aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/crypto')
-rw-r--r--drivers/crypto/mv_cesa.c514
-rw-r--r--drivers/crypto/mv_cesa.h40
2 files changed, 542 insertions, 12 deletions
diff --git a/drivers/crypto/mv_cesa.c b/drivers/crypto/mv_cesa.c
index d0fb10e701c..1cee5a93709 100644
--- a/drivers/crypto/mv_cesa.c
+++ b/drivers/crypto/mv_cesa.c
@@ -14,8 +14,14 @@
14#include <linux/kthread.h> 14#include <linux/kthread.h>
15#include <linux/platform_device.h> 15#include <linux/platform_device.h>
16#include <linux/scatterlist.h> 16#include <linux/scatterlist.h>
17#include <crypto/internal/hash.h>
18#include <crypto/sha.h>
17 19
18#include "mv_cesa.h" 20#include "mv_cesa.h"
21
22#define MV_CESA "MV-CESA:"
23#define MAX_HW_HASH_SIZE 0xFFFF
24
19/* 25/*
20 * STM: 26 * STM:
21 * /---------------------------------------\ 27 * /---------------------------------------\
@@ -38,7 +44,7 @@ enum engine_status {
38 * @dst_sg_it: sg iterator for dst 44 * @dst_sg_it: sg iterator for dst
39 * @sg_src_left: bytes left in src to process (scatter list) 45 * @sg_src_left: bytes left in src to process (scatter list)
40 * @src_start: offset to add to src start position (scatter list) 46 * @src_start: offset to add to src start position (scatter list)
41 * @crypt_len: length of current crypt process 47 * @crypt_len: length of current hw crypt/hash process
42 * @hw_nbytes: total bytes to process in hw for this request 48 * @hw_nbytes: total bytes to process in hw for this request
43 * @copy_back: whether to copy data back (crypt) or not (hash) 49 * @copy_back: whether to copy data back (crypt) or not (hash)
44 * @sg_dst_left: bytes left dst to process in this scatter list 50 * @sg_dst_left: bytes left dst to process in this scatter list
@@ -81,6 +87,8 @@ struct crypto_priv {
81 struct req_progress p; 87 struct req_progress p;
82 int max_req_size; 88 int max_req_size;
83 int sram_size; 89 int sram_size;
90 int has_sha1;
91 int has_hmac_sha1;
84}; 92};
85 93
86static struct crypto_priv *cpg; 94static struct crypto_priv *cpg;
@@ -102,6 +110,31 @@ struct mv_req_ctx {
102 int decrypt; 110 int decrypt;
103}; 111};
104 112
113enum hash_op {
114 COP_SHA1,
115 COP_HMAC_SHA1
116};
117
118struct mv_tfm_hash_ctx {
119 struct crypto_shash *fallback;
120 struct crypto_shash *base_hash;
121 u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
122 int count_add;
123 enum hash_op op;
124};
125
126struct mv_req_hash_ctx {
127 u64 count;
128 u32 state[SHA1_DIGEST_SIZE / 4];
129 u8 buffer[SHA1_BLOCK_SIZE];
130 int first_hash; /* marks that we don't have previous state */
131 int last_chunk; /* marks that this is the 'final' request */
132 int extra_bytes; /* unprocessed bytes in buffer */
133 enum hash_op op;
134 int count_add;
135 struct scatterlist dummysg;
136};
137
105static void compute_aes_dec_key(struct mv_ctx *ctx) 138static void compute_aes_dec_key(struct mv_ctx *ctx)
106{ 139{
107 struct crypto_aes_ctx gen_aes_key; 140 struct crypto_aes_ctx gen_aes_key;
@@ -265,6 +298,132 @@ static void mv_crypto_algo_completion(void)
265 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16); 298 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
266} 299}
267 300
301static void mv_process_hash_current(int first_block)
302{
303 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
304 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
305 struct req_progress *p = &cpg->p;
306 struct sec_accel_config op = { 0 };
307 int is_last;
308
309 switch (req_ctx->op) {
310 case COP_SHA1:
311 default:
312 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
313 break;
314 case COP_HMAC_SHA1:
315 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
316 break;
317 }
318
319 op.mac_src_p =
320 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
321 req_ctx->
322 count);
323
324 setup_data_in();
325
326 op.mac_digest =
327 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
328 op.mac_iv =
329 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
330 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
331
332 is_last = req_ctx->last_chunk
333 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
334 && (req_ctx->count <= MAX_HW_HASH_SIZE);
335 if (req_ctx->first_hash) {
336 if (is_last)
337 op.config |= CFG_NOT_FRAG;
338 else
339 op.config |= CFG_FIRST_FRAG;
340
341 req_ctx->first_hash = 0;
342 } else {
343 if (is_last)
344 op.config |= CFG_LAST_FRAG;
345 else
346 op.config |= CFG_MID_FRAG;
347 }
348
349 memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
350
351 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
352 /* GO */
353 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
354
355 /*
356 * XXX: add timer if the interrupt does not occur for some mystery
357 * reason
358 */
359}
360
361static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
362 struct shash_desc *desc)
363{
364 int i;
365 struct sha1_state shash_state;
366
367 shash_state.count = ctx->count + ctx->count_add;
368 for (i = 0; i < 5; i++)
369 shash_state.state[i] = ctx->state[i];
370 memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
371 return crypto_shash_import(desc, &shash_state);
372}
373
374static int mv_hash_final_fallback(struct ahash_request *req)
375{
376 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
377 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
378 struct {
379 struct shash_desc shash;
380 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
381 } desc;
382 int rc;
383
384 desc.shash.tfm = tfm_ctx->fallback;
385 desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
386 if (unlikely(req_ctx->first_hash)) {
387 crypto_shash_init(&desc.shash);
388 crypto_shash_update(&desc.shash, req_ctx->buffer,
389 req_ctx->extra_bytes);
390 } else {
391 /* only SHA1 for now....
392 */
393 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
394 if (rc)
395 goto out;
396 }
397 rc = crypto_shash_final(&desc.shash, req->result);
398out:
399 return rc;
400}
401
402static void mv_hash_algo_completion(void)
403{
404 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
405 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
406
407 if (ctx->extra_bytes)
408 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
409 sg_miter_stop(&cpg->p.src_sg_it);
410
411 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
412 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
413 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
414 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
415 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
416
417 if (likely(ctx->last_chunk)) {
418 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
419 memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
420 crypto_ahash_digestsize(crypto_ahash_reqtfm
421 (req)));
422 } else
423 mv_hash_final_fallback(req);
424 }
425}
426
268static void dequeue_complete_req(void) 427static void dequeue_complete_req(void)
269{ 428{
270 struct crypto_async_request *req = cpg->cur_req; 429 struct crypto_async_request *req = cpg->cur_req;
@@ -332,7 +491,7 @@ static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
332 return i; 491 return i;
333} 492}
334 493
335static void mv_enqueue_new_req(struct ablkcipher_request *req) 494static void mv_start_new_crypt_req(struct ablkcipher_request *req)
336{ 495{
337 struct req_progress *p = &cpg->p; 496 struct req_progress *p = &cpg->p;
338 int num_sgs; 497 int num_sgs;
@@ -353,11 +512,68 @@ static void mv_enqueue_new_req(struct ablkcipher_request *req)
353 mv_process_current_q(1); 512 mv_process_current_q(1);
354} 513}
355 514
515static void mv_start_new_hash_req(struct ahash_request *req)
516{
517 struct req_progress *p = &cpg->p;
518 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
519 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
520 int num_sgs, hw_bytes, old_extra_bytes, rc;
521 cpg->cur_req = &req->base;
522 memset(p, 0, sizeof(struct req_progress));
523 hw_bytes = req->nbytes + ctx->extra_bytes;
524 old_extra_bytes = ctx->extra_bytes;
525
526 if (unlikely(ctx->extra_bytes)) {
527 memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
528 ctx->extra_bytes);
529 p->crypt_len = ctx->extra_bytes;
530 }
531
532 memcpy(cpg->sram + SRAM_HMAC_IV_IN, tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
533
534 if (unlikely(!ctx->first_hash)) {
535 writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
536 writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
537 writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
538 writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
539 writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
540 }
541
542 ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
543 if (ctx->extra_bytes != 0
544 && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
545 hw_bytes -= ctx->extra_bytes;
546 else
547 ctx->extra_bytes = 0;
548
549 num_sgs = count_sgs(req->src, req->nbytes);
550 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
551
552 if (hw_bytes) {
553 p->hw_nbytes = hw_bytes;
554 p->complete = mv_hash_algo_completion;
555 p->process = mv_process_hash_current;
556
557 mv_process_hash_current(1);
558 } else {
559 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
560 ctx->extra_bytes - old_extra_bytes);
561 sg_miter_stop(&p->src_sg_it);
562 if (ctx->last_chunk)
563 rc = mv_hash_final_fallback(req);
564 else
565 rc = 0;
566 cpg->eng_st = ENGINE_IDLE;
567 local_bh_disable();
568 req->base.complete(&req->base, rc);
569 local_bh_enable();
570 }
571}
572
356static int queue_manag(void *data) 573static int queue_manag(void *data)
357{ 574{
358 cpg->eng_st = ENGINE_IDLE; 575 cpg->eng_st = ENGINE_IDLE;
359 do { 576 do {
360 struct ablkcipher_request *req;
361 struct crypto_async_request *async_req = NULL; 577 struct crypto_async_request *async_req = NULL;
362 struct crypto_async_request *backlog; 578 struct crypto_async_request *backlog;
363 579
@@ -383,9 +599,18 @@ static int queue_manag(void *data)
383 } 599 }
384 600
385 if (async_req) { 601 if (async_req) {
386 req = container_of(async_req, 602 if (async_req->tfm->__crt_alg->cra_type !=
387 struct ablkcipher_request, base); 603 &crypto_ahash_type) {
388 mv_enqueue_new_req(req); 604 struct ablkcipher_request *req =
605 container_of(async_req,
606 struct ablkcipher_request,
607 base);
608 mv_start_new_crypt_req(req);
609 } else {
610 struct ahash_request *req =
611 ahash_request_cast(async_req);
612 mv_start_new_hash_req(req);
613 }
389 async_req = NULL; 614 async_req = NULL;
390 } 615 }
391 616
@@ -457,6 +682,215 @@ static int mv_cra_init(struct crypto_tfm *tfm)
457 return 0; 682 return 0;
458} 683}
459 684
685static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
686 int is_last, unsigned int req_len,
687 int count_add)
688{
689 memset(ctx, 0, sizeof(*ctx));
690 ctx->op = op;
691 ctx->count = req_len;
692 ctx->first_hash = 1;
693 ctx->last_chunk = is_last;
694 ctx->count_add = count_add;
695}
696
697static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
698 unsigned req_len)
699{
700 ctx->last_chunk = is_last;
701 ctx->count += req_len;
702}
703
704static int mv_hash_init(struct ahash_request *req)
705{
706 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
707 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
708 tfm_ctx->count_add);
709 return 0;
710}
711
712static int mv_hash_update(struct ahash_request *req)
713{
714 if (!req->nbytes)
715 return 0;
716
717 mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
718 return mv_handle_req(&req->base);
719}
720
721static int mv_hash_final(struct ahash_request *req)
722{
723 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
724 /* dummy buffer of 4 bytes */
725 sg_init_one(&ctx->dummysg, ctx->buffer, 4);
726 /* I think I'm allowed to do that... */
727 ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0);
728 mv_update_hash_req_ctx(ctx, 1, 0);
729 return mv_handle_req(&req->base);
730}
731
732static int mv_hash_finup(struct ahash_request *req)
733{
734 if (!req->nbytes)
735 return mv_hash_final(req);
736
737 mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
738 return mv_handle_req(&req->base);
739}
740
741static int mv_hash_digest(struct ahash_request *req)
742{
743 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
744 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
745 req->nbytes, tfm_ctx->count_add);
746 return mv_handle_req(&req->base);
747}
748
749static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
750 const void *ostate)
751{
752 const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
753 int i;
754 for (i = 0; i < 5; i++) {
755 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
756 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
757 }
758}
759
760static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
761 unsigned int keylen)
762{
763 int rc;
764 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
765 int bs, ds, ss;
766
767 if (!ctx->base_hash)
768 return 0;
769
770 rc = crypto_shash_setkey(ctx->fallback, key, keylen);
771 if (rc)
772 return rc;
773
774 /* Can't see a way to extract the ipad/opad from the fallback tfm
775 so I'm basically copying code from the hmac module */
776 bs = crypto_shash_blocksize(ctx->base_hash);
777 ds = crypto_shash_digestsize(ctx->base_hash);
778 ss = crypto_shash_statesize(ctx->base_hash);
779
780 {
781 struct {
782 struct shash_desc shash;
783 char ctx[crypto_shash_descsize(ctx->base_hash)];
784 } desc;
785 unsigned int i;
786 char ipad[ss];
787 char opad[ss];
788
789 desc.shash.tfm = ctx->base_hash;
790 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
791 CRYPTO_TFM_REQ_MAY_SLEEP;
792
793 if (keylen > bs) {
794 int err;
795
796 err =
797 crypto_shash_digest(&desc.shash, key, keylen, ipad);
798 if (err)
799 return err;
800
801 keylen = ds;
802 } else
803 memcpy(ipad, key, keylen);
804
805 memset(ipad + keylen, 0, bs - keylen);
806 memcpy(opad, ipad, bs);
807
808 for (i = 0; i < bs; i++) {
809 ipad[i] ^= 0x36;
810 opad[i] ^= 0x5c;
811 }
812
813 rc = crypto_shash_init(&desc.shash) ? :
814 crypto_shash_update(&desc.shash, ipad, bs) ? :
815 crypto_shash_export(&desc.shash, ipad) ? :
816 crypto_shash_init(&desc.shash) ? :
817 crypto_shash_update(&desc.shash, opad, bs) ? :
818 crypto_shash_export(&desc.shash, opad);
819
820 if (rc == 0)
821 mv_hash_init_ivs(ctx, ipad, opad);
822
823 return rc;
824 }
825}
826
827static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
828 enum hash_op op, int count_add)
829{
830 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
831 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
832 struct crypto_shash *fallback_tfm = NULL;
833 struct crypto_shash *base_hash = NULL;
834 int err = -ENOMEM;
835
836 ctx->op = op;
837 ctx->count_add = count_add;
838
839 /* Allocate a fallback and abort if it failed. */
840 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
841 CRYPTO_ALG_NEED_FALLBACK);
842 if (IS_ERR(fallback_tfm)) {
843 printk(KERN_WARNING MV_CESA
844 "Fallback driver '%s' could not be loaded!\n",
845 fallback_driver_name);
846 err = PTR_ERR(fallback_tfm);
847 goto out;
848 }
849 ctx->fallback = fallback_tfm;
850
851 if (base_hash_name) {
852 /* Allocate a hash to compute the ipad/opad of hmac. */
853 base_hash = crypto_alloc_shash(base_hash_name, 0,
854 CRYPTO_ALG_NEED_FALLBACK);
855 if (IS_ERR(base_hash)) {
856 printk(KERN_WARNING MV_CESA
857 "Base driver '%s' could not be loaded!\n",
858 base_hash_name);
859 err = PTR_ERR(fallback_tfm);
860 goto err_bad_base;
861 }
862 }
863 ctx->base_hash = base_hash;
864
865 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
866 sizeof(struct mv_req_hash_ctx) +
867 crypto_shash_descsize(ctx->fallback));
868 return 0;
869err_bad_base:
870 crypto_free_shash(fallback_tfm);
871out:
872 return err;
873}
874
875static void mv_cra_hash_exit(struct crypto_tfm *tfm)
876{
877 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
878
879 crypto_free_shash(ctx->fallback);
880 if (ctx->base_hash)
881 crypto_free_shash(ctx->base_hash);
882}
883
884static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
885{
886 return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
887}
888
889static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
890{
891 return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
892}
893
460irqreturn_t crypto_int(int irq, void *priv) 894irqreturn_t crypto_int(int irq, void *priv)
461{ 895{
462 u32 val; 896 u32 val;
@@ -519,6 +953,53 @@ struct crypto_alg mv_aes_alg_cbc = {
519 }, 953 },
520}; 954};
521 955
956struct ahash_alg mv_sha1_alg = {
957 .init = mv_hash_init,
958 .update = mv_hash_update,
959 .final = mv_hash_final,
960 .finup = mv_hash_finup,
961 .digest = mv_hash_digest,
962 .halg = {
963 .digestsize = SHA1_DIGEST_SIZE,
964 .base = {
965 .cra_name = "sha1",
966 .cra_driver_name = "mv-sha1",
967 .cra_priority = 300,
968 .cra_flags =
969 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
970 .cra_blocksize = SHA1_BLOCK_SIZE,
971 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
972 .cra_init = mv_cra_hash_sha1_init,
973 .cra_exit = mv_cra_hash_exit,
974 .cra_module = THIS_MODULE,
975 }
976 }
977};
978
979struct ahash_alg mv_hmac_sha1_alg = {
980 .init = mv_hash_init,
981 .update = mv_hash_update,
982 .final = mv_hash_final,
983 .finup = mv_hash_finup,
984 .digest = mv_hash_digest,
985 .setkey = mv_hash_setkey,
986 .halg = {
987 .digestsize = SHA1_DIGEST_SIZE,
988 .base = {
989 .cra_name = "hmac(sha1)",
990 .cra_driver_name = "mv-hmac-sha1",
991 .cra_priority = 300,
992 .cra_flags =
993 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
994 .cra_blocksize = SHA1_BLOCK_SIZE,
995 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
996 .cra_init = mv_cra_hash_hmac_sha1_init,
997 .cra_exit = mv_cra_hash_exit,
998 .cra_module = THIS_MODULE,
999 }
1000 }
1001};
1002
522static int mv_probe(struct platform_device *pdev) 1003static int mv_probe(struct platform_device *pdev)
523{ 1004{
524 struct crypto_priv *cp; 1005 struct crypto_priv *cp;
@@ -527,7 +1008,7 @@ static int mv_probe(struct platform_device *pdev)
527 int ret; 1008 int ret;
528 1009
529 if (cpg) { 1010 if (cpg) {
530 printk(KERN_ERR "Second crypto dev?\n"); 1011 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
531 return -EEXIST; 1012 return -EEXIST;
532 } 1013 }
533 1014
@@ -591,6 +1072,21 @@ static int mv_probe(struct platform_device *pdev)
591 ret = crypto_register_alg(&mv_aes_alg_cbc); 1072 ret = crypto_register_alg(&mv_aes_alg_cbc);
592 if (ret) 1073 if (ret)
593 goto err_unreg_ecb; 1074 goto err_unreg_ecb;
1075
1076 ret = crypto_register_ahash(&mv_sha1_alg);
1077 if (ret == 0)
1078 cpg->has_sha1 = 1;
1079 else
1080 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1081
1082 ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1083 if (ret == 0) {
1084 cpg->has_hmac_sha1 = 1;
1085 } else {
1086 printk(KERN_WARNING MV_CESA
1087 "Could not register hmac-sha1 driver\n");
1088 }
1089
594 return 0; 1090 return 0;
595err_unreg_ecb: 1091err_unreg_ecb:
596 crypto_unregister_alg(&mv_aes_alg_ecb); 1092 crypto_unregister_alg(&mv_aes_alg_ecb);
@@ -615,6 +1111,10 @@ static int mv_remove(struct platform_device *pdev)
615 1111
616 crypto_unregister_alg(&mv_aes_alg_ecb); 1112 crypto_unregister_alg(&mv_aes_alg_ecb);
617 crypto_unregister_alg(&mv_aes_alg_cbc); 1113 crypto_unregister_alg(&mv_aes_alg_cbc);
1114 if (cp->has_sha1)
1115 crypto_unregister_ahash(&mv_sha1_alg);
1116 if (cp->has_hmac_sha1)
1117 crypto_unregister_ahash(&mv_hmac_sha1_alg);
618 kthread_stop(cp->queue_th); 1118 kthread_stop(cp->queue_th);
619 free_irq(cp->irq, cp); 1119 free_irq(cp->irq, cp);
620 memset(cp->sram, 0, cp->sram_size); 1120 memset(cp->sram, 0, cp->sram_size);
diff --git a/drivers/crypto/mv_cesa.h b/drivers/crypto/mv_cesa.h
index c3e25d3bb17..08fcb1116d9 100644
--- a/drivers/crypto/mv_cesa.h
+++ b/drivers/crypto/mv_cesa.h
@@ -1,6 +1,10 @@
1#ifndef __MV_CRYPTO_H__ 1#ifndef __MV_CRYPTO_H__
2 2
3#define DIGEST_INITIAL_VAL_A 0xdd00 3#define DIGEST_INITIAL_VAL_A 0xdd00
4#define DIGEST_INITIAL_VAL_B 0xdd04
5#define DIGEST_INITIAL_VAL_C 0xdd08
6#define DIGEST_INITIAL_VAL_D 0xdd0c
7#define DIGEST_INITIAL_VAL_E 0xdd10
4#define DES_CMD_REG 0xdd58 8#define DES_CMD_REG 0xdd58
5 9
6#define SEC_ACCEL_CMD 0xde00 10#define SEC_ACCEL_CMD 0xde00
@@ -70,6 +74,10 @@ struct sec_accel_config {
70#define CFG_AES_LEN_128 (0 << 24) 74#define CFG_AES_LEN_128 (0 << 24)
71#define CFG_AES_LEN_192 (1 << 24) 75#define CFG_AES_LEN_192 (1 << 24)
72#define CFG_AES_LEN_256 (2 << 24) 76#define CFG_AES_LEN_256 (2 << 24)
77#define CFG_NOT_FRAG (0 << 30)
78#define CFG_FIRST_FRAG (1 << 30)
79#define CFG_LAST_FRAG (2 << 30)
80#define CFG_MID_FRAG (3 << 30)
73 81
74 u32 enc_p; 82 u32 enc_p;
75#define ENC_P_SRC(x) (x) 83#define ENC_P_SRC(x) (x)
@@ -90,7 +98,11 @@ struct sec_accel_config {
90#define MAC_SRC_TOTAL_LEN(x) ((x) << 16) 98#define MAC_SRC_TOTAL_LEN(x) ((x) << 16)
91 99
92 u32 mac_digest; 100 u32 mac_digest;
101#define MAC_DIGEST_P(x) (x)
102#define MAC_FRAG_LEN(x) ((x) << 16)
93 u32 mac_iv; 103 u32 mac_iv;
104#define MAC_INNER_IV_P(x) (x)
105#define MAC_OUTER_IV_P(x) ((x) << 16)
94}__attribute__ ((packed)); 106}__attribute__ ((packed));
95 /* 107 /*
96 * /-----------\ 0 108 * /-----------\ 0
@@ -101,19 +113,37 @@ struct sec_accel_config {
101 * | IV IN | 4 * 4 113 * | IV IN | 4 * 4
102 * |-----------| 0x40 (inplace) 114 * |-----------| 0x40 (inplace)
103 * | IV BUF | 4 * 4 115 * | IV BUF | 4 * 4
104 * |-----------| 0x50 116 * |-----------| 0x80
105 * | DATA IN | 16 * x (max ->max_req_size) 117 * | DATA IN | 16 * x (max ->max_req_size)
106 * |-----------| 0x50 (inplace operation) 118 * |-----------| 0x80 (inplace operation)
107 * | DATA OUT | 16 * x (max ->max_req_size) 119 * | DATA OUT | 16 * x (max ->max_req_size)
108 * \-----------/ SRAM size 120 * \-----------/ SRAM size
109 */ 121 */
122
123 /* Hashing memory map:
124 * /-----------\ 0
125 * | ACCEL CFG | 4 * 8
126 * |-----------| 0x20
127 * | Inner IV | 5 * 4
128 * |-----------| 0x34
129 * | Outer IV | 5 * 4
130 * |-----------| 0x48
131 * | Output BUF| 5 * 4
132 * |-----------| 0x80
133 * | DATA IN | 64 * x (max ->max_req_size)
134 * \-----------/ SRAM size
135 */
110#define SRAM_CONFIG 0x00 136#define SRAM_CONFIG 0x00
111#define SRAM_DATA_KEY_P 0x20 137#define SRAM_DATA_KEY_P 0x20
112#define SRAM_DATA_IV 0x40 138#define SRAM_DATA_IV 0x40
113#define SRAM_DATA_IV_BUF 0x40 139#define SRAM_DATA_IV_BUF 0x40
114#define SRAM_DATA_IN_START 0x50 140#define SRAM_DATA_IN_START 0x80
115#define SRAM_DATA_OUT_START 0x50 141#define SRAM_DATA_OUT_START 0x80
142
143#define SRAM_HMAC_IV_IN 0x20
144#define SRAM_HMAC_IV_OUT 0x34
145#define SRAM_DIGEST_BUF 0x48
116 146
117#define SRAM_CFG_SPACE 0x50 147#define SRAM_CFG_SPACE 0x80
118 148
119#endif 149#endif