diff options
Diffstat (limited to 'arch/xtensa/include/asm/uaccess.h')
| -rw-r--r-- | arch/xtensa/include/asm/uaccess.h | 500 |
1 files changed, 500 insertions, 0 deletions
diff --git a/arch/xtensa/include/asm/uaccess.h b/arch/xtensa/include/asm/uaccess.h new file mode 100644 index 00000000000..b8528426ab1 --- /dev/null +++ b/arch/xtensa/include/asm/uaccess.h | |||
| @@ -0,0 +1,500 @@ | |||
| 1 | /* | ||
| 2 | * include/asm-xtensa/uaccess.h | ||
| 3 | * | ||
| 4 | * User space memory access functions | ||
| 5 | * | ||
| 6 | * These routines provide basic accessing functions to the user memory | ||
| 7 | * space for the kernel. This header file provides fuctions such as: | ||
| 8 | * | ||
| 9 | * This file is subject to the terms and conditions of the GNU General Public | ||
| 10 | * License. See the file "COPYING" in the main directory of this archive | ||
| 11 | * for more details. | ||
| 12 | * | ||
| 13 | * Copyright (C) 2001 - 2005 Tensilica Inc. | ||
| 14 | */ | ||
| 15 | |||
| 16 | #ifndef _XTENSA_UACCESS_H | ||
| 17 | #define _XTENSA_UACCESS_H | ||
| 18 | |||
| 19 | #include <linux/errno.h> | ||
| 20 | |||
| 21 | #define VERIFY_READ 0 | ||
| 22 | #define VERIFY_WRITE 1 | ||
| 23 | |||
| 24 | #ifdef __ASSEMBLY__ | ||
| 25 | |||
| 26 | #include <asm/current.h> | ||
| 27 | #include <asm/asm-offsets.h> | ||
| 28 | #include <asm/processor.h> | ||
| 29 | #include <asm/types.h> | ||
| 30 | |||
| 31 | /* | ||
| 32 | * These assembly macros mirror the C macros that follow below. They | ||
| 33 | * should always have identical functionality. See | ||
| 34 | * arch/xtensa/kernel/sys.S for usage. | ||
| 35 | */ | ||
| 36 | |||
| 37 | #define KERNEL_DS 0 | ||
| 38 | #define USER_DS 1 | ||
| 39 | |||
| 40 | #define get_ds (KERNEL_DS) | ||
| 41 | |||
| 42 | /* | ||
| 43 | * get_fs reads current->thread.current_ds into a register. | ||
| 44 | * On Entry: | ||
| 45 | * <ad> anything | ||
| 46 | * <sp> stack | ||
| 47 | * On Exit: | ||
| 48 | * <ad> contains current->thread.current_ds | ||
| 49 | */ | ||
| 50 | .macro get_fs ad, sp | ||
| 51 | GET_CURRENT(\ad,\sp) | ||
| 52 | l32i \ad, \ad, THREAD_CURRENT_DS | ||
| 53 | .endm | ||
| 54 | |||
| 55 | /* | ||
| 56 | * set_fs sets current->thread.current_ds to some value. | ||
| 57 | * On Entry: | ||
| 58 | * <at> anything (temp register) | ||
| 59 | * <av> value to write | ||
| 60 | * <sp> stack | ||
| 61 | * On Exit: | ||
| 62 | * <at> destroyed (actually, current) | ||
| 63 | * <av> preserved, value to write | ||
| 64 | */ | ||
| 65 | .macro set_fs at, av, sp | ||
| 66 | GET_CURRENT(\at,\sp) | ||
| 67 | s32i \av, \at, THREAD_CURRENT_DS | ||
| 68 | .endm | ||
| 69 | |||
| 70 | /* | ||
| 71 | * kernel_ok determines whether we should bypass addr/size checking. | ||
| 72 | * See the equivalent C-macro version below for clarity. | ||
| 73 | * On success, kernel_ok branches to a label indicated by parameter | ||
| 74 | * <success>. This implies that the macro falls through to the next | ||
| 75 | * insruction on an error. | ||
| 76 | * | ||
| 77 | * Note that while this macro can be used independently, we designed | ||
| 78 | * in for optimal use in the access_ok macro below (i.e., we fall | ||
| 79 | * through on error). | ||
| 80 | * | ||
| 81 | * On Entry: | ||
| 82 | * <at> anything (temp register) | ||
| 83 | * <success> label to branch to on success; implies | ||
| 84 | * fall-through macro on error | ||
| 85 | * <sp> stack pointer | ||
| 86 | * On Exit: | ||
| 87 | * <at> destroyed (actually, current->thread.current_ds) | ||
| 88 | */ | ||
| 89 | |||
| 90 | #if ((KERNEL_DS != 0) || (USER_DS == 0)) | ||
| 91 | # error Assembly macro kernel_ok fails | ||
| 92 | #endif | ||
| 93 | .macro kernel_ok at, sp, success | ||
| 94 | get_fs \at, \sp | ||
| 95 | beqz \at, \success | ||
| 96 | .endm | ||
| 97 | |||
| 98 | /* | ||
| 99 | * user_ok determines whether the access to user-space memory is allowed. | ||
| 100 | * See the equivalent C-macro version below for clarity. | ||
| 101 | * | ||
| 102 | * On error, user_ok branches to a label indicated by parameter | ||
| 103 | * <error>. This implies that the macro falls through to the next | ||
| 104 | * instruction on success. | ||
| 105 | * | ||
| 106 | * Note that while this macro can be used independently, we designed | ||
| 107 | * in for optimal use in the access_ok macro below (i.e., we fall | ||
| 108 | * through on success). | ||
| 109 | * | ||
| 110 | * On Entry: | ||
| 111 | * <aa> register containing memory address | ||
| 112 | * <as> register containing memory size | ||
| 113 | * <at> temp register | ||
| 114 | * <error> label to branch to on error; implies fall-through | ||
| 115 | * macro on success | ||
| 116 | * On Exit: | ||
| 117 | * <aa> preserved | ||
| 118 | * <as> preserved | ||
| 119 | * <at> destroyed (actually, (TASK_SIZE + 1 - size)) | ||
| 120 | */ | ||
| 121 | .macro user_ok aa, as, at, error | ||
| 122 | movi \at, __XTENSA_UL_CONST(TASK_SIZE) | ||
| 123 | bgeu \as, \at, \error | ||
| 124 | sub \at, \at, \as | ||
| 125 | bgeu \aa, \at, \error | ||
| 126 | .endm | ||
| 127 | |||
| 128 | /* | ||
| 129 | * access_ok determines whether a memory access is allowed. See the | ||
| 130 | * equivalent C-macro version below for clarity. | ||
| 131 | * | ||
| 132 | * On error, access_ok branches to a label indicated by parameter | ||
| 133 | * <error>. This implies that the macro falls through to the next | ||
| 134 | * instruction on success. | ||
| 135 | * | ||
| 136 | * Note that we assume success is the common case, and we optimize the | ||
| 137 | * branch fall-through case on success. | ||
| 138 | * | ||
| 139 | * On Entry: | ||
| 140 | * <aa> register containing memory address | ||
| 141 | * <as> register containing memory size | ||
| 142 | * <at> temp register | ||
| 143 | * <sp> | ||
| 144 | * <error> label to branch to on error; implies fall-through | ||
| 145 | * macro on success | ||
| 146 | * On Exit: | ||
| 147 | * <aa> preserved | ||
| 148 | * <as> preserved | ||
| 149 | * <at> destroyed | ||
| 150 | */ | ||
| 151 | .macro access_ok aa, as, at, sp, error | ||
| 152 | kernel_ok \at, \sp, .Laccess_ok_\@ | ||
| 153 | user_ok \aa, \as, \at, \error | ||
| 154 | .Laccess_ok_\@: | ||
| 155 | .endm | ||
| 156 | |||
| 157 | #else /* __ASSEMBLY__ not defined */ | ||
| 158 | |||
| 159 | #include <linux/sched.h> | ||
| 160 | #include <asm/types.h> | ||
| 161 | |||
| 162 | /* | ||
| 163 | * The fs value determines whether argument validity checking should | ||
| 164 | * be performed or not. If get_fs() == USER_DS, checking is | ||
| 165 | * performed, with get_fs() == KERNEL_DS, checking is bypassed. | ||
| 166 | * | ||
| 167 | * For historical reasons (Data Segment Register?), these macros are | ||
| 168 | * grossly misnamed. | ||
| 169 | */ | ||
| 170 | |||
| 171 | #define KERNEL_DS ((mm_segment_t) { 0 }) | ||
| 172 | #define USER_DS ((mm_segment_t) { 1 }) | ||
| 173 | |||
| 174 | #define get_ds() (KERNEL_DS) | ||
| 175 | #define get_fs() (current->thread.current_ds) | ||
| 176 | #define set_fs(val) (current->thread.current_ds = (val)) | ||
| 177 | |||
| 178 | #define segment_eq(a,b) ((a).seg == (b).seg) | ||
| 179 | |||
| 180 | #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS)) | ||
| 181 | #define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size))) | ||
| 182 | #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size))) | ||
| 183 | #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size)) | ||
| 184 | |||
| 185 | /* | ||
| 186 | * These are the main single-value transfer routines. They | ||
| 187 | * automatically use the right size if we just have the right pointer | ||
| 188 | * type. | ||
| 189 | * | ||
| 190 | * This gets kind of ugly. We want to return _two_ values in | ||
| 191 | * "get_user()" and yet we don't want to do any pointers, because that | ||
| 192 | * is too much of a performance impact. Thus we have a few rather ugly | ||
| 193 | * macros here, and hide all the uglyness from the user. | ||
| 194 | * | ||
| 195 | * Careful to not | ||
| 196 | * (a) re-use the arguments for side effects (sizeof is ok) | ||
| 197 | * (b) require any knowledge of processes at this stage | ||
| 198 | */ | ||
| 199 | #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr))) | ||
| 200 | #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr))) | ||
| 201 | |||
| 202 | /* | ||
| 203 | * The "__xxx" versions of the user access functions are versions that | ||
| 204 | * do not verify the address space, that must have been done previously | ||
| 205 | * with a separate "access_ok()" call (this is used when we do multiple | ||
| 206 | * accesses to the same area of user memory). | ||
| 207 | */ | ||
| 208 | #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr))) | ||
| 209 | #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr))) | ||
| 210 | |||
| 211 | |||
| 212 | extern long __put_user_bad(void); | ||
| 213 | |||
| 214 | #define __put_user_nocheck(x,ptr,size) \ | ||
| 215 | ({ \ | ||
| 216 | long __pu_err; \ | ||
| 217 | __put_user_size((x),(ptr),(size),__pu_err); \ | ||
| 218 | __pu_err; \ | ||
| 219 | }) | ||
| 220 | |||
| 221 | #define __put_user_check(x,ptr,size) \ | ||
| 222 | ({ \ | ||
| 223 | long __pu_err = -EFAULT; \ | ||
| 224 | __typeof__(*(ptr)) *__pu_addr = (ptr); \ | ||
| 225 | if (access_ok(VERIFY_WRITE,__pu_addr,size)) \ | ||
| 226 | __put_user_size((x),__pu_addr,(size),__pu_err); \ | ||
| 227 | __pu_err; \ | ||
| 228 | }) | ||
| 229 | |||
| 230 | #define __put_user_size(x,ptr,size,retval) \ | ||
| 231 | do { \ | ||
| 232 | int __cb; \ | ||
| 233 | retval = 0; \ | ||
| 234 | switch (size) { \ | ||
| 235 | case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb); break; \ | ||
| 236 | case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break; \ | ||
| 237 | case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break; \ | ||
| 238 | case 8: { \ | ||
| 239 | __typeof__(*ptr) __v64 = x; \ | ||
| 240 | retval = __copy_to_user(ptr,&__v64,8); \ | ||
| 241 | break; \ | ||
| 242 | } \ | ||
| 243 | default: __put_user_bad(); \ | ||
| 244 | } \ | ||
| 245 | } while (0) | ||
| 246 | |||
| 247 | |||
| 248 | /* | ||
| 249 | * Consider a case of a user single load/store would cause both an | ||
| 250 | * unaligned exception and an MMU-related exception (unaligned | ||
| 251 | * exceptions happen first): | ||
| 252 | * | ||
| 253 | * User code passes a bad variable ptr to a system call. | ||
| 254 | * Kernel tries to access the variable. | ||
| 255 | * Unaligned exception occurs. | ||
| 256 | * Unaligned exception handler tries to make aligned accesses. | ||
| 257 | * Double exception occurs for MMU-related cause (e.g., page not mapped). | ||
| 258 | * do_page_fault() thinks the fault address belongs to the kernel, not the | ||
| 259 | * user, and panics. | ||
| 260 | * | ||
| 261 | * The kernel currently prohibits user unaligned accesses. We use the | ||
| 262 | * __check_align_* macros to check for unaligned addresses before | ||
| 263 | * accessing user space so we don't crash the kernel. Both | ||
| 264 | * __put_user_asm and __get_user_asm use these alignment macros, so | ||
| 265 | * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in | ||
| 266 | * sync. | ||
| 267 | */ | ||
| 268 | |||
| 269 | #define __check_align_1 "" | ||
| 270 | |||
| 271 | #define __check_align_2 \ | ||
| 272 | " _bbci.l %3, 0, 1f \n" \ | ||
| 273 | " movi %0, %4 \n" \ | ||
| 274 | " _j 2f \n" | ||
| 275 | |||
| 276 | #define __check_align_4 \ | ||
| 277 | " _bbsi.l %3, 0, 0f \n" \ | ||
| 278 | " _bbci.l %3, 1, 1f \n" \ | ||
| 279 | "0: movi %0, %4 \n" \ | ||
| 280 | " _j 2f \n" | ||
| 281 | |||
| 282 | |||
| 283 | /* | ||
| 284 | * We don't tell gcc that we are accessing memory, but this is OK | ||
| 285 | * because we do not write to any memory gcc knows about, so there | ||
| 286 | * are no aliasing issues. | ||
| 287 | * | ||
| 288 | * WARNING: If you modify this macro at all, verify that the | ||
| 289 | * __check_align_* macros still work. | ||
| 290 | */ | ||
| 291 | #define __put_user_asm(x, addr, err, align, insn, cb) \ | ||
| 292 | __asm__ __volatile__( \ | ||
| 293 | __check_align_##align \ | ||
| 294 | "1: "insn" %2, %3, 0 \n" \ | ||
| 295 | "2: \n" \ | ||
| 296 | " .section .fixup,\"ax\" \n" \ | ||
| 297 | " .align 4 \n" \ | ||
| 298 | "4: \n" \ | ||
| 299 | " .long 2b \n" \ | ||
| 300 | "5: \n" \ | ||
| 301 | " l32r %1, 4b \n" \ | ||
| 302 | " movi %0, %4 \n" \ | ||
| 303 | " jx %1 \n" \ | ||
| 304 | " .previous \n" \ | ||
| 305 | " .section __ex_table,\"a\" \n" \ | ||
| 306 | " .long 1b, 5b \n" \ | ||
| 307 | " .previous" \ | ||
| 308 | :"=r" (err), "=r" (cb) \ | ||
| 309 | :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err)) | ||
| 310 | |||
| 311 | #define __get_user_nocheck(x,ptr,size) \ | ||
| 312 | ({ \ | ||
| 313 | long __gu_err, __gu_val; \ | ||
| 314 | __get_user_size(__gu_val,(ptr),(size),__gu_err); \ | ||
| 315 | (x) = (__typeof__(*(ptr)))__gu_val; \ | ||
| 316 | __gu_err; \ | ||
| 317 | }) | ||
| 318 | |||
| 319 | #define __get_user_check(x,ptr,size) \ | ||
| 320 | ({ \ | ||
| 321 | long __gu_err = -EFAULT, __gu_val = 0; \ | ||
| 322 | const __typeof__(*(ptr)) *__gu_addr = (ptr); \ | ||
| 323 | if (access_ok(VERIFY_READ,__gu_addr,size)) \ | ||
| 324 | __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \ | ||
| 325 | (x) = (__typeof__(*(ptr)))__gu_val; \ | ||
| 326 | __gu_err; \ | ||
| 327 | }) | ||
| 328 | |||
| 329 | extern long __get_user_bad(void); | ||
| 330 | |||
| 331 | #define __get_user_size(x,ptr,size,retval) \ | ||
| 332 | do { \ | ||
| 333 | int __cb; \ | ||
| 334 | retval = 0; \ | ||
| 335 | switch (size) { \ | ||
| 336 | case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb); break; \ | ||
| 337 | case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break; \ | ||
| 338 | case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb); break; \ | ||
| 339 | case 8: retval = __copy_from_user(&x,ptr,8); break; \ | ||
| 340 | default: (x) = __get_user_bad(); \ | ||
| 341 | } \ | ||
| 342 | } while (0) | ||
| 343 | |||
| 344 | |||
| 345 | /* | ||
| 346 | * WARNING: If you modify this macro at all, verify that the | ||
| 347 | * __check_align_* macros still work. | ||
| 348 | */ | ||
| 349 | #define __get_user_asm(x, addr, err, align, insn, cb) \ | ||
| 350 | __asm__ __volatile__( \ | ||
| 351 | __check_align_##align \ | ||
| 352 | "1: "insn" %2, %3, 0 \n" \ | ||
| 353 | "2: \n" \ | ||
| 354 | " .section .fixup,\"ax\" \n" \ | ||
| 355 | " .align 4 \n" \ | ||
| 356 | "4: \n" \ | ||
| 357 | " .long 2b \n" \ | ||
| 358 | "5: \n" \ | ||
| 359 | " l32r %1, 4b \n" \ | ||
| 360 | " movi %2, 0 \n" \ | ||
| 361 | " movi %0, %4 \n" \ | ||
| 362 | " jx %1 \n" \ | ||
| 363 | " .previous \n" \ | ||
| 364 | " .section __ex_table,\"a\" \n" \ | ||
| 365 | " .long 1b, 5b \n" \ | ||
| 366 | " .previous" \ | ||
| 367 | :"=r" (err), "=r" (cb), "=r" (x) \ | ||
| 368 | :"r" (addr), "i" (-EFAULT), "0" (err)) | ||
| 369 | |||
| 370 | |||
| 371 | /* | ||
| 372 | * Copy to/from user space | ||
| 373 | */ | ||
| 374 | |||
| 375 | /* | ||
| 376 | * We use a generic, arbitrary-sized copy subroutine. The Xtensa | ||
| 377 | * architecture would cause heavy code bloat if we tried to inline | ||
| 378 | * these functions and provide __constant_copy_* equivalents like the | ||
| 379 | * i386 versions. __xtensa_copy_user is quite efficient. See the | ||
| 380 | * .fixup section of __xtensa_copy_user for a discussion on the | ||
| 381 | * X_zeroing equivalents for Xtensa. | ||
| 382 | */ | ||
| 383 | |||
| 384 | extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n); | ||
| 385 | #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size) | ||
| 386 | |||
| 387 | |||
| 388 | static inline unsigned long | ||
| 389 | __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n) | ||
| 390 | { | ||
| 391 | return __copy_user(to,from,n); | ||
| 392 | } | ||
| 393 | |||
| 394 | static inline unsigned long | ||
| 395 | __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n) | ||
| 396 | { | ||
| 397 | return __copy_user(to,from,n); | ||
| 398 | } | ||
| 399 | |||
| 400 | static inline unsigned long | ||
| 401 | __generic_copy_to_user(void *to, const void *from, unsigned long n) | ||
| 402 | { | ||
| 403 | prefetch(from); | ||
| 404 | if (access_ok(VERIFY_WRITE, to, n)) | ||
| 405 | return __copy_user(to,from,n); | ||
| 406 | return n; | ||
| 407 | } | ||
| 408 | |||
| 409 | static inline unsigned long | ||
| 410 | __generic_copy_from_user(void *to, const void *from, unsigned long n) | ||
| 411 | { | ||
| 412 | prefetchw(to); | ||
| 413 | if (access_ok(VERIFY_READ, from, n)) | ||
| 414 | return __copy_user(to,from,n); | ||
| 415 | else | ||
| 416 | memset(to, 0, n); | ||
| 417 | return n; | ||
| 418 | } | ||
| 419 | |||
| 420 | #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n)) | ||
| 421 | #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n)) | ||
| 422 | #define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n)) | ||
| 423 | #define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n)) | ||
| 424 | #define __copy_to_user_inatomic __copy_to_user | ||
| 425 | #define __copy_from_user_inatomic __copy_from_user | ||
| 426 | |||
| 427 | |||
| 428 | /* | ||
| 429 | * We need to return the number of bytes not cleared. Our memset() | ||
| 430 | * returns zero if a problem occurs while accessing user-space memory. | ||
| 431 | * In that event, return no memory cleared. Otherwise, zero for | ||
| 432 | * success. | ||
| 433 | */ | ||
| 434 | |||
| 435 | static inline unsigned long | ||
| 436 | __xtensa_clear_user(void *addr, unsigned long size) | ||
| 437 | { | ||
| 438 | if ( ! memset(addr, 0, size) ) | ||
| 439 | return size; | ||
| 440 | return 0; | ||
| 441 | } | ||
| 442 | |||
| 443 | static inline unsigned long | ||
| 444 | clear_user(void *addr, unsigned long size) | ||
| 445 | { | ||
| 446 | if (access_ok(VERIFY_WRITE, addr, size)) | ||
| 447 | return __xtensa_clear_user(addr, size); | ||
| 448 | return size ? -EFAULT : 0; | ||
| 449 | } | ||
| 450 | |||
| 451 | #define __clear_user __xtensa_clear_user | ||
| 452 | |||
| 453 | |||
| 454 | extern long __strncpy_user(char *, const char *, long); | ||
| 455 | #define __strncpy_from_user __strncpy_user | ||
| 456 | |||
| 457 | static inline long | ||
| 458 | strncpy_from_user(char *dst, const char *src, long count) | ||
| 459 | { | ||
| 460 | if (access_ok(VERIFY_READ, src, 1)) | ||
| 461 | return __strncpy_from_user(dst, src, count); | ||
| 462 | return -EFAULT; | ||
| 463 | } | ||
| 464 | |||
| 465 | |||
| 466 | #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1) | ||
| 467 | |||
| 468 | /* | ||
| 469 | * Return the size of a string (including the ending 0!) | ||
| 470 | */ | ||
| 471 | extern long __strnlen_user(const char *, long); | ||
| 472 | |||
| 473 | static inline long strnlen_user(const char *str, long len) | ||
| 474 | { | ||
| 475 | unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1; | ||
| 476 | |||
| 477 | if ((unsigned long)str > top) | ||
| 478 | return 0; | ||
| 479 | return __strnlen_user(str, len); | ||
| 480 | } | ||
| 481 | |||
| 482 | |||
| 483 | struct exception_table_entry | ||
| 484 | { | ||
| 485 | unsigned long insn, fixup; | ||
| 486 | }; | ||
| 487 | |||
| 488 | /* Returns 0 if exception not found and fixup.unit otherwise. */ | ||
| 489 | |||
| 490 | extern unsigned long search_exception_table(unsigned long addr); | ||
| 491 | extern void sort_exception_table(void); | ||
| 492 | |||
| 493 | /* Returns the new pc */ | ||
| 494 | #define fixup_exception(map_reg, fixup_unit, pc) \ | ||
| 495 | ({ \ | ||
| 496 | fixup_unit; \ | ||
| 497 | }) | ||
| 498 | |||
| 499 | #endif /* __ASSEMBLY__ */ | ||
| 500 | #endif /* _XTENSA_UACCESS_H */ | ||
