset) | ||
1483 | { | ||
1484 | switch (sset) { | ||
1485 | case ETH_SS_TEST: | ||
1486 | return E1000_TEST_LEN; | ||
1487 | case ETH_SS_STATS: | ||
1488 | return E1000_STATS_LEN; | ||
1489 | default: | ||
1490 | return -EOPNOTSUPP; | ||
1491 | } | ||
1492 | } | ||
1493 | |||
1494 | static void e1000_diag_test(struct net_device *netdev, | ||
1495 | struct ethtool_test *eth_test, u64 *data) | ||
1496 | { | ||
1497 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1498 | struct e1000_hw *hw = &adapter->hw; | ||
1499 | bool if_running = netif_running(netdev); | ||
1500 | |||
1501 | set_bit(__E1000_TESTING, &adapter->flags); | ||
1502 | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { | ||
1503 | /* Offline tests */ | ||
1504 | |||
1505 | /* save speed, duplex, autoneg settings */ | ||
1506 | u16 autoneg_advertised = hw->autoneg_advertised; | ||
1507 | u8 forced_speed_duplex = hw->forced_speed_duplex; | ||
1508 | u8 autoneg = hw->autoneg; | ||
1509 | |||
1510 | e_info(hw, "offline testing starting\n"); | ||
1511 | |||
1512 | /* Link test performed before hardware reset so autoneg doesn't | ||
1513 | * interfere with test result */ | ||
1514 | if (e1000_link_test(adapter, &data[4])) | ||
1515 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1516 | |||
1517 | if (if_running) | ||
1518 | /* indicate we're in test mode */ | ||
1519 | dev_close(netdev); | ||
1520 | else | ||
1521 | e1000_reset(adapter); | ||
1522 | |||
1523 | if (e1000_reg_test(adapter, &data[0])) | ||
1524 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1525 | |||
1526 | e1000_reset(adapter); | ||
1527 | if (e1000_eeprom_test(adapter, &data[1])) | ||
1528 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1529 | |||
1530 | e1000_reset(adapter); | ||
1531 | if (e1000_intr_test(adapter, &data[2])) | ||
1532 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1533 | |||
1534 | e1000_reset(adapter); | ||
1535 | /* make sure the phy is powered up */ | ||
1536 | e1000_power_up_phy(adapter); | ||
1537 | if (e1000_loopback_test(adapter, &data[3])) | ||
1538 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1539 | |||
1540 | /* restore speed, duplex, autoneg settings */ | ||
1541 | hw->autoneg_advertised = autoneg_advertised; | ||
1542 | hw->forced_speed_duplex = forced_speed_duplex; | ||
1543 | hw->autoneg = autoneg; | ||
1544 | |||
1545 | e1000_reset(adapter); | ||
1546 | clear_bit(__E1000_TESTING, &adapter->flags); | ||
1547 | if (if_running) | ||
1548 | dev_open(netdev); | ||
1549 | } else { | ||
1550 | e_info(hw, "online testing starting\n"); | ||
1551 | /* Online tests */ | ||
1552 | if (e1000_link_test(adapter, &data[4])) | ||
1553 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1554 | |||
1555 | /* Online tests aren't run; pass by default */ | ||
1556 | data[0] = 0; | ||
1557 | data[1] = 0; | ||
1558 | data[2] = 0; | ||
1559 | data[3] = 0; | ||
1560 | |||
1561 | clear_bit(__E1000_TESTING, &adapter->flags); | ||
1562 | } | ||
1563 | msleep_interruptible(4 * 1000); | ||
1564 | } | ||
1565 | |||
1566 | static int e1000_wol_exclusion(struct e1000_adapter *adapter, | ||
1567 | struct ethtool_wolinfo *wol) | ||
1568 | { | ||
1569 | struct e1000_hw *hw = &adapter->hw; | ||
1570 | int retval = 1; /* fail by default */ | ||
1571 | |||
1572 | switch (hw->device_id) { | ||
1573 | case E1000_DEV_ID_82542: | ||
1574 | case E1000_DEV_ID_82543GC_FIBER: | ||
1575 | case E1000_DEV_ID_82543GC_COPPER: | ||
1576 | case E1000_DEV_ID_82544EI_FIBER: | ||
1577 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
1578 | case E1000_DEV_ID_82545EM_FIBER: | ||
1579 | case E1000_DEV_ID_82545EM_COPPER: | ||
1580 | case E1000_DEV_ID_82546GB_QUAD_COPPER: | ||
1581 | case E1000_DEV_ID_82546GB_PCIE: | ||
1582 | /* these don't support WoL at all */ | ||
1583 | wol->supported = 0; | ||
1584 | break; | ||
1585 | case E1000_DEV_ID_82546EB_FIBER: | ||
1586 | case E1000_DEV_ID_82546GB_FIBER: | ||
1587 | /* Wake events not supported on port B */ | ||
1588 | if (er32(STATUS) & E1000_STATUS_FUNC_1) { | ||
1589 | wol->supported = 0; | ||
1590 | break; | ||
1591 | } | ||
1592 | /* return success for non excluded adapter ports */ | ||
1593 | retval = 0; | ||
1594 | break; | ||
1595 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | ||
1596 | /* quad port adapters only support WoL on port A */ | ||
1597 | if (!adapter->quad_port_a) { | ||
1598 | wol->supported = 0; | ||
1599 | break; | ||
1600 | } | ||
1601 | /* return success for non excluded adapter ports */ | ||
1602 | retval = 0; | ||
1603 | break; | ||
1604 | default: | ||
1605 | /* dual port cards only support WoL on port A from now on | ||
1606 | * unless it was enabled in the eeprom for port B | ||
1607 | * so exclude FUNC_1 ports from having WoL enabled */ | ||
1608 | if (er32(STATUS) & E1000_STATUS_FUNC_1 && | ||
1609 | !adapter->eeprom_wol) { | ||
1610 | wol->supported = 0; | ||
1611 | break; | ||
1612 | } | ||
1613 | |||
1614 | retval = 0; | ||
1615 | } | ||
1616 | |||
1617 | return retval; | ||
1618 | } | ||
1619 | |||
1620 | static void e1000_get_wol(struct net_device *netdev, | ||
1621 | struct ethtool_wolinfo *wol) | ||
1622 | { | ||
1623 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1624 | struct e1000_hw *hw = &adapter->hw; | ||
1625 | |||
1626 | wol->supported = WAKE_UCAST | WAKE_MCAST | | ||
1627 | WAKE_BCAST | WAKE_MAGIC; | ||
1628 | wol->wolopts = 0; | ||
1629 | |||
1630 | /* this function will set ->supported = 0 and return 1 if wol is not | ||
1631 | * supported by this hardware */ | ||
1632 | if (e1000_wol_exclusion(adapter, wol) || | ||
1633 | !device_can_wakeup(&adapter->pdev->dev)) | ||
1634 | return; | ||
1635 | |||
1636 | /* apply any specific unsupported masks here */ | ||
1637 | switch (hw->device_id) { | ||
1638 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | ||
1639 | /* KSP3 does not suppport UCAST wake-ups */ | ||
1640 | wol->supported &= ~WAKE_UCAST; | ||
1641 | |||
1642 | if (adapter->wol & E1000_WUFC_EX) | ||
1643 | e_err(drv, "Interface does not support directed " | ||
1644 | "(unicast) frame wake-up packets\n"); | ||
1645 | break; | ||
1646 | default: | ||
1647 | break; | ||
1648 | } | ||
1649 | |||
1650 | if (adapter->wol & E1000_WUFC_EX) | ||
1651 | wol->wolopts |= WAKE_UCAST; | ||
1652 | if (adapter->wol & E1000_WUFC_MC) | ||
1653 | wol->wolopts |= WAKE_MCAST; | ||
1654 | if (adapter->wol & E1000_WUFC_BC) | ||
1655 | wol->wolopts |= WAKE_BCAST; | ||
1656 | if (adapter->wol & E1000_WUFC_MAG) | ||
1657 | wol->wolopts |= WAKE_MAGIC; | ||
1658 | } | ||
1659 | |||
1660 | static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
1661 | { | ||
1662 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1663 | struct e1000_hw *hw = &adapter->hw; | ||
1664 | |||
1665 | if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) | ||
1666 | return -EOPNOTSUPP; | ||
1667 | |||
1668 | if (e1000_wol_exclusion(adapter, wol) || | ||
1669 | !device_can_wakeup(&adapter->pdev->dev)) | ||
1670 | return wol->wolopts ? -EOPNOTSUPP : 0; | ||
1671 | |||
1672 | switch (hw->device_id) { | ||
1673 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | ||
1674 | if (wol->wolopts & WAKE_UCAST) { | ||
1675 | e_err(drv, "Interface does not support directed " | ||
1676 | "(unicast) frame wake-up packets\n"); | ||
1677 | return -EOPNOTSUPP; | ||
1678 | } | ||
1679 | break; | ||
1680 | default: | ||
1681 | break; | ||
1682 | } | ||
1683 | |||
1684 | /* these settings will always override what we currently have */ | ||
1685 | adapter->wol = 0; | ||
1686 | |||
1687 | if (wol->wolopts & WAKE_UCAST) | ||
1688 | adapter->wol |= E1000_WUFC_EX; | ||
1689 | if (wol->wolopts & WAKE_MCAST) | ||
1690 | adapter->wol |= E1000_WUFC_MC; | ||
1691 | if (wol->wolopts & WAKE_BCAST) | ||
1692 | adapter->wol |= E1000_WUFC_BC; | ||
1693 | if (wol->wolopts & WAKE_MAGIC) | ||
1694 | adapter->wol |= E1000_WUFC_MAG; | ||
1695 | |||
1696 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | ||
1697 | |||
1698 | return 0; | ||
1699 | } | ||
1700 | |||
1701 | static int e1000_set_phys_id(struct net_device *netdev, | ||
1702 | enum ethtool_phys_id_state state) | ||
1703 | { | ||
1704 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1705 | struct e1000_hw *hw = &adapter->hw; | ||
1706 | |||
1707 | switch (state) { | ||
1708 | case ETHTOOL_ID_ACTIVE: | ||
1709 | e1000_setup_led(hw); | ||
1710 | return 2; | ||
1711 | |||
1712 | case ETHTOOL_ID_ON: | ||
1713 | e1000_led_on(hw); | ||
1714 | break; | ||
1715 | |||
1716 | case ETHTOOL_ID_OFF: | ||
1717 | e1000_led_off(hw); | ||
1718 | break; | ||
1719 | |||
1720 | case ETHTOOL_ID_INACTIVE: | ||
1721 | e1000_cleanup_led(hw); | ||
1722 | } | ||
1723 | |||
1724 | return 0; | ||
1725 | } | ||
1726 | |||
1727 | static int e1000_get_coalesce(struct net_device *netdev, | ||
1728 | struct ethtool_coalesce *ec) | ||
1729 | { | ||
1730 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1731 | |||
1732 | if (adapter->hw.mac_type < e1000_82545) | ||
1733 | return -EOPNOTSUPP; | ||
1734 | |||
1735 | if (adapter->itr_setting <= 4) | ||
1736 | ec->rx_coalesce_usecs = adapter->itr_setting; | ||
1737 | else | ||
1738 | ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; | ||
1739 | |||
1740 | return 0; | ||
1741 | } | ||
1742 | |||
1743 | static int e1000_set_coalesce(struct net_device *netdev, | ||
1744 | struct ethtool_coalesce *ec) | ||
1745 | { | ||
1746 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1747 | struct e1000_hw *hw = &adapter->hw; | ||
1748 | |||
1749 | if (hw->mac_type < e1000_82545) | ||
1750 | return -EOPNOTSUPP; | ||
1751 | |||
1752 | if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || | ||
1753 | ((ec->rx_coalesce_usecs > 4) && | ||
1754 | (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || | ||
1755 | (ec->rx_coalesce_usecs == 2)) | ||
1756 | return -EINVAL; | ||
1757 | |||
1758 | if (ec->rx_coalesce_usecs == 4) { | ||
1759 | adapter->itr = adapter->itr_setting = 4; | ||
1760 | } else if (ec->rx_coalesce_usecs <= 3) { | ||
1761 | adapter->itr = 20000; | ||
1762 | adapter->itr_setting = ec->rx_coalesce_usecs; | ||
1763 | } else { | ||
1764 | adapter->itr = (1000000 / ec->rx_coalesce_usecs); | ||
1765 | adapter->itr_setting = adapter->itr & ~3; | ||
1766 | } | ||
1767 | |||
1768 | if (adapter->itr_setting != 0) | ||
1769 | ew32(ITR, 1000000000 / (adapter->itr * 256)); | ||
1770 | else | ||
1771 | ew32(ITR, 0); | ||
1772 | |||
1773 | return 0; | ||
1774 | } | ||
1775 | |||
1776 | static int e1000_nway_reset(struct net_device *netdev) | ||
1777 | { | ||
1778 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1779 | if (netif_running(netdev)) | ||
1780 | e1000_reinit_locked(adapter); | ||
1781 | return 0; | ||
1782 | } | ||
1783 | |||
1784 | static void e1000_get_ethtool_stats(struct net_device *netdev, | ||
1785 | struct ethtool_stats *stats, u64 *data) | ||
1786 | { | ||
1787 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1788 | int i; | ||
1789 | char *p = NULL; | ||
1790 | |||
1791 | e1000_update_stats(adapter); | ||
1792 | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { | ||
1793 | switch (e1000_gstrings_stats[i].type) { | ||
1794 | case NETDEV_STATS: | ||
1795 | p = (char *) netdev + | ||
1796 | e1000_gstrings_stats[i].stat_offset; | ||
1797 | break; | ||
1798 | case E1000_STATS: | ||
1799 | p = (char *) adapter + | ||
1800 | e1000_gstrings_stats[i].stat_offset; | ||
1801 | break; | ||
1802 | } | ||
1803 | |||
1804 | data[i] = (e1000_gstrings_stats[i].sizeof_stat == | ||
1805 | sizeof(u64)) ? *(u64 *)p : *(u32 *)p; | ||
1806 | } | ||
1807 | /* BUG_ON(i != E1000_STATS_LEN); */ | ||
1808 | } | ||
1809 | |||
1810 | static void e1000_get_strings(struct net_device *netdev, u32 stringset, | ||
1811 | u8 *data) | ||
1812 | { | ||
1813 | u8 *p = data; | ||
1814 | int i; | ||
1815 | |||
1816 | switch (stringset) { | ||
1817 | case ETH_SS_TEST: | ||
1818 | memcpy(data, *e1000_gstrings_test, | ||
1819 | sizeof(e1000_gstrings_test)); | ||
1820 | break; | ||
1821 | case ETH_SS_STATS: | ||
1822 | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { | ||
1823 | memcpy(p, e1000_gstrings_stats[i].stat_string, | ||
1824 | ETH_GSTRING_LEN); | ||
1825 | p += ETH_GSTRING_LEN; | ||
1826 | } | ||
1827 | /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ | ||
1828 | break; | ||
1829 | } | ||
1830 | } | ||
1831 | |||
1832 | static const struct ethtool_ops e1000_ethtool_ops = { | ||
1833 | .get_settings = e1000_get_settings, | ||
1834 | .set_settings = e1000_set_settings, | ||
1835 | .get_drvinfo = e1000_get_drvinfo, | ||
1836 | .get_regs_len = e1000_get_regs_len, | ||
1837 | .get_regs = e1000_get_regs, | ||
1838 | .get_wol = e1000_get_wol, | ||
1839 | .set_wol = e1000_set_wol, | ||
1840 | .get_msglevel = e1000_get_msglevel, | ||
1841 | .set_msglevel = e1000_set_msglevel, | ||
1842 | .nway_reset = e1000_nway_reset, | ||
1843 | .get_link = e1000_get_link, | ||
1844 | .get_eeprom_len = e1000_get_eeprom_len, | ||
1845 | .get_eeprom = e1000_get_eeprom, | ||
1846 | .set_eeprom = e1000_set_eeprom, | ||
1847 | .get_ringparam = e1000_get_ringparam, | ||
1848 | .set_ringparam = e1000_set_ringparam, | ||
1849 | .get_pauseparam = e1000_get_pauseparam, | ||
1850 | .set_pauseparam = e1000_set_pauseparam, | ||
1851 | .self_test = e1000_diag_test, | ||
1852 | .get_strings = e1000_get_strings, | ||
1853 | .set_phys_id = e1000_set_phys_id, | ||
1854 | .get_ethtool_stats = e1000_get_ethtool_stats, | ||
1855 | .get_sset_count = e1000_get_sset_count, | ||
1856 | .get_coalesce = e1000_get_coalesce, | ||
1857 | .set_coalesce = e1000_set_coalesce, | ||
1858 | }; | ||
1859 | |||
1860 | void e1000_set_ethtool_ops(struct net_device *netdev) | ||
1861 | { | ||
1862 | SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); | ||
1863 | } | ||