diff options
Diffstat (limited to 'drivers/net/e1000/e1000_ethtool.c')
| -rw-r--r-- | drivers/net/e1000/e1000_ethtool.c | 1863 |
1 files changed, 1863 insertions, 0 deletions
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c new file mode 100644 index 00000000000..5548d464261 --- /dev/null +++ b/drivers/net/e1000/e1000_ethtool.c | |||
| @@ -0,0 +1,1863 @@ | |||
| 1 | /******************************************************************************* | ||
| 2 | |||
| 3 | Intel PRO/1000 Linux driver | ||
| 4 | Copyright(c) 1999 - 2006 Intel Corporation. | ||
| 5 | |||
| 6 | This program is free software; you can redistribute it and/or modify it | ||
| 7 | under the terms and conditions of the GNU General Public License, | ||
| 8 | version 2, as published by the Free Software Foundation. | ||
| 9 | |||
| 10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
| 13 | more details. | ||
| 14 | |||
| 15 | You should have received a copy of the GNU General Public License along with | ||
| 16 | this program; if not, write to the Free Software Foundation, Inc., | ||
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
| 18 | |||
| 19 | The full GNU General Public License is included in this distribution in | ||
| 20 | the file called "COPYING". | ||
| 21 | |||
| 22 | Contact Information: | ||
| 23 | Linux NICS <linux.nics@intel.com> | ||
| 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
| 26 | |||
| 27 | *******************************************************************************/ | ||
| 28 | |||
| 29 | /* ethtool support for e1000 */ | ||
| 30 | |||
| 31 | #include "e1000.h" | ||
| 32 | #include <asm/uaccess.h> | ||
| 33 | |||
| 34 | enum {NETDEV_STATS, E1000_STATS}; | ||
| 35 | |||
| 36 | struct e1000_stats { | ||
| 37 | char stat_string[ETH_GSTRING_LEN]; | ||
| 38 | int type; | ||
| 39 | int sizeof_stat; | ||
| 40 | int stat_offset; | ||
| 41 | }; | ||
| 42 | |||
| 43 | #define E1000_STAT(m) E1000_STATS, \ | ||
| 44 | sizeof(((struct e1000_adapter *)0)->m), \ | ||
| 45 | offsetof(struct e1000_adapter, m) | ||
| 46 | #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ | ||
| 47 | sizeof(((struct net_device *)0)->m), \ | ||
| 48 | offsetof(struct net_device, m) | ||
| 49 | |||
| 50 | static const struct e1000_stats e1000_gstrings_stats[] = { | ||
| 51 | { "rx_packets", E1000_STAT(stats.gprc) }, | ||
| 52 | { "tx_packets", E1000_STAT(stats.gptc) }, | ||
| 53 | { "rx_bytes", E1000_STAT(stats.gorcl) }, | ||
| 54 | { "tx_bytes", E1000_STAT(stats.gotcl) }, | ||
| 55 | { "rx_broadcast", E1000_STAT(stats.bprc) }, | ||
| 56 | { "tx_broadcast", E1000_STAT(stats.bptc) }, | ||
| 57 | { "rx_multicast", E1000_STAT(stats.mprc) }, | ||
| 58 | { "tx_multicast", E1000_STAT(stats.mptc) }, | ||
| 59 | { "rx_errors", E1000_STAT(stats.rxerrc) }, | ||
| 60 | { "tx_errors", E1000_STAT(stats.txerrc) }, | ||
| 61 | { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, | ||
| 62 | { "multicast", E1000_STAT(stats.mprc) }, | ||
| 63 | { "collisions", E1000_STAT(stats.colc) }, | ||
| 64 | { "rx_length_errors", E1000_STAT(stats.rlerrc) }, | ||
| 65 | { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, | ||
| 66 | { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, | ||
| 67 | { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, | ||
| 68 | { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, | ||
| 69 | { "rx_missed_errors", E1000_STAT(stats.mpc) }, | ||
| 70 | { "tx_aborted_errors", E1000_STAT(stats.ecol) }, | ||
| 71 | { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, | ||
| 72 | { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, | ||
| 73 | { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, | ||
| 74 | { "tx_window_errors", E1000_STAT(stats.latecol) }, | ||
| 75 | { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, | ||
| 76 | { "tx_deferred_ok", E1000_STAT(stats.dc) }, | ||
| 77 | { "tx_single_coll_ok", E1000_STAT(stats.scc) }, | ||
| 78 | { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, | ||
| 79 | { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, | ||
| 80 | { "tx_restart_queue", E1000_STAT(restart_queue) }, | ||
| 81 | { "rx_long_length_errors", E1000_STAT(stats.roc) }, | ||
| 82 | { "rx_short_length_errors", E1000_STAT(stats.ruc) }, | ||
| 83 | { "rx_align_errors", E1000_STAT(stats.algnerrc) }, | ||
| 84 | { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, | ||
| 85 | { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, | ||
| 86 | { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, | ||
| 87 | { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, | ||
| 88 | { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, | ||
| 89 | { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, | ||
| 90 | { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, | ||
| 91 | { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, | ||
| 92 | { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, | ||
| 93 | { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, | ||
| 94 | { "tx_smbus", E1000_STAT(stats.mgptc) }, | ||
| 95 | { "rx_smbus", E1000_STAT(stats.mgprc) }, | ||
| 96 | { "dropped_smbus", E1000_STAT(stats.mgpdc) }, | ||
| 97 | }; | ||
| 98 | |||
| 99 | #define E1000_QUEUE_STATS_LEN 0 | ||
| 100 | #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) | ||
| 101 | #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) | ||
| 102 | static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { | ||
| 103 | "Register test (offline)", "Eeprom test (offline)", | ||
| 104 | "Interrupt test (offline)", "Loopback test (offline)", | ||
| 105 | "Link test (on/offline)" | ||
| 106 | }; | ||
| 107 | #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) | ||
| 108 | |||
| 109 | static int e1000_get_settings(struct net_device *netdev, | ||
| 110 | struct ethtool_cmd *ecmd) | ||
| 111 | { | ||
| 112 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 113 | struct e1000_hw *hw = &adapter->hw; | ||
| 114 | |||
| 115 | if (hw->media_type == e1000_media_type_copper) { | ||
| 116 | |||
| 117 | ecmd->supported = (SUPPORTED_10baseT_Half | | ||
| 118 | SUPPORTED_10baseT_Full | | ||
| 119 | SUPPORTED_100baseT_Half | | ||
| 120 | SUPPORTED_100baseT_Full | | ||
| 121 | SUPPORTED_1000baseT_Full| | ||
| 122 | SUPPORTED_Autoneg | | ||
| 123 | SUPPORTED_TP); | ||
| 124 | ecmd->advertising = ADVERTISED_TP; | ||
| 125 | |||
| 126 | if (hw->autoneg == 1) { | ||
| 127 | ecmd->advertising |= ADVERTISED_Autoneg; | ||
| 128 | /* the e1000 autoneg seems to match ethtool nicely */ | ||
| 129 | ecmd->advertising |= hw->autoneg_advertised; | ||
| 130 | } | ||
| 131 | |||
| 132 | ecmd->port = PORT_TP; | ||
| 133 | ecmd->phy_address = hw->phy_addr; | ||
| 134 | |||
| 135 | if (hw->mac_type == e1000_82543) | ||
| 136 | ecmd->transceiver = XCVR_EXTERNAL; | ||
| 137 | else | ||
| 138 | ecmd->transceiver = XCVR_INTERNAL; | ||
| 139 | |||
| 140 | } else { | ||
| 141 | ecmd->supported = (SUPPORTED_1000baseT_Full | | ||
| 142 | SUPPORTED_FIBRE | | ||
| 143 | SUPPORTED_Autoneg); | ||
| 144 | |||
| 145 | ecmd->advertising = (ADVERTISED_1000baseT_Full | | ||
| 146 | ADVERTISED_FIBRE | | ||
| 147 | ADVERTISED_Autoneg); | ||
| 148 | |||
| 149 | ecmd->port = PORT_FIBRE; | ||
| 150 | |||
| 151 | if (hw->mac_type >= e1000_82545) | ||
| 152 | ecmd->transceiver = XCVR_INTERNAL; | ||
| 153 | else | ||
| 154 | ecmd->transceiver = XCVR_EXTERNAL; | ||
| 155 | } | ||
| 156 | |||
| 157 | if (er32(STATUS) & E1000_STATUS_LU) { | ||
| 158 | |||
| 159 | e1000_get_speed_and_duplex(hw, &adapter->link_speed, | ||
| 160 | &adapter->link_duplex); | ||
| 161 | ethtool_cmd_speed_set(ecmd, adapter->link_speed); | ||
| 162 | |||
| 163 | /* unfortunately FULL_DUPLEX != DUPLEX_FULL | ||
| 164 | * and HALF_DUPLEX != DUPLEX_HALF */ | ||
| 165 | |||
| 166 | if (adapter->link_duplex == FULL_DUPLEX) | ||
| 167 | ecmd->duplex = DUPLEX_FULL; | ||
| 168 | else | ||
| 169 | ecmd->duplex = DUPLEX_HALF; | ||
| 170 | } else { | ||
| 171 | ethtool_cmd_speed_set(ecmd, -1); | ||
| 172 | ecmd->duplex = -1; | ||
| 173 | } | ||
| 174 | |||
| 175 | ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || | ||
| 176 | hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; | ||
| 177 | return 0; | ||
| 178 | } | ||
| 179 | |||
| 180 | static int e1000_set_settings(struct net_device *netdev, | ||
| 181 | struct ethtool_cmd *ecmd) | ||
| 182 | { | ||
| 183 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 184 | struct e1000_hw *hw = &adapter->hw; | ||
| 185 | |||
| 186 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
| 187 | msleep(1); | ||
| 188 | |||
| 189 | if (ecmd->autoneg == AUTONEG_ENABLE) { | ||
| 190 | hw->autoneg = 1; | ||
| 191 | if (hw->media_type == e1000_media_type_fiber) | ||
| 192 | hw->autoneg_advertised = ADVERTISED_1000baseT_Full | | ||
| 193 | ADVERTISED_FIBRE | | ||
| 194 | ADVERTISED_Autoneg; | ||
| 195 | else | ||
| 196 | hw->autoneg_advertised = ecmd->advertising | | ||
| 197 | ADVERTISED_TP | | ||
| 198 | ADVERTISED_Autoneg; | ||
| 199 | ecmd->advertising = hw->autoneg_advertised; | ||
| 200 | } else { | ||
| 201 | u32 speed = ethtool_cmd_speed(ecmd); | ||
| 202 | if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { | ||
| 203 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
| 204 | return -EINVAL; | ||
| 205 | } | ||
| 206 | } | ||
| 207 | |||
| 208 | /* reset the link */ | ||
| 209 | |||
| 210 | if (netif_running(adapter->netdev)) { | ||
| 211 | e1000_down(adapter); | ||
| 212 | e1000_up(adapter); | ||
| 213 | } else | ||
| 214 | e1000_reset(adapter); | ||
| 215 | |||
| 216 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
| 217 | return 0; | ||
| 218 | } | ||
| 219 | |||
| 220 | static u32 e1000_get_link(struct net_device *netdev) | ||
| 221 | { | ||
| 222 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 223 | |||
| 224 | /* | ||
| 225 | * If the link is not reported up to netdev, interrupts are disabled, | ||
| 226 | * and so the physical link state may have changed since we last | ||
| 227 | * looked. Set get_link_status to make sure that the true link | ||
| 228 | * state is interrogated, rather than pulling a cached and possibly | ||
| 229 | * stale link state from the driver. | ||
| 230 | */ | ||
| 231 | if (!netif_carrier_ok(netdev)) | ||
| 232 | adapter->hw.get_link_status = 1; | ||
| 233 | |||
| 234 | return e1000_has_link(adapter); | ||
| 235 | } | ||
| 236 | |||
| 237 | static void e1000_get_pauseparam(struct net_device *netdev, | ||
| 238 | struct ethtool_pauseparam *pause) | ||
| 239 | { | ||
| 240 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 241 | struct e1000_hw *hw = &adapter->hw; | ||
| 242 | |||
| 243 | pause->autoneg = | ||
| 244 | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); | ||
| 245 | |||
| 246 | if (hw->fc == E1000_FC_RX_PAUSE) | ||
| 247 | pause->rx_pause = 1; | ||
| 248 | else if (hw->fc == E1000_FC_TX_PAUSE) | ||
| 249 | pause->tx_pause = 1; | ||
| 250 | else if (hw->fc == E1000_FC_FULL) { | ||
| 251 | pause->rx_pause = 1; | ||
| 252 | pause->tx_pause = 1; | ||
| 253 | } | ||
| 254 | } | ||
| 255 | |||
| 256 | static int e1000_set_pauseparam(struct net_device *netdev, | ||
| 257 | struct ethtool_pauseparam *pause) | ||
| 258 | { | ||
| 259 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 260 | struct e1000_hw *hw = &adapter->hw; | ||
| 261 | int retval = 0; | ||
| 262 | |||
| 263 | adapter->fc_autoneg = pause->autoneg; | ||
| 264 | |||
| 265 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
| 266 | msleep(1); | ||
| 267 | |||
| 268 | if (pause->rx_pause && pause->tx_pause) | ||
| 269 | hw->fc = E1000_FC_FULL; | ||
| 270 | else if (pause->rx_pause && !pause->tx_pause) | ||
| 271 | hw->fc = E1000_FC_RX_PAUSE; | ||
| 272 | else if (!pause->rx_pause && pause->tx_pause) | ||
| 273 | hw->fc = E1000_FC_TX_PAUSE; | ||
| 274 | else if (!pause->rx_pause && !pause->tx_pause) | ||
| 275 | hw->fc = E1000_FC_NONE; | ||
| 276 | |||
| 277 | hw->original_fc = hw->fc; | ||
| 278 | |||
| 279 | if (adapter->fc_autoneg == AUTONEG_ENABLE) { | ||
| 280 | if (netif_running(adapter->netdev)) { | ||
| 281 | e1000_down(adapter); | ||
| 282 | e1000_up(adapter); | ||
| 283 | } else | ||
| 284 | e1000_reset(adapter); | ||
| 285 | } else | ||
| 286 | retval = ((hw->media_type == e1000_media_type_fiber) ? | ||
| 287 | e1000_setup_link(hw) : e1000_force_mac_fc(hw)); | ||
| 288 | |||
| 289 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
| 290 | return retval; | ||
| 291 | } | ||
| 292 | |||
| 293 | static u32 e1000_get_msglevel(struct net_device *netdev) | ||
| 294 | { | ||
| 295 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 296 | return adapter->msg_enable; | ||
| 297 | } | ||
| 298 | |||
| 299 | static void e1000_set_msglevel(struct net_device *netdev, u32 data) | ||
| 300 | { | ||
| 301 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 302 | adapter->msg_enable = data; | ||
| 303 | } | ||
| 304 | |||
| 305 | static int e1000_get_regs_len(struct net_device *netdev) | ||
| 306 | { | ||
| 307 | #define E1000_REGS_LEN 32 | ||
| 308 | return E1000_REGS_LEN * sizeof(u32); | ||
| 309 | } | ||
| 310 | |||
| 311 | static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, | ||
| 312 | void *p) | ||
| 313 | { | ||
| 314 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 315 | struct e1000_hw *hw = &adapter->hw; | ||
| 316 | u32 *regs_buff = p; | ||
| 317 | u16 phy_data; | ||
| 318 | |||
| 319 | memset(p, 0, E1000_REGS_LEN * sizeof(u32)); | ||
| 320 | |||
| 321 | regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; | ||
| 322 | |||
| 323 | regs_buff[0] = er32(CTRL); | ||
| 324 | regs_buff[1] = er32(STATUS); | ||
| 325 | |||
| 326 | regs_buff[2] = er32(RCTL); | ||
| 327 | regs_buff[3] = er32(RDLEN); | ||
| 328 | regs_buff[4] = er32(RDH); | ||
| 329 | regs_buff[5] = er32(RDT); | ||
| 330 | regs_buff[6] = er32(RDTR); | ||
| 331 | |||
| 332 | regs_buff[7] = er32(TCTL); | ||
| 333 | regs_buff[8] = er32(TDLEN); | ||
| 334 | regs_buff[9] = er32(TDH); | ||
| 335 | regs_buff[10] = er32(TDT); | ||
| 336 | regs_buff[11] = er32(TIDV); | ||
| 337 | |||
| 338 | regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ | ||
| 339 | if (hw->phy_type == e1000_phy_igp) { | ||
| 340 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
| 341 | IGP01E1000_PHY_AGC_A); | ||
| 342 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & | ||
| 343 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
| 344 | regs_buff[13] = (u32)phy_data; /* cable length */ | ||
| 345 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
| 346 | IGP01E1000_PHY_AGC_B); | ||
| 347 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & | ||
| 348 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
| 349 | regs_buff[14] = (u32)phy_data; /* cable length */ | ||
| 350 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
| 351 | IGP01E1000_PHY_AGC_C); | ||
| 352 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & | ||
| 353 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
| 354 | regs_buff[15] = (u32)phy_data; /* cable length */ | ||
| 355 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
| 356 | IGP01E1000_PHY_AGC_D); | ||
| 357 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & | ||
| 358 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
| 359 | regs_buff[16] = (u32)phy_data; /* cable length */ | ||
| 360 | regs_buff[17] = 0; /* extended 10bt distance (not needed) */ | ||
| 361 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | ||
| 362 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & | ||
| 363 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
| 364 | regs_buff[18] = (u32)phy_data; /* cable polarity */ | ||
| 365 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
| 366 | IGP01E1000_PHY_PCS_INIT_REG); | ||
| 367 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & | ||
| 368 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
| 369 | regs_buff[19] = (u32)phy_data; /* cable polarity */ | ||
| 370 | regs_buff[20] = 0; /* polarity correction enabled (always) */ | ||
| 371 | regs_buff[22] = 0; /* phy receive errors (unavailable) */ | ||
| 372 | regs_buff[23] = regs_buff[18]; /* mdix mode */ | ||
| 373 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | ||
| 374 | } else { | ||
| 375 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
| 376 | regs_buff[13] = (u32)phy_data; /* cable length */ | ||
| 377 | regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
| 378 | regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
| 379 | regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
| 380 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
| 381 | regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ | ||
| 382 | regs_buff[18] = regs_buff[13]; /* cable polarity */ | ||
| 383 | regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
| 384 | regs_buff[20] = regs_buff[17]; /* polarity correction */ | ||
| 385 | /* phy receive errors */ | ||
| 386 | regs_buff[22] = adapter->phy_stats.receive_errors; | ||
| 387 | regs_buff[23] = regs_buff[13]; /* mdix mode */ | ||
| 388 | } | ||
| 389 | regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ | ||
| 390 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
| 391 | regs_buff[24] = (u32)phy_data; /* phy local receiver status */ | ||
| 392 | regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ | ||
| 393 | if (hw->mac_type >= e1000_82540 && | ||
| 394 | hw->media_type == e1000_media_type_copper) { | ||
| 395 | regs_buff[26] = er32(MANC); | ||
| 396 | } | ||
| 397 | } | ||
| 398 | |||
| 399 | static int e1000_get_eeprom_len(struct net_device *netdev) | ||
| 400 | { | ||
| 401 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 402 | struct e1000_hw *hw = &adapter->hw; | ||
| 403 | |||
| 404 | return hw->eeprom.word_size * 2; | ||
| 405 | } | ||
| 406 | |||
| 407 | static int e1000_get_eeprom(struct net_device *netdev, | ||
| 408 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
| 409 | { | ||
| 410 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 411 | struct e1000_hw *hw = &adapter->hw; | ||
| 412 | u16 *eeprom_buff; | ||
| 413 | int first_word, last_word; | ||
| 414 | int ret_val = 0; | ||
| 415 | u16 i; | ||
| 416 | |||
| 417 | if (eeprom->len == 0) | ||
| 418 | return -EINVAL; | ||
| 419 | |||
| 420 | eeprom->magic = hw->vendor_id | (hw->device_id << 16); | ||
| 421 | |||
| 422 | first_word = eeprom->offset >> 1; | ||
| 423 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
| 424 | |||
| 425 | eeprom_buff = kmalloc(sizeof(u16) * | ||
| 426 | (last_word - first_word + 1), GFP_KERNEL); | ||
| 427 | if (!eeprom_buff) | ||
| 428 | return -ENOMEM; | ||
| 429 | |||
| 430 | if (hw->eeprom.type == e1000_eeprom_spi) | ||
| 431 | ret_val = e1000_read_eeprom(hw, first_word, | ||
| 432 | last_word - first_word + 1, | ||
| 433 | eeprom_buff); | ||
| 434 | else { | ||
| 435 | for (i = 0; i < last_word - first_word + 1; i++) { | ||
| 436 | ret_val = e1000_read_eeprom(hw, first_word + i, 1, | ||
| 437 | &eeprom_buff[i]); | ||
| 438 | if (ret_val) | ||
| 439 | break; | ||
| 440 | } | ||
| 441 | } | ||
| 442 | |||
| 443 | /* Device's eeprom is always little-endian, word addressable */ | ||
| 444 | for (i = 0; i < last_word - first_word + 1; i++) | ||
| 445 | le16_to_cpus(&eeprom_buff[i]); | ||
| 446 | |||
| 447 | memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), | ||
| 448 | eeprom->len); | ||
| 449 | kfree(eeprom_buff); | ||
| 450 | |||
| 451 | return ret_val; | ||
| 452 | } | ||
| 453 | |||
| 454 | static int e1000_set_eeprom(struct net_device *netdev, | ||
| 455 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
| 456 | { | ||
| 457 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 458 | struct e1000_hw *hw = &adapter->hw; | ||
| 459 | u16 *eeprom_buff; | ||
| 460 | void *ptr; | ||
| 461 | int max_len, first_word, last_word, ret_val = 0; | ||
| 462 | u16 i; | ||
| 463 | |||
| 464 | if (eeprom->len == 0) | ||
| 465 | return -EOPNOTSUPP; | ||
| 466 | |||
| 467 | if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) | ||
| 468 | return -EFAULT; | ||
| 469 | |||
| 470 | max_len = hw->eeprom.word_size * 2; | ||
| 471 | |||
| 472 | first_word = eeprom->offset >> 1; | ||
| 473 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
| 474 | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | ||
| 475 | if (!eeprom_buff) | ||
| 476 | return -ENOMEM; | ||
| 477 | |||
| 478 | ptr = (void *)eeprom_buff; | ||
| 479 | |||
| 480 | if (eeprom->offset & 1) { | ||
| 481 | /* need read/modify/write of first changed EEPROM word */ | ||
| 482 | /* only the second byte of the word is being modified */ | ||
| 483 | ret_val = e1000_read_eeprom(hw, first_word, 1, | ||
| 484 | &eeprom_buff[0]); | ||
| 485 | ptr++; | ||
| 486 | } | ||
| 487 | if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { | ||
| 488 | /* need read/modify/write of last changed EEPROM word */ | ||
| 489 | /* only the first byte of the word is being modified */ | ||
| 490 | ret_val = e1000_read_eeprom(hw, last_word, 1, | ||
| 491 | &eeprom_buff[last_word - first_word]); | ||
| 492 | } | ||
| 493 | |||
| 494 | /* Device's eeprom is always little-endian, word addressable */ | ||
| 495 | for (i = 0; i < last_word - first_word + 1; i++) | ||
| 496 | le16_to_cpus(&eeprom_buff[i]); | ||
| 497 | |||
| 498 | memcpy(ptr, bytes, eeprom->len); | ||
| 499 | |||
| 500 | for (i = 0; i < last_word - first_word + 1; i++) | ||
| 501 | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | ||
| 502 | |||
| 503 | ret_val = e1000_write_eeprom(hw, first_word, | ||
| 504 | last_word - first_word + 1, eeprom_buff); | ||
| 505 | |||
| 506 | /* Update the checksum over the first part of the EEPROM if needed */ | ||
| 507 | if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) | ||
| 508 | e1000_update_eeprom_checksum(hw); | ||
| 509 | |||
| 510 | kfree(eeprom_buff); | ||
| 511 | return ret_val; | ||
| 512 | } | ||
| 513 | |||
| 514 | static void e1000_get_drvinfo(struct net_device *netdev, | ||
| 515 | struct ethtool_drvinfo *drvinfo) | ||
| 516 | { | ||
| 517 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 518 | char firmware_version[32]; | ||
| 519 | |||
| 520 | strncpy(drvinfo->driver, e1000_driver_name, 32); | ||
| 521 | strncpy(drvinfo->version, e1000_driver_version, 32); | ||
| 522 | |||
| 523 | sprintf(firmware_version, "N/A"); | ||
| 524 | strncpy(drvinfo->fw_version, firmware_version, 32); | ||
| 525 | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); | ||
| 526 | drvinfo->regdump_len = e1000_get_regs_len(netdev); | ||
| 527 | drvinfo->eedump_len = e1000_get_eeprom_len(netdev); | ||
| 528 | } | ||
| 529 | |||
| 530 | static void e1000_get_ringparam(struct net_device *netdev, | ||
| 531 | struct ethtool_ringparam *ring) | ||
| 532 | { | ||
| 533 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 534 | struct e1000_hw *hw = &adapter->hw; | ||
| 535 | e1000_mac_type mac_type = hw->mac_type; | ||
| 536 | struct e1000_tx_ring *txdr = adapter->tx_ring; | ||
| 537 | struct e1000_rx_ring *rxdr = adapter->rx_ring; | ||
| 538 | |||
| 539 | ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : | ||
| 540 | E1000_MAX_82544_RXD; | ||
| 541 | ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : | ||
| 542 | E1000_MAX_82544_TXD; | ||
| 543 | ring->rx_mini_max_pending = 0; | ||
| 544 | ring->rx_jumbo_max_pending = 0; | ||
| 545 | ring->rx_pending = rxdr->count; | ||
| 546 | ring->tx_pending = txdr->count; | ||
| 547 | ring->rx_mini_pending = 0; | ||
| 548 | ring->rx_jumbo_pending = 0; | ||
| 549 | } | ||
| 550 | |||
| 551 | static int e1000_set_ringparam(struct net_device *netdev, | ||
| 552 | struct ethtool_ringparam *ring) | ||
| 553 | { | ||
| 554 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 555 | struct e1000_hw *hw = &adapter->hw; | ||
| 556 | e1000_mac_type mac_type = hw->mac_type; | ||
| 557 | struct e1000_tx_ring *txdr, *tx_old; | ||
| 558 | struct e1000_rx_ring *rxdr, *rx_old; | ||
| 559 | int i, err; | ||
| 560 | |||
| 561 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | ||
| 562 | return -EINVAL; | ||
| 563 | |||
| 564 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
| 565 | msleep(1); | ||
| 566 | |||
| 567 | if (netif_running(adapter->netdev)) | ||
| 568 | e1000_down(adapter); | ||
| 569 | |||
| 570 | tx_old = adapter->tx_ring; | ||
| 571 | rx_old = adapter->rx_ring; | ||
| 572 | |||
| 573 | err = -ENOMEM; | ||
| 574 | txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); | ||
| 575 | if (!txdr) | ||
| 576 | goto err_alloc_tx; | ||
| 577 | |||
| 578 | rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); | ||
| 579 | if (!rxdr) | ||
| 580 | goto err_alloc_rx; | ||
| 581 | |||
| 582 | adapter->tx_ring = txdr; | ||
| 583 | adapter->rx_ring = rxdr; | ||
| 584 | |||
| 585 | rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD); | ||
| 586 | rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ? | ||
| 587 | E1000_MAX_RXD : E1000_MAX_82544_RXD)); | ||
| 588 | rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); | ||
| 589 | |||
| 590 | txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD); | ||
| 591 | txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ? | ||
| 592 | E1000_MAX_TXD : E1000_MAX_82544_TXD)); | ||
| 593 | txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); | ||
| 594 | |||
| 595 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
| 596 | txdr[i].count = txdr->count; | ||
| 597 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
| 598 | rxdr[i].count = rxdr->count; | ||
| 599 | |||
| 600 | if (netif_running(adapter->netdev)) { | ||
| 601 | /* Try to get new resources before deleting old */ | ||
| 602 | err = e1000_setup_all_rx_resources(adapter); | ||
| 603 | if (err) | ||
| 604 | goto err_setup_rx; | ||
| 605 | err = e1000_setup_all_tx_resources(adapter); | ||
| 606 | if (err) | ||
| 607 | goto err_setup_tx; | ||
| 608 | |||
| 609 | /* save the new, restore the old in order to free it, | ||
| 610 | * then restore the new back again */ | ||
| 611 | |||
| 612 | adapter->rx_ring = rx_old; | ||
| 613 | adapter->tx_ring = tx_old; | ||
| 614 | e1000_free_all_rx_resources(adapter); | ||
| 615 | e1000_free_all_tx_resources(adapter); | ||
| 616 | kfree(tx_old); | ||
| 617 | kfree(rx_old); | ||
| 618 | adapter->rx_ring = rxdr; | ||
| 619 | adapter->tx_ring = txdr; | ||
| 620 | err = e1000_up(adapter); | ||
| 621 | if (err) | ||
| 622 | goto err_setup; | ||
| 623 | } | ||
| 624 | |||
| 625 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
| 626 | return 0; | ||
| 627 | err_setup_tx: | ||
| 628 | e1000_free_all_rx_resources(adapter); | ||
| 629 | err_setup_rx: | ||
| 630 | adapter->rx_ring = rx_old; | ||
| 631 | adapter->tx_ring = tx_old; | ||
| 632 | kfree(rxdr); | ||
| 633 | err_alloc_rx: | ||
| 634 | kfree(txdr); | ||
| 635 | err_alloc_tx: | ||
| 636 | e1000_up(adapter); | ||
| 637 | err_setup: | ||
| 638 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
| 639 | return err; | ||
| 640 | } | ||
| 641 | |||
| 642 | static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, | ||
| 643 | u32 mask, u32 write) | ||
| 644 | { | ||
| 645 | struct e1000_hw *hw = &adapter->hw; | ||
| 646 | static const u32 test[] = | ||
| 647 | {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; | ||
| 648 | u8 __iomem *address = hw->hw_addr + reg; | ||
| 649 | u32 read; | ||
| 650 | int i; | ||
| 651 | |||
| 652 | for (i = 0; i < ARRAY_SIZE(test); i++) { | ||
| 653 | writel(write & test[i], address); | ||
| 654 | read = readl(address); | ||
| 655 | if (read != (write & test[i] & mask)) { | ||
| 656 | e_err(drv, "pattern test reg %04X failed: " | ||
| 657 | "got 0x%08X expected 0x%08X\n", | ||
| 658 | reg, read, (write & test[i] & mask)); | ||
| 659 | *data = reg; | ||
| 660 | return true; | ||
| 661 | } | ||
| 662 | } | ||
| 663 | return false; | ||
| 664 | } | ||
| 665 | |||
| 666 | static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, | ||
| 667 | u32 mask, u32 write) | ||
| 668 | { | ||
| 669 | struct e1000_hw *hw = &adapter->hw; | ||
| 670 | u8 __iomem *address = hw->hw_addr + reg; | ||
| 671 | u32 read; | ||
| 672 | |||
| 673 | writel(write & mask, address); | ||
| 674 | read = readl(address); | ||
| 675 | if ((read & mask) != (write & mask)) { | ||
| 676 | e_err(drv, "set/check reg %04X test failed: " | ||
| 677 | "got 0x%08X expected 0x%08X\n", | ||
| 678 | reg, (read & mask), (write & mask)); | ||
| 679 | *data = reg; | ||
| 680 | return true; | ||
| 681 | } | ||
| 682 | return false; | ||
| 683 | } | ||
| 684 | |||
| 685 | #define REG_PATTERN_TEST(reg, mask, write) \ | ||
| 686 | do { \ | ||
| 687 | if (reg_pattern_test(adapter, data, \ | ||
| 688 | (hw->mac_type >= e1000_82543) \ | ||
| 689 | ? E1000_##reg : E1000_82542_##reg, \ | ||
| 690 | mask, write)) \ | ||
| 691 | return 1; \ | ||
| 692 | } while (0) | ||
| 693 | |||
| 694 | #define REG_SET_AND_CHECK(reg, mask, write) \ | ||
| 695 | do { \ | ||
| 696 | if (reg_set_and_check(adapter, data, \ | ||
| 697 | (hw->mac_type >= e1000_82543) \ | ||
| 698 | ? E1000_##reg : E1000_82542_##reg, \ | ||
| 699 | mask, write)) \ | ||
| 700 | return 1; \ | ||
| 701 | } while (0) | ||
| 702 | |||
| 703 | static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) | ||
| 704 | { | ||
| 705 | u32 value, before, after; | ||
| 706 | u32 i, toggle; | ||
| 707 | struct e1000_hw *hw = &adapter->hw; | ||
| 708 | |||
| 709 | /* The status register is Read Only, so a write should fail. | ||
| 710 | * Some bits that get toggled are ignored. | ||
| 711 | */ | ||
| 712 | |||
| 713 | /* there are several bits on newer hardware that are r/w */ | ||
| 714 | toggle = 0xFFFFF833; | ||
| 715 | |||
| 716 | before = er32(STATUS); | ||
| 717 | value = (er32(STATUS) & toggle); | ||
| 718 | ew32(STATUS, toggle); | ||
| 719 | after = er32(STATUS) & toggle; | ||
| 720 | if (value != after) { | ||
| 721 | e_err(drv, "failed STATUS register test got: " | ||
| 722 | "0x%08X expected: 0x%08X\n", after, value); | ||
| 723 | *data = 1; | ||
| 724 | return 1; | ||
| 725 | } | ||
| 726 | /* restore previous status */ | ||
| 727 | ew32(STATUS, before); | ||
| 728 | |||
| 729 | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); | ||
| 730 | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); | ||
| 731 | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); | ||
| 732 | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); | ||
| 733 | |||
| 734 | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); | ||
| 735 | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | ||
| 736 | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); | ||
| 737 | REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); | ||
| 738 | REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); | ||
| 739 | REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); | ||
| 740 | REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); | ||
| 741 | REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); | ||
| 742 | REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | ||
| 743 | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); | ||
| 744 | |||
| 745 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); | ||
| 746 | |||
| 747 | before = 0x06DFB3FE; | ||
| 748 | REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); | ||
| 749 | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); | ||
| 750 | |||
| 751 | if (hw->mac_type >= e1000_82543) { | ||
| 752 | |||
| 753 | REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); | ||
| 754 | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | ||
| 755 | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | ||
| 756 | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | ||
| 757 | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); | ||
| 758 | value = E1000_RAR_ENTRIES; | ||
| 759 | for (i = 0; i < value; i++) { | ||
| 760 | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, | ||
| 761 | 0xFFFFFFFF); | ||
| 762 | } | ||
| 763 | |||
| 764 | } else { | ||
| 765 | |||
| 766 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); | ||
| 767 | REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); | ||
| 768 | REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); | ||
| 769 | REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); | ||
| 770 | |||
| 771 | } | ||
| 772 | |||
| 773 | value = E1000_MC_TBL_SIZE; | ||
| 774 | for (i = 0; i < value; i++) | ||
| 775 | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); | ||
| 776 | |||
| 777 | *data = 0; | ||
| 778 | return 0; | ||
| 779 | } | ||
| 780 | |||
| 781 | static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) | ||
| 782 | { | ||
| 783 | struct e1000_hw *hw = &adapter->hw; | ||
| 784 | u16 temp; | ||
| 785 | u16 checksum = 0; | ||
| 786 | u16 i; | ||
| 787 | |||
| 788 | *data = 0; | ||
| 789 | /* Read and add up the contents of the EEPROM */ | ||
| 790 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
| 791 | if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { | ||
| 792 | *data = 1; | ||
| 793 | break; | ||
| 794 | } | ||
| 795 | checksum += temp; | ||
| 796 | } | ||
| 797 | |||
| 798 | /* If Checksum is not Correct return error else test passed */ | ||
| 799 | if ((checksum != (u16)EEPROM_SUM) && !(*data)) | ||
| 800 | *data = 2; | ||
| 801 | |||
| 802 | return *data; | ||
| 803 | } | ||
| 804 | |||
| 805 | static irqreturn_t e1000_test_intr(int irq, void *data) | ||
| 806 | { | ||
| 807 | struct net_device *netdev = (struct net_device *)data; | ||
| 808 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 809 | struct e1000_hw *hw = &adapter->hw; | ||
| 810 | |||
| 811 | adapter->test_icr |= er32(ICR); | ||
| 812 | |||
| 813 | return IRQ_HANDLED; | ||
| 814 | } | ||
| 815 | |||
| 816 | static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) | ||
| 817 | { | ||
| 818 | struct net_device *netdev = adapter->netdev; | ||
| 819 | u32 mask, i = 0; | ||
| 820 | bool shared_int = true; | ||
| 821 | u32 irq = adapter->pdev->irq; | ||
| 822 | struct e1000_hw *hw = &adapter->hw; | ||
| 823 | |||
| 824 | *data = 0; | ||
| 825 | |||
| 826 | /* NOTE: we don't test MSI interrupts here, yet */ | ||
| 827 | /* Hook up test interrupt handler just for this test */ | ||
| 828 | if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, | ||
| 829 | netdev)) | ||
| 830 | shared_int = false; | ||
| 831 | else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, | ||
| 832 | netdev->name, netdev)) { | ||
| 833 | *data = 1; | ||
| 834 | return -1; | ||
| 835 | } | ||
| 836 | e_info(hw, "testing %s interrupt\n", (shared_int ? | ||
| 837 | "shared" : "unshared")); | ||
| 838 | |||
| 839 | /* Disable all the interrupts */ | ||
| 840 | ew32(IMC, 0xFFFFFFFF); | ||
| 841 | E1000_WRITE_FLUSH(); | ||
| 842 | msleep(10); | ||
| 843 | |||
| 844 | /* Test each interrupt */ | ||
| 845 | for (; i < 10; i++) { | ||
| 846 | |||
| 847 | /* Interrupt to test */ | ||
| 848 | mask = 1 << i; | ||
| 849 | |||
| 850 | if (!shared_int) { | ||
| 851 | /* Disable the interrupt to be reported in | ||
| 852 | * the cause register and then force the same | ||
| 853 | * interrupt and see if one gets posted. If | ||
| 854 | * an interrupt was posted to the bus, the | ||
| 855 | * test failed. | ||
| 856 | */ | ||
| 857 | adapter->test_icr = 0; | ||
| 858 | ew32(IMC, mask); | ||
| 859 | ew32(ICS, mask); | ||
| 860 | E1000_WRITE_FLUSH(); | ||
| 861 | msleep(10); | ||
| 862 | |||
| 863 | if (adapter->test_icr & mask) { | ||
| 864 | *data = 3; | ||
| 865 | break; | ||
| 866 | } | ||
| 867 | } | ||
| 868 | |||
| 869 | /* Enable the interrupt to be reported in | ||
| 870 | * the cause register and then force the same | ||
| 871 | * interrupt and see if one gets posted. If | ||
| 872 | * an interrupt was not posted to the bus, the | ||
| 873 | * test failed. | ||
| 874 | */ | ||
| 875 | adapter->test_icr = 0; | ||
| 876 | ew32(IMS, mask); | ||
| 877 | ew32(ICS, mask); | ||
| 878 | E1000_WRITE_FLUSH(); | ||
| 879 | msleep(10); | ||
| 880 | |||
| 881 | if (!(adapter->test_icr & mask)) { | ||
| 882 | *data = 4; | ||
| 883 | break; | ||
| 884 | } | ||
| 885 | |||
| 886 | if (!shared_int) { | ||
| 887 | /* Disable the other interrupts to be reported in | ||
| 888 | * the cause register and then force the other | ||
| 889 | * interrupts and see if any get posted. If | ||
| 890 | * an interrupt was posted to the bus, the | ||
| 891 | * test failed. | ||
| 892 | */ | ||
| 893 | adapter->test_icr = 0; | ||
| 894 | ew32(IMC, ~mask & 0x00007FFF); | ||
| 895 | ew32(ICS, ~mask & 0x00007FFF); | ||
| 896 | E1000_WRITE_FLUSH(); | ||
| 897 | msleep(10); | ||
| 898 | |||
| 899 | if (adapter->test_icr) { | ||
| 900 | *data = 5; | ||
| 901 | break; | ||
| 902 | } | ||
| 903 | } | ||
| 904 | } | ||
| 905 | |||
| 906 | /* Disable all the interrupts */ | ||
| 907 | ew32(IMC, 0xFFFFFFFF); | ||
| 908 | E1000_WRITE_FLUSH(); | ||
| 909 | msleep(10); | ||
| 910 | |||
| 911 | /* Unhook test interrupt handler */ | ||
| 912 | free_irq(irq, netdev); | ||
| 913 | |||
| 914 | return *data; | ||
| 915 | } | ||
| 916 | |||
| 917 | static void e1000_free_desc_rings(struct e1000_adapter *adapter) | ||
| 918 | { | ||
| 919 | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | ||
| 920 | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | ||
| 921 | struct pci_dev *pdev = adapter->pdev; | ||
| 922 | int i; | ||
| 923 | |||
| 924 | if (txdr->desc && txdr->buffer_info) { | ||
| 925 | for (i = 0; i < txdr->count; i++) { | ||
| 926 | if (txdr->buffer_info[i].dma) | ||
| 927 | dma_unmap_single(&pdev->dev, | ||
| 928 | txdr->buffer_info[i].dma, | ||
| 929 | txdr->buffer_info[i].length, | ||
| 930 | DMA_TO_DEVICE); | ||
| 931 | if (txdr->buffer_info[i].skb) | ||
| 932 | dev_kfree_skb(txdr->buffer_info[i].skb); | ||
| 933 | } | ||
| 934 | } | ||
| 935 | |||
| 936 | if (rxdr->desc && rxdr->buffer_info) { | ||
| 937 | for (i = 0; i < rxdr->count; i++) { | ||
| 938 | if (rxdr->buffer_info[i].dma) | ||
| 939 | dma_unmap_single(&pdev->dev, | ||
| 940 | rxdr->buffer_info[i].dma, | ||
| 941 | rxdr->buffer_info[i].length, | ||
| 942 | DMA_FROM_DEVICE); | ||
| 943 | if (rxdr->buffer_info[i].skb) | ||
| 944 | dev_kfree_skb(rxdr->buffer_info[i].skb); | ||
| 945 | } | ||
| 946 | } | ||
| 947 | |||
| 948 | if (txdr->desc) { | ||
| 949 | dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, | ||
| 950 | txdr->dma); | ||
| 951 | txdr->desc = NULL; | ||
| 952 | } | ||
| 953 | if (rxdr->desc) { | ||
| 954 | dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, | ||
| 955 | rxdr->dma); | ||
| 956 | rxdr->desc = NULL; | ||
| 957 | } | ||
| 958 | |||
| 959 | kfree(txdr->buffer_info); | ||
| 960 | txdr->buffer_info = NULL; | ||
| 961 | kfree(rxdr->buffer_info); | ||
| 962 | rxdr->buffer_info = NULL; | ||
| 963 | } | ||
| 964 | |||
| 965 | static int e1000_setup_desc_rings(struct e1000_adapter *adapter) | ||
| 966 | { | ||
| 967 | struct e1000_hw *hw = &adapter->hw; | ||
| 968 | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | ||
| 969 | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | ||
| 970 | struct pci_dev *pdev = adapter->pdev; | ||
| 971 | u32 rctl; | ||
| 972 | int i, ret_val; | ||
| 973 | |||
| 974 | /* Setup Tx descriptor ring and Tx buffers */ | ||
| 975 | |||
| 976 | if (!txdr->count) | ||
| 977 | txdr->count = E1000_DEFAULT_TXD; | ||
| 978 | |||
| 979 | txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer), | ||
| 980 | GFP_KERNEL); | ||
| 981 | if (!txdr->buffer_info) { | ||
| 982 | ret_val = 1; | ||
| 983 | goto err_nomem; | ||
| 984 | } | ||
| 985 | |||
| 986 | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | ||
| 987 | txdr->size = ALIGN(txdr->size, 4096); | ||
| 988 | txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, | ||
| 989 | GFP_KERNEL); | ||
| 990 | if (!txdr->desc) { | ||
| 991 | ret_val = 2; | ||
| 992 | goto err_nomem; | ||
| 993 | } | ||
| 994 | memset(txdr->desc, 0, txdr->size); | ||
| 995 | txdr->next_to_use = txdr->next_to_clean = 0; | ||
| 996 | |||
| 997 | ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); | ||
| 998 | ew32(TDBAH, ((u64)txdr->dma >> 32)); | ||
| 999 | ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); | ||
| 1000 | ew32(TDH, 0); | ||
| 1001 | ew32(TDT, 0); | ||
| 1002 | ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | | ||
| 1003 | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | | ||
| 1004 | E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); | ||
| 1005 | |||
| 1006 | for (i = 0; i < txdr->count; i++) { | ||
| 1007 | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); | ||
| 1008 | struct sk_buff *skb; | ||
| 1009 | unsigned int size = 1024; | ||
| 1010 | |||
| 1011 | skb = alloc_skb(size, GFP_KERNEL); | ||
| 1012 | if (!skb) { | ||
| 1013 | ret_val = 3; | ||
| 1014 | goto err_nomem; | ||
| 1015 | } | ||
| 1016 | skb_put(skb, size); | ||
| 1017 | txdr->buffer_info[i].skb = skb; | ||
| 1018 | txdr->buffer_info[i].length = skb->len; | ||
| 1019 | txdr->buffer_info[i].dma = | ||
| 1020 | dma_map_single(&pdev->dev, skb->data, skb->len, | ||
| 1021 | DMA_TO_DEVICE); | ||
| 1022 | tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); | ||
| 1023 | tx_desc->lower.data = cpu_to_le32(skb->len); | ||
| 1024 | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | | ||
| 1025 | E1000_TXD_CMD_IFCS | | ||
| 1026 | E1000_TXD_CMD_RPS); | ||
| 1027 | tx_desc->upper.data = 0; | ||
| 1028 | } | ||
| 1029 | |||
| 1030 | /* Setup Rx descriptor ring and Rx buffers */ | ||
| 1031 | |||
| 1032 | if (!rxdr->count) | ||
| 1033 | rxdr->count = E1000_DEFAULT_RXD; | ||
| 1034 | |||
| 1035 | rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer), | ||
| 1036 | GFP_KERNEL); | ||
| 1037 | if (!rxdr->buffer_info) { | ||
| 1038 | ret_val = 4; | ||
| 1039 | goto err_nomem; | ||
| 1040 | } | ||
| 1041 | |||
| 1042 | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); | ||
| 1043 | rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, | ||
| 1044 | GFP_KERNEL); | ||
| 1045 | if (!rxdr->desc) { | ||
| 1046 | ret_val = 5; | ||
| 1047 | goto err_nomem; | ||
| 1048 | } | ||
| 1049 | memset(rxdr->desc, 0, rxdr->size); | ||
| 1050 | rxdr->next_to_use = rxdr->next_to_clean = 0; | ||
| 1051 | |||
| 1052 | rctl = er32(RCTL); | ||
| 1053 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
| 1054 | ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); | ||
| 1055 | ew32(RDBAH, ((u64)rxdr->dma >> 32)); | ||
| 1056 | ew32(RDLEN, rxdr->size); | ||
| 1057 | ew32(RDH, 0); | ||
| 1058 | ew32(RDT, 0); | ||
| 1059 | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | | ||
| 1060 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
| 1061 | (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
| 1062 | ew32(RCTL, rctl); | ||
| 1063 | |||
| 1064 | for (i = 0; i < rxdr->count; i++) { | ||
| 1065 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); | ||
| 1066 | struct sk_buff *skb; | ||
| 1067 | |||
| 1068 | skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL); | ||
| 1069 | if (!skb) { | ||
| 1070 | ret_val = 6; | ||
| 1071 | goto err_nomem; | ||
| 1072 | } | ||
| 1073 | skb_reserve(skb, NET_IP_ALIGN); | ||
| 1074 | rxdr->buffer_info[i].skb = skb; | ||
| 1075 | rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; | ||
| 1076 | rxdr->buffer_info[i].dma = | ||
| 1077 | dma_map_single(&pdev->dev, skb->data, | ||
| 1078 | E1000_RXBUFFER_2048, DMA_FROM_DEVICE); | ||
| 1079 | rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); | ||
| 1080 | memset(skb->data, 0x00, skb->len); | ||
| 1081 | } | ||
| 1082 | |||
| 1083 | return 0; | ||
| 1084 | |||
| 1085 | err_nomem: | ||
| 1086 | e1000_free_desc_rings(adapter); | ||
| 1087 | return ret_val; | ||
| 1088 | } | ||
| 1089 | |||
| 1090 | static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) | ||
| 1091 | { | ||
| 1092 | struct e1000_hw *hw = &adapter->hw; | ||
| 1093 | |||
| 1094 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
| 1095 | e1000_write_phy_reg(hw, 29, 0x001F); | ||
| 1096 | e1000_write_phy_reg(hw, 30, 0x8FFC); | ||
| 1097 | e1000_write_phy_reg(hw, 29, 0x001A); | ||
| 1098 | e1000_write_phy_reg(hw, 30, 0x8FF0); | ||
| 1099 | } | ||
| 1100 | |||
| 1101 | static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) | ||
| 1102 | { | ||
| 1103 | struct e1000_hw *hw = &adapter->hw; | ||
| 1104 | u16 phy_reg; | ||
| 1105 | |||
| 1106 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | ||
| 1107 | * Extended PHY Specific Control Register to 25MHz clock. This | ||
| 1108 | * value defaults back to a 2.5MHz clock when the PHY is reset. | ||
| 1109 | */ | ||
| 1110 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | ||
| 1111 | phy_reg |= M88E1000_EPSCR_TX_CLK_25; | ||
| 1112 | e1000_write_phy_reg(hw, | ||
| 1113 | M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); | ||
| 1114 | |||
| 1115 | /* In addition, because of the s/w reset above, we need to enable | ||
| 1116 | * CRS on TX. This must be set for both full and half duplex | ||
| 1117 | * operation. | ||
| 1118 | */ | ||
| 1119 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | ||
| 1120 | phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
| 1121 | e1000_write_phy_reg(hw, | ||
| 1122 | M88E1000_PHY_SPEC_CTRL, phy_reg); | ||
| 1123 | } | ||
| 1124 | |||
| 1125 | static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) | ||
| 1126 | { | ||
| 1127 | struct e1000_hw *hw = &adapter->hw; | ||
| 1128 | u32 ctrl_reg; | ||
| 1129 | u16 phy_reg; | ||
| 1130 | |||
| 1131 | /* Setup the Device Control Register for PHY loopback test. */ | ||
| 1132 | |||
| 1133 | ctrl_reg = er32(CTRL); | ||
| 1134 | ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ | ||
| 1135 | E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
| 1136 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
| 1137 | E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ | ||
| 1138 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
| 1139 | |||
| 1140 | ew32(CTRL, ctrl_reg); | ||
| 1141 | |||
| 1142 | /* Read the PHY Specific Control Register (0x10) */ | ||
| 1143 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | ||
| 1144 | |||
| 1145 | /* Clear Auto-Crossover bits in PHY Specific Control Register | ||
| 1146 | * (bits 6:5). | ||
| 1147 | */ | ||
| 1148 | phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
| 1149 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); | ||
| 1150 | |||
| 1151 | /* Perform software reset on the PHY */ | ||
| 1152 | e1000_phy_reset(hw); | ||
| 1153 | |||
| 1154 | /* Have to setup TX_CLK and TX_CRS after software reset */ | ||
| 1155 | e1000_phy_reset_clk_and_crs(adapter); | ||
| 1156 | |||
| 1157 | e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); | ||
| 1158 | |||
| 1159 | /* Wait for reset to complete. */ | ||
| 1160 | udelay(500); | ||
| 1161 | |||
| 1162 | /* Have to setup TX_CLK and TX_CRS after software reset */ | ||
| 1163 | e1000_phy_reset_clk_and_crs(adapter); | ||
| 1164 | |||
| 1165 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
| 1166 | e1000_phy_disable_receiver(adapter); | ||
| 1167 | |||
| 1168 | /* Set the loopback bit in the PHY control register. */ | ||
| 1169 | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | ||
| 1170 | phy_reg |= MII_CR_LOOPBACK; | ||
| 1171 | e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); | ||
| 1172 | |||
| 1173 | /* Setup TX_CLK and TX_CRS one more time. */ | ||
| 1174 | e1000_phy_reset_clk_and_crs(adapter); | ||
| 1175 | |||
| 1176 | /* Check Phy Configuration */ | ||
| 1177 | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | ||
| 1178 | if (phy_reg != 0x4100) | ||
| 1179 | return 9; | ||
| 1180 | |||
| 1181 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | ||
| 1182 | if (phy_reg != 0x0070) | ||
| 1183 | return 10; | ||
| 1184 | |||
| 1185 | e1000_read_phy_reg(hw, 29, &phy_reg); | ||
| 1186 | if (phy_reg != 0x001A) | ||
| 1187 | return 11; | ||
| 1188 | |||
| 1189 | return 0; | ||
| 1190 | } | ||
| 1191 | |||
| 1192 | static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) | ||
| 1193 | { | ||
| 1194 | struct e1000_hw *hw = &adapter->hw; | ||
| 1195 | u32 ctrl_reg = 0; | ||
| 1196 | u32 stat_reg = 0; | ||
| 1197 | |||
| 1198 | hw->autoneg = false; | ||
| 1199 | |||
| 1200 | if (hw->phy_type == e1000_phy_m88) { | ||
| 1201 | /* Auto-MDI/MDIX Off */ | ||
| 1202 | e1000_write_phy_reg(hw, | ||
| 1203 | M88E1000_PHY_SPEC_CTRL, 0x0808); | ||
| 1204 | /* reset to update Auto-MDI/MDIX */ | ||
| 1205 | e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); | ||
| 1206 | /* autoneg off */ | ||
| 1207 | e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); | ||
| 1208 | } | ||
| 1209 | |||
| 1210 | ctrl_reg = er32(CTRL); | ||
| 1211 | |||
| 1212 | /* force 1000, set loopback */ | ||
| 1213 | e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); | ||
| 1214 | |||
| 1215 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
| 1216 | ctrl_reg = er32(CTRL); | ||
| 1217 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
| 1218 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
| 1219 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
| 1220 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | ||
| 1221 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
| 1222 | |||
| 1223 | if (hw->media_type == e1000_media_type_copper && | ||
| 1224 | hw->phy_type == e1000_phy_m88) | ||
| 1225 | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ | ||
| 1226 | else { | ||
| 1227 | /* Set the ILOS bit on the fiber Nic is half | ||
| 1228 | * duplex link is detected. */ | ||
| 1229 | stat_reg = er32(STATUS); | ||
| 1230 | if ((stat_reg & E1000_STATUS_FD) == 0) | ||
| 1231 | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); | ||
| 1232 | } | ||
| 1233 | |||
| 1234 | ew32(CTRL, ctrl_reg); | ||
| 1235 | |||
| 1236 | /* Disable the receiver on the PHY so when a cable is plugged in, the | ||
| 1237 | * PHY does not begin to autoneg when a cable is reconnected to the NIC. | ||
| 1238 | */ | ||
| 1239 | if (hw->phy_type == e1000_phy_m88) | ||
| 1240 | e1000_phy_disable_receiver(adapter); | ||
| 1241 | |||
| 1242 | udelay(500); | ||
| 1243 | |||
| 1244 | return 0; | ||
| 1245 | } | ||
| 1246 | |||
| 1247 | static int e1000_set_phy_loopback(struct e1000_adapter *adapter) | ||
| 1248 | { | ||
| 1249 | struct e1000_hw *hw = &adapter->hw; | ||
| 1250 | u16 phy_reg = 0; | ||
| 1251 | u16 count = 0; | ||
| 1252 | |||
| 1253 | switch (hw->mac_type) { | ||
| 1254 | case e1000_82543: | ||
| 1255 | if (hw->media_type == e1000_media_type_copper) { | ||
| 1256 | /* Attempt to setup Loopback mode on Non-integrated PHY. | ||
| 1257 | * Some PHY registers get corrupted at random, so | ||
| 1258 | * attempt this 10 times. | ||
| 1259 | */ | ||
| 1260 | while (e1000_nonintegrated_phy_loopback(adapter) && | ||
| 1261 | count++ < 10); | ||
| 1262 | if (count < 11) | ||
| 1263 | return 0; | ||
| 1264 | } | ||
| 1265 | break; | ||
| 1266 | |||
| 1267 | case e1000_82544: | ||
| 1268 | case e1000_82540: | ||
| 1269 | case e1000_82545: | ||
| 1270 | case e1000_82545_rev_3: | ||
| 1271 | case e1000_82546: | ||
| 1272 | case e1000_82546_rev_3: | ||
| 1273 | case e1000_82541: | ||
| 1274 | case e1000_82541_rev_2: | ||
| 1275 | case e1000_82547: | ||
| 1276 | case e1000_82547_rev_2: | ||
| 1277 | return e1000_integrated_phy_loopback(adapter); | ||
| 1278 | break; | ||
| 1279 | default: | ||
| 1280 | /* Default PHY loopback work is to read the MII | ||
| 1281 | * control register and assert bit 14 (loopback mode). | ||
| 1282 | */ | ||
| 1283 | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | ||
| 1284 | phy_reg |= MII_CR_LOOPBACK; | ||
| 1285 | e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); | ||
| 1286 | return 0; | ||
| 1287 | break; | ||
| 1288 | } | ||
| 1289 | |||
| 1290 | return 8; | ||
| 1291 | } | ||
| 1292 | |||
| 1293 | static int e1000_setup_loopback_test(struct e1000_adapter *adapter) | ||
| 1294 | { | ||
| 1295 | struct e1000_hw *hw = &adapter->hw; | ||
| 1296 | u32 rctl; | ||
| 1297 | |||
| 1298 | if (hw->media_type == e1000_media_type_fiber || | ||
| 1299 | hw->media_type == e1000_media_type_internal_serdes) { | ||
| 1300 | switch (hw->mac_type) { | ||
| 1301 | case e1000_82545: | ||
| 1302 | case e1000_82546: | ||
| 1303 | case e1000_82545_rev_3: | ||
| 1304 | case e1000_82546_rev_3: | ||
| 1305 | return e1000_set_phy_loopback(adapter); | ||
| 1306 | break; | ||
| 1307 | default: | ||
| 1308 | rctl = er32(RCTL); | ||
| 1309 | rctl |= E1000_RCTL_LBM_TCVR; | ||
| 1310 | ew32(RCTL, rctl); | ||
| 1311 | return 0; | ||
| 1312 | } | ||
| 1313 | } else if (hw->media_type == e1000_media_type_copper) | ||
| 1314 | return e1000_set_phy_loopback(adapter); | ||
| 1315 | |||
| 1316 | return 7; | ||
| 1317 | } | ||
| 1318 | |||
| 1319 | static void e1000_loopback_cleanup(struct e1000_adapter *adapter) | ||
| 1320 | { | ||
| 1321 | struct e1000_hw *hw = &adapter->hw; | ||
| 1322 | u32 rctl; | ||
| 1323 | u16 phy_reg; | ||
| 1324 | |||
| 1325 | rctl = er32(RCTL); | ||
| 1326 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | ||
| 1327 | ew32(RCTL, rctl); | ||
| 1328 | |||
| 1329 | switch (hw->mac_type) { | ||
| 1330 | case e1000_82545: | ||
| 1331 | case e1000_82546: | ||
| 1332 | case e1000_82545_rev_3: | ||
| 1333 | case e1000_82546_rev_3: | ||
| 1334 | default: | ||
| 1335 | hw->autoneg = true; | ||
| 1336 | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | ||
| 1337 | if (phy_reg & MII_CR_LOOPBACK) { | ||
| 1338 | phy_reg &= ~MII_CR_LOOPBACK; | ||
| 1339 | e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); | ||
| 1340 | e1000_phy_reset(hw); | ||
| 1341 | } | ||
| 1342 | break; | ||
| 1343 | } | ||
| 1344 | } | ||
| 1345 | |||
| 1346 | static void e1000_create_lbtest_frame(struct sk_buff *skb, | ||
| 1347 | unsigned int frame_size) | ||
| 1348 | { | ||
| 1349 | memset(skb->data, 0xFF, frame_size); | ||
| 1350 | frame_size &= ~1; | ||
| 1351 | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); | ||
| 1352 | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); | ||
| 1353 | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); | ||
| 1354 | } | ||
| 1355 | |||
| 1356 | static int e1000_check_lbtest_frame(struct sk_buff *skb, | ||
| 1357 | unsigned int frame_size) | ||
| 1358 | { | ||
| 1359 | frame_size &= ~1; | ||
| 1360 | if (*(skb->data + 3) == 0xFF) { | ||
| 1361 | if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && | ||
| 1362 | (*(skb->data + frame_size / 2 + 12) == 0xAF)) { | ||
| 1363 | return 0; | ||
| 1364 | } | ||
| 1365 | } | ||
| 1366 | return 13; | ||
| 1367 | } | ||
| 1368 | |||
| 1369 | static int e1000_run_loopback_test(struct e1000_adapter *adapter) | ||
| 1370 | { | ||
| 1371 | struct e1000_hw *hw = &adapter->hw; | ||
| 1372 | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | ||
| 1373 | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | ||
| 1374 | struct pci_dev *pdev = adapter->pdev; | ||
| 1375 | int i, j, k, l, lc, good_cnt, ret_val=0; | ||
| 1376 | unsigned long time; | ||
| 1377 | |||
| 1378 | ew32(RDT, rxdr->count - 1); | ||
| 1379 | |||
| 1380 | /* Calculate the loop count based on the largest descriptor ring | ||
| 1381 | * The idea is to wrap the largest ring a number of times using 64 | ||
| 1382 | * send/receive pairs during each loop | ||
| 1383 | */ | ||
| 1384 | |||
| 1385 | if (rxdr->count <= txdr->count) | ||
| 1386 | lc = ((txdr->count / 64) * 2) + 1; | ||
| 1387 | else | ||
| 1388 | lc = ((rxdr->count / 64) * 2) + 1; | ||
| 1389 | |||
| 1390 | k = l = 0; | ||
| 1391 | for (j = 0; j <= lc; j++) { /* loop count loop */ | ||
| 1392 | for (i = 0; i < 64; i++) { /* send the packets */ | ||
| 1393 | e1000_create_lbtest_frame(txdr->buffer_info[i].skb, | ||
| 1394 | 1024); | ||
| 1395 | dma_sync_single_for_device(&pdev->dev, | ||
| 1396 | txdr->buffer_info[k].dma, | ||
| 1397 | txdr->buffer_info[k].length, | ||
| 1398 | DMA_TO_DEVICE); | ||
| 1399 | if (unlikely(++k == txdr->count)) k = 0; | ||
| 1400 | } | ||
| 1401 | ew32(TDT, k); | ||
| 1402 | E1000_WRITE_FLUSH(); | ||
| 1403 | msleep(200); | ||
| 1404 | time = jiffies; /* set the start time for the receive */ | ||
| 1405 | good_cnt = 0; | ||
| 1406 | do { /* receive the sent packets */ | ||
| 1407 | dma_sync_single_for_cpu(&pdev->dev, | ||
| 1408 | rxdr->buffer_info[l].dma, | ||
| 1409 | rxdr->buffer_info[l].length, | ||
| 1410 | DMA_FROM_DEVICE); | ||
| 1411 | |||
| 1412 | ret_val = e1000_check_lbtest_frame( | ||
| 1413 | rxdr->buffer_info[l].skb, | ||
| 1414 | 1024); | ||
| 1415 | if (!ret_val) | ||
| 1416 | good_cnt++; | ||
| 1417 | if (unlikely(++l == rxdr->count)) l = 0; | ||
| 1418 | /* time + 20 msecs (200 msecs on 2.4) is more than | ||
| 1419 | * enough time to complete the receives, if it's | ||
| 1420 | * exceeded, break and error off | ||
| 1421 | */ | ||
| 1422 | } while (good_cnt < 64 && jiffies < (time + 20)); | ||
| 1423 | if (good_cnt != 64) { | ||
| 1424 | ret_val = 13; /* ret_val is the same as mis-compare */ | ||
| 1425 | break; | ||
| 1426 | } | ||
| 1427 | if (jiffies >= (time + 2)) { | ||
| 1428 | ret_val = 14; /* error code for time out error */ | ||
| 1429 | break; | ||
| 1430 | } | ||
| 1431 | } /* end loop count loop */ | ||
| 1432 | return ret_val; | ||
| 1433 | } | ||
| 1434 | |||
| 1435 | static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) | ||
| 1436 | { | ||
| 1437 | *data = e1000_setup_desc_rings(adapter); | ||
| 1438 | if (*data) | ||
| 1439 | goto out; | ||
| 1440 | *data = e1000_setup_loopback_test(adapter); | ||
| 1441 | if (*data) | ||
| 1442 | goto err_loopback; | ||
| 1443 | *data = e1000_run_loopback_test(adapter); | ||
| 1444 | e1000_loopback_cleanup(adapter); | ||
| 1445 | |||
| 1446 | err_loopback: | ||
| 1447 | e1000_free_desc_rings(adapter); | ||
| 1448 | out: | ||
| 1449 | return *data; | ||
| 1450 | } | ||
| 1451 | |||
| 1452 | static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) | ||
| 1453 | { | ||
| 1454 | struct e1000_hw *hw = &adapter->hw; | ||
| 1455 | *data = 0; | ||
| 1456 | if (hw->media_type == e1000_media_type_internal_serdes) { | ||
| 1457 | int i = 0; | ||
| 1458 | hw->serdes_has_link = false; | ||
| 1459 | |||
| 1460 | /* On some blade server designs, link establishment | ||
| 1461 | * could take as long as 2-3 minutes */ | ||
| 1462 | do { | ||
| 1463 | e1000_check_for_link(hw); | ||
| 1464 | if (hw->serdes_has_link) | ||
| 1465 | return *data; | ||
| 1466 | msleep(20); | ||
| 1467 | } while (i++ < 3750); | ||
| 1468 | |||
| 1469 | *data = 1; | ||
| 1470 | } else { | ||
| 1471 | e1000_check_for_link(hw); | ||
| 1472 | if (hw->autoneg) /* if auto_neg is set wait for it */ | ||
| 1473 | msleep(4000); | ||
| 1474 | |||
| 1475 | if (!(er32(STATUS) & E1000_STATUS_LU)) { | ||
| 1476 | *data = 1; | ||
| 1477 | } | ||
| 1478 | } | ||
| 1479 | return *data; | ||
| 1480 | } | ||
| 1481 | |||
| 1482 | static int e1000_get_sset_count(struct net_device *netdev, int sset) | ||
| 1483 | { | ||
| 1484 | switch (sset) { | ||
| 1485 | case ETH_SS_TEST: | ||
| 1486 | return E1000_TEST_LEN; | ||
| 1487 | case ETH_SS_STATS: | ||
| 1488 | return E1000_STATS_LEN; | ||
| 1489 | default: | ||
| 1490 | return -EOPNOTSUPP; | ||
| 1491 | } | ||
| 1492 | } | ||
| 1493 | |||
| 1494 | static void e1000_diag_test(struct net_device *netdev, | ||
| 1495 | struct ethtool_test *eth_test, u64 *data) | ||
| 1496 | { | ||
| 1497 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1498 | struct e1000_hw *hw = &adapter->hw; | ||
| 1499 | bool if_running = netif_running(netdev); | ||
| 1500 | |||
| 1501 | set_bit(__E1000_TESTING, &adapter->flags); | ||
| 1502 | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { | ||
| 1503 | /* Offline tests */ | ||
| 1504 | |||
| 1505 | /* save speed, duplex, autoneg settings */ | ||
| 1506 | u16 autoneg_advertised = hw->autoneg_advertised; | ||
| 1507 | u8 forced_speed_duplex = hw->forced_speed_duplex; | ||
| 1508 | u8 autoneg = hw->autoneg; | ||
| 1509 | |||
| 1510 | e_info(hw, "offline testing starting\n"); | ||
| 1511 | |||
| 1512 | /* Link test performed before hardware reset so autoneg doesn't | ||
| 1513 | * interfere with test result */ | ||
| 1514 | if (e1000_link_test(adapter, &data[4])) | ||
| 1515 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
| 1516 | |||
| 1517 | if (if_running) | ||
| 1518 | /* indicate we're in test mode */ | ||
| 1519 | dev_close(netdev); | ||
| 1520 | else | ||
| 1521 | e1000_reset(adapter); | ||
| 1522 | |||
| 1523 | if (e1000_reg_test(adapter, &data[0])) | ||
| 1524 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
| 1525 | |||
| 1526 | e1000_reset(adapter); | ||
| 1527 | if (e1000_eeprom_test(adapter, &data[1])) | ||
| 1528 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
| 1529 | |||
| 1530 | e1000_reset(adapter); | ||
| 1531 | if (e1000_intr_test(adapter, &data[2])) | ||
| 1532 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
| 1533 | |||
| 1534 | e1000_reset(adapter); | ||
| 1535 | /* make sure the phy is powered up */ | ||
| 1536 | e1000_power_up_phy(adapter); | ||
| 1537 | if (e1000_loopback_test(adapter, &data[3])) | ||
| 1538 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
| 1539 | |||
| 1540 | /* restore speed, duplex, autoneg settings */ | ||
| 1541 | hw->autoneg_advertised = autoneg_advertised; | ||
| 1542 | hw->forced_speed_duplex = forced_speed_duplex; | ||
| 1543 | hw->autoneg = autoneg; | ||
| 1544 | |||
| 1545 | e1000_reset(adapter); | ||
| 1546 | clear_bit(__E1000_TESTING, &adapter->flags); | ||
| 1547 | if (if_running) | ||
| 1548 | dev_open(netdev); | ||
| 1549 | } else { | ||
| 1550 | e_info(hw, "online testing starting\n"); | ||
| 1551 | /* Online tests */ | ||
| 1552 | if (e1000_link_test(adapter, &data[4])) | ||
| 1553 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
| 1554 | |||
| 1555 | /* Online tests aren't run; pass by default */ | ||
| 1556 | data[0] = 0; | ||
| 1557 | data[1] = 0; | ||
| 1558 | data[2] = 0; | ||
| 1559 | data[3] = 0; | ||
| 1560 | |||
| 1561 | clear_bit(__E1000_TESTING, &adapter->flags); | ||
| 1562 | } | ||
| 1563 | msleep_interruptible(4 * 1000); | ||
| 1564 | } | ||
| 1565 | |||
| 1566 | static int e1000_wol_exclusion(struct e1000_adapter *adapter, | ||
| 1567 | struct ethtool_wolinfo *wol) | ||
| 1568 | { | ||
| 1569 | struct e1000_hw *hw = &adapter->hw; | ||
| 1570 | int retval = 1; /* fail by default */ | ||
| 1571 | |||
| 1572 | switch (hw->device_id) { | ||
| 1573 | case E1000_DEV_ID_82542: | ||
| 1574 | case E1000_DEV_ID_82543GC_FIBER: | ||
| 1575 | case E1000_DEV_ID_82543GC_COPPER: | ||
| 1576 | case E1000_DEV_ID_82544EI_FIBER: | ||
| 1577 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
| 1578 | case E1000_DEV_ID_82545EM_FIBER: | ||
| 1579 | case E1000_DEV_ID_82545EM_COPPER: | ||
| 1580 | case E1000_DEV_ID_82546GB_QUAD_COPPER: | ||
| 1581 | case E1000_DEV_ID_82546GB_PCIE: | ||
| 1582 | /* these don't support WoL at all */ | ||
| 1583 | wol->supported = 0; | ||
| 1584 | break; | ||
| 1585 | case E1000_DEV_ID_82546EB_FIBER: | ||
| 1586 | case E1000_DEV_ID_82546GB_FIBER: | ||
| 1587 | /* Wake events not supported on port B */ | ||
| 1588 | if (er32(STATUS) & E1000_STATUS_FUNC_1) { | ||
| 1589 | wol->supported = 0; | ||
| 1590 | break; | ||
| 1591 | } | ||
| 1592 | /* return success for non excluded adapter ports */ | ||
| 1593 | retval = 0; | ||
| 1594 | break; | ||
| 1595 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | ||
| 1596 | /* quad port adapters only support WoL on port A */ | ||
| 1597 | if (!adapter->quad_port_a) { | ||
| 1598 | wol->supported = 0; | ||
| 1599 | break; | ||
| 1600 | } | ||
| 1601 | /* return success for non excluded adapter ports */ | ||
| 1602 | retval = 0; | ||
| 1603 | break; | ||
| 1604 | default: | ||
| 1605 | /* dual port cards only support WoL on port A from now on | ||
| 1606 | * unless it was enabled in the eeprom for port B | ||
| 1607 | * so exclude FUNC_1 ports from having WoL enabled */ | ||
| 1608 | if (er32(STATUS) & E1000_STATUS_FUNC_1 && | ||
| 1609 | !adapter->eeprom_wol) { | ||
| 1610 | wol->supported = 0; | ||
| 1611 | break; | ||
| 1612 | } | ||
| 1613 | |||
| 1614 | retval = 0; | ||
| 1615 | } | ||
| 1616 | |||
| 1617 | return retval; | ||
| 1618 | } | ||
| 1619 | |||
| 1620 | static void e1000_get_wol(struct net_device *netdev, | ||
| 1621 | struct ethtool_wolinfo *wol) | ||
| 1622 | { | ||
| 1623 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1624 | struct e1000_hw *hw = &adapter->hw; | ||
| 1625 | |||
| 1626 | wol->supported = WAKE_UCAST | WAKE_MCAST | | ||
| 1627 | WAKE_BCAST | WAKE_MAGIC; | ||
| 1628 | wol->wolopts = 0; | ||
| 1629 | |||
| 1630 | /* this function will set ->supported = 0 and return 1 if wol is not | ||
| 1631 | * supported by this hardware */ | ||
| 1632 | if (e1000_wol_exclusion(adapter, wol) || | ||
| 1633 | !device_can_wakeup(&adapter->pdev->dev)) | ||
| 1634 | return; | ||
| 1635 | |||
| 1636 | /* apply any specific unsupported masks here */ | ||
| 1637 | switch (hw->device_id) { | ||
| 1638 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | ||
| 1639 | /* KSP3 does not suppport UCAST wake-ups */ | ||
| 1640 | wol->supported &= ~WAKE_UCAST; | ||
| 1641 | |||
| 1642 | if (adapter->wol & E1000_WUFC_EX) | ||
| 1643 | e_err(drv, "Interface does not support directed " | ||
| 1644 | "(unicast) frame wake-up packets\n"); | ||
| 1645 | break; | ||
| 1646 | default: | ||
| 1647 | break; | ||
| 1648 | } | ||
| 1649 | |||
| 1650 | if (adapter->wol & E1000_WUFC_EX) | ||
| 1651 | wol->wolopts |= WAKE_UCAST; | ||
| 1652 | if (adapter->wol & E1000_WUFC_MC) | ||
| 1653 | wol->wolopts |= WAKE_MCAST; | ||
| 1654 | if (adapter->wol & E1000_WUFC_BC) | ||
| 1655 | wol->wolopts |= WAKE_BCAST; | ||
| 1656 | if (adapter->wol & E1000_WUFC_MAG) | ||
| 1657 | wol->wolopts |= WAKE_MAGIC; | ||
| 1658 | } | ||
| 1659 | |||
| 1660 | static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
| 1661 | { | ||
| 1662 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1663 | struct e1000_hw *hw = &adapter->hw; | ||
| 1664 | |||
| 1665 | if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) | ||
| 1666 | return -EOPNOTSUPP; | ||
| 1667 | |||
| 1668 | if (e1000_wol_exclusion(adapter, wol) || | ||
| 1669 | !device_can_wakeup(&adapter->pdev->dev)) | ||
| 1670 | return wol->wolopts ? -EOPNOTSUPP : 0; | ||
| 1671 | |||
| 1672 | switch (hw->device_id) { | ||
| 1673 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | ||
| 1674 | if (wol->wolopts & WAKE_UCAST) { | ||
| 1675 | e_err(drv, "Interface does not support directed " | ||
| 1676 | "(unicast) frame wake-up packets\n"); | ||
| 1677 | return -EOPNOTSUPP; | ||
| 1678 | } | ||
| 1679 | break; | ||
| 1680 | default: | ||
| 1681 | break; | ||
| 1682 | } | ||
| 1683 | |||
| 1684 | /* these settings will always override what we currently have */ | ||
| 1685 | adapter->wol = 0; | ||
| 1686 | |||
| 1687 | if (wol->wolopts & WAKE_UCAST) | ||
| 1688 | adapter->wol |= E1000_WUFC_EX; | ||
| 1689 | if (wol->wolopts & WAKE_MCAST) | ||
| 1690 | adapter->wol |= E1000_WUFC_MC; | ||
| 1691 | if (wol->wolopts & WAKE_BCAST) | ||
| 1692 | adapter->wol |= E1000_WUFC_BC; | ||
| 1693 | if (wol->wolopts & WAKE_MAGIC) | ||
| 1694 | adapter->wol |= E1000_WUFC_MAG; | ||
| 1695 | |||
| 1696 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | ||
| 1697 | |||
| 1698 | return 0; | ||
| 1699 | } | ||
| 1700 | |||
| 1701 | static int e1000_set_phys_id(struct net_device *netdev, | ||
| 1702 | enum ethtool_phys_id_state state) | ||
| 1703 | { | ||
| 1704 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1705 | struct e1000_hw *hw = &adapter->hw; | ||
| 1706 | |||
| 1707 | switch (state) { | ||
| 1708 | case ETHTOOL_ID_ACTIVE: | ||
| 1709 | e1000_setup_led(hw); | ||
| 1710 | return 2; | ||
| 1711 | |||
| 1712 | case ETHTOOL_ID_ON: | ||
| 1713 | e1000_led_on(hw); | ||
| 1714 | break; | ||
| 1715 | |||
| 1716 | case ETHTOOL_ID_OFF: | ||
| 1717 | e1000_led_off(hw); | ||
| 1718 | break; | ||
| 1719 | |||
| 1720 | case ETHTOOL_ID_INACTIVE: | ||
| 1721 | e1000_cleanup_led(hw); | ||
| 1722 | } | ||
| 1723 | |||
| 1724 | return 0; | ||
| 1725 | } | ||
| 1726 | |||
| 1727 | static int e1000_get_coalesce(struct net_device *netdev, | ||
| 1728 | struct ethtool_coalesce *ec) | ||
| 1729 | { | ||
| 1730 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1731 | |||
| 1732 | if (adapter->hw.mac_type < e1000_82545) | ||
| 1733 | return -EOPNOTSUPP; | ||
| 1734 | |||
| 1735 | if (adapter->itr_setting <= 4) | ||
| 1736 | ec->rx_coalesce_usecs = adapter->itr_setting; | ||
| 1737 | else | ||
| 1738 | ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; | ||
| 1739 | |||
| 1740 | return 0; | ||
| 1741 | } | ||
| 1742 | |||
| 1743 | static int e1000_set_coalesce(struct net_device *netdev, | ||
| 1744 | struct ethtool_coalesce *ec) | ||
| 1745 | { | ||
| 1746 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1747 | struct e1000_hw *hw = &adapter->hw; | ||
| 1748 | |||
| 1749 | if (hw->mac_type < e1000_82545) | ||
| 1750 | return -EOPNOTSUPP; | ||
| 1751 | |||
| 1752 | if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || | ||
| 1753 | ((ec->rx_coalesce_usecs > 4) && | ||
| 1754 | (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || | ||
| 1755 | (ec->rx_coalesce_usecs == 2)) | ||
| 1756 | return -EINVAL; | ||
| 1757 | |||
| 1758 | if (ec->rx_coalesce_usecs == 4) { | ||
| 1759 | adapter->itr = adapter->itr_setting = 4; | ||
| 1760 | } else if (ec->rx_coalesce_usecs <= 3) { | ||
| 1761 | adapter->itr = 20000; | ||
| 1762 | adapter->itr_setting = ec->rx_coalesce_usecs; | ||
| 1763 | } else { | ||
| 1764 | adapter->itr = (1000000 / ec->rx_coalesce_usecs); | ||
| 1765 | adapter->itr_setting = adapter->itr & ~3; | ||
| 1766 | } | ||
| 1767 | |||
| 1768 | if (adapter->itr_setting != 0) | ||
| 1769 | ew32(ITR, 1000000000 / (adapter->itr * 256)); | ||
| 1770 | else | ||
| 1771 | ew32(ITR, 0); | ||
| 1772 | |||
| 1773 | return 0; | ||
| 1774 | } | ||
| 1775 | |||
| 1776 | static int e1000_nway_reset(struct net_device *netdev) | ||
| 1777 | { | ||
| 1778 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1779 | if (netif_running(netdev)) | ||
| 1780 | e1000_reinit_locked(adapter); | ||
| 1781 | return 0; | ||
| 1782 | } | ||
| 1783 | |||
| 1784 | static void e1000_get_ethtool_stats(struct net_device *netdev, | ||
| 1785 | struct ethtool_stats *stats, u64 *data) | ||
| 1786 | { | ||
| 1787 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
| 1788 | int i; | ||
| 1789 | char *p = NULL; | ||
| 1790 | |||
| 1791 | e1000_update_stats(adapter); | ||
| 1792 | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { | ||
| 1793 | switch (e1000_gstrings_stats[i].type) { | ||
| 1794 | case NETDEV_STATS: | ||
| 1795 | p = (char *) netdev + | ||
| 1796 | e1000_gstrings_stats[i].stat_offset; | ||
| 1797 | break; | ||
| 1798 | case E1000_STATS: | ||
| 1799 | p = (char *) adapter + | ||
| 1800 | e1000_gstrings_stats[i].stat_offset; | ||
| 1801 | break; | ||
| 1802 | } | ||
| 1803 | |||
| 1804 | data[i] = (e1000_gstrings_stats[i].sizeof_stat == | ||
| 1805 | sizeof(u64)) ? *(u64 *)p : *(u32 *)p; | ||
| 1806 | } | ||
| 1807 | /* BUG_ON(i != E1000_STATS_LEN); */ | ||
| 1808 | } | ||
| 1809 | |||
| 1810 | static void e1000_get_strings(struct net_device *netdev, u32 stringset, | ||
| 1811 | u8 *data) | ||
| 1812 | { | ||
| 1813 | u8 *p = data; | ||
| 1814 | int i; | ||
| 1815 | |||
| 1816 | switch (stringset) { | ||
| 1817 | case ETH_SS_TEST: | ||
| 1818 | memcpy(data, *e1000_gstrings_test, | ||
| 1819 | sizeof(e1000_gstrings_test)); | ||
| 1820 | break; | ||
| 1821 | case ETH_SS_STATS: | ||
| 1822 | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { | ||
| 1823 | memcpy(p, e1000_gstrings_stats[i].stat_string, | ||
| 1824 | ETH_GSTRING_LEN); | ||
| 1825 | p += ETH_GSTRING_LEN; | ||
| 1826 | } | ||
| 1827 | /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ | ||
| 1828 | break; | ||
| 1829 | } | ||
| 1830 | } | ||
| 1831 | |||
| 1832 | static const struct ethtool_ops e1000_ethtool_ops = { | ||
| 1833 | .get_settings = e1000_get_settings, | ||
| 1834 | .set_settings = e1000_set_settings, | ||
| 1835 | .get_drvinfo = e1000_get_drvinfo, | ||
| 1836 | .get_regs_len = e1000_get_regs_len, | ||
| 1837 | .get_regs = e1000_get_regs, | ||
| 1838 | .get_wol = e1000_get_wol, | ||
| 1839 | .set_wol = e1000_set_wol, | ||
| 1840 | .get_msglevel = e1000_get_msglevel, | ||
| 1841 | .set_msglevel = e1000_set_msglevel, | ||
| 1842 | .nway_reset = e1000_nway_reset, | ||
| 1843 | .get_link = e1000_get_link, | ||
| 1844 | .get_eeprom_len = e1000_get_eeprom_len, | ||
| 1845 | .get_eeprom = e1000_get_eeprom, | ||
| 1846 | .set_eeprom = e1000_set_eeprom, | ||
| 1847 | .get_ringparam = e1000_get_ringparam, | ||
| 1848 | .set_ringparam = e1000_set_ringparam, | ||
| 1849 | .get_pauseparam = e1000_get_pauseparam, | ||
| 1850 | .set_pauseparam = e1000_set_pauseparam, | ||
| 1851 | .self_test = e1000_diag_test, | ||
| 1852 | .get_strings = e1000_get_strings, | ||
| 1853 | .set_phys_id = e1000_set_phys_id, | ||
| 1854 | .get_ethtool_stats = e1000_get_ethtool_stats, | ||
| 1855 | .get_sset_count = e1000_get_sset_count, | ||
| 1856 | .get_coalesce = e1000_get_coalesce, | ||
| 1857 | .set_coalesce = e1000_set_coalesce, | ||
| 1858 | }; | ||
| 1859 | |||
| 1860 | void e1000_set_ethtool_ops(struct net_device *netdev) | ||
| 1861 | { | ||
| 1862 | SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); | ||
| 1863 | } | ||
