diff options
Diffstat (limited to 'drivers/infiniband/hw/ipath/ipath_eeprom.c')
-rw-r--r-- | drivers/infiniband/hw/ipath/ipath_eeprom.c | 613 |
1 files changed, 613 insertions, 0 deletions
diff --git a/drivers/infiniband/hw/ipath/ipath_eeprom.c b/drivers/infiniband/hw/ipath/ipath_eeprom.c new file mode 100644 index 00000000000..f11a900e8cd --- /dev/null +++ b/drivers/infiniband/hw/ipath/ipath_eeprom.c | |||
@@ -0,0 +1,613 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | */ | ||
32 | |||
33 | #include <linux/delay.h> | ||
34 | #include <linux/pci.h> | ||
35 | #include <linux/vmalloc.h> | ||
36 | |||
37 | #include "ipath_kernel.h" | ||
38 | |||
39 | /* | ||
40 | * InfiniPath I2C driver for a serial eeprom. This is not a generic | ||
41 | * I2C interface. For a start, the device we're using (Atmel AT24C11) | ||
42 | * doesn't work like a regular I2C device. It looks like one | ||
43 | * electrically, but not logically. Normal I2C devices have a single | ||
44 | * 7-bit or 10-bit I2C address that they respond to. Valid 7-bit | ||
45 | * addresses range from 0x03 to 0x77. Addresses 0x00 to 0x02 and 0x78 | ||
46 | * to 0x7F are special reserved addresses (e.g. 0x00 is the "general | ||
47 | * call" address.) The Atmel device, on the other hand, responds to ALL | ||
48 | * 7-bit addresses. It's designed to be the only device on a given I2C | ||
49 | * bus. A 7-bit address corresponds to the memory address within the | ||
50 | * Atmel device itself. | ||
51 | * | ||
52 | * Also, the timing requirements mean more than simple software | ||
53 | * bitbanging, with readbacks from chip to ensure timing (simple udelay | ||
54 | * is not enough). | ||
55 | * | ||
56 | * This all means that accessing the device is specialized enough | ||
57 | * that using the standard kernel I2C bitbanging interface would be | ||
58 | * impossible. For example, the core I2C eeprom driver expects to find | ||
59 | * a device at one or more of a limited set of addresses only. It doesn't | ||
60 | * allow writing to an eeprom. It also doesn't provide any means of | ||
61 | * accessing eeprom contents from within the kernel, only via sysfs. | ||
62 | */ | ||
63 | |||
64 | enum i2c_type { | ||
65 | i2c_line_scl = 0, | ||
66 | i2c_line_sda | ||
67 | }; | ||
68 | |||
69 | enum i2c_state { | ||
70 | i2c_line_low = 0, | ||
71 | i2c_line_high | ||
72 | }; | ||
73 | |||
74 | #define READ_CMD 1 | ||
75 | #define WRITE_CMD 0 | ||
76 | |||
77 | static int eeprom_init; | ||
78 | |||
79 | /* | ||
80 | * The gpioval manipulation really should be protected by spinlocks | ||
81 | * or be converted to use atomic operations. | ||
82 | */ | ||
83 | |||
84 | /** | ||
85 | * i2c_gpio_set - set a GPIO line | ||
86 | * @dd: the infinipath device | ||
87 | * @line: the line to set | ||
88 | * @new_line_state: the state to set | ||
89 | * | ||
90 | * Returns 0 if the line was set to the new state successfully, non-zero | ||
91 | * on error. | ||
92 | */ | ||
93 | static int i2c_gpio_set(struct ipath_devdata *dd, | ||
94 | enum i2c_type line, | ||
95 | enum i2c_state new_line_state) | ||
96 | { | ||
97 | u64 read_val, write_val, mask, *gpioval; | ||
98 | |||
99 | gpioval = &dd->ipath_gpio_out; | ||
100 | read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl); | ||
101 | if (line == i2c_line_scl) | ||
102 | mask = ipath_gpio_scl; | ||
103 | else | ||
104 | mask = ipath_gpio_sda; | ||
105 | |||
106 | if (new_line_state == i2c_line_high) | ||
107 | /* tri-state the output rather than force high */ | ||
108 | write_val = read_val & ~mask; | ||
109 | else | ||
110 | /* config line to be an output */ | ||
111 | write_val = read_val | mask; | ||
112 | ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, write_val); | ||
113 | |||
114 | /* set high and verify */ | ||
115 | if (new_line_state == i2c_line_high) | ||
116 | write_val = 0x1UL; | ||
117 | else | ||
118 | write_val = 0x0UL; | ||
119 | |||
120 | if (line == i2c_line_scl) { | ||
121 | write_val <<= ipath_gpio_scl_num; | ||
122 | *gpioval = *gpioval & ~(1UL << ipath_gpio_scl_num); | ||
123 | *gpioval |= write_val; | ||
124 | } else { | ||
125 | write_val <<= ipath_gpio_sda_num; | ||
126 | *gpioval = *gpioval & ~(1UL << ipath_gpio_sda_num); | ||
127 | *gpioval |= write_val; | ||
128 | } | ||
129 | ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval); | ||
130 | |||
131 | return 0; | ||
132 | } | ||
133 | |||
134 | /** | ||
135 | * i2c_gpio_get - get a GPIO line state | ||
136 | * @dd: the infinipath device | ||
137 | * @line: the line to get | ||
138 | * @curr_statep: where to put the line state | ||
139 | * | ||
140 | * Returns 0 if the line was set to the new state successfully, non-zero | ||
141 | * on error. curr_state is not set on error. | ||
142 | */ | ||
143 | static int i2c_gpio_get(struct ipath_devdata *dd, | ||
144 | enum i2c_type line, | ||
145 | enum i2c_state *curr_statep) | ||
146 | { | ||
147 | u64 read_val, write_val, mask; | ||
148 | int ret; | ||
149 | |||
150 | /* check args */ | ||
151 | if (curr_statep == NULL) { | ||
152 | ret = 1; | ||
153 | goto bail; | ||
154 | } | ||
155 | |||
156 | read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl); | ||
157 | /* config line to be an input */ | ||
158 | if (line == i2c_line_scl) | ||
159 | mask = ipath_gpio_scl; | ||
160 | else | ||
161 | mask = ipath_gpio_sda; | ||
162 | write_val = read_val & ~mask; | ||
163 | ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, write_val); | ||
164 | read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus); | ||
165 | |||
166 | if (read_val & mask) | ||
167 | *curr_statep = i2c_line_high; | ||
168 | else | ||
169 | *curr_statep = i2c_line_low; | ||
170 | |||
171 | ret = 0; | ||
172 | |||
173 | bail: | ||
174 | return ret; | ||
175 | } | ||
176 | |||
177 | /** | ||
178 | * i2c_wait_for_writes - wait for a write | ||
179 | * @dd: the infinipath device | ||
180 | * | ||
181 | * We use this instead of udelay directly, so we can make sure | ||
182 | * that previous register writes have been flushed all the way | ||
183 | * to the chip. Since we are delaying anyway, the cost doesn't | ||
184 | * hurt, and makes the bit twiddling more regular | ||
185 | */ | ||
186 | static void i2c_wait_for_writes(struct ipath_devdata *dd) | ||
187 | { | ||
188 | (void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); | ||
189 | } | ||
190 | |||
191 | static void scl_out(struct ipath_devdata *dd, u8 bit) | ||
192 | { | ||
193 | i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low); | ||
194 | |||
195 | i2c_wait_for_writes(dd); | ||
196 | } | ||
197 | |||
198 | static void sda_out(struct ipath_devdata *dd, u8 bit) | ||
199 | { | ||
200 | i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low); | ||
201 | |||
202 | i2c_wait_for_writes(dd); | ||
203 | } | ||
204 | |||
205 | static u8 sda_in(struct ipath_devdata *dd, int wait) | ||
206 | { | ||
207 | enum i2c_state bit; | ||
208 | |||
209 | if (i2c_gpio_get(dd, i2c_line_sda, &bit)) | ||
210 | ipath_dbg("get bit failed!\n"); | ||
211 | |||
212 | if (wait) | ||
213 | i2c_wait_for_writes(dd); | ||
214 | |||
215 | return bit == i2c_line_high ? 1U : 0; | ||
216 | } | ||
217 | |||
218 | /** | ||
219 | * i2c_ackrcv - see if ack following write is true | ||
220 | * @dd: the infinipath device | ||
221 | */ | ||
222 | static int i2c_ackrcv(struct ipath_devdata *dd) | ||
223 | { | ||
224 | u8 ack_received; | ||
225 | |||
226 | /* AT ENTRY SCL = LOW */ | ||
227 | /* change direction, ignore data */ | ||
228 | ack_received = sda_in(dd, 1); | ||
229 | scl_out(dd, i2c_line_high); | ||
230 | ack_received = sda_in(dd, 1) == 0; | ||
231 | scl_out(dd, i2c_line_low); | ||
232 | return ack_received; | ||
233 | } | ||
234 | |||
235 | /** | ||
236 | * wr_byte - write a byte, one bit at a time | ||
237 | * @dd: the infinipath device | ||
238 | * @data: the byte to write | ||
239 | * | ||
240 | * Returns 0 if we got the following ack, otherwise 1 | ||
241 | */ | ||
242 | static int wr_byte(struct ipath_devdata *dd, u8 data) | ||
243 | { | ||
244 | int bit_cntr; | ||
245 | u8 bit; | ||
246 | |||
247 | for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) { | ||
248 | bit = (data >> bit_cntr) & 1; | ||
249 | sda_out(dd, bit); | ||
250 | scl_out(dd, i2c_line_high); | ||
251 | scl_out(dd, i2c_line_low); | ||
252 | } | ||
253 | return (!i2c_ackrcv(dd)) ? 1 : 0; | ||
254 | } | ||
255 | |||
256 | static void send_ack(struct ipath_devdata *dd) | ||
257 | { | ||
258 | sda_out(dd, i2c_line_low); | ||
259 | scl_out(dd, i2c_line_high); | ||
260 | scl_out(dd, i2c_line_low); | ||
261 | sda_out(dd, i2c_line_high); | ||
262 | } | ||
263 | |||
264 | /** | ||
265 | * i2c_startcmd - transmit the start condition, followed by address/cmd | ||
266 | * @dd: the infinipath device | ||
267 | * @offset_dir: direction byte | ||
268 | * | ||
269 | * (both clock/data high, clock high, data low while clock is high) | ||
270 | */ | ||
271 | static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir) | ||
272 | { | ||
273 | int res; | ||
274 | |||
275 | /* issue start sequence */ | ||
276 | sda_out(dd, i2c_line_high); | ||
277 | scl_out(dd, i2c_line_high); | ||
278 | sda_out(dd, i2c_line_low); | ||
279 | scl_out(dd, i2c_line_low); | ||
280 | |||
281 | /* issue length and direction byte */ | ||
282 | res = wr_byte(dd, offset_dir); | ||
283 | |||
284 | if (res) | ||
285 | ipath_cdbg(VERBOSE, "No ack to complete start\n"); | ||
286 | |||
287 | return res; | ||
288 | } | ||
289 | |||
290 | /** | ||
291 | * stop_cmd - transmit the stop condition | ||
292 | * @dd: the infinipath device | ||
293 | * | ||
294 | * (both clock/data low, clock high, data high while clock is high) | ||
295 | */ | ||
296 | static void stop_cmd(struct ipath_devdata *dd) | ||
297 | { | ||
298 | scl_out(dd, i2c_line_low); | ||
299 | sda_out(dd, i2c_line_low); | ||
300 | scl_out(dd, i2c_line_high); | ||
301 | sda_out(dd, i2c_line_high); | ||
302 | udelay(2); | ||
303 | } | ||
304 | |||
305 | /** | ||
306 | * eeprom_reset - reset I2C communication | ||
307 | * @dd: the infinipath device | ||
308 | */ | ||
309 | |||
310 | static int eeprom_reset(struct ipath_devdata *dd) | ||
311 | { | ||
312 | int clock_cycles_left = 9; | ||
313 | u64 *gpioval = &dd->ipath_gpio_out; | ||
314 | int ret; | ||
315 | |||
316 | eeprom_init = 1; | ||
317 | *gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out); | ||
318 | ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg " | ||
319 | "is %llx\n", (unsigned long long) *gpioval); | ||
320 | |||
321 | /* | ||
322 | * This is to get the i2c into a known state, by first going low, | ||
323 | * then tristate sda (and then tristate scl as first thing | ||
324 | * in loop) | ||
325 | */ | ||
326 | scl_out(dd, i2c_line_low); | ||
327 | sda_out(dd, i2c_line_high); | ||
328 | |||
329 | while (clock_cycles_left--) { | ||
330 | scl_out(dd, i2c_line_high); | ||
331 | |||
332 | if (sda_in(dd, 0)) { | ||
333 | sda_out(dd, i2c_line_low); | ||
334 | scl_out(dd, i2c_line_low); | ||
335 | ret = 0; | ||
336 | goto bail; | ||
337 | } | ||
338 | |||
339 | scl_out(dd, i2c_line_low); | ||
340 | } | ||
341 | |||
342 | ret = 1; | ||
343 | |||
344 | bail: | ||
345 | return ret; | ||
346 | } | ||
347 | |||
348 | /** | ||
349 | * ipath_eeprom_read - receives bytes from the eeprom via I2C | ||
350 | * @dd: the infinipath device | ||
351 | * @eeprom_offset: address to read from | ||
352 | * @buffer: where to store result | ||
353 | * @len: number of bytes to receive | ||
354 | */ | ||
355 | |||
356 | int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset, | ||
357 | void *buffer, int len) | ||
358 | { | ||
359 | /* compiler complains unless initialized */ | ||
360 | u8 single_byte = 0; | ||
361 | int bit_cntr; | ||
362 | int ret; | ||
363 | |||
364 | if (!eeprom_init) | ||
365 | eeprom_reset(dd); | ||
366 | |||
367 | eeprom_offset = (eeprom_offset << 1) | READ_CMD; | ||
368 | |||
369 | if (i2c_startcmd(dd, eeprom_offset)) { | ||
370 | ipath_dbg("Failed startcmd\n"); | ||
371 | stop_cmd(dd); | ||
372 | ret = 1; | ||
373 | goto bail; | ||
374 | } | ||
375 | |||
376 | /* | ||
377 | * eeprom keeps clocking data out as long as we ack, automatically | ||
378 | * incrementing the address. | ||
379 | */ | ||
380 | while (len-- > 0) { | ||
381 | /* get data */ | ||
382 | single_byte = 0; | ||
383 | for (bit_cntr = 8; bit_cntr; bit_cntr--) { | ||
384 | u8 bit; | ||
385 | scl_out(dd, i2c_line_high); | ||
386 | bit = sda_in(dd, 0); | ||
387 | single_byte |= bit << (bit_cntr - 1); | ||
388 | scl_out(dd, i2c_line_low); | ||
389 | } | ||
390 | |||
391 | /* send ack if not the last byte */ | ||
392 | if (len) | ||
393 | send_ack(dd); | ||
394 | |||
395 | *((u8 *) buffer) = single_byte; | ||
396 | buffer++; | ||
397 | } | ||
398 | |||
399 | stop_cmd(dd); | ||
400 | |||
401 | ret = 0; | ||
402 | |||
403 | bail: | ||
404 | return ret; | ||
405 | } | ||
406 | |||
407 | /** | ||
408 | * ipath_eeprom_write - writes data to the eeprom via I2C | ||
409 | * @dd: the infinipath device | ||
410 | * @eeprom_offset: where to place data | ||
411 | * @buffer: data to write | ||
412 | * @len: number of bytes to write | ||
413 | */ | ||
414 | int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset, | ||
415 | const void *buffer, int len) | ||
416 | { | ||
417 | u8 single_byte; | ||
418 | int sub_len; | ||
419 | const u8 *bp = buffer; | ||
420 | int max_wait_time, i; | ||
421 | int ret; | ||
422 | |||
423 | if (!eeprom_init) | ||
424 | eeprom_reset(dd); | ||
425 | |||
426 | while (len > 0) { | ||
427 | if (i2c_startcmd(dd, (eeprom_offset << 1) | WRITE_CMD)) { | ||
428 | ipath_dbg("Failed to start cmd offset %u\n", | ||
429 | eeprom_offset); | ||
430 | goto failed_write; | ||
431 | } | ||
432 | |||
433 | sub_len = min(len, 4); | ||
434 | eeprom_offset += sub_len; | ||
435 | len -= sub_len; | ||
436 | |||
437 | for (i = 0; i < sub_len; i++) { | ||
438 | if (wr_byte(dd, *bp++)) { | ||
439 | ipath_dbg("no ack after byte %u/%u (%u " | ||
440 | "total remain)\n", i, sub_len, | ||
441 | len + sub_len - i); | ||
442 | goto failed_write; | ||
443 | } | ||
444 | } | ||
445 | |||
446 | stop_cmd(dd); | ||
447 | |||
448 | /* | ||
449 | * wait for write complete by waiting for a successful | ||
450 | * read (the chip replies with a zero after the write | ||
451 | * cmd completes, and before it writes to the eeprom. | ||
452 | * The startcmd for the read will fail the ack until | ||
453 | * the writes have completed. We do this inline to avoid | ||
454 | * the debug prints that are in the real read routine | ||
455 | * if the startcmd fails. | ||
456 | */ | ||
457 | max_wait_time = 100; | ||
458 | while (i2c_startcmd(dd, READ_CMD)) { | ||
459 | stop_cmd(dd); | ||
460 | if (!--max_wait_time) { | ||
461 | ipath_dbg("Did not get successful read to " | ||
462 | "complete write\n"); | ||
463 | goto failed_write; | ||
464 | } | ||
465 | } | ||
466 | /* now read the zero byte */ | ||
467 | for (i = single_byte = 0; i < 8; i++) { | ||
468 | u8 bit; | ||
469 | scl_out(dd, i2c_line_high); | ||
470 | bit = sda_in(dd, 0); | ||
471 | scl_out(dd, i2c_line_low); | ||
472 | single_byte <<= 1; | ||
473 | single_byte |= bit; | ||
474 | } | ||
475 | stop_cmd(dd); | ||
476 | } | ||
477 | |||
478 | ret = 0; | ||
479 | goto bail; | ||
480 | |||
481 | failed_write: | ||
482 | stop_cmd(dd); | ||
483 | ret = 1; | ||
484 | |||
485 | bail: | ||
486 | return ret; | ||
487 | } | ||
488 | |||
489 | static u8 flash_csum(struct ipath_flash *ifp, int adjust) | ||
490 | { | ||
491 | u8 *ip = (u8 *) ifp; | ||
492 | u8 csum = 0, len; | ||
493 | |||
494 | for (len = 0; len < ifp->if_length; len++) | ||
495 | csum += *ip++; | ||
496 | csum -= ifp->if_csum; | ||
497 | csum = ~csum; | ||
498 | if (adjust) | ||
499 | ifp->if_csum = csum; | ||
500 | |||
501 | return csum; | ||
502 | } | ||
503 | |||
504 | /** | ||
505 | * ipath_get_guid - get the GUID from the i2c device | ||
506 | * @dd: the infinipath device | ||
507 | * | ||
508 | * When we add the multi-chip support, we will probably have to add | ||
509 | * the ability to use the number of guids field, and get the guid from | ||
510 | * the first chip's flash, to use for all of them. | ||
511 | */ | ||
512 | void ipath_get_guid(struct ipath_devdata *dd) | ||
513 | { | ||
514 | void *buf; | ||
515 | struct ipath_flash *ifp; | ||
516 | __be64 guid; | ||
517 | int len; | ||
518 | u8 csum, *bguid; | ||
519 | int t = dd->ipath_unit; | ||
520 | struct ipath_devdata *dd0 = ipath_lookup(0); | ||
521 | |||
522 | if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) { | ||
523 | u8 *bguid, oguid; | ||
524 | dd->ipath_guid = dd0->ipath_guid; | ||
525 | bguid = (u8 *) & dd->ipath_guid; | ||
526 | |||
527 | oguid = bguid[7]; | ||
528 | bguid[7] += t; | ||
529 | if (oguid > bguid[7]) { | ||
530 | if (bguid[6] == 0xff) { | ||
531 | if (bguid[5] == 0xff) { | ||
532 | ipath_dev_err( | ||
533 | dd, | ||
534 | "Can't set %s GUID from " | ||
535 | "base, wraps to OUI!\n", | ||
536 | ipath_get_unit_name(t)); | ||
537 | dd->ipath_guid = 0; | ||
538 | goto bail; | ||
539 | } | ||
540 | bguid[5]++; | ||
541 | } | ||
542 | bguid[6]++; | ||
543 | } | ||
544 | dd->ipath_nguid = 1; | ||
545 | |||
546 | ipath_dbg("nguid %u, so adding %u to device 0 guid, " | ||
547 | "for %llx\n", | ||
548 | dd0->ipath_nguid, t, | ||
549 | (unsigned long long) be64_to_cpu(dd->ipath_guid)); | ||
550 | goto bail; | ||
551 | } | ||
552 | |||
553 | len = offsetof(struct ipath_flash, if_future); | ||
554 | buf = vmalloc(len); | ||
555 | if (!buf) { | ||
556 | ipath_dev_err(dd, "Couldn't allocate memory to read %u " | ||
557 | "bytes from eeprom for GUID\n", len); | ||
558 | goto bail; | ||
559 | } | ||
560 | |||
561 | if (ipath_eeprom_read(dd, 0, buf, len)) { | ||
562 | ipath_dev_err(dd, "Failed reading GUID from eeprom\n"); | ||
563 | goto done; | ||
564 | } | ||
565 | ifp = (struct ipath_flash *)buf; | ||
566 | |||
567 | csum = flash_csum(ifp, 0); | ||
568 | if (csum != ifp->if_csum) { | ||
569 | dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: " | ||
570 | "0x%x, not 0x%x\n", csum, ifp->if_csum); | ||
571 | goto done; | ||
572 | } | ||
573 | if (*(__be64 *) ifp->if_guid == 0ULL || | ||
574 | *(__be64 *) ifp->if_guid == __constant_cpu_to_be64(-1LL)) { | ||
575 | ipath_dev_err(dd, "Invalid GUID %llx from flash; " | ||
576 | "ignoring\n", | ||
577 | *(unsigned long long *) ifp->if_guid); | ||
578 | /* don't allow GUID if all 0 or all 1's */ | ||
579 | goto done; | ||
580 | } | ||
581 | |||
582 | /* complain, but allow it */ | ||
583 | if (*(u64 *) ifp->if_guid == 0x100007511000000ULL) | ||
584 | dev_info(&dd->pcidev->dev, "Warning, GUID %llx is " | ||
585 | "default, probably not correct!\n", | ||
586 | *(unsigned long long *) ifp->if_guid); | ||
587 | |||
588 | bguid = ifp->if_guid; | ||
589 | if (!bguid[0] && !bguid[1] && !bguid[2]) { | ||
590 | /* original incorrect GUID format in flash; fix in | ||
591 | * core copy, by shifting up 2 octets; don't need to | ||
592 | * change top octet, since both it and shifted are | ||
593 | * 0.. */ | ||
594 | bguid[1] = bguid[3]; | ||
595 | bguid[2] = bguid[4]; | ||
596 | bguid[3] = bguid[4] = 0; | ||
597 | guid = *(__be64 *) ifp->if_guid; | ||
598 | ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, " | ||
599 | "shifting 2 octets\n"); | ||
600 | } else | ||
601 | guid = *(__be64 *) ifp->if_guid; | ||
602 | dd->ipath_guid = guid; | ||
603 | dd->ipath_nguid = ifp->if_numguid; | ||
604 | memcpy(dd->ipath_serial, ifp->if_serial, | ||
605 | sizeof(ifp->if_serial)); | ||
606 | ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n", | ||
607 | (unsigned long long) be64_to_cpu(dd->ipath_guid)); | ||
608 | |||
609 | done: | ||
610 | vfree(buf); | ||
611 | |||
612 | bail:; | ||
613 | } | ||